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The dependence structure of log-fractional stable noise

with analogy to fractional Gaussian noise

MURAD S. TAQQU – JOSHUA B. LEVY

Abstract: We examine the process log-fractional stable motion (log-FSM), which
is an α-stable process with α ∈ (1, 2). Its tail probabilities decay like x−α as x → ∞,
and hence it has a finite mean, but its variance is infinite. As a result, its dependence
structure cannot be described by using correlations. Its increments, log-fractional noise
(log-FSN), are stationary and so the dependence between any two points in time can
be determined by a function of only the distance (lag) between them. Since log-FSN
is a moving average and hence “mixing,” the dependence between the two time points
decreases to zero as the lag tends to infinity. Using measures such as the codifference
and the covariation, which can replace the covariance when the variance is infinite,
we show that the decay is so slow that log-FSN (or, conventionally, log-FSM) displays
long-range dependence. This is compared to the asymptotic dependence structure of
fractional Gaussian noise (FGN), a befitting circumstance since log-FSN and FGN
share a number of features.

1 – Introduction

The classical Central Limit Theorem deals with the convergence of normal-
ized sums of independent and identically distributed random variables, and states
that if these random variables have finite variance then the limit is Gaussian.
The cases of infinite variance and triangular arrays are more involved. The limits
are then infinitely divisible. Bruno de Finetti was one of the first to consider
infinitely divisible distributions (see [3] as well as [2] and [10]). Since then the
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subject has developed in many directions. One of them concerns dependence.
The dependence of infinitely divisible random variables is most conveniently de-
scribed when they have an α-stable distribution, because linear combinations
of α-stable random variables remain α-stable. Sequences and random processes
with α-stable distributions then can be readily defined and their dependence
structure investigated.

An α-stable process with index of stability 0 < α < 2 has tail probabilities
that decrease to zero hypergeometrically, that is, like the power function x−α,
as x → ∞. These are the proverbial “heavy” tails since the rate of decrease
can be very slow. Moments of the process that have order p < α are necessarily
finite, but they are infinite if p ≥ α. An important case is when α ∈ (1, 2),
so that the mean is finite but the variance is infinite. This contrasts markedly
with the more familiar Gaussian process (by convention, the case α = 2), which

has exponentially “light” tails of order c1x
−1e−c2x2

(ci > 0), and hence has all
moments finite. Unlike the Gaussian distribution, which is symmetric about its
mean, a non-Gaussian stable distribution can be also skewed either to the left
or to the right of its mean. We will concentrate, though, on symmetric α-stable
processes for which the distribution is symmetric around the origin. Processes
that are α-stable (0 < α < 2) can be used to model high variability, namely,
phenomena exhibiting “acute spikes” and “eruptions,” a behavior that is also
often described as burstiness.

A random process is self-similar if it has finite-dimensional distributions
that scale. Specifically, {Xt}, t ∈ R, is H-self similar (H-ss), H > 0, if

Xct
d
= cHXt

for any c > 0 and t ∈ R. The notation
d
= signifies equality of the finite-

dimensional distributions, that is, for any finite set of times t1, . . . , tn

P(Xct1 ≤ x1, . . . , Xctn
≤ xn) = P(cHXt1 ≤ x1, . . . , cHXtn

≤ xn).

H is called the self-similarity index for {Xt}. Thus, the finite-dimensional dis-
tributions maintain an invariance through a simple scaling of time and space.
(Refer to the excellent monograph by Embrechts and Maejima [5] and to the
review paper [13] for details.) The process {Xt} has stationary increments (si) if

Xt+s−Xs
d
= Xt−X0 for all t, s ∈ R. Processes that are both H-self-similar and

have stationary increments (indicated by H-sssi) are helpful for describing nat-
ural events that display long-range dependence. Long-range dependence occurs,
for example, in economic time series and internet communication. Processes that
are both α-stable with α < 2 and H-sssi are effective models with which to in-
vestigate both burstiness and long-range dependence in (but are not limited to)
network traffic, hydrology, and financial data. Besides articles in the literature
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about α-stable, H-sssi, or α-stable H-sssi processes and their applications, see
also the texts [4], [11], and [6].

In the case of Gaussian or any finite variance process, the dependence struc-
ture in a weaker form can be studied readily through the correlations. For exam-
ple, zero correlation between the components of a Gaussian process is equivalent
to their independence. If the components are stationary, then one can examine
their dependence over time durations, or lags. If as the lags get larger, the cor-
relations converge rapidly to zero, then the dependence is “weak.” On the other
hand, the dependence is “strong” if the convergence is so slow that the sum of
the correlations diverge. Such divergence intrinsically characterizes the random
cycles of abnormality and regularity exhibited by long-range dependence.

This paper focuses on the symmetric α-stable (SαS) H-sssi process log-
fractional stable motion (log-FSM), which is defined for 1 < α < 2 and has the
self-similarity index H = 1/α. Log-FSM has zero mean but infinite variance.
In particular, its dependence cannot be measured by correlations. There are,
however, “stable” alternatives that replace the covariance.

Two of them are the codifference and the covariation. Both can be applied
to the stationary increments of log-FSM, which is the process known as log-
fractional stable noise, log-FSN. (“Motion” refers to a process with stationary
increments and “noise” to a stationary process.) The behavior of these depen-
dence measures for log-FSN in turn gives an indication about the dependence
structure for log-FSM. The codifference, in fact, is defined for any stationary
process. The covariation is restricted to SαS processes, albeit not necessarily
stationary, for which 1 < α < 2.

The rest of the paper is carried out as follows. Section 2 briefly reviews
SαS processes and their representation as integrals with respect to SαS ran-
dom measures. Log-fractional stable motion and its increment process log-
fractional stable noise (log-FSN) are reviewed in Section 3. The measures of
dependence, the codifference and the covariation, are presented in Section 4.
Section 5 contains the main results, namely, the asymptotic behavior of the
measures when applied to log-FSN. Section 6 makes an analogy to fractional
Brownian motion and its increment process fractional Gaussian noise. Some
extensions of this work and potential research are mentioned in the concluding
Section 7.

2 – A brief approach to symmetric α-stable laws and processes

Aside from the applications described in the introduction, one may ask:
why consider stable distributions? The usual answer arises from the central
limit theorem, which obtains that they are the unique limits of properly rescaled
sums of independent and identically distributed (i.i.d.) random variables. The
Gaussian (normal) distribution is the limit if the sequence has a finite variance. If
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the variance is infinite but the tails of the sequence demonstrate hypergeometric
decay for α < 2, then the limit turns out to be stable and has the same index α.

More explicitly, let {Xj}∞j=1 be an i.i.d. sequence. In the case α = 2,

suppose Xj has mean μ and variance σ2
0 . Then

1

n1/2

n∑

j=1

(Xj − μ)
L−→ Z ∼ N(0, σ2

0)

where
L−→ stands for convergence in law, that is, in distribution. The limit is

a random variable having characteristic function EeiθZ = e−
1
2 σ2

0 |θ|2 and, conse-
quently, must be Gaussian. In particular, E|Z|p < ∞ for all p > 0. By contrast,
if 0 < α < 2, then the tail probabilities of Xj are “heavy”: P(|Xj | ≥ x) ∼ cx−α

as x → ∞ with σ2
0 = ∞. Assume, in addition, Xj is symmetric (Xj

L
= −Xj) if

α = 1 and has mean μ if 1 < α < 2. Then

1

n1/α

n∑

j=1

Xj
L−→ Zα

if α ≤ 1 and

1

n1/α

n∑

j=1

(Xj − μ)
L−→ Zα.

if 1 < α < 2. The limit is a symmetric non-Gaussian α-stable random variable
Zα. We indicate this by writing Zα ∼ SαS. The limit Zα recovers the tail
behavior of Xj since also P(|Zα| ≥ x) ∼ cx−α as x → ∞, perhaps with a
different c. Thus, E|Zα|p < ∞ if and only if p < α; E|Zα|2 = ∞, EZα = 0 for
1 < α < 2, and E|Zα| = ∞ iff α ≤ 1. Its characteristic function satisfies

(2.1) EeiθZα = e−σα|θ|α , θ ∈ R := (−∞,∞),

where the scale parameter σ depends on α and c. (When α = 2, σ =
√

σ2
0/2 .)

Relation (2.1) identifies the specific random variable arising in the stable
central limit theorem. Any random variable X is, by definition, symmetric α-
stable (SαS) if it satisfies (2.1). Its scale parameter σ is denoted by ‖X‖α. If
for instance X is measured in meters, then so is ‖X‖α.

Remark. Several easy facts about X ∼ SαS (0 < α ≤ 2) are worth noting
(see also [12, ch. 1.2]).

• a ∈ R, a 
= 0 implies aX is SαS with ‖aX‖α = |a|‖X‖α.
• If α = 2 then X ∼ N(0, 2σ2).
• E|X|p < ∞ only for p < α.
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• Any linear combination of independent SαS random variables is SαS: if
εj ∼ SαS are independent and aj ∈ R, 1 ≤ j ≤ n, then X =

∑n
j=1 ajεj ∼

SαS with

‖X‖α
α = ‖

n∑

j=1

ajεj‖α
α =

n∑

j=1

|aj |α‖εj‖α
α.

It is instructive to see why this last relation holds. The characteristic func-
tion of X is, for θ ∈ R,

φX(θ) = EeiθX = E exp

⎧
⎨
⎩iθ

n∑

j=1

ajεj

⎫
⎬
⎭

=
n∏

j=1

E exp {iθajεj} =

n∏

j=1

e−|θ|α |aj |α ‖εj‖α
α

= exp

⎧
⎨
⎩−|θ|

α
n∑

j=1

|aj |α ‖εj‖α
α

⎫
⎬
⎭ = EeiθX ,

on using the independence of the εj and the fact that they are SαS.

The vector X = (X1, . . . , Xd) in Rd is Gaussian if and only if the random
variables {X1 . . . , Xd} are jointly Gaussian, that is, any linear combination of
them is Gaussian. Similarly, for 0 < α < 2, X = (X1, . . . , Xd) in Rd is a SαS
vector if and only if {X1 . . . , Xd} are jointly SαS, that is, if linear combinations∑n

j=1 ajXj are SαS random variables.

By “going to the limit” in the sum
∑n

j=1 ajεj one can define a SαS random
variable as an integral,

(2.2) X =

∫

R
f(x)Mα(dx),

where f is a deterministic function and Mα is a symmetric α-stable random
measure (see [12, ch. 3.3]). The scale parameter for X satisfies

‖X‖α
α =

∫

R
|f(x)|αdx < ∞

with dx denoting the Lebesgue measure on R. Formally, the function f(x) plays
the role of the aj ’s and Mα(dx) plays the role of the εj ’s with ‖Mα(dx)‖α

α = dx.
Mα is defined on (R,B, | · |), where B is the Borel σ-algebra on R and | · | is
Lebesgue measure. Here | · | is the control measure and (R,B, | · |) is called the
control space for Mα. This means that if B ∈ B with finite Lebesgue measure
|B|, then Mα(B) is a SαS random variable for which

EeiθMα(B) = e−|θ|α|B|.
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Furthermore, suppose {Bn}∞n=1 is a pairwise disjoint sequence of sets in B with
|Bn| < ∞. Then any finite subcollection {Mα(Bn)}∞n=1 are independent random
variables (Mα is said to be independently scattered), and if |⋃∞

n=1 Bn| < ∞,
Mα(

⋃∞
n=1 Bn) =

∑∞
n=1 Mα(Bn) almost surely (a.s.) (Mα is σ-additive).

Thus, Mα plays the dual role of being a measure and being random. As
suggested above, the Mα(dx), x ∈ R play the role of i.i.d. infinitesimal εj , with
the continuous x replacing the discrete label j, and the infinitesimal dx replacing
the common value ‖εj‖α

α, namely, the scale parameter raised to the power α.
In the Gaussian case α = 2, one usually takes (R,B, | · |/2) as the control

space, and in this case, M2(B) has characteristic function EeiθM2(B); hence,
M2(B) is a normal random variable with mean 0 and variance |B|. One can
view M2(dx) heuristically as a normal random variable having mean zero and
infinitesimal measure dx, with M2(dx) and M2(dx′) being independent if the
infinitesimal intervals dx and dx′ are disjoint. The same intuition prevails in
the SαS case with α < 2. The normal distribution is replaced by the stable
distribution and the variance is replaced by the scale parameter raised to the
power α.

Suppose B ∈ B and a > 0. Then

(2.3) Mα (aB)
d
= a1/αMα (B) ,

where aB is the set B scaled by a, and
d
= means equality of the finite-dimensional

distributions. Indeed,

EeiθMα(aB) = exp {− |aB| |θ|α|}
= exp

{
−|B|α

∣∣∣a1/αθ
∣∣∣
α}

= Eeiθa1/αMα(B).

Relation (2.3) can be denoted informally by

Mα (adx)
d
= a1/αMα (dx) .

Thus, Mα can be regarded as being “self-similar” with “index” H = 1/α.
The definition (2.2) can be extended to a random process. Consider the set

T to be either R, R+ = {t : t ≥ 0}, or {t : t > 0}. Let ft : R → R be measurable
and satisfy for each t ∈ T

(2.4)

∫

R
|ft(x)|αdx < ∞

and also, if α = 1,
∫

R | |ft(x) ln |ft(x)| | dx < ∞. (In fact, the condition (2.4)
alone suffices to ensure the existence of the subsequent random process in the
SαS case when α = 1.) Then {Xt, t ∈ T} defined by

(2.5) Xt =

∫

R
ft(x)Mα(dx)
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is a SαS process with

(2.6) ‖Xt‖α
α =

∫

R
|ft(x)|αdx.

The integral (2.5) is a “representation” of the process {Xt}. It says, intuiti-
vely, that {Xt} is obtained by starting with i.i.d. infinitesimal random variables
Mα(dx), weighting them by ft(x), and integrating. The weights change in gen-
eral with x and can also change as the time t evolves. Let −∞ < t1 ≤ · · · ≤
td < ∞. The joint characteristic function of a typical vector (Xt1 , . . . , Xtd

) of
the process is given by

E exp

⎧
⎨
⎩i

d∑

j=1

θjXtj

⎫
⎬
⎭ = exp

⎧
⎨
⎩−

∫

R

∣∣∣∣∣∣

d∑

j=1

θjftj
(x)

∣∣∣∣∣∣

α

dx

⎫
⎬
⎭

for arbitrary θ1, . . . , θd ∈ R. In fact, most SαS processes can be represented in
the form (2.5). (For details refer to [12, ch. 3 and ch. 13.2].)

One can also define an integrated process with respect to an asymmetric
α-stable random measure having arbitrary control measure that is asymmetric,
or skewed. If the integrand is as above, then the resulting process has also
asymmetric distributions. Our concern in this paper only involves processes that
are defined by (2.5) based on SαS random measures having Lebesgue control
space.

Now recall the definitions of self-similarity and stationarity of the increments
given in the introduction. A process {Xt, t ∈ T} is H-self-similar (H-ss) with
H > 0 if

(2.7) Xct
d
= cHXt

for all c > 0 and t, that is, (Xct1 , . . . , Xctd
) and cH(Xt1 , . . . , Xtd

) are identi-

cally distributed. Note that cHX0
d
= Xc0 = X0, hence, letting c → ∞ ne-

cessitates X0 = 0 a.s. A process is said to have stationary increments if the
finite-dimensional distributions of {Xt+s −Xs} do not depend on s:

(2.8) {Xs+t −Xs, t ∈ T} d
= {Xt −X0, t ∈ T} for all s ∈ T.

Suppose now that the process {Xt, t ∈ R}

• is H self-similar,

• has stationary increments, and

• is symmetric α-stable;
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to wit, it is H-sssi and SαS. Let c > 0 and s, θ1, . . . , θd,−∞ < t1 ≤ · · · ≤
td < ∞ ∈ R. It follows that ‖∑d

j=1 θj(Xctj+s − Xs)‖α
α = cαH‖∑d

j=1 θjXtj‖α
α

does not depend on s, since by (2.5)-(2.8),

(2.9)

∫

R

∣∣∣∣∣∣

d∑

j=1

θj

(
fctj+s(x)− fs(x)

)
∣∣∣∣∣∣

α

dx = cαH

∫

R

∣∣∣∣∣∣

d∑

j=1

θjftj (x)

∣∣∣∣∣∣

α

dx.

If α = 2, M2 is a Gaussian random measure. Remember that in this case the
control space usually is taken to be (R,B, | · |/2), so that the variance of M2 is
EM2(B) = |B|. The process defined by

Bt =

∫

R
1[0,t](x)M2(dx) =

∫ t

0

M2(dx), t ≥ 0.

is Brownian motion. (One can also define for t < 0, Bt =
∫ 0

−t
M2(dx).) It is the

only Gaussian H-sssi process with

H = 1/2.

Its scale parameter is EB2
t = ‖Bt‖22 = t by (2.6) (and EBt = 0). This is actually

standard Brownian motion since EB2
1 = 1. Its covariance Cov (Bt1 , Bt2) satisfies

(2.10) Cov (Bt1 , Bt2) = EBt1Bt2 =

∫

R
1[0,t1](x)1[0,t2](x)dx = min(t1, t2).

Moreover, the increments over disjoint intervals are (mutually) independent.
What happens if “Gaussian” in Brownian motion is replaced by “SαS, 0 <

α < 2”?
Replacing the Gaussian random measure M2 with the SαS random measure

Mα, we obtain the stable Lévy motion:

Lt =

∫ t

0

Mα(dx), t ≥ 0.

Also called α-stable motion, it is a SαS process with ‖Lt‖α
α = t. Its increments

over disjoint intervals are independent, a feature that distinguishes it from other
SαS processes. Moreover, it is H-sssi with

H = 1/α.

One can verify heuristically the self-similarity: for a > 0,

Lat =

∫ at

0

Mα(dx)
d
=

∫ t

0

Mα(adx)
d
= a1/α

∫ t

0

Mα(dx) = a1/αLt.

(This can be checked precisely using characteristic functions.) A striking fact
is that when 0 < α < 1, there is no other nondegenerate SαS 1/α-sssi process
besides {Lt, t ≥ 0}.

Proposition 2.1. For 0 < α < 1 α-stable motion is the only nondegenerate
SαS-stable 1/α-sssi process.
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Proof. We will follow the proof of [12, Theorem 7.5.4, p. 351], citing several
referenced results from that monograph. That theorem is stated more generally
for arbitrary α-stable 1/α-sssi processes, not necessarily symmetric.

Let {Xt, t ≥ 0} be a nondegenerate SαS 1/α-sssi process for fixed α, 0 <
α < 1. In particular, X1 is non-constant almost surely (a.s.). Denote by σt the
scale parameter of Xt, namely, σt = ‖Xt‖α. If s < t, then

(2.11) ‖Xt −Xs‖α
α = σα

t−s = (t− s)σα
1 ,

since Xt − Xs
d
= Xt−s

d
= (t − s)1/αX1 by stationarity and 1/α-self-similarity.

Observe first that σ1 = ‖X1‖α 
= 0. Indeed, if σ1 = 0 then {Xt}, t ≥ 0 would be
degenerate since by (2.11),

σt = ‖Xt −X0‖α = t1/α‖X1 −X0‖α = t1/ασ1 = 0.

We must prove Xt has independent increments, that is, for any d ≥ 3 and
0 < t1 ≤ · · · ≤ td the random variables {Xtj

−Xtj−1
}, 2 ≤ j ≤ d are (mutually)

independent.
Consider arbitrary epochs t1 < t2 ≤ t3 < t4. Since the vector (Xt1 , Xt2 , Xt3 ,

Xt4) is jointly SαS, then there exist a SαS random measure Mα with Lebes-
gue control space ([0, 1],B, | · |) and functions {ftj

(x)}, x ∈ [0, 1], satisfying∫ 1

0
|ftj

(x)|αd(x) < ∞, j = 1, 2, 3, 4, such that

Xt =

∫ 1

0

ft(x)Mα(dx)

for each t = t1, t2, t3, t4 (Theorem 3.5.6, pp. 131–132). We are now going to
verify that the pair of increments Xt2 −Xt1 and Xt4 −Xt3 are independent, by
showing ft2 − ft1 and ft4 − ft3 have almost-[dx] disjoint supports, i.e.

(2.12)
(
ft2(x)− ft1(x)

)(
ft4(x)− ft3(x)

)
= 0 a.e. [dx].

Using the inequality |a + b|α ≤ |a|α + |b|α, valid for 0 < α ≤ 1,

(t4 − t1)σ
α
1 = σα

t4−t1 =

∫ 1

0

|ft4(x)− ft1(x)|αdx (by(2.11))

≤
∫ 1

0

|ft4(x)− ft3(x)|αdx +

∫ 1

0

|ft3(x)− ft2(x)|αdx+

+

∫ 1

0

|ft2(x)− ft1(x)|αdx

= σα
t4−t3 + σα

t3−t2 + σα
t2−t1 =

=
(
t4 − t3

)
σα

1 +
(
t3 − t2

)
σα

1 +
(
t3 − t2

)
σα

1 = (t4 − t1)σ
α
1 .
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The preceding inequality is therefore an equality. Applying Lemma 2.7.14 (1),
p. 92, we can conclude (2.12) holds. This proves that Xt2 −Xt1 and Xt4 −Xt3

are independent (Theorem 3.5.3, p. 128).
Since jointly α-stable random variables are independent if and only if they

are pairwise independent (Corollary 3.5.4, p. 129), then {Xtj
−Xtj−1

}, 2 ≤ j ≤
d, d ≥ 3 are independent. Thus, the increments of {X(t)} are independent, which
establishes in turn that {X(t)} must be α-stable motion.

When 1 ≤ α < 2, there are other SαS processes besides α-stable motion
that are H-sssi with H = 1/α. In the sequel we will concentrate on the log-
fractional stable motion.

3 – Log-fractional stable motion

Definition 3.1. The process defined by

(3.1) Xt =

∫

R
(ln |t− x| − ln |x|) Mα(dx), t ∈ R,

where for 1 < α < 2, Mα is a SαS random measure having Lebesgue control
measure, is called log-fractional stable motion (log-FSM).

Log-FSM was introduced by Kasahara et al. [7]. It is well-defined only
for 1 < α ≤ 2. Indeed,

∫ ∞
−∞ |ln |t− x| − ln |x||α dx is finite since, when x ∼

0,
∫ δ

0
(ln |x|)α

dx < ∞ but if |x| ∼ ∞, then ln |t − x| − ln |x| ∼ −t/x, and for

A > 0,
∫ ∞

A
x−αdx < ∞ if and only if α > 1. (See also [12, ch. 7.6] for additional

information.)

Proposition 3.1. Log-FSM is H-sssi with H = 1/α.

Proof. We will show that (2.9) holds. Let c > 0 and s, θ1, . . . , θd,−∞ <
t1 ≤ · · · ≤ td < ∞ ∈ R. The change of variables x �→ (s− x)/c gets

∫ ∞

−∞

∣∣∣∣∣∣

d∑

j=1

θj (ln |ctj + s− x| − ln |s− x|)

∣∣∣∣∣∣

α

dx =

=

∫ ∞

−∞

∣∣∣∣∣∣

d∑

j=1

θj (ln |c(tj − x)| − ln |cx|)

∣∣∣∣∣∣

α

cdx

= c

∫ ∞

−∞

∣∣∣∣∣∣

d∑

j=1

θj (ln |tj − x)| − ln |x|)

∣∣∣∣∣∣

α

dx.

This verifies (2.9) with αH = 1.
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What happens when we consider log-FSM with α = 2? It becomes Gaussian.
Since it is also H-sssi with H = 1/2, is it different from Brownian motion? The
answer is “no.” To see that log-FSM and Brownian motion are the same Gaus-
sian process, it suffices to observe that they have identical variance-covariance
structures. Indeed, by self-similarity, H = 1/2 implies EX2

t = tEX2
1 , and this

leads to

EXt1Xt2 =
1

2

(
EX2

t1 + EX2
t1 − E |Xt1 −Xt2 |2

)
=

=
1

2
(t1 + t2 − |t1 − t2|) EX2

1 = min(t1, t2)EX2
1 ,

which is the covariance of Brownian motion (compare it to (2.10)). Thus, when
α = 2, (3.1) is merely a different representation of Brownian motion.

What about the case 1 < α < 2? Is log-FSM the same process as α-stable
motion? Observe that they are both H-sssi with H = 1/α. However,

Proposition 3.2. When 1 < α < 2, log-FSM and α-stable motion are
different processes.

We have verified in Proposition 2.1 that α-stable motion has independent
increments. We will show momentarily that log-FSM has dependent increments.
To do so, we consider the increment process of log-FSM called log-fractional
stable noise.

Definition 3.2. Let 1 < α ≤ 2. Log-fractional stable noise (Log-FSN) is
the SαS process,

(3.2) Yt : = Xt+1 −Xt =

∫

R
(ln |t + 1− x| − ln |t− x|) M(dx) t ∈ R.

It is the increment process of log-FSM, {Xt, t ∈ R}.
Do not confuse “log-FSM” with “log-FSN.” The first, with “M” standing

for motion, refers to the process with stationary increments. The second with
“N” standing for noise refers to the corresponding stationary process obtained
by taking the increments of log-FSM.

We proceed to prove Proposition 3.2.

Proof. Two α-stable variables, 0 < α < 2,
∫

R f(x)Mα(dx) and
∫

R g(x)
Mα(dx) are independent if and only if their kernels f and g have disjoint support,
a.e. [dx] [12, Theorem 3.5.3, p. 128]. For any t ∈ R, the support of Yt in (3.2)
is evidently R. Therefore, Yt1 and Yt2 can never be independent for any t1 
= t2.
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Having established Proposition 3.2, our goal is to analyze the dependence
of the increments using the codifference and the covariation.

4 – Two measures of dependence

Suppose X1 and X2 are jointly SαS. In particular, X1 −X2 is SαS. The
codifference between two jointly SαS random variables is defined by

(4.1) τX1,X2 = ‖X1‖α
α + ‖X2‖α

α − ‖X1 −X2‖α
α.

The codifference arises from comparing the joint characteristic function of (X1,
X2) to the product of their marginal characteristic functions:

UX1,X2 (θ1, θ2) = Eei(θ1X1+θ2X2) − Eeiθ1X1Eeiθ2X2 ,

whereupon setting θ1 = 1, θ2 = −1, one gets

UX1,X2
(1,−1) = Eei(X1−X2) − EeiX1Ee−iX2

= e−‖X1−X2‖α
α − e−‖X1‖α

α−‖X2‖α
α

= e−‖X1‖α
α−‖X2‖α

α (eτX1,X2 − 1) .

The last term behaves asymptotically like a constant times τX1,X2 as τX1,X2 → 0.
Note that independence of X1 and X2 certainly implies τX1,X2

= 0. If, on
the other hand, τX1,X2

= 0 then UX1,X2
(1,−1) = 0, but this does not imply

independence unless 0 < α < 1. We mention some of the properties of the
codifference (see also [12, ch. 2.10]).

Properties :

(i) τX1,X2 is well-defined for 0 < α ≤ 2.
(ii) For α = 2, τX1,X2 = Cov(X1, X2).
(iii) The codifference is symmetric: τX1,X2

= τX2,X1
.

(iv) τX1,X2
is non-negative definite.

In order to define the covariation, take α > 1 and suppose that X1 =∫
R f1(x) Mα(dx) and X2 =

∫
R f2(x)Mα(dx). The covariation of X1 and X2 is

given by

(4.2) [X1, X2]α =

∫

R
ft1(x)ft2(x)〈α−1〉dx

where a〈α−1〉 = |a|α−1sign(a). It is defined for 1 < α ≤ 2.
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Properties : We refer to [12, ch. 2.7].

(i) If α = 2, [X1, X2]α = (1/2)Cov(X1, X2).

(ii) It shows up naturally in linear regression ([12, ch. 4.1]). If 1 < α ≤ 2, then
the regression of X1 on X2 is not only linear (as a function of X2) but also
satisfies

E (X1|X2) =
[X1, X2]α
‖X2‖α

α

X2 a.s.

This relation generalizes the well-known relation for jointly Gaussian mean-
zero variables X1, X2:

E (X1|X2) =
Cov (X1, X2)

EX2
2

X2 a.s.

(iii) If X1 and X2 are independent, then [X1, X2]α = 0. The converse is false,
unless X2 is James orthogonal to X1. X2 is James orthogonal to X1, sym-
bolized by X2⊥J X1, means

‖λX1 + X2‖α ≥ ‖X2‖α

for all λ ∈ R. Thus, by [12, Proposition 2.9.2, p. 98]

[X1, X2]α = 0 ⇐⇒ X2⊥J X1.

There are, however, a few “drawbacks” with the covariation.

(i) (4.2) is defined just for α > 1. This can be appreciated by applying Hölder’s
inequality with the exponents p = α and q = α/(α− 1):

|[X1, X2]α| ≤
(∫

R
|ft1(x)|α dx

) 1
α

(∫

R
|ft2(x)|α dx

)α−1
α

= ‖X1‖α‖X2‖α−1
α .

(ii) It is not symmetric for α < 2: [X1, X2]α 
= [X2, X1]α.

(iii) It is linear in the first argument, but not in the second, if α ≤ 2

[X1, X2 + X3]α 
= [X1, X2]α + [X1, X3]α ,

unless X2 and X3 are independent.
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5 – Application to log-fractional stable noise

We want to study the asymptotic behavior as t → ∞ of log-fractional sta-
ble noise (log-FSN), namely the increment process Yt of log-FSM. Since it is
stationary, we need only consider (Yt, Y0). From (4.1) its codifference is

(5.1) τYt,Y0 = ‖Yt‖α
α + ‖Y0‖α

α − ‖Yt − Y0‖α
α.

Its covariation, using (3.2) and (4.2), is

(5.2) [Yt, Y0]α =

∫

R
(ln |t + 1− x| − ln |t− x|) (ln |1− x| − ln | − x|)〈α−1〉

dx.

We noted that the codifference is always symmetric, but this is not true for
the covariation. However, the covariation of log-FSN is symmetric. Indeed,
substituting y = t + 1− x in (5.2), we get

[Yt, Y0]α =

∫

R
(ln |y| − ln |y − 1|) (ln |y − t| − ln |y − t− 1|)〈α−1〉

dy

=

∫

R
(ln |1− y| − ln |y|) (ln |t + 1− y| − ln |t− y|)〈α−1〉

dy = [Y0, Yt]α

since (−1)(−1)〈α−1〉 = 1.
Yt is a moving average,

Yt =

∫

R
g(t− x)Mα (dx) .

As a consequence, as t → ∞, Yt and Y0 are asymptotically independent. Yt is
actually mixing because, denoting it by the map Y , then

lim
t→∞

PY −1 (St(A) ∩B) = PY −1(A)PY −1(B),

where St : Ω −→ Ω is the shift transformation on Ω = RR that is defined by
(Stω)(s) = ω(s + t). ({St} is a family of measure-preserving transformations on
Ω [12, ch. 14.4].) One therefore expects as t →∞

τYt,Y0 → 0 and [Yt, Y0]α → 0.

The precise rate of convergence of these measures is important, since this rate
will characterize the form of asymptotic dependence.

Theorem 5.1. Suppose SαS log-FSN, Yt, is given by (3.2).
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(i) Its codifference (5.1) satisfies

τYt,Y0
∼ Pt1−α as t →∞

where

P =

∫ 1

−∞

[∣∣∣∣
1

1− x

∣∣∣∣
α

+

∣∣∣∣
1

x

∣∣∣∣
α

−
∣∣∣∣

1

1− x
+

1

x

∣∣∣∣
α]

dx

+

∫ ∞

0

[(
1

1 + x

)α

+

(
1

x

)α

−
(

1

x
− 1

1 + x

)α]
dx

and P > 0.
(ii) Its covariation (5.2) satisfies

[Yt, Y0]α ∼ Qt1−α as t →∞

where

Q =

∫ 1

0

[
(1 + x)

1−α (
x−1 + xα−2

)
− (1− x)

1−α (
x−1 − xα−2

)]
dx

and Q > 0.

Theorem 5.1 was proved in [8] and the codifference of log-FSN was initially
examined in [1](1).

The results show that the codifference and covariation converge to zero
hypergeometrically, ctp, where c is a positive constant and the rate p = 1 − α
is the same for both. In particular, the non-vanishing of c renders this rate
exact for either measure. Since 1 < α < 2, the rate is slow enough so that the
series

∑∞
t=1 τYt,Y0 and

∑∞
t=1 [Yt, Y0]α diverge. One often asserts in this case that

log-FSN and, in turn, log-FSM exhibit long-range dependence.

6 – Comparison with fractional Gaussian noise

Consider the Gaussian H-sssi process

BH(t) =

∫

R

(
|t− x|H−1/2 − |x|H−1/2

)
M2(dx), t ∈ R

(1)There are some typographical errors in [12, Theorem 7.10.1, p. 368 and Theorem
7.10.2, p. 369]. The constant F (θ1, θ2) is correct but the constants B(θ1, θ2) and
G(θ1, θ2) are not. To correct B(θ1, θ2) in Theorem 7.10.1, the constant −bθ2 should

replace bθ2 in the first term of the integrand of
∫ 1

0
. In Theorem 7.10.2, replace 1 + x

by 1 − x in the integrand of
∫ 1

−∞. The correct versions are stated in [1, Theorem 2.1

and Theorem 2.4].
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where 0 < H ≤ 1, known as fractional Brownian motion (FBM). Its increment
process, fractional Gaussian noise (FGN) is

(6.1)

ΔBH(t) = BH(t + 1)−BH(t) =

=

∫

R

(
|t + 1− x|H−1/2 − |t− x|H−1/2

)
M2(dx).

The covariance of FGN satisfies

rt = Cov(ΔBH(t),ΔBH(0)) ∼ CHt2H−2 as t →∞

where CH = EB2
H(1)H(2H − 1) ([12, Proposition 7.2.10, p. 335]).

Now restrict H to the range

1/2 < H < 1.

Then CH > 0 and
∞∑

t=1

rt ∼
∞∑

t=1

CHt2H−2 = ∞,

so that FGN exhibits long-range dependence.

The dependence structures of FGN and log-FSN ((3.2)) share some common
attributes.

(i) The constants of asymptoticity are positive for both processes: CH > 0 for
FGN and P > 0 and Q > 0 in Theorem 5.1.

(ii) The exponents 2H − 2 (FGN) and 1− α (log-FSN) have the same extreme
values: the exponent is −1 for FGN with H → 1/2 and for log-FSN with
α → 2, while it is 0 for FGN with H → 1 and for log-FSN with α → 1.
Thus, the ranges of the exponents are the same interval (−1, 0) of values.

(iii) In that range (−1, 0) we have long-range dependence displayed by both
processes. For FGN, the sum of the covariances diverges (

∑∞
t=1 rt = ∞),

and for log-FSN, the sum of the codifferences diverges (
∑∞

t=1 τYt,Y0 = ∞)
and the sum of the covariations diverges (

∑∞
t=1 [Yt, Y0]α = ∞).

The dependence nevertheless is due to different sources. Both processes are
parametrized by a single parameter, H for FGN and α for log-FSN. The depen-
dence for FGN arises from the presence of H in the integrand in (6.1). By con-
trast, the integrand is fixed in log-FSN, Yt =

∫
R (ln |t + 1− x|− ln |t−x|) Mα(dx),

but the dependence is due to the presence of α in the random measure.
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7 – Concluding remarks and extensions

We have observed that log-FSM becomes Brownian motion when α = 2.
What if one alters the kernel of log-FSM in (3.1), replacing the logarithm by a
power function? One gets

(7.1) Xt =

∫

R

(
|t− x|H−1/α − |x|H−1/α

)
Mα(dx), t ∈ R.

This process is called linear fractional stable motion (LFSM) ([12, ch. 7.4]).
It is defined for 0 < α < 2 and 0 < H < 1, provided H 
= 1/α. If H =
1/α, it is ordinarily identified as a generalization of α-stable motion, which has
independent increments.

When H = 1/α, one could also identify LFSM with log-FSM, since

1

H − 1/α

(
|t− x|H−1/α − |x|H−1/α

)
=
|t− x|H−1/α − 1

H − 1/α
− |x|H−1/α − 1

H − 1/α

=
e(H−1/α) ln|t−x| − 1

H − 1/α
− e(H−1/α) ln|x| − 1

H − 1/α

−→ ln |t− x| − ln |x|

as H → 1/α, for any x 
= 0, t.
LFSM also becomes FBM when α = 2.
There are also extensions of LFSM obtained by substituting for the absolute

value in (7.1) a linear combination of the positive and negative parts:

(7.2)
Xa,b;t =

∫

R

(
a

[
(t− x)

H−1/α
+ − (−x)

H−1/α
+

]
+

+ b
[
(t− x)

H−1/α
− − (−x)

H−1/α
−

])
Mα(dx),

where a and b are real-valued constants, not both equal to 0, and

x+ =

{
x if x ≥ 0

0 if x < 0,
x− =

{
0 if x ≥ 0

−x if x < 0.

The process Xa,b;t, t ∈ R in (7.2) is also called LFSM, although it has essentially
different finite-dimensional distributions as a and b take different values ([12,
Theorem 7.4.5, p. 347]). The instance (7.1) is recovered by setting a = b. The
case a 
= 0, b = 0 is non-anticipative (or causal) and the case a = 0, b 
= 0 is
anticipative. These processes have stationary increments; in fact, the difference
process

Ya,b;t = Xa,b;t+1 −Xa,b;t
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is known as linear fractional stable noise (LFSN). Since Ya,b;t is stationary and
SαS, one can inquire about the asymptotic behavior of its codifference if 0 <
α < 2 and its covariation when 1 < α < 2. There is burgeoning research on this
topic. Refer to [9] for related results when a and b are restricted to a 
= 0, b = 0
and a = 0, b 
= 0. In both cases this behavior is also hypergeometric, ctp with
p < 0 and, more importantly, c 
= 0, so again the rates are exact. On the other
hand, their precise asymptotic behavior for arbitrary a and b is more complicated
and currently is being examined by the authors.

In view of the preceding discussion comparing (7.2) and (7.1), one may
wonder what happens if also the absolute values in the representation (3.1) of
log-FSM are replaced by a linear combination of positive and negative parts;
that is, if one considers the process

Z(t) =

∫

R
(a [ln0(t− x)+ − ln0(−x)+] + b [ln0(t− x)− − ln0(−x)−])Mα(dx),

where ln0 x = lnx if x > 0 and = 0 otherwise. We also intend to study its
asymptotic dependence structure. Observe, however, such a process falls outside
our present framework because it is no longer H-ss ([12, p. 355]), unless a = b,
in which case it is log-FSM.
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