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Surfaces with a family of nongeodesic

biharmonic curves

J. MONTERDE

Abstract: The only surface whose level curves of the Gauss curvature are non-
geodesic biharmonic curves and such that the gradient lines are geodesics is, up to local
isometries, the revolution surface defined by Caddeo-Montaldo-Piu.

1 – Introduction

In a recent paper ([2]) the authors study the notion of biharmonic curves
on surfaces. If we consider isometric immersions γ : I → S from an interval I to
a surface S, then the bienergy functional is defined by

E2(γ) =
1

2

∫

S

|τγ |2 dv,

where τγ = ∇γ̇ γ̇ is the tension field associated to the curve γ. A curve is called
biharmonic if it is a critical point of the bienergy functional.

In the cited paper it is proved that along a nongeodesic biharmonic curve
the Gauss curvature is constant and equal to the square of the geodesic curva-
ture. Therefore, nongeodesic biharmonic curves are level curves of the Gauss
curvature.

Moreover, biharmonic curves on revolution surfaces also are therein stud-
ied. In particular the unique revolution surfaces with all parallels nongeodesic
biharmonic curves are determined.
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The two conditions: nonvanishing constant geodesic curvature and Gauss
curvature equal to the square of the geodesic curvature along level curves seem
to be hard conditions. Apart from the previously cited revolution surface, the
authors in [2] are able to find just some few such curves in, for instance, revolution
surfaces with constant Gauss curvature.

In this note, we first determine the local expression of the metric tensor of a
two-dimensional Riemannian manifold whose level curves of the Gauss curvature
are nongeodesic biharmonic curves.

The coefficients of the metric only depend on the function which assigns to
each level curve its constant geodesic curvature and on another function on the
same parameter transversal to the level curves.

Since the Gauss curvature is positive, then the two-dimensional Riemannian
manifolds can be locally realized as regular surfaces (see [4]). If in addition
we ask for the gradient lines of the Gauss curvature to be geodesics, then the
only surface, up to local isometries, is the revolution surface defined in [2]. A
final example shows that this last condition, orthogonal lines are geodesics, is
necessary.

2 – Surfaces of revolution for which all parallels are biharmonic curves

Proposition 1. (See [2]) Let γ : I → (M2, g) be a differentiable curve in
a surface M2. Then, if γ is a nongeodesic biharmonic curve, along γ the Gauss
curvature is constant, positive and equal to the square of the geodesic curvature
of γ.

So, a nongeodesic biharmonic curve, γ, is characterized by{
kg(t) = constant 
= 0,

k2
g(t) = K(γ(t)),

for all t ∈ I and where kg denotes the geodesic curvature of γ and K denotes
the Gauss curvature.

Theorem 1. (See [2]) Let M2 ⊂ IR3 be a surface of revolution obtained by
rotating the arc length parametrized curve α(v) = (f(v), 0, g(v)) in the xz-plane
around the z-axis. Then all parallels of M are biharmonic curves if and only if
either

1. f is constant and M is a right circular cylinder or
2. f(v) = ±c

√
v and

g(v) = v

√
4v − c2

4v
− c2

8
ln

(
8v + 8v

√
4v − c2

4v
− c2

)
+ c1,

where c and c1 are positive constants.
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Remark 1. The surfaces introduced in Theorem 1, (2), will be called CMP-
revolution surfaces. If we consider the parametrization

−→x (u, v) =
(
f(v) cos

u

c
, f(v) sin

u

c
, g(v)

)
,

then, a simple computation shows that the coefficients of the metric are inde-
pendent of the values of the two constants c and c1:

g11(u, v) = v, g12(u, v) = 0, g22(u, v) = 1.

Therefore any pair of CMP-revolution surfaces are isometrics.
Let us consider the parallel generated by (f(v), 0, g(v)). The geodesic cur-

vature of the parallel is − 1
2v , the sign depends on the orientation, and the Gauss

curvature is 1
4v2 .

Another parametrization of the revolution surface can be obtained by chang-

ing v = c2

4 cosh2(t) and modifying the constants c =
√

2a, c1 = c2( c2

8 + 1
4 ln c).

The new parametrization of the generating curve is

f(t) = ±a2 cosh t, g(t) = −a2

2
(t − 2 sinh(2t)) + c2.

3 – Two-dimensional Riemannian manifolds with a family
of nongeodesic biharmonic curves

The surface in fig. 1 is the only surface of revolution with nongeodesic bihar-
monic parallel lines. The natural question is to ask if there are more surfaces,
obviously not of revolution, with a family of coordinate lines which are non-
geodesic biharmonic curves.

Fig. 1: Plot of a piece of the unique revolution surface with nongeodesic biharmonic
parallel lines, for c = 1 and c1 = 0.

In any surface the level curves of the Gauss curvature define a foliation, maybe
degenerated, on it. At same time, the integral curves of the gradient vector
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field are orthogonal to the level curves. We are interested in studying the case
when the level curves are curves with non zero constant geodesic curvature whose
square is the value of the Gauss curvature.

We will use the notation i to denote partial derivatives with respect to the
variable ui. Thus, g12,1 denotes ∂g12

∂u1
.

Proposition 2. Let (M2, g) be a two-dimensional Riemannian manifold
such that the level curves of the Gauss curvature are nongeodesic biharmonic
curves. Then, for any p ∈ M , regular point of the Gauss curvature, there exists
a parametrization of a neighborhood of p, V ⊂ M , −→x : U → V ⊂ M , such that
all the coordinate lines v = v0, v0 constant, are nongeodesic biharmonic curves,
and the coefficients of the metric are

(3.1)

g11 ≡ 1,

g12(u, v) =

√
2m(v)

(
sin(

√
2k(v)(u − n(v))) + sin(

√
2 n(v)k(v))

)

2
+

+
uk′(v)

2k(v)
,

g22(u, v) = g2
12(u, v) +

(
g12,1(u, v)

k(v)

)2

,

where m(v) = sec(
√

2k(v)n(v))
(
1 − k′(v)

2k2(v)

)
and where k(v0) is the geodesic cur-

vature of the coordinate line v = v0.
Reciprocally, if a metric is of the kind 3.1, then the level curves of the Gauss

curvature are nongeodesic biharmonic curves.

Proof. Let α : I → S be the gradient line of the Gauss curvature passing
trough the point p, and let us suppose that it is parametrized by arc-length.
Since p is a regular point for the Gauss curvature, there is a neighborhood of p,
V , such that all points q ∈ V are also regular. For each point α(v) ∈ V , let σv

be the level curve passing trough α(v) and parametrized by arc-length.
Finally, let us consider −→x : U → M defined by −→x (u, v) = σv(u).
Since all the coordinate lines v = v0 are parametrized by arc-length, then

the coefficient g11 of the metric is equal to 1.
The geodesic curvature of a curve −→x (u1(t), u2(t)), not necessarily parame-

trized by the arc-length, can be computed from the formula (see [3], formu-
la (49.7))

kg =
1

||α′||3 <
Dα′

dt
, α′ ∧ (N ◦ α) >

=

√
g11g22 − g2

12

||α′||3

⎛
⎝(u′′

1 +

2∑

j,k=1

Γ1
jku′

ju
′
k)u′

2 − (u′′
2 +

2∑

j,k=1

Γ2
jku′

ju
′
k)u′

1

⎞
⎠ .
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k  = ct.,g g   =1.
11

g    (0, v) = 0,
12

g   (0, v) = 1.
22

x (t, v)0

x (0, v)

Fig. 2: Schematic description of the definition of the parametrization.

Therefore, the geodesic curvature of a coordinate line t → −→x (t, v0) reduces to

(3.2) kg(t) = −Γ2
11(t, v0)

√
g22(t, v0) − g2

12(t, v0) = − g12,1(t, v0)√
g22(t, v0) − g2

12(t, v0)
.

Since we are supposing that the geodesic curvature of a coordinate line v = v0 is
constant, then kg(t) = k(v0), where k is the function assigning to each coordinate
line v = v0 its geodesic curvature.

From eq. 3.2 we get

(3.3) g22(t, v) = g2
12(t, v) +

(
g12,1(t, v)

k(v)

)2

.

Note that the area element reduces to

(3.4) σ :=
√

g11g22 − g2
12 =

g12,1(t, v)

k(v)
.

The computation of the Gauss curvature by the Gauss formula

(3.5) K = − 1

g11
((Γ2

12)1 − (Γ2
11)2 + Γ1

12Γ
2
11 + Γ2

12Γ
2
12 − Γ1

11Γ
2
12 − Γ2

11Γ
2
22),

gives a simple expression:

K = −g12,111(t, v) + k2(v)g12,1(t, v) − k(v)k′(v)

g12,1(t, v)
.

Condition K(t, v) = k2(v) implies

(3.6) g12,111(t, v) + k(v) (2k(v)g12,1(t, v) − k′(v)) = 0.
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From eq. 3.4, eq. 3.6 can be rewritten in terms of the area element σ as

(3.7)
∂2σ

∂t2
(t, v) + 2k2(v)σ(t, v) − k′(v) = 0.

Note that the differential equation is of the kind f ′′ + a2f = b whose general
solution can be written as f(t) = C1 cos (at− C2) + b

a2 . Therefore, the general
solution of eq. 3.7 is

σ(t, v) = m(v) cos
(√

2 k(v) (t − n(v))
)

+
k′(v)

2k2(v)
,

or some functions m(v) and n(v).
Along the curve v → −→x (0, v) the area element, σ(0, v), is equal to 1, there-

fore,

m(v) = sec
(√

2k(v)n(v)
) (

1 − k′(v)

2k2(v)

)
.

Therefore, from eq. 3.4,

g12(t, v) =

√
2k(v)m(v) sin(

√
2k(v)(t − n(v))) + tk′(v)

2k(v)
+ c(v),

for some functions n(v) and c(v).
Since the curve v → −→x (0, v) is orthogonal to all coordinate lines v = v0,

then g12(0, v) = 0. This implies that

c(v) =
m(v) sin(

√
2 n(v)k(v))√
2

.

Reciprocally, note that if the coefficients of a metric are of the kind 3.1, then
the Gauss curvature is K(t, v) = k2(v). Therefore, the coordinate curves t →−→x (t, v0) are level curves of the Gauss curvature. Moreover, since the geodesic
curvature of the curves t → −→x (t, v0) is k(v0), then they are nongeodesic bihar-
monic curves.

Remark 2. In the case k′ ≡ 0, then the Gauss curvature is constant.
Minding’s theorem states that, up to local isometries, the models for surfaces
with constant Gauss curvature are the revolution surfaces with constant Gauss
curvature. It is possible to obtain parametrizations with coefficients of the metric
like in the statement of Proposition 2. See the final Example 3.1.

Remark 3. Note that in the CMP-revolution surfaces, the gradient lines of
the Gauss curvature, ie., the meridian curves, are geodesic curves. So, we shall
ask for all gradient lines being geodesic curves, i.e., gradK

|gradK| is a geodesic vector
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field. As it is pointed out in [1], Section 3, this condition is equivalent to the
assertion that the regular levels of K are parallel, or to the eiconal equation for
K: grad(|gradK|) is a multiple of gradK.

Theorem 2. Let (M2, g) be a two-dimensional manifold with |gradK|(p) 
=
0 for all p ∈ M and such that the level curves of the Gauss curvature are
nongeodesic biharmonic curves, then (M2, g) is locally isometric to the CMP-
revolution surface if and only if gradK

|gradK| is a geodesic vector field.

Proof. In the CMP-revolution surface the gradient lines of the Gaussian
curvature are the meridian lines and they are geodesics, so, grad(|gradK|) is a
geodesic vector field.

Reciprocally, let us consider one of the parametrizations, −→x , given by Propo-
sition 2. Gradient lines are orthogonal to level curves, i.e., to the coordinate lines
with −→x 1 as tangent vector. Therefore, any gradient line, β(t) = −→x (u(t), v(t)),
parametrized by arc-length, has as tangent vector

k

g12,1
(−g12

−→x 1 +−→x 2) .

An straightforward computation of its geodesic curvature using eq. 3.2 with

u′(t) = −k(v(t))g12(u(t), v(t))

g12,1(u(t), v(t))
, v′(t) =

k(v(t))

g12,1(u(t), v(t))
,

gives us

kβ
g (t) =

g12,11

g12,1
(u(t), v(t)).

Now, by eq. 3.1, kβ
g (t) ≡ 0 if and only if

− 1√
2

cos(
√

2 k(v(t)) (u(t) − n(v(t))))

sin(
√

2 k(v(t)) n(v(t)))

(
2k2(v(t))− k′(v(t))

)
= 0.

If all the gradient lines are geodesics, then 2k2(v)−k′(v) = 0 for all v. Therefore,

k(v) = − 1

2v + a
.

A simple change of parameter v allows to put

k(v) =
1

2v
.

Now, the coefficients of the metric are

g11 = 1, g12(u, v) = − u

2v
, g22(u, v) = 1 +

u2

4v2
.

A change of parameter u → u
√

v transform them into

g11 = v, g12 = 0, g22 = 1,

the same coefficients than the ones of the CMP-revolution surface. Therefore
both surfaces are locally isometric.
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3.1 – Necessary condition

The condition: “orthogonal lines to the nongeodesic biharmonic curves are
geodesics” is necessary. Let us show an example where the orthogonal lines are
not geodesic curves.

The example can be built using the sphere and the parallel of latitude π
4 .

It is already known that it is a nongeodesic biharmonic curve on the sphere.
The image of this parallel under a rotation around the y-axis, an isometry, gives
another nongeodesic biharmonic curve. So, we can construct a uniparametric
family of nongeodesic biharmonic curves on the sphere.

Let us denote by Ry
θ : IR3 → IR3 the rotation with y-axis and angle θ. The

parametrization

−→x (u, v) = Ry
v

(√
2

2
(cos(u), sin(u), 1)

)

=

√
2

2
(cos(u) cos(v) + sin(v), sin(u), cos(v) − cos(u) sin(v)),

for u ∈ ]π
2 ,−π

2 [, and v ∈ IR, verifies that the coordinate lines t → −→x (t, v) are
nongeodesic biharmonic curves. (See fig. 3)

Fig. 3: The parametrization of the central section of the sphere with nongeodesic bihar-
monic curves as coordinate lines.

Of course, in this example we can not talk about gradient lines of the Gauss
curvature because it is a constant function. Instead, we can study orthogonal
curves to the coordinate lines. Since the geodesics in the sphere are great circles
and they are not orthogonal to the coordinate lines of the parametrization −→x ,
then the family of orthogonal lines to the nongeodesic biharmonic curves is not
made of geodesic curves.
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