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On the analogy between Arithmetic Geometry

and foliated spaces

ERIC LEICHTNAM

Abstract: Christopher Deninger has developed an infinite dimensional cohomo-
logical formalism which allows to prove the expected properties of the arithmetical Zeta
functions (including the Riemann Zeta function). These cohomologies are (in general)
not yet constructed. Deninger has argued that these cohomologies might be constructed
as leafwise cohomologies of suitable foliated spaces. We shall review some recent results
which support this hope.

1 – Introduction

Christopher Deninger’s approach to the study of arithmetic zeta functions
proceeds in two steps.

In the first step, he postulates the existence of infinite dimensional coho-
mology groups satisfying some “natural properties”. From these data, he has
elaborated a formalism allowing him to prove the expected properties for the
arithmetic zeta functions: functional equation, conjectures of Artin, Beilinson,
Riemann . . . etc. There it is crucial to interpret the so called explicit formulae
for the arithmetic zeta function as a Lefschetz trace formula.

The second step consists in constructing these cohomologies. Deninger
has given some hope that these cohomologies might be constructed as leafwise
cohomologies of suitable foliated spaces. Very little is known in this direction
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at the moment, but this second step seems to be a good motivation to develop
interesting mathematics even if they are far from the ultimate goal.

In Section 2 we recall Deninger’s cohomological formalism in the case of the
Riemann zeta function. We point out a dissymmetry in the explicit formula (1)
between the coefficients of δk log p and δ−k log p, see Comment 1.

In Section 3 is devoted to the description of the Lesfchetz trace formula
for a flow acting on a codimension one foliated space. In Section 3.1 we re-
call the Guillemin-Sternberg trace formula which is indeed an important com-
putational tool for this goal. By comparison with (1), it suggests that there
should exist a flow (φt)t∈IR acting on a certain space SQ with the following prop-
erty. To each prime number p [resp. the archimedean place of Q] there should
correspond a closed orbit with length log p [resp. a stationary point] of the
flow φt.

In Section 3.2 we recall the theorem of Alvarez-Lopez and Kordyukov.
They consider a flow (φt)t∈IR acting on (X,F) where the compact three

dimensonal manifold X is foliated by Riemann surfaces. They assume that
(φt)t∈IR preserves globally the foliation and is transverse to the foliation. Then
Alvarez-Lopez and Kordyukov define a suitable leafwise Hodge cohomology on
which φt acts and they prove a Lefschetz trace (à la Atiyah-Bott) formula which
has some similarities with (1) for t real positive. But the dissymmetry mentioned
above for (1) does not hold.

In Section 3.2 we consider the case of an elliptic curve E0 over a finite
field Fq. The explicit formula (7) for its zeta function ζE0 exhibits a dissymmetry
between the coefficients of δk log Nw and δ−k log Nw, where w is a closed point of
E0. It is quite analogous to the one mentioned above for (1). We review briefly
our result which, using the work of Deninger and results from Alvarez-Lopez and
Kordyukov, allows to interpret (7) as an Atiyah-Bott Lefschetz trace formula and
to provide a dynamical interpretation of this dissymmetry.

In Section 4, we first recall the statement of Lichtenbaum’s conjecture for
a number field K. Then we explain briefly how Deninger proved an analogue of
this conjecture in the case of a foliation (X,F , φt) with the following properties.
X is a smooth compact 3-dimensional manifold endowed with a codimension 1
foliation F and the flow φt preserves globally the foliation and is transverse to
it. We shall explain how the reduced leafwise cohomology enters as a crucial
ingredient of the proof.

In Section 5, we make a synthesis of various results of Deninger. We state
several axioms for a laminated foliated space (SQ,F , g, φt) which (if satisfied!)
allow to construct the required cohomology groups for the Riemann zeta func-
tion. We compare carefully the contribution of the archimedean place of Q
in (1) with the contribution of a stationary point in the Guillemin-Sternberg
formula.
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2 – Deninger’s Cohomological formalism in the case of the Riemann
zeta function

The (completed) Riemann zeta function is given by:

ζ̂(s) = 2−1/2π−s/2Γ(s/2)
∏

p∈P

1

1 − p−s

where P = {2, 3, 5, . . . } denotes the usual set of prime numbers. The following
well known explicit formulas express a connection between P ∪ {∞} and the

zeroes of ζ̂. Let α ∈ C∞
compact(IR, IR) and for real s, set Φ(s) =

∫
IR

estα(t)dt; Φ
belongs to the Schwartz class S(IR). Then one can prove the following formula:

(1)

Φ(0) −
∑

ρ∈ζ̂−1{0},�ρ≥0

Φ(ρ) + Φ(1) =

=
∑

p∈P
log p

⎛
⎝∑

k≥1

α(k log p) +
∑

k≤−1

pkα(k log p)

⎞
⎠ + W∞(α),

where

W∞(α) = α(0) log π +

∫ +∞

0

(
α(t) + e−tα(−t)

1 − e−2t
− α(0)

e−2t

t

)
dt.

Now recall the standard Lefschetz trace formula for a smooth map with non
degenerate fixed points φ : V → V where V is an oriented compact Riemann
surface:

2∑

j=0

(−1)j TR(φ∗ : Hj(V, IR)) =
∑

φ(v)=v

(−1)sign det(Id−Dφ)(v).

Deninger’s philosophy is motivated by the fact that the left hand side of (1)

Φ(0) −
∑

ρ∈ζ̂−1{0},�ρ≥0

Φ(ρ) + Φ(1)

is reminiscent of a Lefschetz trace formula of the form

TR

∫

IR

α(t)et Θ0 dt − TR

∫

IR

α(t)et Θ1 dt + TR

∫

IR

α(t)et Θ2 dt,

where the following two assumptions should be satisfied.
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• Θ0 = 0 acts on H0 = IR, Θ2 = Id acts on H2 = IR.
• The unbounded operator, Θ1 acts on an infinite dimensional real vector (pre-

Hilbert) space H1, for any α ∈ C∞
compact(IR, IR) the operator

∫
IR

α(t)et Θ1 dt
is trace class. The eigenvalues of Θ1⊗IdC acting on H1⊗IR C coincide with
the non trivial zeroes of ζ̂.

Moreover in Deninger’s approach one first assumes the existence of a Poincare
duality pairing:

H1 ×H1 → H2

(α, β) → α ∪ β

satisfying

(2) ∀α, β ∈ H1, et Θ1α ∪ et Θ1β = et(α ∪ β),

where the et is dictated by the fact that Φ2 = Id.
Second, one assumes the existence of a Hodge star � on H1 such that et Θ1� =

�et Θ1 and < α;β >= α ∪ �β defines a real scalar product on the real vector
space H1.

Then with these data, Deninger’s formalism implies the following:

(3) ∀α ∈ H1, 〈et Θ1α; et Θ1α〉 = et〈α;α〉.

Therefore,

d

dt
〈et Θ1α; et Θ1α〉t=0 = 〈Θ1(α);α〉 + 〈α; Θ1(α) >=< α;α〉,

and
〈(Θ1 − 1/2)(α);α〉 + 〈α; (Θ1 − 1/2)(α)〉 = 0.

Thus one gets that Θ1 − 1
2 is antisymmetric on the real vector space H1. There-

fore, the eigenvalues s of Θ1 (which coincide by (1) to the non trivial zeroes of

ζ̂) satisfy s− 1/2 ∈ iIR or equivalently: �s = 1
2 . Therefore Deninger’s formalism

should imply the Riemann hypothesis!!! This argument comes from an idea of
Serre [Se60] and has been formalized in the foliation case in [De-Si02]. Of course,
we have described only a very small part of Deninger’s formalism which deals
also with L-functions of motives, Artin conjecture, Beilinson conjectures . . . etc.

Comment 1. There is a dissymmetry in (1) between the coefficients of
α(k log p) and α(−k log p) for k ∈ IN∗. In the framework of Deninger’s formalism
the explanation is the following. Equation (2) allows to prove (3) which in turn
implies that the transpose of etΘ1 is ete−tΘ1 . Therefore, if we have a Lefschetz
cohomological interpretation of (1) in Deninger’s formalism for a test function
α with support in ]0,+∞[ then we have also a cohomological proof of (1) for α
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with support in ]−∞, 0[. In this formalism, (2) (and the above dissymmetry) is
quite connected to the Riemann hypothesis.

Notice that Ralf Meyer [Meyer03] has provided a nice spectral interpretation

of the zeroes of ζ̂ and an original proof of (1). Unfortunately, he cannot prove the
Riemann Hypothesis because he is obliged to work with Frechet spaces rather
than Hilbert spaces. To our opinion, the geometry underlying his constructions
is not sufficient. Recall that also Alain Connes [Co99] has reduced the validity
of the Riemann hypothesis (for L−function of the Hecke characters) to a trace
formula.

The idea of the proof of (1) is the following: apply the residue theorem to

(∫ +∞

0

√
t α(log t)ts

d t

t

)
ζ̂ ′

ζ̂
(s)

on the interior of the rectangle of C defined by the four points:

1 + ε + iT, −ε + iT, −ε − iT, 1 + ε − iT,

then use the functional equation ζ̂(s) = ζ̂(1 − s) and the formula:

Γ′

Γ

(
s

2
+

1

4

)
=

∫ +∞

0

(
e−u

u
− e−u( s

2+ 1
4 )

1 − e−u

)
du,

lastly let T goes to +∞.

3 – Analogy with the foliation case

3.1 – The Guillemin-Sternberg trace formula

Consider a smooth compact manifold X with a smooth action:

φ : X × IR → X, (x, t) → φt(x),

so that φt+t′ = φt ◦ φt′ for any t, t′ ∈ IR. Let Dyφt denote (for fixed t ∈ IR) the
differential of the map y ∈ X → φt(y). One has: Dyφt(∂sφ

s
|s=0(x)) = ∂sφ

s
|s=0(x).

In other words, the vector field associated with the flow φt belongs to ker(Dyφt−
Id).

Consider also a smooth vector bundle E → X. Assume that E is endowed
with a smooth family of maps

ψt : (φt)∗E → E, t ∈ IR,
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satisfying the following cocycle condition:

∀u ∈ C∞(X;E), ∀t, t′ ∈ IR, ψt′(ψt(u ◦ φt) ◦ φt′) = ψt+t′(u ◦ φt+t′).

So we require that the maps Kt : u → ψt(u ◦ φt) = Kt(u) define an action of
the additive group IR on C∞(X;E). Notice that in the case of E = ∧∗T ∗X and
ψs =t Dφs (the transpose of the differential of φs) this condition is satisfied.

We shall assume that the graph of φ meets transversally the “diagonal”
{(x, x, t), x ∈ X, t ∈ IR \ {0}}. Guillemin-Sternberg have checked ([G-S77]) that
the trace Tr(Kt|C∞(X;E)) is defined as a distribution of t ∈ IR \ {0} by the
formula:

Tr(Kt|C∞(X;E)) =

∫

X

Kt(x, x)

where Kt(x, y) denote Schwartz (density) kernel of Kt. We warn the reader that,
in general, for α ∈ C∞

compact(IR) \ {0},
∫
IR

α(t)Ktdt is not trace class.
Now, we give the name T 0

x = ∂tφ
t(x)t=0 IR to the real line generated by the

vector field ∂tφ
t(x)t=0 of φt at a point x where ∂tφ

t(x)t=0 
= 0.

Proposition 1 (Guillemin-Sternberg [G-S77]). The following formula
holds in D′(IR \ {0}).

Tr(Kt;C∞(X;E)) =
∑

γ

l(γ)
∑

k∈Z∗

Tr(ψ
kl(γ)
xγ ;Exγ )

|det(1−Dyφkl(γ)(xγ) ; Txγ
X/T 0

xγ
)|δkl(γ)+

+
∑

x

Tr(ψt
x;Ex)

|det(1−Dyφt(x);TxX)| .

In the first sum, γ runs over the periodic primitive orbits of φt, xγ denotes any
point of γ, l(γ) is the length of γ, φl(γ)(xγ) = xγ . In the second sum, x runs over
the fixed points of the flow: φt(x) = x for any t ∈ IR.

Comment 2. Recall that Dyφt denotes, for fixed t, the differential of the
map y(∈ X) → φt(y). The non vanishing of the two determinants in Propo-
sition 1 is equivalent to the fact that the graph of φ meets transversally the
“diagonal” {(x, x, t), x ∈ X, t ∈ IR \ {0}}.

Note that the following elementary observation is the main ingredient of the
proof the Proposition 1. It is important with respect to Subsection 3.3. Let
A ∈ GLn(IR) and δ0(·) denote the Dirac mass at 0 ∈ IRn. Then one computes
the distribution δ0(A·) in the following way. For any f ∈ C∞

comp(IRn), one has:

〈δ0(A·); f(·)〉=
∫

IRn

δ0(Ax)f(x)dx =

∫

IRn

δ0(y)f(A−1y)
1

Jac(A)
dy =

1

Jac(A)
f(0)

where dy denotes the Lebesgue measure. Therefore: δ0(A·) = 1
Jac(A)δ0(·).
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3.2 – The Lesfchetz trace formula of Alvarez-Lopez and Kordyukov

Now we shall assume that X is a (still compact) three dimensional manifold
and endowed with a codimension one foliation (X,F). We shall also assume
that the flow φt preserves the foliation (X,F), is transverse to it and thus has
no fixed point. Therefore (X,F) is a Riemannian foliation. We shall apply later
Proposition 1 with E = ∧∗T ∗F → X.

Comment 3. A typical example is X = L×IR+∗

Λ , where Λ is a subgroup of

(IR+∗,×) and φt(l, x) = (l, xe−t). See Section 4.

Now, we get a so called bundle like metric gX on (X,F) in the following
way. We require that gX(∂tφ

t(z)) = 1, ∂tφ
t(z) ⊥ TF for any (t, z) ∈ IR × X,

and that (gX)|TF is a given leafwise metric. By construction, with respect to
gX , the foliation (X,F) is defined locally by riemannian submersions.

In this setting Alvarez-Lopez and Kordyukov [A-K01] have proved the fol-
lowing Hodge decomposition theorem (0 ≤ j ≤ 2):

(4) C∞(X,∧jT ∗F) = ker Δj
τ ⊕ Im Δj

τ

where Δj
τ denotes the leafwise Laplacian. Since we have ker dF

Im dF
= ker Δj

τ , we call

the vector space Hj
τ = ker Δj

τ a reduced leafwise cohomology group.
Let πj

τ denote the projection of the vector space of leafwise differential forms
C∞(X,∧jT ∗F) onto Hj

τ = ker Δj
τ according to (4) with 0 ≤ j ≤ 2. Then

Alvarez-Lopez and Kordyukov [A-K00] have proved the following Lefschetz trace
formula.

Theorem 1 ([A−K00]). Let α ∈ C∞
compact(IR) Then the operators

∫

IR

α(s)πj
τ ◦ (φs)∗ ◦ πj

τ ds

are trace class for 0 ≤ j ≤ 2. Let χΛ denote the leafwise measured Connes Euler
characteristic of (X,F) ([Co94]). Then one has:

(5)

2∑

j=0

(−1)jTR

∫

IR

α(s) πj
τ ◦ (φs)∗ ◦ πj

τ ds =

= χΛα(0) +
∑

γ

∑

k≥1

l(γ) ( ε−kγα(−kl(γ)) + εkγα(kl(γ)) )

where γ runs over the primitive closed orbits of φt, l(γ) is the length of γ, xγ ∈ γ

and ε±kγ = sign det(id−Dφ
±kl(γ)
|Txγ F ).
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Proof. (Sketch of the idea). The case where the support of α is included
in a suitably small interval [−ε,+ε] is treated separately. When the (compact)
support of α is included in IR \ {0}, the authors show by highly non trivial
arguments based on (4), that

2∑

j=0

(−1)jTR

∫

IR

α(s) πj
τ ◦ (φs)∗ ◦ πj

τ ds =

2∑

j=0

(−1)jTr

∫

IR

α(s)(φs)∗ ds.

But Proposition 1 (with E = ∧jT ∗F) shows that the right handside is equal to:

∑

γ

l(γ)
∑

k∈Z∗

2∑

j=0

(−1)j
Tr

(
(Dyφ±kl(γ)(xγ))∗ : ∧jT∗

xγ
F �→ ∧jT∗

xγ
F

)

|det(id−Dyφ
±kl(γ)
|Txγ F )|

α(kl(γ)).

One then gets immediately the result.

Comment 4. Notice that here (unlike in (1)) there is no dissymmetry for the
coefficients of α(−kl(γ)) and α(kl(γ). The reason for this absence of dissymmetry
is explained by the Guillemin-Sternberg formula as we have seen in the proof.
Here is another way to rephrase this explanation when X is orientable. If we
had a leafwise metric g satisfying (φt)∗g = etg then we should get in (5) the
same dissymmetry as the one already mentioned in (1). Assume that for a fix
real β one has ∀t ∈ IR, (φt)∗g = eβtg. Consider the bundlelike metric gX on X
as above. Its volume form ωX is such that (φt)∗ωX = eβtωX , ∀t ∈ IR. But we

know that the degree

∫
X

(φt)∗ωX∫
X

ωX

has to be an integer for any t ∈ IR. Therefore

β = 0.

The Ruelle zeta function is defined by

ζR(s) =
∏

γ primitive orbit

1

(1 − e−sl(γ))εγ
, �s � 1.

The induced action of (φs)∗ on Hj
τ is of the form esθj . Deninger’s results (e.g.

[De98], [De07a]) suggest to conjecture that for 0 ≤ j ≤ 2, s → det∞(s Id−θj :
Hj

τ ) defines an entire holomorphic function and that

ζR(s) =

2∏

j=0

det∞(s Id−θj : Hj
τ ))(−1)j+1

where det∞ denotes an infinite regularized determinant (see [De94] for defini-
tions). If this last equality is true then (5) should constitute the explicit for-
mula for ζR. Notice moreover that in Theorem 1 there is no term similar to
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W∞(α) in (1) because the flow (φt)t∈IR is assumed to have no fixed (e.g. sta-
tionary) point. Assume morever that there exists a leafwise metric g such that
∀t ∈ IR, (φt)∗g = g. Then, by considering the associated bundlelike metric gX

one defines easily a scalar product 〈; 〉 on H1
τ such that etθ1 becomes a unitary

operator on the Hilbert completion of H1
τ . Therefore, all the zeroes of ζR are on

the real line �z = 0.

Recall that it is not always possible to find a leafwise metric g such that
∀t ∈ IR, (φt)∗g = g. Here is an example communicated to me by Alvarez-
Lopez. Let h be a diffeomorphism of S2 fixing the two poles. Assume that for
the corresponding Z-action the north pole is attractive and the south pole is

repulsive. Set X = S2×IR
Z where the action of m ∈ Z is defined by m · (l, x) =

(hm(l), m + x). The sets S2 × {x} induce a foliation F . Consider the flow φt

defined by φt(l, x) = (l, x+ t). Then there is no leafwise metric g on (X,F) such
that ∀t ∈ IR, (φt)∗g = g.

Comment 5. Alvarez-Lopez and Kordyukov are working on a proof of a
Lefschetz trace formula when the flow φt is allowed to have stationary points.
They work with a notion of “adiabatic cohomology” and their programme is
promising.

3.3 – Foliated spaces with a p−adic transversal

We shall now describe an example of foliated space where on can prove
a Lefschetz trace formula exhibiting a dissymmetry quite similar to the one
mentioned in Comment 1.

Let E0 be an elliptic curve over a finite field Fq where q = pf and the prime
number p is the characteristic of Fq. Recall that the zeta function ζE0(s) of E0

is given by:

(6) ζE0
(s) =

∏

w∈|E0|

1

1 − (Nw)−s
=

(1 − ξq−s)(1− ξq−s)

(1 − q−s)(1− q1−s)

where |E0| denotes the set of closed points of E0 and ξ is a complex number which
by Hasse’s theorem satisfies |ξ| =

√
q. The explicit formula for ζE0

(s) takes the
following form. Let α ∈ C∞

c (IR, IR) and set for any real s, Φ(s) =
∫
IR

estα(t) dt.
Then, one has:

(7)

∑

ν∈Z
Φ

(
2πνi

log q

)
−

∑

ρ∈ζ−1
E0

{0}

Φ(ρ) +
∑

ν∈Z
Φ

(
1 +

2πνi

log q

)
=

=
∑

w∈|E0|
log Nw

⎛
⎝∑

k≥1

α(k log Nw) +
∑

k≤−1

(Nw)kα(k log Nw)

⎞
⎠ .
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The idea of the proof is to apply the residue theorem to

s →
(∫ +∞

0

√
t α(log t)ts

d t

t

)
ζ ′E0

ζE0

(s)

and to use the functional equation ζE0
(s) = ζE0

(1 − s).

Let φ0 : E0 → E0 be the q−th power Frobenius endomorphism of E0 over
Fq. Deninger has used (see [De02]) the following result due to Oort [Oor73]:

Lemma 1. There exists:

1) a complete local integral domain R with field of fractions L a finite extension
of Qp (q = pf ) such that R/M = Fq where M is the maximal ideal of R.

2) an elliptic curve E over spec R together with an endomorphism φ : E → E
such that:

(E , φ) ⊗ Fq = (E0, φ0).

So (E , φ) is a lift of (E0, φ0) in characteristic zero.

Remark 1.

1) If the elliptic curve E0 is ordinary, then one may take for R the ring of Witt
vectors of Fq, W (Fq), and then there is a canonical choice of the lifting
(E , φ). On the contrary, if E0 is supersingular [Si92, page 137], then there
is no canonical choice of (E , φ).

2) It is possible to lift a curve of genus ≥ 2 (over Fq) in characteristic zero, but
Hurwitz’s formula [Si92, page 41] shows that one cannot lift its Frobenius
morphism.

Now (still following [De02]), we denote by E = E ⊗R L the generic fibre. Then
EndL(E) ⊗ Q = K is a field K which is either Q or an imaginary quadratic
extension of Q. We fix an embedding L ⊂ C and consider the complex analytic
elliptic curve E(C). Let ω be a non zero holomorphic one form on E(C) and let
Γ be its period lattice. Then the Abel-Jacobi map:

E(C) → C/Γ, p →
∫ p

0

ω mod Γ

induces an isomorphism. Next we choose the embedding K ⊂ C such that for
any α ∈ K, Θ(α) induces the multiplication by α on the Lie algebra C of C/Γ
where Θ is the natural homomorphism:

Θ : K = EndL(E) ⊗Q → End(C/Γ) ⊗Q.



[11] On the analogy between Arithmetic Geometry and foliated spaces 173

Next we consider the unique element ξ ∈ Θ−1(EndL(E)) ⊂ K such that Θ(ξ) =
φ ⊗ L. By construction one has ξΓ ⊂ Γ and the complex elliptic curve C/Γ
endowed with the multiplication by ξ represents a lift of (E0, φ0). Now, we set

V = ∪n∈INξ−nΓ, TΓ = lim
+∞←n

Γ

ξnΓ
, and VξΓ = TΓ ⊗Z Q.

The set TΓ is a Tate module defined by a projective limit and VξΓ is a Qp-
vector space of dimension 1 or 2. Any element v of V acts on C × VξΓ by

v.(z, v̂) = (z + v, v̂ − v), we denote by
C×VξΓ

V the quotient space.

Lemma 2. The natural homomorphism :

C × TΓ

Γ
→ C × VξΓ

V

defines a {ξl, l ∈ Z}-equivariant isomorphism where the action of ξ is induced
by the diagonal action on C × TΓ and C × VξΓ respectively.

Now, any element qν ∈ qZ acts on
C×VξΓ

V × IR+∗ by

qν .([z, v̂], x) = ([ξνz, ξν v̂], xqν).

In [De02], Deninger has introduced the (compact) laminated Riemannian foliated
space (S(E0),F) where

S(E0) =
C × VξΓ

V
×qZ IR+∗,

and the leaves of F are the images of the sets C×{v̂}×{x} by the natural map
π : C×VξΓ×IR+∗ → S(E0). Observe that the domain of a typical foliation chart
is locally isomorphic to D×Ω×]1, 2[ where D is an open disk of C, Ω is an open
subset of TΓ so that the leaves are given by D×{ω}×{x} for (ω, x) ∈ Ω×]1, 2[;
the term “laminated” refers to the fact that the local transversal to the foliation
F is the disconnected space Ω×]1, 2[.

Remark 2. Using the fact that V (resp. qZ) acts freely on VξΓ (resp.
IR+∗), the reader will check that (S(E0),F) has trivial holonomy.

One defines a flow φt acting on (S(E0),F) and sending each leaf into another
leaf by: φt(z, v̂, x) = (z, v̂, xe−t). Let μξ denote a Haar measure on the group
VξΓ then, one has the following

Lemma 3 ([De02]).

1) The measure

dx1dx2 ⊗ μξ ⊗
dx

x

on C × VξΓ × IR+∗ induces a measure μ on S(E0).
2) The measure μ is invariant under the action of φt.
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Proof.

1) We just have to check that for any ν ∈ IN∗ and any borel subset A of VξΓ ,
one has

μξ(ξ
νA) = |ξ|−2νμξ(A) = q−νμξ(A).

Since (ξν)∗μξ is also a Haar measure on VξΓ it suffices to check this equality
for A = TΓ. But this is an immediate consequence of the fact that

TΓ/(ξνTΓ) � Γ/(ξνΓ)

has |ξ|2ν = qν elements.
2) This is obvious.

Using the fact that |ξ| =
√

q, one checks that the Riemannian metric on the

bundle TC × VξΓ × IR+∗ given by:

gz,v̂,x(η1, η2) = x−1Re (η1η2)

induces a Riemannian metric g along the leaves of (S(E0),F) so that the follow-
ing property is satisfied:

(8) ∀η ∈ T[z,v̂,x]F , g(D[z,v̂,x]φ
t(η), D[z,v̂,x]φ

t(η)) = etg(η, η).

Compare with Comment 4.

Theorem 2 (Deninger [De02]). There is a natural bijection between the
set of valuations w of the function field K(E0) of E0 and the set of primitive
compact IR−orbits of φt on S(E0). It has the following property. If w corresponds
to γ = γw, then

l(γw) = log N(w).

Deninger has also provided a nice spectral cohomological interpretation of the
left hand side of (7).

Now we are going to recall briefly the definition of the leafwise Hodge co-
homology that has allowed us to give in [Lei07] an Atiyah-Bott-Lefschetz proof
à la Alvarez-Lopez Kordyukov of the explicit formula (7).

First we introduce carefully a natural transverse measure on (S(E0),F) and
point out its important role. For more on these notions, the reader may have a
look at: [Co94], [Sul93] and [Ghys99].

Set LE0
= C×TΓ

Γ , this is a compact laminated space which is foliated by
its path-connected components. Any element qν ∈ qZ acts on [z, v̂] ∈ LE0

by qν · [z, v̂] = [ξνz, ξν v̂]. The Haar measure μξ of TΓ induces a transverse
measure, still denoted μξ, of LE0 . For any Borel transversal T of LE0 one has
μξ(q · T ) = q−1μξ(T ).
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Moreover, the metric g̃ = (dx1)
2 + (dx2)

2 (where z = x1 + ix2) defines a
leafwise metric on LE0 , let λ

g̃
be the associated leafwise volume form. Then

λ
g̃
μξ defines a qZ−invariant measure of LE0

.

The leafwise metric g in (8) of (S(E0),F) is defined by g = x−1g̃ and its
associated leafwise volume form is given by λg = x−1dx1 ∧ dx2.

Definition 1.

1) Let Aj
F (S(E0)) denote the vector space of leafwise differential forms which,

in the local coordinates (z, v̂, x), are of the form

u(z, v̂, x)da�zdb Im z

where a + b = j ∈ {0, 1, 2} and (z, v̂, x) → Dβ
�z,Im z,xu(z, v̂, x) is continuous

for any multiindex of differentiation β ∈ IN3.
2) One defines the Sobolev space H+∞(S(E0) ; ∧jT∗F) in the same way but

we simply require that the functions (z, v̂, x) → Dβ
�z,Im z,xu(z, v̂, x) are lo-

cally L2.

Now it is clear that μ
λ = μξdx defines a transverse measure on (S(E0),F) with

associated Ruelle-Sullivan current C(μ
λ ). We can pair sections of A2

F (S(E0)) with
C(μ

λ ), for instance the measure μ may be recovered by the formula:

∀f ∈ C0(S(E0)),
(
fλ;C

(μ

λ

))
=

∫

S(E0)

f d μ.

One defines a scalar product by the following formula:

∀ω, ω′ ∈ Aj
F (S(E0)), 〈ω;ω′〉 =

(
ω ∪ ∗ω′;C

(μ

λ

))

where ∗ denotes the leafwise Hodge star operator associated to g.

Theorem 3 ([Lei07]).

1) One has a Hodge decomposition (for 0 ≤ j ≤ 2) :

H+∞(S(E0),∧jT∗F) = Hj
τ ⊕⊥ Im Δτ .

Let πj
τ denote the associated projection onto the vector space of leafwise

harmonic forms Hj
τ .

2) Let α ∈ C∞
compact(IR; IR). Then

∫
IR

α(t)(φt)∗πj
τdt is trace class and

2∑

j=0

(−1)jTR

∫

IR

α(t)(φt)∗πj
τdt =

=
∑

γ

∑

k≥1

l(γ)
(

e−kl(γ)α(−kl(γ)) + α(kl(γ))
)

where γ runs over the set of primitive closed orbits of (S(E0),F). According to
Theorem 2, we obtain in this way an Atiyah-Bott-Lefschetz proof (along the lines
of [A-K00]) of the explicit formula (7).
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Comment 6. Actually, in [Lei07] we have defined in an abstract way (being
motivated by the work of Deninger) a class of laminated foliated spaces for which
the previous Theorem still holds true.

As noticed by Deninger, the dissymmetry in (7) of the coefficients of α(kl(γ))
for k ≤ −1 and k ≥ 1 is due to property (8) (see the remark following Corollary 1
of [Lie03]). We are going to propose a dynamical explanation, à la Guillemin-
Sternberg, of this dissymmetry. Consider a point (z0, v̂0, 1) ∈ S(E0), with
v̂0 ∈ TΓ, such that φ− log q[z0, v̂0, 1] = [z0, v̂0, q] = [z0, v̂0, 1]. Recall that by
definition (ξ−1z0, ξ

−1v̂0, q
−1q) ∼ (z0, v̂0, q). So [ξ−1z0, ξ

−1v̂0, 1] = [z0, v̂0, 1] and
there exists γ ∈ ξ−1Γ such that

(9) ξ−1z0 = z0 + γ, ξ−1v̂0 = v̂0 − γ.

The operator (φt)∗ acting on Aj
F (S(E0)) admits a Schwartz kernel defined by

the formula:

∀ω ∈ Aj
F (S(E0)), (φt)∗(ω)(y) =

∫

S(E0)

(Dφt)∗δφt(y)=y′ ω(y′) dμ(y′).

Consider a point y = [z, v̂, x] belonging to a small neighborhood of {φt[z0, v̂0, 1],
− log q ≤ t ≤ 0}. Then, with the previous notations, one has:

(10) φt(y) = (ξ−1z − γ, ξ−1v̂ + γ, q−1xe−t).

The following lemma shows basically that the graph of the flow (φt)t∈IR\{0} is
transverse to the diagonal and computes δφt(y)=y.

Lemma 4.

1) z ∈ C → ξ−1z − γ − z and v̂ ∈ VξΓ → ξ−1v̂ + γ − v̂ are invertible and their
jacobians are respectively given by:

Jac(ξ−1z − γ − z) = |ξ−1 − 1|2, Jac(ξ−1v̂ + γ − v̂) = q.

2) Let V be an open neighborhood of (z0, v̂0), set:

U = {(z, v̂, e−s)/ s ∈]− log q, 0], (s, v̂) ∈ V }.

Consider ε > 0 and V small enough so that t ∈ [− log q, 0] → (z0, v̂0, e
−t) is

the only closed orbit of φt contained in U with length in ]−ε−log q, ε−log q[.
Then one has the following equality as a distribution on U×]− ε− log q, ε−
log q[:

δφt(y)=y =
1

|ξ−1 − 1|2 δz−z0 ⊗
1

q
δ
v̂−v̂0

⊗ δt+log q.
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Proof.

1) We prove only the second equality. Recall that TΓ is an open compact
subset of VξΓ. Then, since v̂ → v̂ − ξv̂ defines an automorphism of TΓ
whose inverse is v̂ → ∑

n∈IN ξnv̂, one has Jac (v̂ − ξv̂) = 1. Now recall that
the proof of Lemma 3 shows that μξ(ξTΓ) = 1

q μξ(TΓ) so that Jac (ξv̂) = 1
q .

By combining the last two equalities for Jac, one gets:

Jac(ξ−1v̂ + γ − v̂) = q.

2) Using the change of variable formula for
∫

dμξ and the equality ξ−1v̂0 +γ−
v̂0 = 0, one sees that for v̂ close to v̂0 one has

δ
ξ−1v̂+γ−v̂

=
1

Jac(ξ−1v̂ + γ − v̂)
δ
v̂−v̂0

.

Then a computation using (9) and (10) shows (see also [Co99, Section IV]),
that for y = [z, v̂, x] ∈ U and t ∈]− ε − log q, ε − log q[ one has:

δφt(y)=y =
1

Jac(ξ−1z − γ − z)
δz−z0

⊗ 1

Jac(ξ−1v̂ + γ − v̂)
δ
v̂−v̂0

⊗ δt+log q.

By combining 1) with this equality one gets the result.

Recall now that dμ(y) = dx1dx2 ⊗ μξ ⊗ dx
x . The formula |

∫ − log q

0
d e−s

e−s | = log q
and Lemma 4. 2) show that for t close to − log q the distributional trace

∫

S(E0)

Tr (Dφt)∗δφt(y)=y dμ(y)

is well defined (near − log q) and is equal to:

log q
∑

γw, l(γw)=log q

1

q
δ−l(γw)

where γw runs over the set of closed orbits of φt of length l(γw) = log q.
Since Jac(ξv̂ + γ − v̂) = 1 a similar argument shows that for t close to log q

the distributional trace
∫

S(E0)

Tr (Dφt)∗δφt(y)=y dμ(y)

is well defined (near log q) and equal to:

log q
∑

γw, l(γw)=log q

δl(γw).
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Therefore, we have given a dynamical explanation of the dissymmetry occuring
in (7).

Now we come to another analogy. In [De07b], Deninger has suggested that,
in the case of the Riemann zeta function, the distribution

∑

ρ∈ζ̂−1{0}, Im ρ>0

eρz

might be interpreted as a trace involving a transversal wave operator. We refer
to [De07b, Section 5] for a list of interesting open problems in this direction.
In this Section, we simply check that, in the case of ζE0

, Deninger’s intuition
is right (see also the end of the next Section). Recall that local coordinates on

S(E0) =
LE0

×IR+∗

qZ (where LE0
= C×TΓ

Γ ) are given by (z, v̂, x). We endow S(E0)
with the bundle like metric:

dzdz

x
⊕ dx2

x2
.

We have a notion of transverse exterior derivative dT :

dT : Γ(S(E0) ; ∧1T∗F) → Γ(S(E0) ; ∧1T∗F ⊗ ∧1T∗F⊥).

Let δT be its adjoint. Set ΔT = δT dT , it acts on Γ(S(E0) ; ∧1T∗F). We write,
locally, an element of Γ(S(E0) ; ∧1,0T∗F) as a(z, v̂, x)dz.

Lemma 5. One has:

ΔT (adz) = (−∂xx)(x∂x)(a) d z.

Consider the following transverse operator defined by:

Δ̃T (adz) =

(
−∂xx +

1

2

) (
x∂x +

1

2

)
(a) d z.

Lemma 6. Assume for simplicity that the zeta function ζE0
(s) of the elliptic

curve E0 does not vanish on IR. The following equality holds, between distribu-
tions of the variable t ∈ IR:

Tr π1
τeit

√
Δ̃T = 2

∑

z∈ζ−1
E0

(0), Im z>0

eit Im z.



[17] On the analogy between Arithmetic Geometry and foliated spaces 179

4 – Foliations provide a simple analogue of Lichtenbaum conjecture
for zeta functions

4.1 – Lichtenbaum’s conjecture

Let K be a number field. Stephen Lichtenbaum has conjectured ([Licht])
the existence of certain Weil étale cohomology groups with and without compact
support Hj

c (K ; Z), Hj
c (K ; IR), and Hj(K ; Z), Hj(K ; IR) (for j ∈ IN). These

groups are additive (abelian) and should be related to the zeta function ζK of
K as follows.

Conjecture 1 (Lichtenbaum). The groups Hj
c (K ; Z) are finitely gener-

ated and vanish for j ≥ 4. Giving IR the usual topology one has:

Hj
c (K ; Z) ⊗Z IR = Hj

c (K ; IR).

Moreover, there exists a canonical element ψ ∈ H1(K, IR) which is functorial
with respect to K and such that the following three properties hold.

1) The complex

. . .
D→Hj

c (K, IR)
D→Hj+1

c (K, IR) → . . .

where Dh = ψ ∪ h is acyclic. Notice that D2 = 0 because deg ψ = 1.
2) One has near s = 0,

ζK(s) = s

(∑3

j=0
(−1)jj rank Hj

c (K,Z)
)

ζ∗K(s).

3)

ζ∗K(0) =

∏

0≤j≤3

|Hj
c (K, Z)torsion|(−1)j

det(H•
c (K, IR), D, f•)

where for each j ∈ {0, 1, 2, 3}, f j is a basis of
Hj

c (K,Z)
torsion .

We explain the meaning of 3). Since the complex in 1) is acyclic, we have a
canonical isomorphism:

⊗0≤j≤3(detHj
c (K, IR))(−1)j � IR.

When j is odd we take the dual of this real line. Then each f j induces a

basis f̂ j of detHj
c (K, IR) and ⊗0≤j≤3(f̂ j)(−1)j

defines a real number denoted
det(H•

c (K, IR), D, f•) which does not depend on the choice of f•.
Lichtenbaum [Licht05] has proven, in the function field case, the analogue

of his conjecture.
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4.2 – A dynamical foliation analogue

We follow Deninger [De07a]. Recall that in Section 3.2 we have defined the
Ruelle zeta function ζR of (X,F , g, φt). We assume now that all the hypothesis,
conjectures and notations stated after Comment 4 at the end of Section 3.2. are
satisfied by (X,F , g, φt) and ζR. In particular the leafwise metric g is φt-invariant
and the flow φt is transverse to the foliation F with no fixed point. Moreover
for simplicity we assume that all the εγ = 1.

Comment 7. By a structure theorem we could assume that (X,F , φt) is of
the form: X = L×IR

Γ , where Γ is a subgroup of (IR,+), L is a fixed (noncompact)
Riemann surface, leaf = image of L× {pt}, φs(l, t) = (l, t + s).

Set Yφ = d φt

dt = ∂t. Define ω ∈ C∞(X, T∗X) by ω(Yφ) = 1 and ω|TF = 0.
Then ω is closed (one has ω = dt in the previous comment).

Theorem 4 (Deninger [De07a]).

1) The complex

. . .
D→Hj(X, IR)

D→Hj+1(X, IR) → . . .

where Dh = [ω] ∪ h is acyclic and Hj(X, IR) denotes the standard singular
cohomology.

2) One has near s = 0,

ζR(s) = s

(∑3

j=0
(−1)jj rank Hj(X,Z)

)
ζ∗R(s).

3)

ζ∗R(0) =

∏

0≤j≤3

|Hj(X, Z)torsion|(−1)j

det(H•(X, IR), D, f•)

where for each j ∈ {0, 1, 2, 3}, f j is a basis of Hj(X,Z)
torsion .

– Analogy with Lichtenbaum conjecture

In this situation, the role of Lichtenbaum’s Weil étale cohomology is played
by the ordinary singular cohomology with Z or IR−coefficients. Since X is com-
pact, we do not have to worry about compact supports. The Ruelle zeta function
ζR is expressed in terms of Hodge leafwise cohomology ker Δτ (cf. (4)), which is
related to H•(X, IR) via the decompositions (11) below. Recall that here ζR has
no Gamma factors (since φt has no fixed point) and that the zeroes of ζR are
located on �s = 0.

Proof. Sketch.
Define a metric gX on X by: gX = g ⊕⊥ g0 on TX = TF ⊕ IRYφ where

g0(Yφ) = 1.
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One has the bigrading:

∧nT ∗X = ⊕p+q=n ∧p T ∗F ⊗ ∧q(IRYφ)∗.

We have Δ = Δτ ⊕−θ2 where θ denotes the infinitesimal generator of (φs)∗(=
es θ) acting on C∞(X ; ∧∗T∗F) and Δτ denotes the leafwise Laplacian. Moreover
one has

(11) ker Δn = ω ∧ (ker Δn−1
τ )θ=0 ⊕ (ker Δn

τ )θ=0.

Then, using techniques from the heat equation proof of the index theorem,
Deninger proves that

ζ∗R(0) = exp

⎛
⎝−

∑

0≤j≤3

(−1)j j

2
ζ ′Δj (0)

⎞
⎠ = T (X, gX)−1

where T (X, gX) denotes the Ray-Singer analytic torsion. The metric gX induces
a scalar product on ker Δj and on Hj(X, IR) via the Hodge isomorphism. Con-
sider an orthonormal basis hj on Hj(X, IR), denote by hj the dual basis on

Hj(X, IR). Consider also the basis fj of
Hj(X,Z)
torsion which is dual to f j (0 ≤ j ≤ 3).

Now recall that the Reidemeister torsion is defined by:

τ(X) =
3∏

j=0

|Hj(X, Z)torsion|(−1)j

.

Using the Poincare duality isomorphism Hj(X, Z) � H3−j(X, Z) one then gets:

τ(X) =
3∏

j=0

|Hj(X, Z)torsion|(−1)j+1

.

By the Cheeger-Mueller theorem one has:

T (X, gX) = τ(X)

3∏

j=0

|detfj
hj |(−1)j

.

Now, using the decompositions (11) Deninger shows that

1 = |det(H•(X, IR), D, h•)|.

By construction, one has:

|det(H•(X, IR), D, h•)| = |det(H•(X, IR), D, f•)|
3∏

j=0

|detfj hj |(−1)j+1

.

By combining the last six identities one then gets the theorem.
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In the proof of Theorem 4, we have seen that the operator |θ| appears as
a transverse square root Laplacian. Assume that the Ruelle zeta function does
not vanish at 0. Then one checks that the following holds as distributions of the
variable t ∈ IR.

2
∑

ρ∈ζ−1
R

(0), Im ρ>0

etρ = Trπ1
τeit|θ|.

See the end of Section 3.3.

5 – Remarks about a conjectural dynamical foliated space (SQ,F , g, φt)
associated to the Riemann zeta function

The following Section is speculative in nature. It should be viewed as a
working programme or a motivation for developing interesting mathematics.

5.1 – Structural Assumptions and their consequences

We assume, following Deninger (e.g. [De01b], [De01]), that to Spec Z∪{∞},
one can associate a Riemannian (laminated) foliated space (SQ,F , g, φt) satisfy-
ing the following assumptions.

1. The leaves are Riemann surfaces and the path connected components
of SQ are three dimensional. Moreover, g denotes a leafwise riemannian metric,
(φt)t∈IR is a flow acting on (SQ,F) and permuting the leaves.

2. To each prime p ∈ P there corresponds a unique primitive closed orbit γp

of φt of length log p. To the archimedean absolute value of Q there corresponds
a unique fixed point x∞ = φt(x∞),∀t ∈ IR, of the flow. The flow is transverse
to all the leaves different from the one containing x∞.

3. We assume that:

(12) ∀t ∈ IR, e−t/2Dyφt(x∞)|Tx∞F ∈ SO2(Tx∞F).

4. We have reduced real leafwise cohomology groups H
j

F (0 ≤ j ≤ 2) on which

(φt)t∈IR acts naturally such that H
0

F � IR, H
2

F � IR and H
1

F is infinite di-

mensional. Let [λg] denote the class in H
2

F of the leafwise kaehler metric λg

associated to g. Then we assume that

(13) ∀t ∈ IR, (φt)∗([λg]) = et[λg].

5. The action of φt on H
1

F commutes with the Hodge star � induced by g.
Moreover there exists a transverse measure μ on (SQ,F) such that

∫
SQ

(α∧�β)μ

defines a scalar product on H
1

F .
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6. For any α ∈ C∞
compact(IR; IR),

∫
IR

α(t)(φt)∗dt acting on H
1

F is trace class.
The explicit formula (1) is interpreted as a Lefschetz trace formula for the rie-
mannian foliated space (SQ,F , g, φt) with respect to the leafwise cohomology

groups H
j

F (0 ≤ j ≤ 2).

7. The fixed point x∞ ∈ SQ should be a limit point of a trajectory γ∞ :
limt→+∞ φt(y) = x∞ for any y ∈ γ∞. Moreover, γ∞ should have the following
orbifold structure. Define an orbifold structure on IR≥0 by requiring the following
map to be an orbifold isomorphism:

Sq :
IR

{1,−1} → IR≥0, Sq(z) = z2.

Notice that Sq transforms the flow φt
IR

{1,−1}
(z) = ze−t into the flow φt

IR≥0(v) =

ve−2t. Then we require that there exists an embedding Ψ : IR≥0 → γ∞ such that
Ψ(0) = x∞ and

(14) ∀(t, v) ∈ IR × IR≥0, Ψ(φt
IR≥0(v) = ve−2t) = φt(Ψ(v)).

Lastly we require that γ∞ is transverse at x∞ to Tx∞F .

Comment 8. The stronger assumption ∀t ∈ IR, (φt)∗(g) = etg implies (12)
(because φ0 = Id), (13) and the fact that φt commutes with the Hodge star

not only on H
1

F but also on the vector space of leafwise differential 1−forms.
Deninger told us privately that this assumption (φt)∗(g) = etg might be too
strong. Assumption 5 and (13) implies equation (3) in Deninger’s formalism.
Therefore, the first six Assumptions imply the Riemann hypothesis as explained
in Section 2. Assumption 7 is stated here as a hint about a possible way to prove
Assumption 6. See the next subsection.

Comment 9. The results that we have described in Section 3.3 (e.g.
Lemma 4) suggest that the disymmetry mentionned in Comment 1 might be
explained in the following way. For each prime p ∈ P, (SQ,F) should exhibit
a transversal of the type ]0, 1[×Zp and possibly the ring of finite Adeles might
enter into the picture.

5.2 – Remarks about the contribution of the archimedean place in (1)

Now we apply formally the Guillemin-Sternberg trace formula for

2∑

j=0

(−1)j Tr((φt)∗ ; Γ(SQ ; ∧jT ∗F))

where Γ(SQ;∧jT ∗F) denotes the set of “smooth” sections.
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Lemma 7 (Deninger [De01]).

1) The contribution of the fixed point x∞ in the previous Guillemin-Sternberg
trace formula is:

1

|det(1−Dyφt(x∞) ; Tx∞SQ/Tx∞F)| .

2)

∀t ∈ IR \ {0}, 1

|det(1−Dyφt(x∞) ; Tx∞SQ/Tx∞F)| =
1

|1 − e−2t| .

Proof.

1) Using Proposition 1, one sees that the contribution of the fixed point x∞ is
equal to:

2∑

j=0

(−1)j Tr((Dyφt)∗(x∞);∧jT ∗
x∞F)

|det(1−Dyφt(x∞);Tx∞SQ)| =

=
det(1−Dyφt(x∞);Tx∞F)

|det(1−Dyφt(x∞);Tx∞F)|
1

|det(1−Dyφt(x∞);Tx∞SQ/Tx∞F)| .

Using property (12) one checks easily that

det(1−Dyφt(x∞);Tx∞F)

|det(1−Dyφt(x∞) ; Tx∞F)| = 1.

One then gets immediately 1).

2) Since Tx∞SQ/Tx∞F is a real line, there exists κ ∈ IR such that:

∀t ∈ IR, |det(1−Dyφt(x∞) ; Tx∞SQ/Tx∞F)| = |1 − eκt|.

By Assumption 7, γ∞ is transverse at x∞ to Tx∞F and (14) shows that
Dyφt(x∞) acts as e−2t on the real line Tx∞SQ/Tx∞F . One then gets 2)
immediately.
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Recall that we wish to interpret (1) as a Lefschetz trace formula via the
Guillemin-Sternberg formula.

Proposition 2 (Deninger [De01]).

1) The contribution of the real archimedean absolute value in (1) coincides
for any real t positive with the contribution of the fixed point x∞ in the
Guillemin-Sternberg formula.

2) The contributions of the fixed point x∞ for t real negative in the Guillemin-
Sternberg formula and of the real archimedean absolute value in (1) do not
coincide.

3)

(15) ∀t < 0,
et

1 − e2t
=

2∑

j=0

(−1)jTr((Dyφt)∗(x∞) ; ∧jT ∗
x∞F)

|det(1−Dyφ|t|(x∞) ; Tx∞SQ)|
where in the denominator we have written φ|t|.

Proof.

1) This is part 2) of the previous lemma.
2) Indeed, the Guillemin-Sternberg formula gives

1

|1 − e−2t| =
e2t

1 − e2t
,

whereas (1) gives et

1−e2t for t < 0.
3) This follows from (12) and a simple computation.

Comment 10. It was in order to explain the factor −2 (instead of −1) in
1

1−e−2t for t > 0 in (1) that Deninger has proposed in [De01b, Section 3] the
Assumption 7.

– Open Question

Find a conceptual explanation of the equation (15) by a suitable general-
ization of Guillemin-Sternberg’s trace formula to a “suitable singular setting”.

5.3 – Remarks about the contribution of the archimedean place in the explicit
formula for ζQ[i]

We recall the explicit formula for the zeta function ζQ[i] of Q[i] as an equality
between two distributions in D′(IR \ {0}) (t being the real variable).

(16)

1 −
∑

ρ∈ζ−1
Q[i]

{0},�ρ≥0

etρ+et =
∑

Q
log NQ

∑

k≥1

(δk log NQ + (NQ)−kδ−k log NQ)+

+
1

1 − e−t
1{t>0} +

et

1 − et
1{t<0},
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where Q runs over the set of non zero prime ideals of Z[i] and NQ denotes the
norm of Q.

Of course, one conjectures the existence of a Riemannian (laminated) fo-
liated space (SQ[i],F , g, φt) satisfying a list of axioms quite similar to the ones
stated in Section 5.1. We simply explain how Assumption 7 has to be modified
for the pair of the two complex archimedean places {| · |C, |·|C} of ζQ[i].

Substitute of 7 for Q[i] (cf. [De01b, Section 3]). There exists a station-
ary fixed point z∞ ∈ SQ[i] of φt and two trajectories γ± of the flow φt with end
point z∞. For any z± ∈ γ±, limt→+∞ φt(z±) = z∞. These two trajectories γ±
are transverse to F at z∞. Moreover there exists an embedding:

Ψ : IR → γ− ∪ γ+,

such that Ψ(0) = z∞, γ± \ {0} = Ψ(IR± \ {0}). Lastly, ∀v, t ∈ IR, Ψ(ve−t) =
φt(Ψ(v)).

Therefore, the contribution of z∞ in the Guillemin-Sternberg trace formula
is:

∀t ∈ IR \ {0}, 1

|1 − e−t| =
1

|det(1−Dyφt(z∞) ; Tz∞SQ[i]/Tz∞F)| .

Part 1) of the following proposition shows that the contribution of a complex
archimedean place in the explicit formula is better understood than the one of a
real archimedean place (cf. Proposition 2. 2)). Part 2) suggests that the previous
open question should admit a conceptual answer.

Proposition 3 ([De01, Section 5]).

1) The contribution of z∞ in the Guillemin-Sternberg trace formula coincides,
for t ∈ IR\{0}, with the contribution of the two complex archimedean places
in (16).

2) For t real negative, one has:

et

1 − et
=

2∑

j=0

(−1)jTr((Dyφt)∗(z∞);∧jT ∗
z∞F)

|det(1−Dyφ|t|(z∞) ; Tz∞SQ[i])|
.
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