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Uniqueness of renormalized solutions for a class

of parabolic equations with unbounded nonlinearities

HICHAM REDWANE

Abstract: We prove uniqueness and a comparison principle of renormalized so-

lutions for a class of doubly nonlinear parabolic equations ∂b(x,u)
∂t

− div(A(t, x)Du +

Φ(u)) = f , where the right side belongs to L1((0, T ) × Ω) and where b(x, u) is un-
bounded function of u and where A(t, x) is a bounded symmetric and coercive matrix,
and Φ is continuous function but without any growth assumption on u.

1 – Introduction

In the present paper we establish the uniqueness and comparison principle
for a renormalized solutions for a class of doubly nonlinear parabolic equations
of the type

∂b(x, u)

∂t
− div

(
A(t, x)Du + Φ(u)

)
= f in Ω× (0, T ),(1.1)

b(x, u)(t = 0) = b(x, u0) in Ω,(1.2)

u = 0 on ∂Ω × (0, T ).(1.3)

In Problem (1.1)-(1.3) the framework is the following: Ω is a bounded domain
of IRN , (N ≥ 1), T is a positive real number while the data f and b(x, u0) in
L1(Ω × (0, T )) and L1(Ω). And where b is a Carathéodory function such that,
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b(x, s) is unbounded function of s. The matrix A(t, x) is a bounded symmetric
and coercive matrix. The function Φ is just assumed to be continuous on IR.

When Problem (1.1)-(1.3) is investigated one of the difficulties is due to the
facts that the data f and b(x, u0) only belong to L1 and the growths of b(x, u)
and Φ(u) are not controlled with respect to u (the function Φ(u) does not belong
to (L1

loc((0, T ) × Ω))N in general), so that proving existence of a weak solution
(i.e. in the distribution meaning) seems to be an arduous task. To overcome
this difficulty we use the framework of renormalized solutions. The existence of
a renormalized solutions of (1.1)-(1.3) is proved in H. Redwane [15].

The notion of renormalized soluion is introduced by Lions and Di Perna
[14] for the study of Boltzmann equation (see also P.-L. Lions [10] for a few
applications to fluid mechanics models). This notion was then adapted to elliptic
version of (1.1)-(1.3) in Boccardo, J.-L. Diaz, D. Giachetti, F. Murat [8],
in P.-L. Lions and F. Murat [11] and F. Murat [12], [13] (see also [2], [3],
[4], [5], [6], [7]). At the same the equivalent notion of entropy solutions have
been developed independently by Bénilan and al. [1] for the study of nonlinear
elliptic problems.

The paper is organized as follows: Section 2 is devoted to specify the as-
sumptions on b, Φ, f and u0 needed in the present study and gives the definition
and the existence (Theorem 2.0.3) of a renormalized solution of (1.1)-(1.3). In
Section 3 we establish uniqueness and a comparison principle of such a solution
(Theorem 3.0.4)

2 – Assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true:
Ω is a bounded open set on IRN (N ≥ 1), T > 0 is given and we set Q = Ω×(0, T ).

(2.1) b : Ω × IR → IR is a Carathéodory function such that;

for every x ∈ Ω : b(x, s) is a strictly increasing C1-function, with b(x, 0) = 0.
For any K > 0, there exists λK > 0, a function AK in L1(Ω) and a function BK

in L2(Ω) such that

(2.2) λK ≤ ∂b(x, s)

∂s
≤ AK(x) and

∣∣∣∣∇x

(
∂b(x, s)

∂s

)∣∣∣∣ ≤ BK(x)

for almost every x ∈ Ω, for every s such that |s| ≤ K.

(2.3) A(t, x) is a symmetric coercive matrix field with coefficients
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lying in L∞(Q) i.e. A(t, x) = (aij(t, x))1≤i,j≤N with:

• aij(t, x) ∈ L∞(Q) and aij(t, x) = aji(t, x) a.e. in Q, ∀ i, j
• ∃ α > 0 such that a.e. in Q, ∀ξ ∈ IRN A(t, x)ξξ ≥ α‖ξ‖2

IRN

Φ : IR → IRN is a continuous function(2.4)

f is an element of L1(Q).(2.5)

u0 is a measurable function defined on Ω such that b(x, u0) ∈ L1(Ω).(2.6)

Remark 2.0.1. In (2.2), we denote by ∇x

(
∂b(x,s)

∂s

)
the gradient of ∂b(x,s)

∂s

defined in the sense of distributions.
As already mentioned in the introduction Problem (1.1), (1.2), (1.3) does

not admit a weak solution under assumptions (2.1)-(2.6), since the growths of
b(x, u) and Φ(u) are not controlled with respect to u (so that these fields are not
in general defined as distributions, even when u belongs L2(0, T ;W 1,2

0 (Ω))).
Throughout this paper and for any non negative real number K we denote

by TK(r) = min(K, max(r,−K)) the truncation function at height K. The
definition of a renormalized solution for Problem (1.1), (1.2), (1.3) can be stated
as follows.

Definition 2.0.2. A measurable function u defined on Q is a renormalized
solution of Problem (1.1), (1.2), (1.3) if

(2.7) TK(u)∈L2(0, T ;W 1,2
0 (Ω)) for any K≥0 and b(x, u)∈L∞(0, T ;L1(Ω));

(2.8)

∫

{(t,x)∈Q; n≤|u(x,t)|≤n+1}
A(x, t)DuDu dx dt −→ 0 as n → +∞;

and if, for every increasing function S in W 2,∞(IR), which is piecewise C1 and
such that S′ has a compact support, we have

(2.9)

∂bS(x, u)

∂t
− div(S′(u)A(t, x)Du) + S′′(u)A(t, x)DuDu

− div(S′(u)Φ(u)) + S′′(u)Φ(u)Du = fS′(u) in D′(Q);

(2.10) bS(x, u)(t = 0) = bS(x, u0) in Ω;

where bS(x, r) =
∫ r

0
∂b(x,s)

∂s S′(s) ds.

The existence theorem of renormalized solution of (1.1)-(1.3):

Theorem 2.0.3. Under assumptions (2.1)-(2.6) there exists at least a renor-
malized solution u of Problem (1.1)-(1.3).
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Proof of Theorem 3.0.3. The existence theorem of renormalized solution
of (1.1)-(1.3) is proved in H. Redwane [15]

3 – Comparison principle and uniqueness result

This section is concerned with a comparison principle (and an uniqueness
result) for renormalized solutions. We establish the following theorem.

Theorem 3.0.4. Assume that assumptions (2.1), (2.2), (2.3), (2.4), (2.5)
and (2.6) hold true and moreover that.

For any K > 0, there exists a positive real number βK > 0, such that

(3.1)
∣∣∣∂b(x, z1)

∂s
− ∂b(x, z2)

∂s

∣∣∣ ≤ βK

∣∣∣z1 − z2

∣∣∣

for almost every x in Ω, and for every z1 and every z2 such that |z1| ≤ K and
|z2| ≤ K.

(3.2) Φ is a locally Lipschitz continuous function on IR.

Let then u1 and u2 be renormalized solutions corresponding to the data (f1, u
1
0)

and (f2, u
2
0). If these data satisfying f1 ≤ f2 and u1

0 ≤ u2
0 almost every where,

we have
u1 ≤ u2 almost every where.

Proof of Theorem 3.0.4. The proof is divided into two steps. In Step 1,
we define a smooth approximation Sn of Tn, and we consider two renormalized
solutions u1 and u2 of (1.1), (1.2), (1.3) for the data (f1, u

1
0) and (f2, u

2
0) respec-

tively. We plug the test function 1
σ Tσ

+
(
bSn(x, u1)−bSn(x, u2))

)
in the difference

of equations (2.9) for u1 and u2 in which we have taken S = Sn.
In Step 2, we investigate the behaviour of the different terms in the estimate

obtained in Step 1 (estimates (3.5)) as σ tends to 0 and when n tends to +∞.

Step 1. Remark that when Φ is locally Lipschitz continuous on IR the
following derivation is licit for any function S and u satisfying the conditions
mentioned in Definition 2.0.2.

(3.3) div
(
S′(u)Φ(u)

)
− S′′(u)Φ(u)Du = S′(u)Φ′(u)Du = div(ΦS(u)).

Where ΦS = (ΦS,1,ΦS,2, · · · ,ΦS,N ) with

ΦS,i(r) =

∫ r

0

Φ′
S,i(t)S

′(t) dt.
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Let us now introduce a specific choice of function S in (2.9). For all n > 0, let
Sn ∈ C1(IR) be the function defined by Sn(0) = 0; S′

n(r) = 1 for |r| ≤ n;S′
n(r) =

n + 1− |r| for n ≤ |r| ≤ n + 1 and S′
n(r) = 0 for |r| ≥ n + 1.

It yields, taking S = Sn in (2.9)

(3.4)

∂bSn(x, ui)

∂t
− div

(
S′(ui)A(t, x)Dui

)
+ S′′(ui)A(t, x)DuiDui+

− div
(
ΦSn(ui)

)
= fiS

′
n(ui) in D′(Q);

for i = 1, 2 and where bSn(x, r) =
∫ r

0
∂b(x,s)

∂s S′
n(s) ds.

We use 1
σ T+

σ (bSn(x, u1) − bSn(x, u2)) as a test function in the difference of
equations (3.4) for u1 and u2.

(3.5)

1

σ

∫ T

0

∫ t

0

〈
∂(bSn(x, u1)−bSn(x, u2))

∂t
;T+

σ (bSn
(x, u1)−bSn

(x, u2))

〉
ds dt+Aσ

n =

= Bσ
n + Cσ

n + Dσ
n,

for any σ > 0, n > 0, and where

(3.6)

Aσ
n =

1

σ

∫ T

0

∫ t

0

∫

Ω

[
S′

n(u1)A(t, x)Du1 − S′
n(u2)A(t, x)Du2

]
·

·DT+
σ

(
bSn

(x, u1) − bSn
(x, u2)

)
dx ds dt

(3.7)

Bσ
n=

1

σ

∫ T

0

∫ t

0

∫

Ω

S′′
n(u1)A(t, x)Du1Du1T

+
σ (bSn

(x, u1)−bSn
(x, u2) dx ds dt+

− 1

σ

∫ T

0

∫ t

0

∫

Ω

S′′
n(u2)A(t, x)Du2Du2T

+
σ (bSn(x, u1)−bSn(x, u2)) dx ds dt

(3.8) Cσ
n =

1

σ

∫ T

0

∫ t

0

∫

Ω

[ΦSn(u1)−ΦSn(u2)]DT+
σ (bSn(x, u1)− bSn(x, u2)) dx ds dt

(3.9) Dσ
n =

1

σ

∫ T

0

∫ t

0

∫

Ω

[f1S
′
n(u1)− f2S

′
n(u2)]T

+
σ (bSn

(x, u1)− bSn
(x, u2)) dx ds dt.
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In the sequel we pass to the limit in (3.5) when σ tends to 0 and then n tends
to +∞. Upon application of Lemma 2.4 of [9], the first term in the right hand
side of (3.5) is derived as

(3.10)

1

σ

∫ T

0

∫ t

0

〈
∂(bSn(x, u1) − bSn(x, u2))

∂t
;T+

σ (bSn(x, u1)−bSn(x, u2))

〉
ds dt =

=
1

σ

∫

Q

T̃+
σ (bSn(x, u1)−bSn(x, u2)) dx dt+

− T

σ

∫

Ω

T̃+
σ (bSn(x, u1

0)−bSn(x, u2
0)) dx

where T̃+
σ (r) =

∫ r

0
T+

σ (s) ds.
Due to the assumption u1

0 ≤ u2
0 a.e. in Ω and the monotone character of

bSn(x, .) and Tσ(.) , we have

(3.11)

∫

Ω

T̃+
σ

(
bSn

(x, u1
0) − bSn

(x, u2
0)

)
dx = 0.

It follows from (3.5), (3.10) and (3.11) that

(3.12)
1

σ

∫

Q

T̃+
σ

(
bSn

(x, u1) − bSn
(x, u2)

)
dx dt + Aσ

n = Bσ
n + Cσ

n + Dσ
n

for any σ > 0 and any n > 0.

Step 2. In this step, we study the behaviors of the terms Aσ
n, Bσ

n , Cσ
n

and Dσ
n when σ tends to 0 and n → +∞. More precisely, we prove the following

estimates,

lim
n→+∞

lim
σ→0

Aσ
n ≥ 0,(3.13)

lim
n→+∞

lim
σ→0

Bσ
n = 0,(3.14)

lim
σ→0

Cσ
n = 0 for all n,(3.15)

lim
n→+∞

lim
σ→0

Dσ
n ≤ 0.(3.16)

Proof of (3.13)

Aσ
n =

1

σ

∫ T

0

∫ t

0

∫

Ω

[
S′

n(u1)A(t, x)Du1 − S′
n(u2)A(t, x)Du2

]

DT+
σ

(
bSn

(x, u1) − bSn
(x, u2)

)
dx ds dt.
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To establish (3.13) we first write Aσ
n, as follows

(3.17)

Aσ
n =

∫

Q

(T − t)

σ

[
S′

n(u1)
(∂b(x, u1)

∂s

) 1
2

A(t, x)
1
2 Du1+

−S′
n(u2)

(∂b(x, u2)

∂s

) 1
2

A(t, x)
1
2 Du2

]2

(T+
σ )′(bSn

(x, u1)−bSn
(x, u2)) dx dt+

−
∫

Q

(T − t)

σ

[(∂b(x, u1)

∂s

) 1
2 −

(∂b(x, u2)

∂s

) 1
2
]2

A(t, x)DSn(u1)DSn(u2)·

· (T+
σ )′

(
bSn

(x, u1) − bSn
(x, u2)

)
dx dt +

∫

Q

(T − t)

σ

[
S′

n(u1)A(t, x)Du1+

− S′
n(u2)A(t, x)Du2

][ ∫ u1

u2

S′
n(s)∇x

(∂b(x, s)

∂s

)
ds

]
·

· (T+
σ )′

(
bSn

(x, u1) − bSn
(x, u2)

)
dx dt.

We denote by Cn the compact subset [−n− 1, n + 1] of IR, and remark that due
to (2.2) and (3.1), there exist a positive real numbers λn and βn such that

(3.18)

∣∣∣
(∂b(x, z1)

∂s

) 1
2 −

(∂b(x, z2)

∂s

) 1
2
∣∣∣ ≤

≤ βn

2
√

λn

|z1 − z2| for all z1, z2 lying in Cn,

for almost every x in Ω.
Due to the definition of bSn(x, r), we have

(3.19)
∣∣∣bSn(x, s) − bSn(x, r)

∣∣∣ =
∣∣∣
∫ s

r

S′
n(z)

∂b(x, z)

∂z
dz

∣∣∣ ≥ λn

∣∣∣Sn(s) − Sn(r)
∣∣∣

for almost every x in Ω, and ∀ s, r ∈ IR.
As a consequence it follows that for σ < n and if s and r are real numbers

such that
∣∣∣Sn(s) − Sn(r)

∣∣∣ ≤ σ, then both Sn(s) and Sn(r) belong to concave or

to convex branch of Sn. For σ < n, we then have:

min
(
S′

n(s), S′
n(r)

)
|r − s| ≤

∣∣∣Sn(s) − Sn(r)
∣∣∣

for all real numbers such that
∣∣∣Sn(s) − Sn(r)

∣∣∣ ≤ σ.

From the above inequality and since ‖S′
n‖L∞(IR) = 1 we deduce that

∣∣∣Sn(s) − Sn(r)
∣∣∣ ≤ σ < n =⇒ S′

n(s)S′
n(r)|s− r| ≤

∣∣∣Sn(s) − Sn(r)
∣∣∣.
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Due to the definition of T+
σ , it follows that

(3.20) S′
n(s)S′

n(r)|s− r|(T+
σ )′(Sn(s) − Sn(r)) ≤ σ (T+

σ )′(Sn(s) − Sn(r))

for all numbers s and r.

Recalling that supp(S′
n) ⊂ [−(n + 1), n + 1], inequalities (3.18) and (3.19)

lead to:

∣∣∣
∫

Q

(T − t)

σ

[(∂b(x, u1)

∂s

) 1
2 −

(∂b(x, u2)

∂s

) 1
2
]2

·

· (T+
σ )′

(
bSn(x, u1) − bSn(x, u2)

)
A(t, x)DSn(u1)DSn(u2) dx dt

∣∣∣ ≤

≤ Tβn

2
√

λn

∫

Q

∣∣∣
(∂b(x, u1)

∂s

) 1
2 −

(∂b(x, u2)

∂s

) 1
2
∣∣∣χ{u1 �=u2}·

· (T+
σ

λn

)′
(
Sn(u1) − Sn(u2)

)∣∣∣A(t, x)DTn+1(u1)DTn+1(u2)
∣∣∣ dx dt.

The term just above is easily shown to converge to zero as σ goes to zero since
the function

∣∣∣
(∂b(x, u1)

∂s

) 1
2 −

(∂b(x, u2)

∂s

) 1
2
∣∣∣χ{u1 �=u2}·

· (T+
σ

λn

)′
(
Sn(u1) − Sn(u2)

)∣∣∣A(t, x)DTn+1(u1)DTn+1(u2)
∣∣∣

converges to zero almost everywhere in Q as σ goes to zero and (due to (3.1)) is

bounded by theL1(Q)-function2‖∂b(x,s)
∂s ‖L∞(Ω×Cn)|A(t, x)DTn+1(u1)DTn+1(u2)|.

We remark that

(3.22)

∣∣∣
∫

Q

(T − t)

σ
[S′

n(u1)A(t, x)Du1 − S′
n(u2)A(t, x)Du2](T

+
σ )′(bSn(x, u1)+

− bSn(x, u2))
[ ∫ u1

u2

S′
n(s)∇x

(∂b(x, s)

∂s

)
ds

]
dx dt

∣∣∣ ≤

≤
∣∣∣
∫

Q

(T − t)

σ

∣∣∣S′
n(u1)A(t, x)Du1 − S′

n(u2)A(t, x)Du2

∣∣∣(T+
σ )′(bSn(x, u1)+

− bSn(x, u2))

∥∥∥∥∇x

(∂b(x, s)

∂s

)∥∥∥∥
L∞(Cn)

∣∣∣Sn(u1) − Sn(u2)
∣∣∣ dx dt ≤

≤ T

∫

Q

∣∣∣S′(u1)A(t, x)DTn+1(u1) − S′
n(u2)A(t, x)DTn+1(u2)

∣∣∣χ{u1 �=u2}·

· (T+
σ

λn

)′
(
Sn(u1) − Sn(u2)

)
‖∇x

(∂b(x, s)

∂s

)
‖L∞(Cn) dx dt.



[9] Uniqueness of a renormalized solution 197

The term just above is easily shown to converge to zero as σ goes to zero since
the function

∣∣∣S′(u1)A(t, x)DTn+1(u1) − S′
n(u2)A(t, x)DTn+1(u2)

∣∣∣χ{u1 �=u2}·

· (T+
σ

λn

)′
(
Sn(u1) − Sn(u2)

)∥∥∥∇x

(∂b(x, s)

∂s

)∥∥∥
L∞(Cn)

converges to zero almost everywhere in Q as σ goes to zero and is bounded by
the L1(Q)-function

∣∣∣S′(u1)A(t, x)DTn+1(u1) − S′
n(u2)A(t, x)DTn+1(u2)

∣∣∣Bn(x)

since ‖∇x

(
∂b(x,s)

∂s

)
‖L∞(Cn) ≤ Bn(x) ∈ L2(Ω) (see (2.2)).

From the above analysis we conclude that (3.13) holds true.

Proof of (3.14). We have

(3.23)

|Bσ
n | ≤ T

∫

{n≤|u1|≤n+1}
A(t, x)Du1Du1 dx dt+

+ T

∫

{n≤|u2|≤n+1}
A(t, x)Du2Du2 dx dt.

As a consequence of (2.8), letting n go to infinity in the above estimates of Bσ
n

shows that (3.14) holds true.

Proof of (3.15).

Cσ
n =

1

σ

∫ T

0

∫ t

0

∫

Ω

[
ΦSn

(u1) − ΦSn
(u2)

]
DT+

σ

(
bSn

(x, u1) − bSn
(x, u2)

)
dx ds dt.

To establish (3.15), let us remark that for all s, r in IR, the following inequality
holds true

(3.24)
∥∥∥ΦSn(s) − ΦSn(r)

∥∥∥
IRN

≤ ‖Φ′‖L∞(Cn)
N

∣∣∣Sn(s) − Sn(r)
∣∣∣

indeed, since suppS′
n ⊂ [−n−1, n+1] and Φ′ is assumed to be locally Lipschitz

continuous, it follows that

∣∣∣ΦSn(s) − ΦSn(r)
∣∣∣ ≤

∣∣∣
∫ s

r

S′(z)Φ′(z) dz
∣∣∣ ≤ ‖Φ′‖L∞(Cn)N

∣∣∣Sn(s) − Sn(r)
∣∣∣.
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With the help of (3.24) the term Cσ
n may be estimated as follows

|Cσ
n | ≤ T‖Φ′‖L∞(Cn)

N
∫

{0≤
(

bSn (x,u1)−bSn (x,u2)

)
≤σ}

∣∣∣Sn(u1) − Sn(u2)
∣∣∣

σ
·

·
∣∣∣DT+

σ

(
bSn

(x, u1) − bSn
(x, u2)

)∣∣∣ dx dt ≤

≤ T‖Φ′‖L∞(Cn)
N

∫

{0≤
(

Sn(u1)−Sn(u2)

)
≤

σ

λn
}

∣∣∣Sn(u1) − Sn(u2)
∣∣∣

σ
·

·
∣∣∣DT+

σ

(
bSn(x, u1) − bSn(x, u2)

)∣∣∣ dx dt.

It yields

|Cσ
n | ≤

T

λn
‖Φ′‖L∞(Cn)N

∫

Q

∣∣∣DT+
σ

(
bSn(x, u1) − bSn(x, u2)

)∣∣∣ dx dt,

which in turn implies (3.15) since DT+
σ

(
bSn(x, u1) − bSn(x, u2)

)
converges to

zero in L1(Q) as σ goes to zero.

Proof of (3.16).

Dσ
n =

1

σ

∫ T

0

∫ t

0

∫

Ω

[
f1S

′
n(u1) − f2S

′
n(u2)

]
T+

σ

(
bSn

(x, u1) − bSn
(x, u2)

)
dx ds dt.

We have as n tends to +∞,

(3.25) f1S
′
n(u1) − f2S

′
n(u2) → f1 − f2 strongly in L1(Q).

Letting σ tends to 0, we have 1
σ T+

σ (t) goes to sg+
0 (t), for all t ∈ IR. For n > 0

fixed, we have

lim
σ→0

Dσ
n =

∫ T

0

∫ t

0

∫

Ω

(
f1 − f2

)
sg+

0

(
bSn(x, u1))− bSn(x, u2))

)
dx ds dt.

Since f1 ≤ f2 a.e. in Q and sg+
0 (t) ≥ 0 for all t in IR, then shows that (3.16)

holds true. In view of the definition of T̃+
σ and T σ

n , we have

(3.26)

lim
n→+∞

lim
σ→0

1

σ

∫ T

0

∫

Ω

T̃+
σ

(
bSn

(x, u1) − bSn
(x, u2)

)
dx dt =

=

∫

Q

(
b(x, u1) − b(x, u2)

)+

dx dt.
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In view of estimates (3.11), (3.12), (3.13), (3.14), (3.15), (3.16) and (3.26) we
have ∫

Q

(
b(x, u1) − b(x, u2)

)+

dx dt ≤ 0,

so that b(x, u1) ≤ b(x, u2) a.e. in Q which in turn implies that u1 ≤ u2 a.e. in
Q, Theorem 3.0.4 is then established.
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