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Uniqueness of renormalized solutions for a class

of parabolic equations with unbounded nonlinearities

HICHAM REDWANE

ABSTRACT: We prove uniqueness and a comparison principle of renormalized so-
lutions for a class of doubly nonlinear parabolic equations % — div(A(t,z)Du +
®(u)) = f, where the right side belongs to L*((0,T) x Q) and where b(x,u) is un-
bounded function of u and where A(t,z) is a bounded symmetric and coercive matriz,
and ® is continuous function but without any growth assumption on u.

1 — Introduction

In the present paper we establish the uniqueness and comparison principle
for a renormalized solutions for a class of doubly nonlinear parabolic equations
of the type

(1.1) % — div <A(t,x)Du + <I>(u)) —f inQx(0,7),
(1.2) b(x,u)(t =0) = b(x,ug) in Q,
(1.3) u=0 on dN x (0,7).

In Problem (1.1)-(1.3) the framework is the following: € is a bounded domain
of RN, (N > 1), T is a positive real number while the data f and b(z,ug) in
LY(2 x (0,7)) and L'(Q). And where b is a Carathéodory function such that,
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b(x, s) is unbounded function of s. The matrix A(t,z) is a bounded symmetric
and coercive matrix. The function ® is just assumed to be continuous on IR.

When Problem (1.1)-(1.3) is investigated one of the difficulties is due to the
facts that the data f and b(z,ug) only belong to L' and the growths of b(z, u)
and ®(u) are not controlled with respect to u (the function ®(u) does not belong
to (LL.((0,T) x )Y in general), so that proving existence of a weak solution
(i.e. in the distribution meaning) seems to be an arduous task. To overcome
this difficulty we use the framework of renormalized solutions. The existence of
a renormalized solutions of (1.1)-(1.3) is proved in H. REDWANE [15].

The notion of renormalized soluion is introduced by L1ONS and D1 PERNA
[14] for the study of Boltzmann equation (see also P.-L. LioNs [10] for a few
applications to fluid mechanics models). This notion was then adapted to elliptic
version of (1.1)-(1.3) in BocCARDO, J.-L. D1Az, D. GIACHETTI, F. MURAT [8],
in P.-L. LioNs and F. MURAT [11] and F. MURAT [12], [13] (see also [2], [3],
[4], [5], [6], [7]). At the same the equivalent notion of entropy solutions have
been developed independently by BENILAN and al. [1] for the study of nonlinear
elliptic problems.

The paper is organized as follows: Section 2 is devoted to specify the as-
sumptions on b, ®, f and up needed in the present study and gives the definition
and the existence (Theorem 2.0.3) of a renormalized solution of (1.1)-(1.3). In
Section 3 we establish uniqueness and a comparison principle of such a solution
(Theorem 3.0.4)

2 — Assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true:
Q is a bounded open set on R (N > 1), T > 0 is given and we set Q = Qx (0, 7).
(2.1) b: QxR — IR is a Carathéodory function such that;

for every x € Q : b(z,s) is a strictly increasing C'-function, with b(z,0) = 0.
For any K > 0, there exists A > 0, a function Ag in L*(2) and a function Bx
in L?(Q) such that

(2:2) Ak <

ob(z, s) ob(z, s)
<
55 = Ak (z) and ‘Vz ( 95

)‘ < Bk (z)

for almost every = € Q, for every s such that |s| < K.

(2.3) A(t, z) is a symmetric coercive matrix field with coefficients
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lying in L>®(Q) i.e. A(t,x) = (ai;(t,x))1<ij<n with:

o a;;(t,x) € L*(Q) and a;;(t,x) = aj(t,x) ae. in Q, Vi, j
e 3 a > 0such that a.e. in Q, V& € RN A(t,2)E€ > af|¢[|i~

(2.4) ® : R — RY is a continuous function
(2.5) f is an element of L' (Q).
(2.6) ug is a measurable function defined on  such that b(z,ug) € L*(Q).

REMARK 2.0.1. In (2.2), we denote by V, (ab . S)) the gradient of %

defined in the sense of distributions.

As already mentioned in the introduction Problem (1.1), (1.2), (1.3) does
not admit a weak solution under assumptions (2.1)-(2.6), since the growths of
b(x,u) and ®(u) are not controlled with respect to u (so that these fields are not
in general defined as distributions, even when u belongs L2(0, T; W, *(Q))).

Throughout this paper and for any non negative real number K we denote
by Tk (r) = min(K, max(r,—K)) the truncation function at height K. The
definition of a renormalized solution for Problem (1.1), (1.2), (1.3) can be stated
as follows.

DEFINITION 2.0.2. A measurable function u defined on @ is a renormalized
solution of Problem (1.1), (1.2), (1.3) if

(2.7) Tk (u)eL?(0,T; Wy (Q)) for any K >0 and b(z, u) e L>(0,T; L' (Q));

(2.8) A(z,t)DuDudxdt — 0 as n — +0o0;

/{u,z)ecz; n<lu(a,t)|<n+1}

and if, for every increasing function S in W2°°(IR), which is piecewise C! and
such that S’ has a compact support, we have

0b (IL‘,U) . ’ "
(2.9) ST — div (S’ (u)A(t, ) Du) + S" (u) A(t, z) DuDu
— div(S"(u)®(u)) + S” (u)®(u)Du = fS'(u) in D'(Q);
(2.10) bg(z,u)(t =0) = bg(zr,up) in Q;

where bg(z,r) f07 ab(l 9b(,5) S'(s

The existence theorem of renormalized solution of (1.1)-(1.3):

THEOREM 2.0.3. Under assumptions (2.1)-(2.6) there exists at least a renor-
malized solution u of Problem (1.1)-(1.3).
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PRrROOF OF THEOREM 3.0.3. The existence theorem of renormalized solution
of (1.1)-(1.3) is proved in H. REDWANE [15]

3 — Comparison principle and uniqueness result

This section is concerned with a comparison principle (and an uniqueness
result) for renormalized solutions. We establish the following theorem.

THEOREM 3.0.4. Assume that assumptions (2.1), (2.2), (2.3), (2.4), (2.5)
and (2.6) hold true and moreover that.
For any K > 0, there exists a positive real number Bx > 0, such that

0b(x,z1)  Ob(x, z2)
o 2)_ B g,

for almost every xz in ), and for every z; and every zy such that |z1] < K and
|22| < K.

(3.2) D is a locally Lipschitz continuous function on IR.

Let then uy and us be renormalized solutions corresponding to the data (f1, ué)
and (fa,ud). If these data satisfying f1 < fo and u} < ud almost every where,
we have

u1 < ug almost every where.

PrOOF OF THEOREM 3.0.4. The proof is divided into two steps. In Step 1,
we define a smooth approximation .S, of T},, and we consider two renormalized
solutions u; and ug of (1.1), (1.2), (1.3) for the data (f1,ud) and (fa, u3) respec-

tively. We plug the test function 27, (bsn (x,u1)—bs, (z, uz))) in the difference

of equations (2.9) for u; and us in which we have taken S = S,,.
In Step 2, we investigate the behaviour of the different terms in the estimate
obtained in Step 1 (estimates (3.5)) as o tends to 0 and when n tends to +oo.

STEP 1. Remark that when ® is locally Lipschitz continuous on IR the
following derivation is licit for any function S and u satisfying the conditions
mentioned in Definition 2.0.2.

(3.3)  div (5/(u)<1>(u)) — 8"(w)®(u)Du = S (u)®' (u) Du = div(Pg(u)).

Where &g = ((135’1, bgo,--- ,@S’N) with

Pg(r) = /O : G (1)S'(t) dt.



(5] Uniqueness of a renormalized solution 193

Let us now introduce a specific choice of function S in (2.9). For all n > 0, let
S, € C(IR) be the function defined by S,,(0) = 0; S, (r) = 1 for |r| < n;Sh(r) =
n+1—|r|forn<|r|<n+1and S),(r)=0for |r| >n+1.

It yields, taking S = S, in (2.9)

Obg, (z,u;)

S div (S/(ui)A(t, :E)Dul-) + 8" (u;) A(t, z) Du; Dug+

(3.4)
—div (‘I’Sn (u2)> =[Sy (u;) in D'(Q);

for i = 1,2 and where bg, (z,7) = [ %Sﬁl(s) ds.

We use 1T:5(bg, (z,u1) — bs, (x,uz)) as a test function in the difference of
equations (3.4) for u; and us.

T pt _
l//<8(bsn(x,u1) bs,, (x,uz));T;(bsn(x,ul)—bsn(a:,uQ))>dsdt+A§;:
0JoJo ot

=By +C;y + Dy,

(3.5)

for any ¢ > 0, n > 0, and where

AT = i/OT /Ot/Q [s;(ul)A(t,x)Dul — 8" (u2) A(t, z) Dus)| -

(3.6)
- DT} (bsn (x,u1) — bg, (x, U2)) dx ds dt
1 T pt
Bgzi/ //Sg(ul)A(tvI)DulDulT;(bSn(LUl)*bsn(x,uz)dzdsdtJr
GJo JoJa
(3.7)

T pt
—%/ //S’Z(UQ)A(t,x)DugDuQT:'(bgn (z,u1)—0bs, (z,u2)) dx dsdt
0J0JQ
1 T rt
(3.8) o:;=;/ / / (s, (1) — B, ()| DT (bs, (2, ur) — bs, (z, uz)) de ds
0 0JQ

T ot
(3.9) DZ:%/O /o/gz[fls;(ul) — f2S80 (u)| T (bs, (z,u1) — bs, (7, uz)) dx ds dt.
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In the sequel we pass to the limit in (3.5) when o tends to 0 and then n tends
to +o00. Upon application of Lemma 2.4 of [9], the first term in the right hand
side of (3.5) is derived as

/T/t< (bs, (z, u1 b . (7, u2)) TH(bs, (x’ul)_bsn($7u2))>d8dt _

(3.10) U/QTJF(bS (z,u1)—bs, (z,us2)) dx dt+

T [
- o [ s, (o) -bs, (@) o
Q

where T (r) = [ T (s) ds.
Due to the assumption uj < u3 a.e. in  and the monotone character of
bs, (z, .) and T5(.) , we have

(3.11) / T (bsn (z,up) — bs, (a:,u%)) dx = 0.
Q

It follows from (3.5), (3.10) and (3.11) that

1 .
(12 -~ /Q T (bsn (z,u1) — bs, (x,UQ)) dzdt+ A7 = BS + 0% + D°

for any ¢ > 0 and any n > 0.

STEP 2. In this step, we study the behaviors of the terms A?, Bg, C7
and D¢ when o tends to 0 and n — 400. More precisely, we prove the following
estimates,

(3.13) lim lim A? >0,
n—+o0 0—0
(3.14) lim limBy =0,
n—+o0o0 0—=0
(3.15) limC? =0 for all n,
a=0
(3.16) lim lim D7 < 0.

n—+oo o—0

PROOF OF (3.13)

_ 3 /0 ! /0 t /Q (1, (un) A(t, ) Dus — S, () A(t, 2) Dus]|

DT} (bsn (z,u1) — bg, (m,uQ)) dx dsdt.
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To establish (3.13) we first write A%, as follows

AC =/Q (TJ_ ) [s;(ul)(%) * A(t ) D+

—s!, (@(%) Ut ) Du,| (T (bs, (@, ur) —bs, (2, uz)) de di+

_/Q (Ta_t) Kab(g;w)%—(M)%]ZA(t,x)DSn(ul)Dsn(uQ).

Os

(3.17)
: (TJ)’(bsn (z,u1) — bs, (:c,ug)) d dt + /Q @ [S;(ul)A(t,x)Duﬁ
_ S;L(UQ)A(t,fE)DUQ} [/ul S;L(S)Vx<ab<axs’ S)) ds]

: (Tj)’(bgn (z,u1) — bs, (x,@)) da dt.

We denote by C), the compact subset [-n — 1,n + 1] of IR, and remark that due
0 (2.2) and (3.1), there exist a positive real numbers \,, and 3, such that

\(L%;Z”)? (75

(3.18)

|21 — 22| for all z1, 2o lying in C,,,

<
_2\/ n

for almost every z in €.
Due to the definition of bg, (z,r), we have

/S’ d‘>>\

for almost every z in 2, and V s, r € IR.
As a consequence it follows that for 0 < n and if s and r are real numbers

such that ’Sn(s) - Sn(r)’ < o, then both S,,(s) and S, (r) belong to concave or

to convex branch of S,,. For ¢ < n, we then have:

(3.19) ‘bs (z,9) (x,r ‘ = n(8) — Sn(r)

min (S;L (s), S;L(r)) Sn(s) = Sn(r)

for all real numbers such that ‘Sn(s) - Sn(r)‘ <o.
From the above inequality and since [|S], || @r) = 1 we deduce that

Su(s) = Su(r)| < 7 <1 = 8,(5)S4(r)

Sp(s) — Sn(r)’.
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Due to the definition of TF, it follows that

(320)  S.()S,(r)|s = r[(T51) (Sn(s) = Sn(r)) < o (T7) (Sn(s) — Su(r))

for all numbers s and r.
Recalling that supp(S,) C [—(n+ 1), n + 1], inequalities (3.18) and (3.19)
lead to:

[ty (i

‘(T+)/(bs (x,u1) —bg, (:L' uQ))A(t,x)DSn(ul)DSn(uQ) dx dt’ <

- 21\71 / ’ ob(x, u1 (8b(g;u2))%

(L )/(sn(ul) — S (u) )‘A(t, x)DTnH(ul)DTnH(ug)‘ dz dt.

The term just above is easily shown to converge to zero as o goes to zero since
the function

K@b(x,ul))é B (6b($,u2))5

0s 0s
(TL )'(Sn(ul) _ sn(w)) |A(t, 2) DTy i1 (u1) DT (us)

converges to zero almost everywhere in @) as o goes to zero and (due to (3.1)) is
. 12l

bounded by the L!(Q)-function 2|| bg‘;’s) | Lo (@x ) |A(t, ©)D Ty 1 (w1 ) DT, 1 (u2)|-

We remark that

\/ C0, () At ) Dus — 5 (u2) A1, ) D) (T (b, (1)

—bs, (z,u2)) / S (s 8bg: S)) ds} dxdt) <

< / u)A(t,2)Dus — S} (1) A(t, ) D |[(T3) (b, (1) +
(3.22) ob(z, s)

—bg, (z,u2)) Hvz( 85, ) . S (uy) — Sn('U/Q)’ dedt <

S"(ur) A(t, ©) DTy (ur) — Sy, (u2) A(t, f)DTnH(uz)’X{uﬁéuz}'

'),

(T (Sutur) 200192 (LD g et
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The term just above is easily shown to converge to zero as o goes to zero since
the function

’5'(U1)A(t7 ) DTy (ur) — Sy (u2) Alt, I)DTH+1(U2)’X{U17&u2}'
ob(z, s)

. (T%)’<Sn(m) - Sn(“Z)) HV$ (T) HLOO(Cn)

converges to zero almost everywhere in ) as o goes to zero and is bounded by
the L'(Q)-function

S'(u1) A(t, ©) DT i1 (ur) — Sy, (u2) A(t, T/)DTnH(uz)’Bn(x)

since IIVm(%)Ilmcn) < Bu(z) € L2(Q) (see (2.2)).

From the above analysis we conclude that (3.13) holds true.

PROOF OF (3.14). We have

|BZ| < T/ A(t, x) Duy Duy dx dt+

(3.23) {n<us|<n+1}

+ T/ A(t, 2) Dug Dug dz: dt.
{n<juz|<n+1}

As a consequence of (2.8), letting n go to infinity in the above estimates of BZ
shows that (3.14) holds true.

PROOF OF (3.15).

1 /T gt
Co == / / / [‘I)Sn (u) — @g, (uz)} DT} (bsn (z,u1) — bg, (x,uZ)> dx dsdt.
9Jo Jo Ja

To establish (3.15), let us remark that for all s, r in IR, the following inequality
holds true

N
(3.24) @5, () = @5, 0], < 19/l1ecc)

Sin(s) = Su(r)|

indeed, since suppS!, C [-n—1, n+1] and ®’ is assumed to be locally Lipschitz
continuous, it follows that

2, = @, (0] | [ S92 ds] < 19y

Sp(s) — Sn(r)‘.
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With the help of (3.24) the term C7 may be estimated as follows

N/ Sn(ul) —Sn(’LLg)‘.
{0< (bgn (@,u1)—bs,, (w,uz)) <o} o

. ’DT‘;r (bsn (z,u1) —bg, (x, u2)) ’ drdt <

Col < TN (c.)

/ . [ (u1) = Su(u)|
ST || o) /{o<(5( _ )>< 7\ - .
n(U1)—Oon(U2 N
< =W

: ’DTj (bsn (z,u1) — bs, (z, uz)) ’ dz dt.

It yields

T
3] < /\—||<I)/|LOO(CH)N/Q‘DTj(bSn(x,ul)—bsn(x,uQ))‘dxdt,

which in turn implies (3.15) since DT (bg, (x,u1) — bs, (m,ug)) converges to

n

zero in L'(Q) as o goes to zero.

PROOF OF (3.16).

1 T t

i =2 [ [ [ [Sutw) - S n)| 7 (s, (o)~ bs, ,02) ) dodsat
0Jo Jo Ja

We have as n tends to +o0,

(3.25) 18! (u1) — faSl (ug) — f1 — fo strongly in L' (Q).

Letting o tends to 0, we have 177 (t) goes to sgj (t), for all t € R. For n > 0
fixed, we have

lim DY = /OT /Ot/Q (f1 - f2>sgo+ (bgn(x,ul)) —bg, (x,ug))) dz dsdt.

Since f1 < fz a.e. in Q and sgg (t) > 0 for all ¢ in IR, then shows that (3.16)
holds true. In view of the definition of T} and 7.7, we have

n—+ocococ—0 g

= /Q (b(a:,ul) —b(x,u2)>+dacdt.

1 ("
lim lim —/ / T (bsn, (x,u1) —bg, (x,uQ)) dz dt =
(3.26) 0 Ja
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In view of estimates (3.11), (3.12), (3.13), (3.14), (3.15), (3.16) and (3.26) we
have

4
/Q (b(a:,ul) - b(x,ug)) dxdt <0,

so that b(z,u;) < b(x,us) a.e. in @ which in turn implies that u; < ug a.e. in
@, Theorem 3.0.4 is then established.
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