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Schauder estimates for a system

of equations of mixed type

M. G. GARRONI – V. A. SOLONNIKOV – M. A. VIVALDI

Dedicated to Umberto Mosco

Abstract: We study a linear problem of mixed type and we prove existence,
uniqueness results and coercive estimates in Hölder spaces. Moreover we establish
weighted estimates in Hölder spaces and a stability result for a non-linear system of
mixed type.

0 – Introduction

We consider the initial-boundary value nonlinear problem

(0.1)

ut + A
(

x,
∂

∂x

)
u + R(u) = f, x ∈ Ω ⊂ Rn, t ∈ (0, T )

B

(
x,

∂

∂x

)
v
∣∣∣
x∈∂Ω

= 0, u(x, 0) = u0(x),

in a bounded, smooth, n-dimensional domain Ω, for the vector field u = (v, w),
v = (v1, . . . , vm1

), w = (w1, . . . , wm2
), m1, m2 ∈ N, m1 + m2 = m.

The data of the problem, f(x, t) and u0(x), have a similar structure: f =
(g, h), g = (g1, . . . , gm1), h = (h1, . . . , hm2), u0 = (v0, w0), v0 = (v01, . . . , v0m1),
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Hölder spaces – Stability results
A.M.S. Classification: 35K20, 35K55, 35K60, 35K65, 35M10, 35Q80.



118 M. G. GARRONI – V. A. SOLONNIKOV – M. A. VIVALDI [2]

w0 = (w01, . . . , w0m2). Here A is a matrix differential operator of the form

(0.2) A =

⎛
⎝L

(
x,

∂

∂x

)
�1(x)

�2(x) �(x)

⎞
⎠

where �1(x), �2(x), �(x) are m1 ×m2, m2 ×m1, m2 ×m2 matrices, respectively,
L(x, ∂

∂x ) = (Lij(x, ∂
∂x ))i,j=1,...,m1 is an m1 × m1 matrix second order elliptic

operator, and R(u) = (P(u),Q(u)) is a vector field of non-linear terms. We
assume that P = (Pi(v,∇v, D2v, w))i=1,... ,m1

, Q = (Qk(v, w))k=1,... ,m2
and Pi,

Qk are polynomials of degree h ≥ 2 with respect to their arguments.
By B(x, ∂

∂x ) = (Bij(x, ∂
∂x ))i,j=1,...,m1

we mean an m1 ×m1 matrix operator
of the boundary conditions. For simplicity we assume that the Bij are first order
operators and that the coefficients of the operators A and B are sufficiently
regular. The initial data should satisfy the compatibility conditions (see (1.2)).

This type of problems comes from biological applications (see [11], Chap-
ter 13, [12], Chapter 1, Chapter 13 and [9]) and from ecological applications as
studies of forestry ecosystems (see [3], [4], [5], [8] and [15]). Moreover similar
systems have been used to treat various problems in physics (see [6], and [13]).

A simpler version of problem (0.1) is introduced in [12], Chapter 13, as
a model of rabies epidemics. The population consists of two types of foxes:
infective ones I(x, t) and susceptibles S(x, t), which interact with each other.
The vector u = (v, w) is the couple (I, S) and the system (0.1) reads

(0.3)

{
It − D�I − rIS + aI = 0,

St + rIS = 0,

where D, r, a are (positive) constants with biological meaning: 1/a is the life
expectance of an infective fox, r is a measure of transmission efficiency of the
disease from infectives to susceptibles, D is the diffusion coefficient of infected
foxes. Finally, the initial data I0, S0 and zero Neumann boundary condition on
the infected foxes are given (i.e., the migration of cubs seeking their own territory
is excluded).

Coercive Schauder type estimates for linear parabolic systems have been first
estabished by Solonnikov in [14] and extended by Belonosov in [1] to weighted
Hölder spaces. Stability results have been obtained for a large class of non-linear
parabolic systems, by Belonosov and Vǐsnevskǐi ([2]): they also follow from an
abstract approach of Henry ([7]).

Recently, Mulone and Solonnikov ([10]) have studied stability and instability
of a stationary solution for problem (0.1) (in the case of more general boundary
conditions) and proved a linearization principle in Sobolev-Slobodetskii spaces
with an exponential weight.

Their paper ([10]) concerns the problem in two spatial dimensions and a
large class of non-linear operators P and Q. In the present paper we study
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problem (0.1) in n spatial dimensions and for a larger class of non-linear operators
i.e., we admit a fully non-linear operator P (see Theorem 3.1).

First we study a linear problem of mixed type (see (2.1)), and we prove an
existence, uniqueness result and coercive estimates in the Hölder spaces for the
solution (see Theorem 2.1). Assuming suitable conditions on the spectrum of
the operator A and on the eigenvalues of “−�” (see (2.2)) we establish weighted
estimates in the Hölder spaces (see Theorem 2.2). These estimates, that we
think are interesting in themselves, are “crucial” for proving the stability result
for the non-linear problem (0.1) (see Theorem 3.1).

1 – Preliminaries

We consider the linear initial-boundary value problem

(1.1)

vt + L

(
x,

∂

∂x

)
v = g, x ∈ Ω ⊂ Rn, t ∈ (0, T )

B

(
x,

∂

∂x

)
v
∣∣∣
x∈∂Ω

= 0, v(x, 0) = v0(x)

in a bounded n-dimensional domain Ω, for the vector field v = (v1, . . . , vm1
),

m1 ∈ N. The data of the problem, g(x, t) and v0(x), have a similar structure:
g = (g1, . . . , gm1

), v0 = (v01, . . . , v0m1
); L(x, ∂

∂x ) = (Lij(x, ∂
∂x ))i,j=1,...,m1

is an
m1 × m1 matrix second order elliptic operator.

By B(x, ∂
∂x ) = (Bij(x, ∂

∂x ))i,j=1,...,m1 we mean the m1×m1 matrix operator
of the boundary conditions. For simplicity we assume that the Bij are first order
operators. The coefficients of the operators L and B are sufficiently regular.

From now on we assume that problem (1.1) is a well-posed parabolic prob-
lem, i.e. the operator ∂

∂t + L is parabolic in the sense of Petrovskii and the

operators ( ∂
∂t + L, B) satisfy the Lopatinskii condition (see [14]).

In particular, we can have

L

(
x,

∂

∂x

)
= −diag(D1, . . . , Dm)Δ, Di > 0,

B

(
x,

∂

∂x

)
= I

∂

∂n
(the Neumann condition).

We introduce standard Hölder spaces Cα(Ω), Cα,α/2(QT ), where QT = Ω ×
(0, T ), and also the spaces Cα,0(QT ), C0,α/2(QT ) with the norms

‖u‖Cα,0(QT ) = sup
t<T

‖u(·, t)‖Cα(Ω),

‖u‖C0,α/2(QT ) = sup
Ω

‖u(x, ·)‖Cα/2[0,T ],



120 M. G. GARRONI – V. A. SOLONNIKOV – M. A. VIVALDI [4]

moreover, we define the weighted spaces C
α,α/2
b (QT ), Cα,0

b (QT ), C
0,α/2
b (QT ),

b > 0, with the norms

‖u‖
C

α,α/2

b
(QT )

= ‖ebtu‖Cα,α/2(QT ),

‖u‖Cα,0
b

(QT ) = ‖ebtu‖Cα,0(QT ),

‖u‖
C

0,α/2

b
(QT )

= ‖ebtu‖C0,α/2(QT ).

In the proof of our results we will use the following Proposition (see [14]).

Proposition 1.1. If the coefficients of L ∈ Cα(Ω), the coefficients of B ∈
Cα+1(∂Ω), g ∈ Cα,α/2(QT ), v0 ∈ Cα+2(Ω), and the compatibilitity condition

(1.2) B

(
x,

∂

∂x

)
v0|S = 0

is satisfied, then problem (1.1) has a unique solution v ∈ C2+α,1+α/2(QT ), and

(1.3) ‖v‖C2+α,1+α/2(QT ) ≤ c(T )
(
‖g‖Cα,α/2(QT ) + ‖v0‖Cα+2(Ω)

)
.

Moreover v(x, t) satisfies the inequality

(1.4) ‖v‖C2+α,1+α/2(QT ) ≤ c1

(
‖g‖Cα,α/2(QT ) + ‖v0‖Cα+2(Ω)

)
+ c2 sup

QT

|v(x, t)|

where the constants c1 and c2 are independent of T .

2 – The linear problem

In this section our objective is to establish existence, uniqueness results and
coercive Schauder estimates for the solution of problem (2.1). These estimates,
which in our opinion are of interest in themselves, are “crucial” for proving the
stability result for the non linear problem (0.1) (see Theorem 3.1).

We consider the linear initial-boundary value problem

(2.1)

ut + A

(
x,

∂

∂x

)
u = f, x ∈ Ω ⊂ Rn, t ∈ (0, T )

B

(
x,

∂

∂x

)
v
∣∣∣
x∈∂Ω

= 0, u(x, 0) = u0(x)

in a bounded n-dimensional domain Ω, for the vector field u = (v, w), v =
(v1, . . . , vm1), w = (w1, . . . , wm2), m1, m2 ∈ N, m1 + m2 = m. The data
of the problem, f(x, t) and u0(x), have a similar structure: f = (g, h), g =
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(g1, . . . , gm1), h = (h1, . . . , hm2), u0 = (v0, w0), v0 = (v01, . . . , v0m1), w0 =
(w01, . . . , w0m2).

By A we mean a matrix differential operator of the form

(2.2) A =

⎛
⎝ L

(
x,

∂

∂x

)
�1(x)

�2(x) �(x)

⎞
⎠

where �1(x), �2(x), �(x) are m1 ×m2, m2 ×m1, m2 ×m2 matrices, respectively,
and L(x, ∂

∂x ) = (Lij(x, ∂
∂x ))i,j=1,...,m1

is an m1 ×m1 matrix second order elliptic

operator. By B(x, ∂
∂x ) = (Bij(x, ∂

∂x ))i,j=1,...,m1
we mean the m1 × m1 matrix

operator of the boundary conditions. For simplicity we assume that Bij are the
first order operators. The coefficients of the operators A and B are sufficiently
regular.

We recall that problem (1.1) is a well-posed parabolic problem, i.e. the
operator ∂

∂t+L is parabolic in the sense of Petrovskii and the operators ( ∂
∂t+L, B)

satisfy the Lopatinskii condition (see [14]).
Our first result is

Theorem 2.1. If the coefficients of A ∈ Cα(Ω), the coefficients of B ∈
Cα+1(∂Ω), v0 ∈ C2+α(Ω), w0 ∈ Cα(Ω), g ∈ Cα,α/2(QT ), h ∈ Cα,0(QT ), α ∈
(0, 1), and if compatibility condition (1.2) is satisfied, then problem (2.1) has a
unique solution u = (v, w) with v ∈ C2+α,1+α/2(QT ), w, wt ∈ Cα,0(QT ), and the
following estimate holds:

(2.3)
‖v‖

C2+α,1+α/2(QT )
+ ‖w‖Cα,0(QT ) + ‖wt‖Cα,0(QT ) ≤

≤ c(T )
(
‖g‖Cα,α/2(QT ) + ‖h‖Cα,0(QT ) + ‖v0‖Cα+2(Ω) + ‖w0‖Cα(Ω)

)
.

The proof of Theorem 2.1 is based on the analysis of the Cauchy problem

(2.4) wt(x, t) + �(x)w(x, t) = ϕ(x, t), w|t=0 = w0(x), x ∈ Ω, t ∈ (0, T )

and of the parabolic initial-boundary value problem (1.1).
We start by proving the following proposition

Proposition 2.1. If w0 ∈ Cα(Ω), � ∈ Cα(Ω) and ϕ ∈ Cα,0(QT ), then
problem (2.4) has a unique solution w ∈ Cα,0(QT ), possessing time derivative
wt ∈ Cα,0(QT ), and satisfying the inequality

(2.5) ‖w‖Cα,0(QT ) + ‖wt‖Cα,0(QT ) ≤ c(T )
(
‖w0‖Cα(Ω) + ‖ϕ‖Cα,0(QT )

)
.
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Proof. It is well known that the solution of problem (2.4) is given by the
formula

(2.6) w(x, t) = V (t)w0(x) +

∫ t

0

V (t − τ)ϕ(x, τ)dτ,

where V (t) = e−t� is the resolving operator of problem (2.4). It can be expressed
by means of the contour integral:

(2.7) V (t)w0(x) =
1

2πi

∫

Γ

eσt(�(x) + σI)−1w0(x)dσ ≡ w′(x, t),

where Γ is a simple closed contour enclosing the set S of all the eigenvalues of
−�(x) for all x ∈ Ω. Indeed,

w′
t(x, t) + �(x)w′(x, t) =

1

2πi

∫

Γ

eσtw0(x)dσ = 0

and

w′(x, 0) − w0(x) = lim
n→∞

1

2πi

∫

Γn

((�(x) + σI)−1 − σ−1I)w0(x)dσ = 0,

where Γn is a sequence of the contours expanding towards infinity. Estimate (2.5)
follows easily from (2.6) and (2.7). Proposition 2.1 is proved, let us note that in
general, c(T ) grows exponentially, as T → +∞.

Proof of Theorem 2.1. We start by the reduction of the problem (2.1)
to the problem (1.1) with an additional non-local lower order term in the system
of equations for v. We consider w as a solution of (2.4) with ϕ = h − �2(x)v,
which yields the following expression for w:

w(x, t) = V (t)w0(x) +

∫ t

0

V (t − τ)h(x, τ)dτ −
∫ t

0

V (t − τ)�2(x)v(x, τ)dτ.

When we plug this expression into the first m1 equations of the system (2.1), we
obtain the initial-boundary value problem for v:

(2.8)

vt(x, t) + L

(
x,

∂

∂x

)
v(x, t) − �1(x)

∫ t

0

V (t − τ)�2(x)v(x, τ)dτ =

= d(x, t), (x, t) ∈ QT ,

B

(
x,

∂

∂x

)
v
∣∣∣
x∈∂Ω

= 0, v(x, 0) = v0(x),
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where

(2.9) d(x, t) ≡ g(x, t) − �1(x)

(
V (t)w0(x) +

∫ t

0

V (t − τ)h(x, τ)dτ

)
.

Let us show that d ∈ Cα,α/2(QT ). By (2.5), we have

‖d‖Cα,0(QT ) ≤ ‖g‖Cα,0(QT ) + c
(
‖w0‖Cα(Ω) + ‖h‖Cα,0(QT )

)
,

‖d‖C0,α/2(QT ) ≤ ‖g‖C0,α/2(QT )+

+ c

∥∥∥∥V (t)w0(x) +

∫ t

0

V (t − τ)h(x, τ)dτ

∥∥∥∥
C0,1QT )

≤

≤ ‖g‖C0,α/2(QT ) + c

(
sup
Ω

|w0(x)| + sup
QT

|h(x, t)|
)

.

Hence

(2.10) ‖d‖Cα,α/2(QT ) ≤ ‖g‖Cα,α/2(QT ) + c
(
‖w0‖Cα(Ω) + ‖h‖Cα,0(QT )

)
.

The problem (2.8) differs from (1.1) by the presence of the integral operator of
the Volterra type

Iv = −�1(x)

∫ t

0

V (t − τ)�2(x)v(x, τ)dτ

in the system of equations. Let us estimate the norm ‖Iv‖Cα,α/2(Qt)
, for any

t � T . We have

‖Iv‖Cα,0(Qt)
≤ c(t)‖v‖Cα,0(Qt)

,

‖Iv‖C0,α/2(Qt)
≤ c(T )‖Iv‖C0,1(Qt)

≤ c(T ) sup
Qt

|v(x, τ)|,

hence

(2.11) ‖Iv‖Cα,α/2(Qt)
≤ c(T )‖v‖Cα,0(Qt)

and also

(2.12) ‖Iv‖Cα,α/2(Qt)
≤ ε‖v‖C2+α,0(Qt)

+ c(ε, T ) sup
Qt

|v(x, τ)|

for arbitrarily small ε > 0. This inequality allows one to prove the solvabil-
ity of problem (2.8) by successive approximations, using the Gronwall lemma,
according to the following scheme.
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We define v1 as the solution of the problem

∂v1

∂t
+ L(x,

∂

∂x
)v1 = d(x, t), x ∈ Ω, t ∈ (0, T ),

B(x,
∂

∂x
)v1|x∈∂Ω = 0, v1(x, 0) = v0(x)

and for m � 1

∂vm+1

∂t
+ L

(
x,

∂

∂x

)
vm+1 = �1(x)

∫ t

0

V (t − τ)�2(x)vm(x, τ)dτ + d(x, t),

x ∈ Ω, t ∈ (0, T ),

B

(
x,

∂

∂x

)
vm+1|x∈∂Ω = 0, vm+1(x, 0) = v0(x).

Set
ξm+1 = vm+1 − vm, m � 1

and
ξ1 = v1.

The function ξm+1 is a solution of the problem

∂ξm+1

∂t
+ L

(
x,

∂

∂x

)
ξm+1 = −Iξm, x ∈ Ω, t ∈ (0, T ),

B

(
x,

∂

∂x

)
ξm+1|x∈∂Ω = 0, ξm+1(x, 0) = 0.

From Proposition 1.1 (see (1.3)) and (2.12) we obtain

‖ξm+1‖C2+α,1+α/2(Qt)
≤ ε‖ξm‖C2+α,0(Qt)

+ c(ε, T ) sup
Qt

|ξm(x, τ)|, m � 1,

which implies

M∑

m=0

‖ξm+1‖C2+α,1+α/2(Qt)
� ε

M∑

m=1

‖ξm‖C2+α,1+α/2(Qt)
+ ‖ξ1‖C2+α,1+α/2(Qt)

+

+ c(ε, T )

∫ t

0

M∑

m=1

‖ξm‖C2+α,1+α/2(Qτ )dτ.

Using the Gronwall lemma, we obtain

M∑

m=1

‖ξm‖C2+α,1+α/2(Qt)
� c(ε, T )‖ξ1‖C2+α,1+α/2(Qt)

.
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We deduce that the sequence {vm} converges in the Hölder space Cα+2,α/2+1(QT )
to a solution of problem (2.8). Consequently also problem (2.1) admits a solution.
The uniqueness of the solution follows from inequalities (1.3) and (2.12) applied
to the difference of two solutions v and v′ of (2.8). These inequalities yield

‖v − v′‖Cα+2,α/2+1(Qt)
≤ c(ε, T )t‖v − v′‖Cα+2,α/2+1(Qt)

,

hence there exists a positive time T0 such that v = v′ for t < T0. In a finite
number of steps we prove that problem (2.8) (and then also problem (2.1)) admits
one and only one solution in the space Cα+2,α/2+1(QT ) for any fixed time T .
Moreover, the estimate

(2.13) ‖v‖C2+α,1+α/2(Qt)
≤ c(T )

(
‖d‖Cα,α/2(Qt)

+ ‖v0‖C2+α(Ω)

)

of the solution is obtained. Inequality (2.3) follows from estimates (2.13), (2.10)
and (2.5). Theorem 2.1 is proved.

Our second result is w

Theorem 2.2. Assume all the hypotheses of Theorem 2.1. Moreover, sup-
pose that the following conditions are satisfied

(a) the eigenvalues of −�, i.e. the solutions of the equation det(�(x) + σI) = 0
have negative real parts for all x ∈ Ω;

(b) the spectrum of the operator A defined in the space of functions u = (v, w)
satisfying the boundary conditions Bv|x∈∂Ω = 0 is located in the left half
plane Reλ < 0.

Then the solution u = (v, w) of problem (2.1) is such that v ∈
C

2+α,1+α/2
b (QT ), w ∈ Cα,0

b (QT ), wt ∈ Cα,0
b (QT ), and

(2.14)

‖v‖
C

2+α,1+α/2

b
(QT )

+ ‖w‖Cα,0
b

(QT ) + ‖wt‖Cα
b

(QT ) ≤

≤ c
(
‖g‖

C
α,α/2

b
(QT )

+ ‖h‖Cα,0
b

(QT ) + ‖v0‖C2+α(Ω) + ‖w0‖Cα(Ω)

)

with the constant c independent of T . Here T ≤ +∞ and b is a suitable positive
number.

Proof. In [10] it is shown that (assuming conditions (a) and (b)) the solu-
tion of the problem (2.1) with f = 0 satisfies the inequality

‖u(·, t)‖L2(Ω) ≤ ce−β0t‖u0‖L2(Ω)

with a suitable β0 > 0 independent of T . This inequality is equivalent to

(2.15) ‖e−tA‖L2(Ω)→L2(Ω) ≤ ce−β0t,
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where A is the operator (2.2) defined on the set of vector fields u = (v, w) such
that v ∈ W 2

2 (Ω), w ∈ L2(Ω) and Bv|∂Ω = 0.
It follows that the solution of a non-homogeneous problem (2.1), that is

given by the formula

u = e−tAu0 +

∫ t

0

e−(t−τ)Af(τ)dτ,

satisfies the inequality

(2.16) ‖eβtu(·, t)‖L2(Ω) ≤ c
(
‖u0‖L2(Ω) + sup

τ<t
‖eβτf(·, τ)‖L2(Ω)

)

with β ∈ (0, β0) and with the constant c independent of T (see also [7]).
We will prove (2.14) using this inequality. We go back to the formula w =

V (t)w0 for the solution of the problem (2.4) with ϕ = 0. If all the eigenvalues of
the matrix −�(x) are located in the left half-plane of the complex plane C, then
the contour Γ can be drawn in the same half-plane, and in this case

‖w(·, t)‖Cα(Ω) ≤ ce−β1t‖w0‖Cα(Ω)

with a suitable β1 > 0. For the solution of the non-homogeneous problem (2.4)
we obtain

(2.17) ‖w‖Cα,0
β

(QT ) + ‖wt‖Cα,0
β

(QT ) ≤ c
(
‖w0‖Cα(Ω) + ‖ϕ‖Cα,0

β
(QT )

)
,

where β ∈ (0, β1) and c is independent of T .
Now we choose b ∈ (0, min{β0, β1}). Taking into account (2.17), we prove

the weighted estimates for d defined in (2.9), namely,

‖d‖Cα,0
b

(QT ) ≤ ‖g‖Cα,0
b

(QT ) + c
(
‖w0‖Cα(Ω) + ‖h‖Cα,0

b
(QT )

)
,

‖d‖
C

0,α/2

b
(QT )

≤ ‖g‖
C

0,α/2

b
(QT )

+ c
(
‖w0‖Cα(Ω) + ‖h‖Cα,0

b
(QT )

)
,

‖d‖
C

α,α/2

b
(QT )

≤ ‖g‖
C

α,α/2

b
(QT )

+ c
(
‖w0‖Cα(Ω) + ‖h‖Cα,0

b
(QT )

)
,

with the constant c independent of T .
Next, we apply Proposition 1.1 (see inequality (1.4)) to the solution vb(x,t)=

v(x, t)ebt of the problem

∂vb

∂t
+ L

(
x,

∂

∂x

)
vb + etbIv = etbd + bvb,

B

(
x,

∂

∂x

)
vb|x∈∂Ω = 0, vb(x, 0) = v0(x).
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Proceeding as previously and using assumption (a), we prove that

(2.18) ‖etbIv‖Cα,α/2(QT ) ≤ c‖v‖Cα,0
b

(QT )

with the constant c independent of T . Hence we obtain (see (1.4))

(2.19)

‖v‖
C

2+α,1+α/2

b
(QT )

≤

≤ c1

(
‖w0‖Cα(Ω) + ‖v0‖C2+α(Ω) + ‖h‖Cα,0

b
(QT ) + ‖g‖

C
α,α/2

b
(QT )

)
+

+ c2‖v‖Cα,0
b

(QT )

with constants independent of T .
Estimates (2.19) and (2.17) (with ϕ = h − �2v) yield

‖w‖Cα,0
b

(QT ) + ‖wt‖Cα,0
b

(QT ) + ‖v‖
C

2+α,1+α/2

b
(QT )

≤

≤ c
(
‖w0‖Cα(Ω) + ‖v0‖C2+α(Ω)+

+ ‖h‖Cα,0
b

(QT ) + ‖g‖
C

α,α/2

b
(QT )

)
+

+ ε‖ebtv‖C2+α,0(QT ) + c(ε) sup
τ<t

‖ebτv(·, τ)‖L2(Ω).

When we choose ε sufficiently small and estimate the norm ‖ebτv‖L2(Ω) by in-
equality (2.16), we obtain (2.14) and complete the proof of Theorem 2.2.

Remark 2.1 Theorem 2.1 and Theorem 2.2 hold true under more general
assumptions concerning the operator B (in particular, we can choose B = I,
i.e., the Dirichlet boundary conditions), but then compatibility condition (1.2)
should be modified.

3 – The nonlinear problem

In this section, we apply Theorems 2.1 and 2.2 to the analysis of the non-
linear problem discussed in the Introduction (see (0.1)). More precisely we con-
sider the mixed type problem

(3.1)

ut + A
(

x,
∂

∂x

)
u + R(u) = f, x ∈ Ω ⊂ Rn, t ∈ (0, T )

B

(
x,

∂

∂x

)
v
∣∣∣
x∈∂Ω

= 0, u(x, 0) = u0(x),

where A is a linear operator of the same type as A (see (2.2)) and R(u) =
(P(u),Q(u)) is a vector field of nonlinear terms.
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We assume that P = (Pi(v,∇v, D2v, w))i=1,... ,m1 , Q = (Qk(v, w))k=1,... ,m2

and Pi, Qk are polynomials of degree h ≥ 2 with respect to their arguments. In
this section, we assume that the datum f(x) is independent of t and it belongs
to the Hölder space Cα(Ω).

We refer to the Introduction and to the references cited there for a discussion
of (mixed type) systems modelling biological phenomena, ecological studies and
physical problems.

Assume that problem (3.1) has a regular, stationary solution uσ = (vσ, wσ),
i.e.,

(3.2) A
(

x,
∂

∂x

)
uσ + R(uσ) = f(x), x ∈ Ω, B

(
x,

∂

∂x

)
vσ

∣∣∣
x∈∂Ω

= 0.

We are interested in the problem of stability of this solution. We perturb it at
the initial time t = 0 by a small u′

0 = (v′0, w
′
0) and consider the evolution problem

for the perturbation u′ ≡ u − uσ with u′ = (v′, w′), which can be written in the
form

(3.3)

u′
t + A

(
x,

∂

∂x

)
u′ + R(u′) = 0, x ∈ Ω ⊂ Rn, t > 0,

B

(
x,

∂

∂x

)
v′

∣∣∣
x∈∂Ω

= 0, u′(x, 0) = u0(x),

where

A

(
x,

∂

∂x

)
u′ = A(x,

∂

∂x
)u′ + δR(uσ)u′,(3.4)

δR(uσ)u′ =
d

ds
R(uσ + su′)

∣∣∣
s=0

,(3.5)

R(u′) = R(uσ + u′) −R(uσ) − δR(uσ)u′ = (P (u′), Q(u′)).(3.6)

We will prove the following stability result.

Theorem 3.1. Assume that the operator A, defined in (3.4) and the op-
erator B satisfy all the assumptions of Theorem 2.2, including (a), (b). There
exists δ > 0 such that if

(3.7) ‖v′0‖Cα+2(Ω) + ‖w′
0‖Cα(Ω) ≤ δ,

then problem (3.3) has a unique solution u′ = (v′, w′), v′ ∈ C
2+α,1+α/2
b (Q∞),

w′ ∈ Cα,0
b (Q∞), w′

t ∈ Cα,0
b (Q∞), and the following estimates hold

(3.8)

‖v′‖
C

2+α,1+α/2

b
(Q∞)

+ ‖w′‖Cα,0
b

(Q∞) + ‖w′
t‖Cα

b
(Q∞) ≤

≤ c
(
‖v′0‖C2+α(Ω) + ‖w′

0‖Cα(Ω)

)
.
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Proof. The proof is based on inequality (2.14) and on the estimate of
non-linear terms.

The components Pi, Qk of P and Q that are sums of homogeneous polynomi-
als of degree j = 2, . . . , h with respect to v′,∇v′, D2v′, w′ and v′, w′, respectively,
satisfy the inequalities

‖Pi‖C
α,α/2

b
(Q∞)

≤ c

h∑

j=2

(
‖v′‖

C
2+α,1+α/2

b
(Q∞)

+ ‖w′‖
C

α,α/2

b
(Q∞)

)j

,

‖Qk‖Cα,0
b

(Q∞) ≤ c

h∑

j=2

(
‖v′‖Cα,0

b
(Q∞) + ‖w′‖Cα,0

b
(Q∞)

)j

.

As a consequence, we have

m1∑

i=1

‖Pi‖C
α,α/2

b
(Q∞)

+

m2∑

k=1

‖Qk‖Cα,0
b

(Q∞) ≤ c

h∑

j=2

V j ,

where

V (u′) = ‖v′‖
C

2+α,1+α/2

b
(Q∞)

+ ‖w′‖Cα,0
b

(Q∞) + ‖w′
t‖Cα,0

b
(Q∞).

The solution of (3.3) can be constructed by successive approximations according
to the following scheme. We define u1 as the solution of the linear problem

∂u1

∂t
+ A

(
x,

∂

∂x

)
u1 = 0, x ∈ Ω, t ∈ (0, T ),

B

(
x,

∂

∂x

)
v1|x∈∂Ω = 0, u1(x, 0) = u′

0(x)

and for m � 1

∂um+1

∂t
+ A

(
x,

∂

∂x

)
um+1 = −R(um), x ∈ Ω, t ∈ (0, T ),

B

(
x,

∂

∂x

)
vm+1|x∈∂Ω = 0, um+1(x, 0) = u′

0(x).

It is clear that the um are defined for all m and that the Vm = V (um) satisfy
the inequalities

Vm+1 ≤ c

h∑

j=2

V j
m + F ≡ Φ(Vm),
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where
F = c1

(
‖v′0‖C2+α(Ω) + ‖w′

0‖Cα(Ω)

)
.

We will show that, if the norm F is small, then the norms Vm are uniformly
bounded.

Let ξ0 be a (positive) root of the equation

(3.9) 1 − Φ′(ξ) = 1 − c

h∑

j=2

jξj−1 = 0.

It is clear that this root is unique. The equation ξ = Φ(ξ) has a solution if and
only if ξ0 − Φ(ξ0) ≥ 0. Since

ξ0 − Φ(ξ0) = c

h∑

j=2

(j − 1)ξj
0 − F,

this is the case if

c1

(
‖v′0‖C2+α(Ω) + ‖w′

0‖Cα(Ω)

)
≤ c

h∑

j=2

(j − 1)ξj
0,

and this condition is satisfied if δ in (3.7) is sufficiently small. Let ξ1 be the root
of ξ = Φ(ξ) such that 0 ≤ ξ1 ≤ ξ0. If Vm ≤ ξ1, then

(3.10) Vm+1 ≤ c

h∑

j=2

V j
m + F ≤ c

h∑

j=2

ξj
1 + F = ξ1.

Since V1 ≤ F ≤ ξ1, (3.10) holds for all m, i.e., successive approximations are
uniformly bounded in the norm V (·). We note that the value of ξ1 depends in a
continuous way on F (i.e. on δ) and then we can make the value of ξ1 as small
as we need ( by choosing δ sufficently small).

In order to show that the sequence {um} converges to the solution of (3.3)
we consider the difference Um+1 ≡ um+1 − um with Um+1 = (ζm+1, ηm+1). The
function Um+1 is the solution of the problem

∂Um+1

∂t
+ A

(
x,

∂

∂x

)
Um+1 = R(um−1) − R(um), x ∈ Ω, t ∈ (0, T ),

B

(
x,

∂

∂x

)
ζm+1|x∈∂Ω = 0, Um+1(x, 0) = 0.

Let Xm+1 = V (Um+1). Repeating the above arguments, we can prove that

(3.11) Xm+1 � cξ1Xm, m � 2.
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Now we set Yn =
∑n

m=2 Xm and we derive from (3.11) that

(3.12) Yn+1 − Y2 � cξ1Yn, n � 2

and

(3.13) Yn � Y2

1 − cξ1
, n � 3

if ξ1 is so small that cξ1 < 1.
From estimate (3.13) we deduce that the sequence {um} converges in the

Hölder space C
α+2,α/2+1
b (Q∞) to a solution of (3.3). The uniqueness proof fol-

lows from the estimate of the difference of two solutions of (3.3), as above. Thus,
Theorem 3.1 is proved.

Remark 3.1. Theorem 3.1 holds true under more general assumptions con-
cerning the operators P=(Pi(v,∇v,D2v, w))i=1,... ,m1 and Q=(Qk(v, w))k=1,... ,m2

where Pi, Qk are polynomials of degree h ≥ 2 with respect to their arguments.
In particular we may assume that the polynomials Pi, Qk have coefficients be-
longing to the Hölder space Cα(Ω) with respect to the space variable x and
independent of t.
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– Piazzale A. Moro – 00161 Roma, Italy
E-mail: ggarroni@mat.uniroma1.it

V. A. Solonnikov – Petersburg Departement of Steklov Institute of Mathematics – 27 Fontanka
– 191023 St. Petersburg, Russia
E-mail: solonnik@pdmi.ras.ru

M. A. Vivaldi – Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate –
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