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CCC1, α and Glaeser type estimates

ITALO CAPUZZO DOLCETTA – ANTONIO VITOLO

Ad Umberto Mosco con ammirazione ed affetto

Abstract: In this paper we are concerned with gradient estimates for viscosity
solutions of fully nonlinear second order elliptic equations of the form F (D2u) = f with
bounded right-hand side. We generalize to a nonlinear setting the results of Yan Yan Li
and Louis Nirenberg [12] about the so-called Glaeser estimate. We improve also some
qualitative results in this direction contained in [4].

1 – Introduction and results

The Glaeser’s inequality, see [7], states that for any non-negative function
u ∈ C2([−R, R]) with |u′′(t)| ≤ M for all t ∈ [−R, R], the following estimates
hold:

|u′(0)| ≤
√

2u(0)M if M ≥ 2u(0)

R2

|u′(0)| ≤
(

u(0)

R
+

R

2
M

)
if M <

2u(0)

R2

The issue of bounding the first derivative of u in terms of u and u′′ is a classical
one since the works of Hadamard [9], Kolmogorov [10] and Landau [11]. For
more recents results in this direction see [5], [13] and [14].
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In the recent paper [12], Y.Y.Li and L.Nirenberg showed the validity of the
Glaeser inequality for smooth non-negative functions with bounded Laplacian in
an n−dimensional ball. More precisely, they proved that if 0 ≤ u ∈ C2(BR) ∩
C0(BR) is any solution of the Poisson equation

Δu = f

in the ball BR = {x ∈ Rn : |x| < R}, then

(1.1)

⎧
⎪⎨
⎪⎩

|Du(x)| ≤ C
√

u(0)M if 2|x| ≤
√

u(0)
M ≤ R

|Du(x)| ≤ C
(

u(0)
R + MR

)
if 2|x| ≤ R ≤

√
u(0)
M

where M = supx∈BR
|f(x)|. The constant C in the above inequalities depends

only on the dimension n and C =
√

2 is optimal for n = 1.
Extensions to non-negative strong solutions u of linear second-order uni-

formly elliptic equations of the form

Tr
(
A(x)D2u

)
= f

are also treated in the paper [12]. In this more general case, the constants ap-
pearing in the corresponding Glaeser type inequalities depend on the maximum
and minimum eigenvalue of the positive definite matrix A(x) and the moduli of
continuity of the matrix entries as well as on n.

Our aim here is to present some new results concerning the validity of
Glaeser type estimates for non-negative continuous functions u satisfying in the
viscosity sense the fully nonlinear uniformly elliptic equation

(1.2) F (D2u) = f in BR

for bounded and continuous right-hand side f . Here F is a real-valued function
defined on Sn, the space of real n × n symmetric matrices.

Our leading assumption on F is uniform ellipticity, namely that for real
numbers Λ ≥ λ > 0 the following structural condition holds:

(1.3) λTr(Y +) − ΛTr(Y −) ≤ F (X + Y ) − F (X) ≤ ΛTr(Y +) − λTr(Y −)

for all X, Y ∈ Sn. Here we have used the standard decomposition of a symmetric
matrix Y ∈ Sn in the form Y = Y + − Y − with Y +Y − = 0 and Y ± ≥ 0, in the
sense of the partial ordering induced by semidefinite positiveness.

Note that Y → λTr(Y +) − ΛTr(Y −) and Y → ΛTr(Y +) − λTr(Y −) are,
respectively, the minimal and maximal Pucci operators usually denoted by P−

λ,Λ,

P+
λ,Λ, see [2].
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Condition (1.3) appears therefore as a nonlinear version of the standard
notion of uniform ellipticity for linear second order operators. Observe that for
Λ = λ = 1 the class of functions F fulfilling condition (1.3) reduces to the single
operator F = Δ .

Relevant examples of operators satisfying condition (1.3) are, of course, the
Pucci operator themselves, the Bellman operators

F (X) = inf
i∈I

Tr (Ai X)

where Ai, i ∈ I, is a family of positive definite symmetric matrices such that

(1.4) λ |ξ|2 ≤ A ξ · ξ ≤ Λ |ξ|2 for all ξ ∈ Rn ,

and the Isaacs operators

F (X) = sup
j∈J

inf
i∈I

Tr (Ai,j X)

where Aij , i ∈ I, j ∈ J , is a double-indexed family of symmetric matrices satis-
fying (1.4). We shall also assume for simplicity that

(1.5) F (0) = 0

Our main results are the following:

Theorem 1.1. Assume that F satisfies (1.3) and (1.5). If u ∈ C0(BR) is
a non-negative viscosity solution of F (D2u) = f in BR with f ∈ C0(BR), then
u is differentiable at any x ∈ BR and the inequalities (1.1) hold true with M =
supBR

|f | and some positive constant C depending only on n and the ellipticity
constants λ, Λ.

This result is based on the Harnack inequality for non-negative viscosity
solutions and the C1,α regularity of continuous (not necessarily non-negative)
solutions of equation (1.2). Let us state below this result of independent interest.

Theorem 1.2. Assume that F satisfies (1.3) and (1.5). If u ∈ C0(BR) is
a viscosity solution of F (D2u) = f in BR with f ∈ C0(BR), then u ∈ C1,α(BR)
for some α ∈ (0, 1) and
(1.6)
‖u‖L∞(BR/2) + R ‖Du‖L∞(BR/2) + R1+α [Du]α,BR/2

≤ C
(
‖u‖L∞(BR) + R2 M

)

where M = supBR
|f | and C > 0 depend only on n and the ellipticity constants

λ and Λ.
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Here [h]α,Ω denotes the Hölder seminorm

[h]α,Ω = sup
x,y∈Ω

x�=y

|h(x) − h(y)|
|x − y|α

Theorem 1.2 can be regarded as a consequence of Theorem 2 of Caffarelli [1] and
Corollary 5.7 of [2], where C1,α- estimates are established for solutions of the
homogeneous equation F (D2u) = 0.

Should we adopt the slightly stronger notion of Ln-viscosity solutions which
require testing subsolutions and supersolutions on ϕ ∈ W 2,n

loc
rather than on

ϕ ∈ C2, see [1], [3], then the assumption of continuity of f can be dropped and
it is enough to assume f ∈ L∞ in order that Theorems 1.1 and 1.2 remain true
for Ln-viscosity solutions.

Rather precise information about the constant C in the statement of The-
orem 1.1 can be obtained under some symmetry assumption on F .

A mapping F : Sn → R is reflection-invariant with respect to the unit vector
ν ∈ Rn if

(1.7) F (RXR) = F (X) for all X ∈ Sn

where R is the reflection matrix with respect to the hyperplane of equation
ν · x = 0.

If, for instance, ν = (0, . . . , 0, 1) then

R =

(
I

n−1
0

0 −1

)

where I
n−1 is the (n − 1)-dimensional identity matrix.

By suitably exploiting reflection-invariance properties of F we obtain the
following form of the gradient estimate:

Theorem 1.3. Assume that F satisfies (1.3) and (1.5). Assume also
that F is reflection-invariant with respect to n linearly independent unit vectors
ν1, . . . , νn.

If u ∈ C0(BR) is a viscosity solution of F (D2u) = f with f ∈ C0(BR), then

(1.8) (μ
n )

1
2 |Du(0)| ≤ n

R (1 + Λ
λ )

1
2 sup

BR

|u| + R
2λ (1 + Λ

λ )−
1
2 sup

BR

|f |

where μ is the least eigenvalue of the positive definite matrix S ∈ Sn with entries
Sij = νi · νj.
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It is easy to check that if the directions νj in the statement of Theorem
(1.3) are mutually orthogonal then μ = 1. Instead, if F (X) depends only on the
eigenvalues of X, then we obtain the better estimate

(1.9) |Du(0)| ≤ n
R (1 + Λ

λ )
1
2 sup

BR

|u| + R
2λ (1 + Λ

λ )−
1
2 sup

BR

|f |

In the special case λ = Λ = 1, F (X) = TrX, the above reduces to a well-known
estimate for classical solutions of the Poisson equation Δu = f , see [8].

2 – A few facts about viscosity solutions

Let us recall for the convenience of the reader the notion of viscosity solution
of equation (1.2) with f ∈ C0(BR) and F as above.

A function u ∈ C0(BR) a viscosity subsolution of (1.2) if for all x0 ∈ BR

and ϕ ∈ C2(BR) such that u − ϕ has a local maximum at x0

F (D2ϕ(x0)) ≥ f(x0)

On the other hand, u is a viscosity supersolution of (1.2) if for all x0 ∈ Ω and
ϕ ∈ C2(BR) such that u − ϕ has a local minimum at x0

F (D2ϕ(x0)) ≤ f(x0)

A viscosity solution of F (D2u) = f is both a subsolution and a supersolution.
Let us point out that classical solutions u ∈ C2(BR) of equation (1.2) are

also viscosity solutions and, conversely, if u ∈ C2(BR) is a viscosity solution of
(1.2) then u is a classical solution of the same equation.

For a general review of the theory of viscosity solutions of fully nonlinear
second order elliptic equations we refer to [6] and [2].

A fundamental tool in the regularity theory for viscosity solutions is the
Harnack inequality, see [1],[2]. Here we quote it in an appropriate version:

Theorem 2.1. Assume that F satisfies (1.3) and (1.5). If u ∈ C0(Br) is a
non-negative viscosity solution of equation F (D2u) = f with f ∈ C0(Br), then

(2.1) sup
B 3

4
r

u ≤ C
(

inf
B 3

4
r

u + r2‖f‖L∞(Br)

)
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3 – Proofs

Proof of Theorem 1.2. Take first r = 1 and let |x0| < r1 < 1 so that
Bρ0

(x0) ⊂ B 1+r1
2

for ρ0 = 1−r1

4 . For any α ∈ (0, 1) we have of course

(3.1) sup
0<ρ≤ρ0

ρ−α ‖f‖Ln(Bρ(x0)) ≤ ‖f‖L∞(B1) < +∞

for ρ ∈ (0, ρ0). Note that here the finiteness of the Morrey norm on the left-hand
side follows from the continuity of f , which is the natural assumptions in our
viscosity framework. Considering instead Ln-viscosity solutions we could bypass
both continuity and boundedness assumption on f . In this case, for instance,
supx∈B1

|f(x)||x|1−α′
< +∞ should be sufficient.

Furthermore, since F satisfies (1.3) and (1.5), by an important regularity
result due to L. Caffarelli, see [2], Corollary 5.7, any continuous viscosity solution
w ∈ C0(Br) of the homogeneous equation F (D2w) = 0 is C1,α(Br) for some
α ∈ (0, 1) and

(3.2) ‖w‖L∞(Br/2) + r‖Dw‖L∞(Br/2) + r1+α[Dw]α,Br/2
≤ C ‖w‖L∞(Br)

with C > 0 depending only on n, λ and Λ.
Thanks to (3.1), (3.2) we can apply Theorem 2 of [1] to deduce that u is

differentiable at x0, its gradient satisfies the inequality

(3.3) |Du(x0)| ≤ C
(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
: = Cα′

and

(3.4) |u(x) − u(x0) − Du(x0) · (x − x0)| ≤ Cα′ |x − x0|1+α′
, |x − x0| ≤ ρ0

for some α′ ∈ (0, 1).
Our aim now is to evaluate the oscillation of Du on a compact subset K of

Br1 .
At this purpose, for ε ∈ (0, 1) to be chosen in the sequel, take ρ1 > 0 such

that ρ
1

1−ε

1 = 1
2 ρ0. Hence,

B
1
2 ρ

1
1−ε
1

(x1) ⊂ B 1
2 ρ0

(x0).

for any x1 ∈ K with |x1 − x0| < ρ1

4 . Consider then

x1 = x0 + h e, |e| = 1, 0 < h <
ρ1

4

and set, if Du(x1) �= Du(x0),

ν =
Du(x1) − Du(x0)

|Du(x1) − Du(x0)|
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Choose now x ∈ B 1
2 ρ1

(x1) in such a way that

x = x0 + h1−ε ν

By the choice above, x ∈ Bρ0
(x0) ∩ Bρ0

(x1). Since x1 ∈ K, inequality (3.4) still
holds if we replace x0 with x1, leading to

|u(x1) − u(x0) + Du(x1) · (x − x1) − Du(x0) · (x − x0)|
≤ Cα

(
|x − x0|1+α′

+ Cα′ |x − x1|1+α′)

and, consequently,

(3.5) |Du(x1)−Du(x0)|h1−ε ≤ |Du(x1)|h+ |u(x1)−u(x0)|+2Cα′h(1+α′)(1−ε)

Observe that inequalities (3.3) and (3.4) hold uniformly on K so that, dividing
(3.5) by h1−ε, we get

|Du(x1) − Du(x0)| ≤ Cα′ hε +
|u(x1) − u(x0)|

|x1 − x0|
hε + 2 Cα′ hα′(1−ε)

≤ 2 Cα′ hε + 2Cα′ hα(1−ε)

Finally, choosing ε = α′

1+α′ , we obtain the desired oscillation estimate

(3.6) |Du(x1) − Du(x0)| ≤ 4 Cα′ h
α′

1+α′ = 4Cα′ |x1 − x0|
α′

1+α′

for x0, x1 ∈ K.
This, with the uniformly boundedness of u and Du in K shows that u ∈

C1,α(K) with α = α′

1+α′ , and the estimate (1.6) follows in the present case r = 1.
If r �= 1, let us consider the scaled function ũ(y) = u(ry), |y| ≤ 1. FIt is

easy to check that ũ is a continuous (up to the boundary) viscosity solution of
the equation

G(D2ũ(y)) = g(y) = r2f(ry)

in |y| < 1, where G(Y ) = r2F (r−2Y ) is uniformly elliptic with the same elliptic-
ity constants λ and Λ as F .

Therefore, the C1,α- estimate (1.6) already proved for r = 1 applies to ũ
yielding (1.6) in its scaled form.

Proof of Theorem 1.1. Let |x0| ≤ r
2 , 0 < r < R. Applying Theorem 1.2

in the ball Br/8(x0), we get in particular

r|Du(x)| ≤ C
(
‖u‖L∞(Br/4(x0)) + r2 ‖f‖L∞(Br/4)

)
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≤ C
(
‖u‖L∞(B 3

4
r
) + r2 ‖f‖L∞(B 3

4
r
)

)

for |x − x0| ≤ r
8 . Then,

(3.7) |Du(x)| ≤ C

(
1

r
‖u‖L∞(B 3

4
r
) + r ‖f‖L∞(B 3

4
r
)

)

for |x| ≤ r
2 . Hence, by the Harnack inequality (2.1), we have

|Du(x)| ≤ C

(
1

r
u(0) + r ‖f‖L∞(B 3

4
r
)

)
, |x| ≤ r

2

The assertion follows by optimizing with respect to r ∈ (0, R) the right-hand
side of the above inequality.

The proof of Theorem 1.3 is performed using a different technique, based
on the Maximum Principle and, more precisely, on comparison results between
viscosity sub and supersolutions. A major step in the proof is contained in the
next Lemma which can be seen as the extension to our nonlinear setting of a
well- known result for the Poisson equation, see [8], Theorem 3.9.

Lemma 3.1. Assume that F satisfies (1.3) and (1.5). Assume also that
F is reflection invariant along some direction ν, see (1.7). If u ∈ C0(Bd) is a
viscosity solution of the equation F (D2u) = fwith f ∈ C(Bd), then

(3.8) |Dνu(0)| ≤ n
d (1 + Λ

λ )
1
2 sup

Bd

|u| + d
2λ (1 + Λ

λ )−
1
2 sup

Bd

|f |

where Dνu(0) is the directional derivative of u at x = 0 along the direction ν.

Proof of Lemma 3.1. Let u ∈ C0(Bd) be a viscosity solution of the
equation

F (D2u) = f

in Bd. By Theorem 1.2, u is differentiable at x = 0. Setting M = supBd
|f |, we

have

(3.9) −M ≤ F (D2u) ≤ M

in Bd in the viscosity sense.
Up to a rotation, which does not change the ellipticity constants of F and

the L∞-norm of f , we can suppose that the invariance direction is the xn-axis.
Consider the open cylinder

K := {(x′, xn) ∈ Rn | |x′| < d
√

Λ, |xn| < d
√

λ}
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so that K ⊂ Bd. Set x∗ := (x′,−xn) and the reflected function

u∗(x) := u(x∗) x ∈ K+ = K ∩ {xn > 0}

It turns out that u∗ ∈ C0(K+) and F (D2u∗) = f∗ in the viscosity sense in K+.
Indeed, if x0 ∈ K+ and ϕ ∈ C2(K+) touches u∗ from above at x0, then ϕ∗

touches u from above at x∗
0 ∈ Bd. Therefore,

F (D2ϕ∗(x∗
0)) ≥ f(x∗

0) ≥ −M

By reflection invariance F (D2ϕ(x0)) = F (D2ϕ∗(x∗
0)) ≥ −M . A similar argu-

ment for supersolutions yields the inequality

(3.10) F (D2u∗) ≤ M

in K+ in the viscosity sense. Setting

(3.11) ũ =
u − u∗

2

and using Theorem 5.3 in [2], we get

(3.12) P+
λ,Λ(D2ũ) ≥ −M, P−

λ,Λ(D2ũ) ≤ M

in K+ in the viscosity sense. Note that the argument of the above mentioned
Theorem 5.3 of [2], concerning sub and supersolutions of the homogeneous equa-
tion F (D2u) = 0, still holds for a nonzero constant right-hand side.

Next, we construct a smooth barrier function:

Φ(x) =
N

d
2

[ |x′|2
Λ

+
xn√

λ

(
nd − (n − 1)

xn√
λ

)]
+

M

2

xn√
λ

(
d − xn√

λ

)

where N = supK |u|. A simple computation shows that

P+
λ,Λ(D2Φ) = Λ

2N

Λd
2 (n − 1) − λ

(
2N

λd
2 (n − 1) +

M

λ

)
= −M

By (3.12) we obtain then

(3.13) P+
λ,Λ(D2(ũ − Φ)) ≥ 0 ≥ P−

λ,Λ(D2(ũ + Φ)) in K+

On the other hand, for x ∈ ∂K+, we have

Φ(x) =
N

d
2

|x′|2
Λ

≥ 0 ≥ ũ on xn = 0
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Φ(x) ≥ N ≥ |ũ| on |x′| = d
√

Λ and xn = d
√

λ

This provides the boundary conditions

ũ − Φ ≤ 0 ≤ ũ + Φ on ∂K+

which, coupled with equations (3.13), by the Maximum Principle yield

ũ − Φ ≤ 0 ≤ ũ + Φ in K+

Taking now x′ = 0 and dividing by xn > 0, we get

|u(0, xn) − u(0,−xn)|
2xn

≤ N

d
2

(
nd − (n − 1)

xn√
λ

)
+

M

2
√

λ

(
d − xn√

λ

)

Letting xn → 0+ we conclude that

|uxn(0)| ≤ n

d
sup
K

|u| + d

2
√

λ
sup
K

|f |

From this it is immediate to derive the validity of inequality (3.8).

Proof of Theorem 1.3. This is matter of elementary vector calculus. In
fact, let νk = (νk1, . . . , νkn), k = 1, . . . , n, then

n∑

k=1

|Du(0) · νk|2 =

n∑

k=1

(
Du(0) ·

n∑

i=1

νkiei

) ⎛
⎝Du(0) ·

n∑

j=1

νkjej

⎞
⎠

=
n∑

i,j=1

(
n∑

k=1

νkiνkj

)
uxi

(0)uxj
(0) =

n∑

i,j=1

Sij uxi
(0)uxj

(0) ≥ μ |Du(0)|2

and the statement easily follows from (3.8).
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solutions of Pucci type equations, C. R. Acad. Sci. Paris, Ser. I, 346 (2008),
527–532.

[5] M.W. Certain – T.G. Kurtz: Landau-Kolmogorov inequalities for semigroups
and groups, Proc. Amer. Math Soc., 63 (1977), 226–230.

[6] M.G. Crandall – H. Ishii – P.L. Lions: User’s guide to viscosity solutions of
second order partial differential equations, Bulletin of the American Mathematical
Society, 27 (1992), 1–67.

[7] G. Glaeser: Racine carrée d’une fonction differentiable, Ann. Inst. Fourier, 13
(1963), 203-207.

[8] D. Gilbarg – N.S. Trudinger: Elliptic Partial Differential Equations of Sec-

ond Order , 2nd ed., Grundlehren der Mathematischen Wissenschaften No. 224,
Springer-Verlag, Berlin-New York, 1983

[9] J. Hadamard: Sur certaines propriétés des trajectoires en dynamique, J. Math.
Sér. 5, 3 (1897), 331-387.
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