
Rendiconti di Matematica, Serie VII
Volume 29, Roma (2009), 29–50

A level-set algorithm for front propagation

in the presence of obstacles

M. FALCONE – C. TRUINI

Dedicated to Umberto Mosco

Abstract: We present an algorithm for tracking the monotone propagation of
an interface in a domain where obstacles are present, i.e. where some regions inside
the domain cannot be crossed by the interface. The evolution is computed via the level-
set method solving a stationary Hamilton-Jacobi equation. A semi-Lagrangian method
based on a bilinear spatial recostruction is used to compute the viscosity solution and to
obtain the interface. Transparent boundary conditions are implemented in a very simple
way which writes them as an homogeneous Dirichlet boundary condition. As a result,
the algorithm produces a global solution and it is easy to implement even when the
obstacles have rather complicated boundaries. Numerical tests in 2D and 3D illustrate
the main features of this method.

1 – Introduction

The level-set method is a clever and rather simple way to describe an in-
terface separating two or more regions with different physical phases. As it is

Key Words and Phrases: Front propagation – Level-set method, Hamilton-Jacobi
equations – Semi-Lagrangian schemes – Obstacles and state constraints – Transparent
boundary conditions
A.M.S. Classification: 65N12, 65M10, 49L25.
This work has been partially supported by MURST, Progetto Nazionale “Calcolo Sci-
entifico: Modelli e Metodi Numerici Innovativi”. We also wish to thank the CASPUR
Consortium for its technical support.

30 M. FALCONE – C. TRUINI [2]

well known, the method describes the evolution of the front by a continuous
representation function u(x, t), which is positive in the domain Ωt correspond-
ing to one of the phases, negative outside that domain and changes sign accross
the interface. A comprehensive introduction to the level-set method as well as
several applications and references can be found in [24].

Starting from the first paper by Osher and Sethian [21], the level-set method
has been extensively used to track numerically the evolution of interfaces in a
variety of different situations. Whenever, the interface evolution is simply driven
by a given vectorfield plus a normal velocity the level set method leads to a non-
linear first order PDE. More complicated types of evolution consider the normal
velocity as a function of the curvature and/or of other geometric parameters of
the interface and this leads to second order nonlinear PDE problems.

Let us consider here the typical model problem for an interface which evolves
in the normal direction driven by a (given) scalar velocity c(x). This problem
leads to the following first order Hamilton–Jacobi equation,

(1.1)

{
ut + c(x)|∇u| = 0, in IRn × IR

u(x, 0) = u0(x) in IRn

where the initial condition u0 must be the representation function of the initial
position of the front Γ0 = ∂Ω0, which is the only initial datum. The above
problem can be drastically simplified when the evolution is monotone (increasing
or decreasing), i.e. when either Ωt ⊂ Ωt+s or the reverse inclusion are satisfied.
For monotone types of evolution, it has been proved in [14] that equation (1.1)
can be replaced by the following stationary equation,

(1.2)

{
c(x)|∇T | = 1, in IRn \ Ω0

T (x) = 0 in Ω0

where T represents the time of transfer of a point x ∈ IRn \ Ω0 to Ω0 by an
appropriate dynamics. In fact, the link between the two problems is simple: the
unique viscosity solution of (1.1) is v(x, t) = T (x) − t, where T is the viscosity
solution of (1.2). In terms of level-sets the interface corresponds to the 0-level
set of u and to the t-level set of T . It is worth to note that the second problem
is easier to solve since it does not require the additional computation of u0,
this computation would require in fact the solution of another Hamilton-Jacobi
equation of type (1.2) to compute the (signed) distance function to Ω0. Moreover,
the knowledge of T gives a global description of the interface at any time t. The
stationary approach introduced in [14] and extended to anisotropic evolutions
in [30] relies on the link between the propagation of fronts and the minimum
time problem of control theory. We should also mention that the link between
stationary and evolutive problems has been analyzed also in other papers, e.g.
we refer to [20] for a general level set formulation for the solution of the Dirichlet

[3] A level-set algorithm for front propagation etc. 31

problem for Hamilton–Jacobi equations. As far as numerics is concerned, the
most popular methods are certainly based on finite differences and often include
recent developments such as the fast marching method to save CPU time (see
e.g. [25] and [26]). We will introduce here a local version of the fully discrete
semi-Lagrangian scheme (SL scheme in the sequel) for the stationary problem
(1.2) studied in [9] and [2].

A first goal of this paper is to extend the stationary approach to the nu-
merical approximation of the evolution of interfaces in the presence of obstacles.
The difficulty is to include obstacles in the model and to adapt the SL scheme
in order to obtain a simple implementation of boundary conditions as well as
accurate results. An obstacle is, in our approach, a subdomain which cannot be
crossed by the interface: the front can only “touch” the obstacle and proceed
going around it. Naturally this process modifies the front propagation after the
first time of contact between the front and the obstacle. Which kind of boundary
conditions is more appropriate to describe the front-obstacle interaction? As we
will see in the following sections we need to implement transparent boundary
condition, since standard Dirichlet or Neumann type boundary conditions mod-
ify the front also inside the domain of computation. The interesting point is that
the implementation of transparent boundary conditions can be obtained rather
easily for the SL scheme adopted in this paper.

The second goal is to present a parallel algorithm based on the SL method.
To this end we first write a local version of the scheme on a structured grid
where the solution at one node just depends on the informations at the neigh-
bouring nodes (this is usually not necessary for SL schemes). Then we construct
the parallel algorithm by a domain decomposition strategy, i.e. we split the do-
main of computation Ω into D physical subdomains. Naturally, the subdomains
have internal boundaries (and cross points) so we need to modify the serial al-
gorithm in order to make the informations flow between the subdomains during
the computation. Inside the subdomains we apply the local version of the serial
algorithm. This approach allowed us to compute with a reasonable CPU time
the solutions of 3D model problems which have a huge number of nodes.

In order to give some background to the interested reader, we recall that
the problem of an efficient implementation of boundary conditions for finite
difference schemes has been addressed by Aslam, Bdzil and Scott Stewart in
[1]. They have modified the original scheme proposed in [21] including three
types of boundary conditions: reflecting, non-reflecting (or continuation) and
angle (sonic or subsonic) boundary conditions. The non-reflecting (transparent)
boundary condition are applied there in a way which is different from ours since
they use quadratic extrapolation. It is also worth to mention that SL schemes
are extentions of the Courant–Isaacson–Rees method [7] for conservation laws.
They allow large time–steps and can guarantee high accuracy, properties which
made them very popular in the Numerical Weather Prediction community (see
the survey paper [28] for more informations). In the framework of (first order)

32 M. FALCONE – C. TRUINI [4]

front propagation problems they have been studied in [9], [13]. SL schemes for
general problems with convex hamiltonians have been developed and analysed in
[11]. It is interesting to note that, in that case, the schemes can be interpreted
as a discrete version of the Hopf representation formula for the exact solution.
High–order accurate versions of those schemes have been studied in [11], [17] (see
also [10] and the references therein). To complete the scenario, we should also
mention the applications of SL methods to curvature dependent front propaga-
tion problems given in [31] and [12]. Although this paper deals with a scheme
written for a simple cartesian grid, it is worth to mention that SL schemes may
also be used on unstructed meshes as it has been done in [23] (see also [27] for
a finite difference scheme on unstructured meshes for similar problems).

The paper is organized as follows.
In Section 2 we give some background, the basic assumptions and results on the
SL algorithm for the front propagation problem without obstacles. In Section
3 we introduce the problem with obstacles and we discuss the implementation
of transparent boundary conditions. Section 4 is devoted to the fully discrete
scheme in IR2. Section 5 deals with the parallel version of the scheme on a
MIMD (Multiple Instruction Multiple Data) architecture. Finally, in Section 6
we present several experiments in IR2 and IR3.

2 – Preliminary results and assumptions

Following [9], let us recall the basic results on a SL scheme for a monotone
evolution without obstacles, i.e. for the Dirichlet problem (1.2). To this end it
is useful to remind that (1.2) can be written as

(2.1)

{
H(x, DT (x)) = 0, in IRn \ Ω0

T (x) = 0 in Ω0

where

(2.2) H(x, Du) ≡ max
a∈B(0,1)

{c(x)DT (x) · a} − 1

In the sequel we will always assume that the normal velocity c : IRn → IR is
strictly positive and that there exists a constant L such that

(2.3) |c(x) − c(y)| ≤ L|x − y|, for any x, y ∈ IRn \ Ω0; .

(2.4) |c(y)| ≤ L(1 + |y|), for any y ∈ IRn \ Ω0; .

We also define, for x ∈ IRn and a ∈ B(0, 1),

(2.5) b(x, a) ≡ −c(x)a .

[5] A level-set algorithm for front propagation etc. 33

Naturally, we compute the solution in an open n-rectangular domain Q ⊂ IRn

containing Ω.
Let us construct a uniform cartesian grid in Q which (for simplicity) has

the same step size in every direction, i.e. Δ1x = · · · = Δnx = k. Let us denote
by X the set of its nodes xi, i ∈ I ≡ {1, ..., N} and by S the set of all cells Sj ,

j ∈ {1, ..., L}, i.e. Q =
⋃

j

Sj . By the change of variable w(x) ≡ 1− exp(−T (x))

we can trasform (1.2) into a fixed point problem for w and get the fully discrete
scheme for w:

(2.6)

{
w(xi) = min

a∈B(0,1)
[βw(xi + hb(xi, a))] + 1 − β for i ∈ Iin

w(xi) = 0 for i ∈ I0 .

where β ≡ e−h and

(2.7)
I0 ≡ { i ∈ I : xi ∈ Ω }
Iin ≡ { i ∈ I \ I0 : ∃ a ∈ B(0, 1) such that xi + hb(xi, a) ∈ Q }

Note that for 0 ≤ T < +∞, w ∈ [0, 1[. The value w(xi +hb(xi, a)) which appear
on the right-hand side must be computed by a local reconstruction which uses
the values sitting on the nodes. A typical choice is to use linear interpolations
in the cells, this produces a monotone first order accurate fully discrete scheme.
In the scheme we must introduce a “generalized” bondary condition to compute
w(xi + hb(xi, a)) whenever xi + hb(xi, a) �∈ Q. For the moment, let us just set
w(z) ≡ 1, for any z /∈ Q. We will explain and comment that condition in the
next section.

The algorithm computes the solution via the fixed point iteration (2.6) which
we can be written as

W p+1 = F (W p), p = 0, 1, 2, . . .

where F : IRN → IRN is defined componentwise by the right-hand side of (2.6).
The following result summarizes the properties of the scheme (2.6).

Theorem 2.1. Assume (2.3), (2.4) then:

a) the approximation scheme (2.6) admits a unique (piecewise linear) solution
w : Q → [0, 1].

b) choosing

(2.8) W 0 =

{
0 for i ∈ I0

1 for i ∈ I \ I0

the fixed point iteration produces a monotone decreasing sequence converging to
the fixed point.

34 M. FALCONE – C. TRUINI [6]

The following result gives an a − priori estimate for the L∞ error of the
approximation of v and of the Hausdorff distance between the approximate and
exact interface (cfr. [9] for the proof):

Corollary 2.2. Let (2.3), (2.4) hold true, Ω0 have a piecewise regular
boundary and let k ≤ C h , for some positive constant. The approximate solution
converges uniformly in Q to the viscosity solution of (1.2). Moreover, if

(2.9) C ≡ min
x∈Q\Ω0

c(x)

there exist two positive constant C1 and C2 such that, for h and k sufficiently
small,

(2.10) ‖ v − w ‖∞≤ C1h + C2k

and

(2.11) dH(Ωt, Ω̂t) ≤ C1h + C2k.

where dH denotes the standard Hausdorff distance between two sets and Ω̂t is
the level set of the approximate solution.

3 – Obstacles and transparent boundary conditions

Let us consider an evolution driven by a normal velocity c(x) in a domain
where obstacles are present. We will assume that the obstacles are closed disjoint
subsets Oi, i = 1, . . . , M , inside our domain of computation Q and we will denote
by O their union, i.e. O =

⋃M
i=1 Oi. An obstacle is a subdomain which cannot

be crossed by the front, i.e. when the front touches an obstacle it is forced to
get around it. It is important to note that c will not vanish on the boundary ∂O
so that the front continues its evolution slipping around the obstacle boundary.
Which kind of boundary condition should we impose there? A classical boundary
condition which is usually adopted in fluid dynamics to describe this type of
situations is the homogeneous Neumann boundary condition

(3.1)
∂u

∂η
= 0 on ∂O

where η(x) is the (exteriour) normal direction to the boundary of O. That
condition will not be appropriate for our problem since it will force the front to
be orthogonal to the obstacles boundaries. In fact, the Neumann condition

(3.2)
∂u

∂η
= ∇u(x, t) · η(x) = 0

[7] A level-set algorithm for front propagation etc. 35

means that the front is orthogonal to ∂O since the front Γt is the 0-level set of
u, i.e.

(3.3) Γt ≡ {x ∈ Q : u(x, t) = 0}.

Any other Neumann boundary condition will force the front to have a predeter-
mined angle with the normal to the obstacle and this does not seem adequate
for our problem since the front can hit the obstacle with any angle. In this
respect, the situation is different from the detonation shock dynamics problem
described in [1] where an angle boundary condition is applied at all the ”internal
boundary nodes” which have a subsonic interaction. The same remarks apply
to the boundary conditions on ∂Q. A correct solution to this problem can be
obtained introducing transparent boundary conditions on the obstacle bound-
aries and on the boundary of the domain of computation. The use of trasparent
boundary condition is typical in other evolutive problems, e.g. the wave prop-
agation problem, and usually requires the solution of a differential equation at
the boundary (cfr. [8]). In [1] a non-reflecting (transparent) boundary condition
is applied by using quadratic extrapolation. Both methods can be difficult to
apply when the geometry of the boundaries is rather complex. Moreover, they
are more expensive if compared to our method. Now we will introduce easy-to-
use boundary conditions for our front propagation problem motivating them by
a control theoretical interpretation.

As we mentioned in the introduction, the relation between front propagation
in a homogeneous region and the minimum time problem has been analyzed in
[14] and [9]. It has been shown that the characteristics of the front problem are
the optimal trajectories of the corresponding minimum time problem.

Let us define

(3.4) D = Q \ (O ∪ Ω0),

When there are no obstacles the trajectories can go everywhere in Q, but when
obstacles are present in the domain of computation the trajectories cannot cross
O and must remain in D. The problem with obstacles corresponds then to the
minimum time problem with state constraints where the state of the problem
must stay in D, for any t ≥ 0. This suggests which condition has to be imposed
on their boundaries. In fact, the set of admissible controls (i.e. of admissible
directions which are allowed for the front propagation) at a point x ∈ ∂O is
reduced to the directions pointing inward D. The usual definition of viscosity
solution has to be modified to characterize the solution to this problem and get
uniqueness. We have to look for a state constrained viscosity solution which
means that we have to solve

(3.5) H(x, DT) ≤ 0, x ∈ D

36 M. FALCONE – C. TRUINI [8]

(3.6) H(x, DT) ≥ 0 x ∈ D

where H has been definined in (2.2) and both conditions must be understood in
the viscosity sense. Naturally, the above conditions must be coupled with the
homogeneous Dirichlet boundary condition on Ω0. The definitions (3.5)-(3.6)
mean that a state constrained viscosity solution is a viscosity subsolution in D
and a viscosity supersolution in D. They were first introduced by Soner [29]
(see also [6]). Note that the above definition keeps all the directions in the unit
ball and requires an inequality to be satisfied at the obstacle boundary. More
recently, Ishii and Koike [18] proposed a new definition which is closer to our
approach since it reduces the space of admissible controls taking into account
the constraints and requiring an equality at the obstacle boundary. That idea
was introduced, for numerical purposes, in [5]. It is interesting to note that also
the new definition allows to get a uniqueness result for the solution.

Now let us construct a discrete scheme for the minimum time problem with
state constraits which will allow us to solve the interface problem with obstacles
whenever the evolution is monotone.

Let h = Δt be the time step (for the discrete characteristics) and k be the
(uniform) mesh size. Let us reduce the discrete set of admissible control at every
point x to

(3.7) Ah(x) ≡ {a ∈ B(0, 1) : x + hc(x)a ∈ D}

The corresponding fully discrete scheme is

(3.8) w(xi) = min
a∈Ah(xi)

[βw(xi + hc(xi)a)] + 1 − β , for xi ∈ D

Following the arguments in [5], one can prove that there exists a unique piecewise
linear solution w (3.8) and that w converges uniformly to the “constrained”
viscosity solution v of the constrained problem in D for h and k tending to
0. Note that the direct application of the above formulation would require the
preliminary computation of the admissible control set Ah(xi) at every node of
the grid. This can be rather expensive particularly when the grid has a large
number of nodes (tipically in 3D problems). However, we can get around this
difficulty and obtain the same result just leaving a ∈ B(0, 1) provided we modify
the algorithm so that the minimum cannot be attained at controls which do not
satisfy the constraints, i.e. for a ∈ B(0, 1) \ Ah(xi). This can be easily obtained
just setting in (3.8)

(3.9) w(xi + c(xi)a) = wmax, when xi + c(xi)a ∈ O

where wmax is the positive constant

(3.10) wmax = max
x∈D

w(x) .

[9] A level-set algorithm for front propagation etc. 37

Since, 0 ≤ w ≤ 1 it is sufficient to set wmax = 1 and

(3.11) w(x) ≡ 1 for any x ∈ O.

That simple choice produces an important reduction of the storage requirements.
Moreover, the algorithm will not modify the internal values (at the nodes xi ∈ D)
imposing a boundary condition. In fact, at the nodes close to the boundaries
where xi +hc(xi)a /∈ D the algorithm performs an automatic up-wind correction
taking into account only the informations inside D since the values corresponding
to points inside O are bigger than those values (and the algorithm drops them
out searching for the minimum). As we said, the computation is made only at
the internal nodes. The scheme is consistent with the physics since setting the
value w = 1 at all the nodes xi ∈ O corresponds to set c(x) ≡ 0 in O, so that
the front cannot cross the obstacle. However, the normal velocity inside D can
be strictly positive up to the boundary of the obstacle.

4 – The SL fully discrete scheme on a structured grid

Let us describe the SL scheme for (2.6) on a structured grid. The exten-
sion to unstructured grid would require more computational effort in order to
locate the roots of the characteristics on the simplices. An implementation on
unstructured grid can be found in [23].

According to what we have seen in the preceeding section, the scheme will
really compute only on the nodes in Iin, i.e.

(4.1) w(xi) = min
a∈B(0,1)

[βw(xi + hb(xi, a))] + 1 − β , i ∈ Iin.

Moreover, on the nodes xi such that i ∈ I0 (i.e. for xi ∈ Ω0) we always apply the
Dirichlet boundary condition w(xi) = 0 and whenever the point xi + hb(xi, a) /∈
(Q \ O) ∪ Ω0 we set w(xi + hb(xi, a)) = 1.

The scheme will use a variable time step which will depend on the velocity
at the point xi and on the space step k,

(4.2) hi =
k

c(xi)
.

This will guarantee that the root of the characteristic starting at xi will al-
ways belong to one of the four neighbouring cell having a node at xi. In fact,
substituting (2.5) and (4.2) in the equation (4.1) we have:

(4.3) w(xi) = min
a∈B(0,1)

[βw(xi − ka)] + 1 − β i ∈ Iin

so that xi − ka, for a ∈ B(0, 1), spans the circle of radius k centered at xi

38 M. FALCONE – C. TRUINI [10]

From now on we will always use two indices for the nodes since this notation
makes easier to write the 2D scheme. Let xij ≡ (xi, yj) be a node of the grid,
the corresponding circle will be

(4.4) xi,j − ka = (xi − kcos(θ), yj − k sin(θ)) θ ∈ (0, 2π]

To compute the minimum we will use a discrete version of the unit ball B(0, 1)
taking into account only 36 directions,

(4.5) θl = θ0 +
2π

36
l l = 1, ..., 36 θ0 = 0.

The values w(xi,j − ka) are computed by a bilinear interpolation on the values
at the nodes. Let us show how one can easily compute the coefficients λi,j(θ) of
this representation

(4.6) w(xi − k cos θ, yj − k sin θ) =
∑

i,j

λi,j(θ)w(xi,j)

Let G be a grid cell with vertices at xi,j , xi+1,j , xi,j+1, xi+1,j+1 and let fi,j , fi+1,j ,
fi,j+1, fi+1,j+1 be the corresponding values of a function f at the vertices. The
bilinear interpolation computes the value of f at every point (x, y) ∈ G by the
simple definition

(4.7) f(x, y) = axy + bx + cy + d

where the coefficients a, b, c and d can be determined solving the linear system
4× 4 which corresponds to the four height conditions at the four vertices of the
cell. Those values can also be written as linear combinations of the values of f
at the vertices of the cell, i.e.

(4.8) f(x, y) = λi,jfi,j + λi+1,jfi+1,j + λi,j+1fi,j+1 + λi+1,j+1fi+1,j+1

where the λi,j coefficients are given by

(4.9) λi,j = (xi+1 − x)(yi+1 − y)/C

(4.10) λi+1,j = (x − xi)(yi+1 − y)/C

(4.11) λi,j+1 = (xi+1 − x)(y − yi)/C

(4.12) λi+1,j+1 = (x − xi)(y − yi)/C

[11] A level-set algorithm for front propagation etc. 39

and C = (xi+1−xi)(yi+1−yi) is the area of the cell, i.e. C = k2 for our uniform
grid. In practice, it is useful to write the λij coefficients as functions of the θ
angle:

(4.13)

λi,j = (k − k cos θ)(k − k sin θ)/k2 = (1 − cos θ)(1 − sin θ)

λi+1,j = (k cos θ)(k − k sin θ)/k2 = cos θ(1 − sin θ)

λi,j+1 = (k − k cos θ)(k sin θ)/k2 = sin θ(1 − cos θ)

λi+1,j+1 = (k cos θ)(k sin θ)/k2 = sin θ cos θ.

Substituting in (4.3) we get a new form for the fully discrete scheme:

(4.14) w(xi,j) = β min
θ∈(0,2π]

[−1,0,1∑

r,s

λi+r,j+s(θ)w(xi+r,j+s)

]
+ 1 − β

The iterative scheme corresponding to (4.14) can be finally written component-
wise as

(4.15) Up+1
i,j = β min

θ∈(0,2π]

[−1,0,1∑

r,s

λi+r,j+s(θ)U
p
i+r,j+s

]
+ 1 − β.

This is the “local” version of the iterative scheme (2.6). In fact, the solution at
the (p + 1)-th iteration at the node xij , is expressed just in terms of the eight
values of the p-th iteration at the nodes whose distance to the central node is
lower than

√
2k. This property, which is not necessary to make the SL method

converge, is particularly useful for the construction of a parallel version of the
algorithm since it minimizes the communication loads between the processors as
we will see in the next section.

5 – Parallel Algorithm

We will start from the local version (4.15) to construct a parallel version of
the algorithm based on a domain decomposition. An introduction to numerical
methods for parallel machines can be found in [19]. Actually, the algorithm
has been implemented on SIMD (Single Instruction Single Data) and MIMD
(Multiple Instruction Multiple Data) machines with SM (Shared Memory) or
DM (Distributed Memory) at the CASPUR Consortium (cfr. [16] for a 2D
implementation without obstacles on a SIMD machine).

40 M. FALCONE – C. TRUINI [12]

A typical difficulty which is encountered in the simulation of interface prob-
lems is to obtain a precise description of the interface even in the presence of
singularities, cusps and topological changes. This often requires to use meshes
with a large number of nodes and produces long computations and/or large
memory storage requirements (this is particularly true when dealing with 3D
problems). A parallel version of the algorithm can be very useful to obtain
accurate solutions with low CPU times.

We will describe here the implementation on a MIMD-DM architecture since
this is the most flexible, cheap and, perhaps, most popular architecture. In fact,
a MIMD-DM machine can be “constructed” just connecting several UNIX work-
station on a network by means of a communication software (typically PVM, MPI
or OpenMP). The memory is distributed due to the fact that every processor has
its own memory, so a crucial point for the algorithm is to minimize the number
of (unavoidable) communications among the processors. We adopt a domain de-
composition strategy which splits Q into D subdomains Qd, d = 1, . . . , D, assign-
ing the computation on the nodes inside every subdomain to a single processor
Pd (cfr. [22] for a comprehensive introdution to this topic). The decomposition
creates internal boundaries and can also have crossing points (i.e. points which
belong to more than n + 1 subdomains in dimension n). Usually we divide a
rectangle Q into rectangles and a cube into cubes. This decomposition is rather
efficient since the ratio between the surface and the volume is minimal and this
balances the work required to the processors. This type of domain decomposition
is called “chess board” decomposition. The domain Q is cut in every direction:
the optimal choice is obtained when D ≡ qn, where n is the space dimension and
q ∈ IN, e.g. for n = 3 this gives D = 1, 8, 27,

We exploit in full the local version of the algorithm where the value at the
node xij at the (p + 1)-th iteration can be computed just knowing the values at
the p-th iteration on the nodes wich are “first neighbours” of xij . If the first
neighbours are strictly inside the domain Qd all the informations are stored in the
memory of the processor Pd, whereas if xij ∈ ∂Qd∩∂Qg those informations must
flow between the processors Pd and Pg. The values of the solution on the nodes
belonging to the internal boundaries must be communicated to all the processors
computing xij . This allows to minimize the communication load between the
processors since only the boundary values are sent out through the network to
the neighbouring processors. Our algorithm belong to the class SPMD (Single
Program Multiple Data), which means that every processor executes the same
program on different data sets. We have adopted the parallelization protocol
MPI but the same approach can be used with other protocols like PVM or
OpenMPI.

The algorithm has two main parts: the Master program and the SPMD
program. The Master program manages the initialization of the data and the
job assignments to the processors. This part is executed by a single processor so
it is serial. It is preliminary with respect to the real parallel computation since

[13] A level-set algorithm for front propagation etc. 41

the Master program makes a link between every processor and every subdomain,
send a copy of the program to be executed to every processor and send the data
corresponding to every subdomain to its processor. The SPMD Program includes
the numerical scheme and the communication commands. This is the parallel
part since the same program is running on every processor and the informations
are sent to the D processors which constitute the virtual parallel machine. The
Master will be in stand-by during the execution of the SPMD program on the
processors, it just waits for the results of the parallel part of the algorithm.
Every processor Pd sets its own initial condition in its domain Qd according to
the rule

W 0
ij =

{
0 for any xij ∈ Ω0

1 for any xij ∈ Qd \ Ω0

As we have already seen, in order to compute the solution Up+1 at the node
xi,j at the (p + 1)-th iteration the algorithm needs the values of Up at the 8
neighbouring nodes to xi,j (in IR2) and at the 26 neighbouring nodes xi,j,m (in
IR3). Every processor has to send at every iteration the values corresponding
the boundary nodes of its subdomain to the “neighbouring” nodes. Let us see
how the procedure works in the 2D case.

For example, the P3 processor must send the value at its node x1,1 to the P1

processor, the vector U1,i to P2 and so on. When P1 receives from P3, the value
U1,1 copies it on Umaxn,maxn (in Figure 1 this is indicated by a small circle). P2

must receive from P3 the values U1,i and copies these values on Umaxn,i (in Fig-
ure 1 this is indicated by the line of small circles). Every processor computes the

Fig. 1: Domain decomposition and mapping of the nodes on internal boundaries

solution on the nodes x1,1, · · · , xmaxn−1,maxn−1, but this computation requires
an additional frame x0,0, · · · , xmaxn,maxn which is filled with the values received
by the “neighbouring” processors. Naturally the 3D algorithm has the same
structure but its more difficult to handle since more values (the facets) have to be

42 M. FALCONE – C. TRUINI [14]

sent around. Note that the SPMD Program which computes the (local solution)
in every subdomain Qd coincides with the serial algorithm (4.15) described in
the previous section.

In order to show the speed-up, the efficiency and the communication load of
the algorithm we made a numerical simulation tracking the evolution of a sphere
centered at the origin which grows with speed 1.

The domain Q is a cube and we have compared the results for several
domain decompositions where the number of subdomains (and processors) is

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

E
ff
ic
ie

n
cy

Number of processors

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p
ee

d
-u

p

Number of processors

Fig. 2: Efficiency and speed-up of the parallel algorithm

D = 1, · · · , 8. When D = 8 the cube is divided into cubes of equal volume,
whereas for D = 3, 5, 7 we get a non uniform distribution of the nodes among

[15] A level-set algorithm for front propagation etc. 43

the processors. The case D = 3, 5, 7 is unbalanced in the computation load and
in the communication load (see Figure 2).

Figure 3 shows that the amount of data, measured in bytes, that a processor
must send is minimum for D = 8.

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100

D
a
ta

(b
y
te

s)

Number of grid point for direction

N=4
N=6
N=8

N=3,5,7

Fig. 3: Data sent by every processor at every iteration

6 – Numerical experiments

This section is devoted to the numerical experiments in IR2 and IR3. The
first set of tests is without obstacles in order to show the accuracy of the scheme
and its stability face to topological changes. The second set of test deals with
obstacles to show how the schemes behaves when transparent boundary condi-
tions are imposed. In all the tests the solution of the stationary problem (1.2)
is computed only once and all the front configurations are obtained from that
information. In fact, we can get the front Γt at time t for any t ≤ Tmax just
drawing the corresponding level set, i.e. Γt = {x ∈ Q : T (x) = t} = {x ∈ Q :
v(x, t) = 1 − exp(−t)}.

The runs have been made on the Compaq AlphaServer ES40 (CPU EV6 -
500MHz) at the CASPUR consortium, unless a different indication is given.

6.1 – 2D Tests

6.1.1 – Tests on free evolution

The problem is considered in Q = [−2, 2]2, with a space step k = 0.0314
(128× 128 grid), a normal speed c ≡ 1 and a time step h = 0.0314. The solution

44 M. FALCONE – C. TRUINI [16]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

(a) (b)

Fig. 4: Evolution of a circular front and merging of two circular fronts

is obtained after 80 iterations with a CPU time of 4.3 seconds. The initial
front configuration is a circle of radius r = 1, centered at (0,0). The solu-
tion is shown in Figure 4a. The circular front evolves in the normal direction
keeping its circular shape. Table 1 shows the error (in the max norm) between
the exact and the approximate solution on grids with an increasing number of
nodes N .

Nodes Δx = Δt Max Error Iter Nodes ∈ Ω0 CPU Time
322 0.1290323 0.1174259 27 188 0.26 sec
642 6.3492067E-02 5.2653372E-02 44 788 0.9 sec
1282 3.1496063E-02 3.0788243E-02 80 3168 4.3 sec
2562 1.5686275E-02 1.4527082E-02 145 12796 24 sec
5122 7.8277886E-03 7.7226162E-03 271 51288 2 min 39 sec
10242 3.9100684E-03 3.8992167E-03 518 205508 20 min 34 sec

Table 1. Errors in the max norm

The second example is computed in Q = [−6, 6]2 with a space step k = 0.094
(128 × 128 grid), speed c ≡ 1. The initial front configuration is a disconnected
domain made by two circles of radius r = 1, the first is centered at A ≡ (−1, 0)
whereas the second is centered at B ≡ (1, 0).

The solution is shown in Figure 4b. As it is expected, the two circular fronts
evolve in the normal direction until they merge in a single front. Table 2 shows
the L∞ error for an increasing number of grid nodes.

[17] A level-set algorithm for front propagation etc. 45

Nodes Δx = Δt Max error Iter Nodes ∈ Ω0 CPU Time
322 0.3870968 0.2906976 26 44 0.28 sec
642 0.1904762 0.1689198 48 168 1.1 sec
1282 9.4488189E-02 8.6824715E-02 87 708 5.3 sec
2562 4.7058824E-02 4.5691967E-02 165 2832 31 sec
5122 2.3483366E-02 2.3140967E-02 319 11400 3 min 34 sec
10242 1.1730205E-02 1.1644483E-02 618 45640 26 min 38 sec

Table 2. Errors for the merging of two circular fronts

6.1.2 – Tests on front propagations with obstacles

Let us consider a front evolution starting from a circle of radius r = 0.1,
velocity c(x) ≡ 1 in Q = [−2, 2]2. In these tests some obstacles O are present
in Q and the transparent boundary conditions are imposed on ∂O and ∂Q as
we have explained in Section 3. In Figure 5 a, b, c, d one can see the fronts
at different times for four different types of obstacles: a C-shaped obstacle, a
rectangle, a diamond and a set of randomly distributed rectangles. Initially the
front evolves keeping its circular shape, then it hits the obstacle which has a
sharp corner and starts to get around the obstacles closing on itself after the
obstacle. Note that in the limit for t going to +∞ the shape must always be a
circle.

As one can see the treatment of transparent boundary conditions is rather
effective since the front propagation is neither deviated nor reflected by the ob-
stacle boundaries. This is particularly evident in the test with the C-shaped
obstacle where the front hits the lower left vertex and then proceeds on the
left and bottom sides with two different angles with respect the normal to the
obstacle. The same happens in the rectangular obstacle test. The diamond
test show a different phenomenon. The front hits the obstacle, flows around it
and closes back after the obstacle tending again to a circular shape configura-
tion. The same happens in the last and more complicated example where many
rectangular obstacles are randomly distributed in the domain of computation.
Our implementation of the boundary conditions allows to treat very complex
boundaries in a simple way.

Obstacle Shape Nodes ∈ Ω0 iter CPU Time
C-shape 30 167 6.1 sec
Rectangle 30 158 6.0 sec
Diamond 30 161 6.3 sec
Random Rectangles 332 112 4 min 4 sec

Table 3. CPU time for the tests with obstacles.

46 M. FALCONE – C. TRUINI [18]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 5: Front propagation in the presence of obstacles in IR2

Table 3 shows the CPU times and the number of fixed point iterations
needed to converge. Table 4 shows the errors in the max-norm for the test
with a rectangular obstacle. Since the exact solution is not available, the errors
were computed comparing the approximate solution to the approximate solution
obtained on the grid with 8012 nodes (last row in the table).

Nodes Δx = Δt Iter Nodes ∈ Ω0 CPUTime Max error
1012 0.04 127 21 3.1 sec 0.02426
2012 0.02 239 77 21.2 sec 0.01452
4012 0.01 457 313 2 min 32 sec 0.00486
8012 0.005 806 1253 20 min 26 sec –

Table 4: Errors for the rectangular obstacle test.

[19] A level-set algorithm for front propagation etc. 47

6.2 – 3D Tests

In IR3 we considered evolutions in Q = [−3, 3]3 with 1003 nodes in the
grid. Figure 6 shows the evolution of a torus centered at the origin with in-
ternal radius R = 0.8 and circular section of radius r = 0.1. The speed
is constant c = 1 and the pictures describe the interface at different times,
t = 0, .174, .385, .635, 1.021, 2.040. Table 4 shows the CPU time for an increasing
numeber of nodes on an IBM Power3.

Nodes Δx = Δt Iter Nodes ∈ Ω0 CPU Time
323 0.19354 31 240 2 min 12 sec
643 9.5238E-02 56 2016 31 min 40 sec
803 7.5949E-02 69 4128 1h 16 min 09 sec
903 6.7416E-02 77 5824 2h 02 min 07 sec
1003 6.0606E-02 84 8032 3h 01 min 58 sec

Fig. 6: Evolution of a torus

Figure 7 shows the evolution of a sphere centered at the origin and initial
radius r = 0.4. The speed is constant c = 1 and an n-rectangular obstacle lies
inside the domain of computation Q = [−3, 3]3, discretized with 1003 nodes,
dx = .0606. The pictures show the position of the interface at different times,
t = 0, .635, 1.078, 1.386, 1.7141, 2.525. The global computing time needed to
complete the 98 fixed point iterations has been of 51 min 15 sec.

48 M. FALCONE – C. TRUINI [20]

Fig. 7: Spherical interface evolving around a polyhedral obstacle

REFERENCES

[1] T.D. Aslam – J.B. Bdzil – D. Scott Stewart: Level set methods applied to
modeling detonation shock dynamics, J. Comput. Phys., 126 (1996), 390-409.

[2] M. Bardi – M. Falcone: An approximation scheme for the minimum time func-
tion, SIAM J. Control Optim.,28 (1990) 950-965.

[3] M. Bardi – I. Capuzzo Dolcetta: Optimal control and viscosity solutions of
Hamilton–Jacobi–Bellman equations, Birkhäuser, 1997.

[4] G. Barles: Solutions de viscositè des equations d’Hamilton–Jacobi , Springer–
Verlag, 1998.

[5] F. Camilli – M. Falcone: Approximation of optimal control problems with state
constraints: estimates and applications, in B.S. Mordukhovic, H.J. Sussman (eds.),
“Nonsmooth analysis and geometric methods in deterministic optimal control”,
IMA Volumes in Applied Mathematics 78, Springer Verlag, 1996, 23-57.

[6] I. Capuzzo Dolcetta – P.L. Lions: Hamilton-Jacobi equations with state con-
straints, Trans. Amer. Math. Soc., 318 (1990), 643-683.

[7] R. Courant – E. Isaacson – M. Rees: On the solution of nonlinear hyperbolic
differential equations by finite differences, Comm. Pure Appl. Math. 5 (1952),
243-255.

[8] B. Engquist – R. Clayton: Absorbing boundary conditions for acoustic and
elastic wave equations, Bull. Seismol. Soc. Amer., 67 (1977), 1529-1540.

[9] M. Falcone: The minimum time problem and its applications to front propaga-
tion, in G. Buttazzo e A. Visintin (eds) “Motion by mean curvature and related
topic”, (Trento, 1992), 70–88, de Gruyter, Berlin, 1994.

[10] M. Falcone: Numerical solution of Dynamic Programming equations, Appendix
A in [3].

[21] A level-set algorithm for front propagation etc. 49

[11] M. Falcone – R. Ferretti: Semi-Lagrangian schemes for Hamilton-Jacobi
equations, discrete representation formulae and Godunov methods, Journal of
Computational Physics, 175 (2002), 559-575.

[12] M. Falcone – R. Ferretti: Consistency of a large time–step scheme for mean
curvature motion, in F. Brezzi, A. Buffa, S. Corsaro, A. Murli (eds), “Numeri-
cal M¡athematics and Advanced Applications-ENUMATH 2001”, Springer Verlag,
2003, 495-502.

[13] M. Falcone – T. Giorgi: An approximation scheme for evolutive Hamilton–
Jacobi equations, in W.M.McEneaney, G. Yin, Q. Zhang (eds), ”Stochastic analy-
sis, Control, optimization and applications: a volume in honor of W.H. Fleming”,
Birkhäuser, 1999, 289-303.

[14] M. Falcone – T. Giorgi – P. Loreti: Level sets of viscosity solutions and
applications, SIAM J. Appl. Math., 54 (1994), 1335-1354.

[15] M. Falcone – Ch. Makridakis (eds): Numerical Methods for Viscosity Solu-
tions and Applications, World Scientific, Singapore, 2001.

[16] M. Falcone – P. Lanucara – F. Massaioli – M. Rosati – C. Truini: The
flame front propagation problem on the SIMD architecture QUADRICS , E. Hol-
lander, G.R. Joubert, F.J. Peters and D. Trystram (eds.), Parallel Computing:
State-of-the-Art and Perspectives , Elsevier, 1996, 85-92.

[17] R. Ferretti: Convergence of semi–Lagrangian approximations to convex
Hamilton–Jacobi equations under (very) large Courant numbers, SIAM J. Num.
Anal., 40 (2003), 2240-2253.

[18] H. Ishii – S. Koike: A new formulation of state constraint problems for first
order PDEs, SIAM J. Control and Optimization, 34 (1996), 544-571.

[19] T.G. Lewis – H.E. Rewini: Introduction to parallel computing , Prentice-Hall
International Eds, New Jersey, 1992.

[20] S. Osher: A level set formulation for the solution of the Dirichlet problem for
Hamilton–Jacobi equations, SIAM J. Math. Anal., 24 (1993), 1145-1152.

[21] S. Osher – J.A. Sethian: Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988),
12-49.

[22] A. Quarteroni – A. Valli: Domain decomposition methods for partial differen-
tial equations, Oxford University Press, 1999.

[23] M. Sagona – A. Seghini: An adaptive scheme for the Shape-from-Shading prob-
lem, in [15], 197-219.

[24] J.A. Sethian: Level Set Method. Evolving interfaces in geometry, fluid mechan-
ics, computer vision, and materials science, Cambridge Monographs on Applied
and Computational Mathematics, vol. 3, Cambridge University Press, Cambridge,
1996.

[25] J.A. Sethian: Fast marching methods, SIAM Review 41 (1999), 199-235.

[26] J.A. Sethian – A. Vladimirsky: Ordered upwind methods for static Hamilton-
Jacobi equations: theory and algorithms, SIAM J. Numer. Anal., 41 (2003),
325-363.

[27] J.A. Sethian – A. Vladimirsky: Fast methods for the Eikonal and related
Hamilton-Jacobi equations on unstructured meshes, Proc. Natl. Acad. Sci. USA
97 (2000), 5699-5703.

50 M. FALCONE – C. TRUINI [22]

[28] A.N. Staniforth – J. Côtè: Semi–Lagrangian integration schemes for atmo-
spheric models – A review , Mon. Wea. Rev., 119 (1991), 2206-2223.

[29] H.M. Soner: Optimal control problems with state-space constraints I and II ,
SIAM J. Control and Optimization, 24 (1986), 551-561 and 1110-1122.

[30] P. Soravia: Generalized motion of a front propagating along its normal direction:
a differential game approach, Nonlinear Anal. TMA, 22 (1994) 1247-1262.

[31] J. Strain: Semi-Lagrangian methods for level set equations, J. Comput. Phys.
151 (1999), 498-533.

Lavoro pervenuto alla redazione il 1 dicembre 2008
ed accettato per la pubblicazione il 2 febbraio 2009.

Bozze licenziate il 18 marzo 2009

INDIRIZZO DEGLI AUTORI:

M. Falcone – Dipartimento di Matematica – Sapienza Università di Roma – P. Aldo Moro, 2
– 00185 Roma, Italy
E-mail: falcone@mat.uniroma1.it

C. Truini – CASPUR, Consortium for Supercomputing Applications in Research – Sapienza
Università di Roma – P. Aldo Moro, 2 – 00185 Roma – Italy
E-mail: truini@caspur.it

