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Weak solutions of grain boundary motion

model with singularity
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Dedicated to Professor Umberto Mosco on the occasion of his 70th birthday

Abstract: We consider the grain boundary motion model of Kobayashi-Warren-
Carter type, which arises in material sciences. The system, which consists of two
nonlinear parabolic PDEs with singularity, is of the phase-field type. In this paper we
show the global existence of solutions for our model in a weak variational sense.

1 – Introduction

In this paper we consider a model for grain boundary motion of the form,
denoted by (P):

(P)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηt − κΔη + g(η) + α′(η)|∇θ| = 0 a.e. in QT := Ω × (0, T ),

α0(η)θt − νΔθ − div

(
α(η)

∇θ

|∇θ|

)
= 0 a.e. in QT ,

∂η

∂n
= 0, θ = 0 a.e. on ΣT := Γ × (0, T ),

η(x, 0) = η0(x), θ(x, 0) = θ0(x) for a.a. x ∈ Ω,
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where Ω is a bounded domain in RN (1 ≤ N ≤ 3) with smooth boundary
Γ := ∂Ω, T > 0 is a fixed finite time, κ > 0 and ν > 0 are small positive
constants, g(·), α(·) and α0(·) are given functions on R, ∂/∂n is the outward
normal derivative on Γ, and η0(x), θ0(x) are given initial data.

Problem (P) of two dimensional grain structure was proposed in Kobayashi
et al. [12] as a polar coordinate system, where the variable θ is an indicator of the
mean orientation of the crystalline and the variable η is an order parameter for
the degree of crystalline orientational order: η ≡ 1 implies a completely oriented
state and η ≡ 0 is a state where no meaningful value of orientation exists. In [12]
the system (P) was derived from the free energy functional of the following form:

F(η, θ) :=
κ

2

∫

Ω

|∇η|2dx +

∫

Ω

ĝ(η)dx +
ν

2

∫

Ω

|∇θ|2dx +

∫

Ω

α(η)|∇θ|dx,

where ĝ is a primitive of g. Moreover, Kobayashi et al. [12] presented some
numerical simulations of (P), which showed both grain rotation and shrinkage,
in the case where ĝ(η) := 1

2 (1 − η)2, α0(η) = α(η) = η2 and Ω is a bounded
domain in R2. But, any theoretical results have not been there established.

There are many mathematical models of grain boundary formation. For
some related works of grain boundary motions, we refer to [3], [4], [5], [7], [8],
[12], [14], [15], [16]. Also, for singular diffusion equations kindred to the second
one of (P), we refer to [1], [2], [6], [11].

Recently, system (P) was studied in [9], [10] from the theoretical point of
view, when α0 ≥ δ(> 0) on R for a positive constant δ. More precisely, in [9] the
one-dimensional grain boundary model of Kobayashi-Warren-Carter type, with
−κΔη replaced by −(σηt+κη)xx, 0 < σ < ∞, in the first equation, was discussed
and the existence–uniqueness of solutions was proved. Also, in [10] the existence
of a global in time solution to (P) was shown in higher dimensional spaces by
employing a new method, and its uniqueness was proved in one dimensional
space.

The main objective of the present paper is to show the global existence of
a weak solution to (P) in the case when α0 ≥ 0 on R. In this case we can not
expect that the time-derivative of θ exists in the classical sense on the region
where α0(η) vanishes. We shall establish a mathematical treatment to such a
difficulty.

The plan of this paper is as follows. In Section 2, we mention the main
theorem of this paper. In Section 3, we consider the approximate systems to
(P). In the final section, we give the existence proof for (P).

Notation. For a general (real) Banach space X we denote by ‖ · ‖X the
norm in X. For 1 ≤ p ≤ ∞ and any positive integer m, we simply write Lp, Wm,p

and Wm,p
0 for Lp(Ω), Wm,p(Ω) and Wm,p

0 (Ω), respectively, where Wm,p(Ω) is
the usual Sobolev space. As usual, Wm,2 and Wm,2

0 are denoted by Hm and
Hm

0 , respectively.
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2 – Main result

Throughout this paper, the following assumptions are always made:

(A1) α0 is a non-negative function in C1(R) such that

|α′
0(r)|√

α0(r) + δ
≤ M, ∀δ ∈ (0, 1], ∀r ∈ [0, 1],

where M is a positive constant and α′
0 is the derivative of α0.

(A2) α is a non-negative function in C1(R), whose derivative α′ is non-de-
creasing and bounded on R such that α′(0) = 0. We denote by L(α) the
Lipschitz constant.

(A3) g is a Lipschitz continuous function on R such that g ≤ 0 on (−∞, 0] and
g ≥ 0 on [1,∞). We denote by ĝ a primitive of g, and assume that ĝ is
non-negative on R.

(A4) η0 ∈ H1 with 0 ≤ η0 ≤ 1 a.e. on Ω, and θ0 ∈ H1
0 .

Next, we give the notion of weak solutions to (P).

Definition 2.1. A pair [η, θ] of functions η : [0, T ] −→ H1 and θ : [0, T ] −→
H1

0 is a solution to (P) on [0, T ], if the following conditions (1)-(4) are satisfied:

(1) η ∈ W 1,2(0, T ;L2) ∩ L∞(0, T ;H1) ∩ L2(0, T ;H2), θ ∈ L∞(0, T ;H1
0 ) and

α0(η)θ ∈ W 1,2(0, T ;L
3
2 ) ∩ L2(0, T ;W

1, 3
2

0 ).
(2) The following parabolic equation holds:

(2.1)
η′(t) − κΔNη(t) + g(η(t)) + α′(η(t))|∇θ(t)| = 0 in L2

for a.a. t ∈ (0, T ),

where η′ := dη
dt and ΔN : D(ΔN ) := {z ∈ H2; ∂z

∂n = 0 a.e. on Γ} −→ L2 is
the Laplacian with homogeneous Neumann boundary condition.

(3) For any z ∈ H1
0 and a.a. t ∈ (0, T ), the following variational inequality

holds:

(2.2)

∫

Ω

[α0(η)θ]′(x, t)(θ(x, t) − z(x))dx−

−
∫

Ω

α′
0(η(x, t))η′(x, t)θ(x, t)(θ(x, t) − z(x))dx+

+ ν

∫

Ω

∇θ(x, t) · ∇(θ(x, t) − z(x))dx +

∫

Ω

α(η(x, t))|∇θ(x, t)|dx ≤

≤
∫

Ω

α(η(x, t))|∇z(x)|dx,

where [α0(η)θ]′ := d
dt [α0(η)θ].

(4) η(0) = η0 and [α0(η)θ](0) = α0(η0)θ0 in L2.



54 AKIO ITO – NOBUYUKI KENMOCHI – NORIAKI YAMAZAKI [4]

We should notice that the first and second terms of (2.2) yield

∫

Ω

α0(η(x, t))θ′(x, t)(θ(x, t) − z(x))dx,

if θ′ := dθ
dt exists in L2(0, T ;L2).

Our main result of this paper is stated as follows:

Theorem 2.1. Assume (A1)-(A4) hold. Then, there is at least one solution
[η, θ] of (P) in the sense of Definition 2.1, and η satisfies

0 ≤ η ≤ 1 a.e on QT .

Remark 2.1. In [12] some numerical experiments of (P) were tried in the
case where ĝ(η) := 1

2 (1 − η)2, α0(η) = α(η) = η2 and Ω is a bounded domain in
R2. Clearly, assumption (A1) is satisfied for α0(η) = η2.

The main idea for the proof of Theorem 2.1 is to discuss the convergence of
the following approximate problems (P)δ with real parameter δ ∈ (0, 1], as δ ↓ 0:

(P)δ

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η′
δ − κΔηδ + g(ηδ) + α′(ηδ)|∇θδ| = 0 a.e. in QT ,

αδ(ηδ)θ
′
δ − νΔθδ − div

(
α(ηδ)

∇θδ

|∇θδ|

)
= 0 a.e. in QT ,

∂ηδ

∂n
= 0, θδ = 0 a.e. on ΣT ,

ηδ(x, 0) = η0(x), θδ(x, 0) = θ0(x) for a.a. x ∈ Ω,

where αδ(r) := α0(r) + δ for r ∈ R.
In the next section we study problem (P)δ, and give some uniform estimates

of solutions [ηδ, θδ] with respect to δ ∈ (0, 1]. In Section 4 we accomplish the
proof of Theorem 2.1. Namely, we show that [ηδ, θδ] converges in a suitable sense
as δ ↓ 0 and a limit function is a solution to (P).

3 – Approximate problems

We begin by defining the notion of weak solutions to (P)δ.

Definition 3.1. For each δ ∈ (0, 1], a pair [ηδ, θδ] of functions ηδ : [0, T ] −→
H1 and θδ : [0, T ] −→ H1

0 is a solution to (P)δ on [0, T ], if the following conditions
(1)-(4) are satisfied:

(1) ηδ ∈ W 1,2(0, T ;L2)∩L∞(0, T ;H1)∩L2(0, T ;H2) and θδ ∈ W 1,2(0, T ;L2)∩
L∞(0, T ;H1

0 ).
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(2) The following parabolic equation holds:

(3.1)
η′

δ(t) − κΔNηδ(t) + g(ηδ(t)) + α′(ηδ(t))|∇θδ(t)| = 0 in L2

for a.a. t ∈ (0, T ).

(3) For any z ∈ H1
0 and a.a. t ∈ (0, T ), the following variational inequality

holds:

(3.2)

(αδ(ηδ(t))θ
′
δ(t), θδ(t) − z) + ν (∇θδ(t),∇θδ(t) −∇z) +

+

∫

Ω

α(ηδ(x, t))|∇θδ(x, t)|dx ≤
∫

Ω

α(ηδ(x, t))|∇z(x)|dx,

where θ′δ := dθδ

dt and (·, ·) stands for the usual inner product in L2 or in
(L2)N .

(4) ηδ(0) = η0 and θδ(0) = θ0 in L2.

Here, in order to reformulate (3.2) as an evolution equation governed by subd-
ifferentials, let us introduce a proper, l.s.c. (lower semi-continuous) and convex
function ϕ(ηδ(t); ·) on L2, depending on ηδ ∈ W 1,2(0, T ;L2), which is defined by

(3.3) ϕ(ηδ(t); z) :=

⎧
⎨
⎩

ν

2

∫

Ω

|∇z|2dx +

∫

Ω

α(ηδ(t))|∇z|dx if z ∈ H1
0 ,

∞ otherwise.

Then, the variational inequality (3.2) can be rewritten in the following form:

(3.4) αδ(ηδ(t))θ
′
δ(t) + ∂ϕ(ηδ(t); θδ(t)) � 0 in L2 for a.a. t ∈ (0, T ),

where ∂ϕ(ηδ(t); z) is the subdifferential of ϕ(ηδ(t); z) with respect to z in L2.
This is one of the keys in our approach to problem (P)δ.

According to the result in [10], we have the following proposition, which is
concerned with the existence of solutions to (P)δ.

Proposition 3.1 (cf. [10]). Assume (A1)-(A4) hold. Then, for each δ ∈
(0, 1], there is at least one solution [ηδ, θδ] of (P)δ in the sense of Definition 3.1,
and ηδ satisfies

(3.5) 0 ≤ ηδ ≤ 1 a.e on QT .

Moreover, there is a positive constant C1 independent of δ ∈ (0, 1] such that

(3.6)

‖η′
δ‖2

L2(0,T ;L2) + ‖
√

αδ(ηδ)θ
′
δ‖2

L2(0,T ;L2) + ‖∇ηδ‖2
L∞(0,T ;L2)+

+ ‖θδ‖2
L∞(0,T ;H1

0 ) ≤ C1

{
‖∇η0‖2

L2 +

∫

Ω

ĝ(η0)dx + ‖θ0‖2
H1

0
+ 1

}
.
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Proof. The existence assertion of a solution [ηδ, θδ] satisfying (3.5) and
(3.6) is due to [10, Theorem 2.1]. However, for the completeness, we repeat here
a brief proof of (3.6).

For simplicity we omit the subscript δ ∈ (0, 1] except for αδ, namely η := ηδ

and θ := θδ. Now, we multiply the equation (3.1) by η′(t) to get

‖η′(t)‖2
L2 +

κ

2

d

dt
‖∇η(t)‖2

L2 +
d

dt

∫

Ω

ĝ(η(t))dx ≤
∫

Ω

|α′(η(t))||∇θ(t)||η′(t)|dx

for a.a. t ∈ (0, T ).

Hence, from (A2) and the Schwarz inequality it follows that

(3.7)
‖η′(t)‖2

L2 + κ
d

dt
‖∇η(t)‖2

L2 + 2
d

dt

∫

Ω

ĝ(η(t))dx ≤ L(α)2‖∇θ(t)‖2
L2

for a.a. t ∈ (0, T ).

Next multiply (3.4), which is equivalent to (3.2), by θ′ to obtain

(3.8) (αδ(η(t))θ′(t), θ′(t)) + (θ∗(t), θ′(t)) = 0 for a.a. t ∈ (0, T ),

where θ∗(t) ∈ ∂ϕ(η(t); θ(t)) in L2 for a.a. t ∈ (0, T ). Here, we recall the following
inequality:

(3.9)

∣∣∣∣
d

dt
ϕ(η(t); θ(t)) − (θ∗(t), θ′(t))

∣∣∣∣ ≤ L(α)‖η′(t)‖L2‖∇θ(t)‖L2

for a.a. t ∈ (0, T ).

For the detailed proof of (3.9), see [10, Section 3]. Now, using the inequality (3.9),
we get from (3.8) that

(3.10)
‖
√

αδ(η(t))θ′(t)‖2
L2 +

d

dt
ϕ(η(t); θ(t)) ≤ L(α)‖η′(t)‖L2‖∇θ(t)‖L2

for a.a. t ∈ (0, T ).

Therefore, adding (3.7) and (3.10) and using (3.3), we get

1

2
‖η′(t)‖2

L2 + ‖
√

αδ(η(t))θ′(t)‖2
L2+

+
d

dt

{
κ‖∇η(t)‖2

L2 + 2

∫

Ω

ĝ(η(t))dx + ϕ(η(t); θ(t))

}
≤

≤ 3

2
L(α)2‖∇θ(t)‖2

L2 ≤

≤ 3

2
L(α)2 · 2

ν
ϕ(η(t); θ(t)) ≤

≤ 3L(α)2

ν

{
κ‖∇η(t)‖2

L2 + 2

∫

Ω

ĝ(η(t))dx + ϕ(η(t); θ(t))

}

for a.a. t ∈ (0, T ). Applying Gronwall’s lemma to the above inequality, we
obtain (3.6) for some constant C1 > 0 independent of δ ∈ (0, 1].
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Corollary 3.1. Let uδ := αδ(ηδ)θδ and vδ :=
√

αδ(ηδ)θδ for each δ ∈
(0, 1]. Then, there is a positive constant C2(η0, θ0), depending only on the initial
data η0 and θ0, such that

‖u′
δ‖2

L2(0,T ;L
3
2 )

+ ‖uδ‖2

L2(0,T ;W
1, 3

2
0 )

≤ C2(η0, θ0), ∀δ ∈ (0, 1],(3.11)

‖v′δ‖2

L2(0,T ;L
3
2 )

+ ‖vδ‖2

L2(0,T ;W
1, 3

2
0 )

≤ C2(η0, θ0), ∀δ ∈ (0, 1].(3.12)

Proof. We observe that

(3.13)

∣∣∣[
√

αδ(ηδ)θδ]
′
∣∣∣ ≤ |α′

δ(ηδ)|
2
√

αδ(ηδ)
|η′

δ||θδ| +
√

αδ(ηδ)|θ′δ| =

=
|α′

0(ηδ)|
2
√

α0(ηδ) + δ
|η′

δ||θδ| +
√

αδ(ηδ)|θ′δ|

and similarly

(3.14)
∣∣∣∇[

√
αδ(ηδ)θδ]

∣∣∣ ≤ |α′
0(ηδ)|

2
√

α0(ηδ) + δ
|∇ηδ||θδ| +

√
αδ(ηδ)|∇θδ|.

Since ‖η′
δθδ‖

L
3
2
≤ ‖η′

δ‖L2‖θδ‖L6 , it follows from (3.13) that

‖[
√

αδ(ηδ)θδ]
′‖

L
3
2
≤ M‖η′

δ‖L2‖θδ‖L6 + ‖
√

αδ(ηδ)θ
′
δ‖L

3
2
≤

≤ MC3‖η′
δ‖L2‖θδ‖H1

0
+ |Ω| 16 ‖

√
αδ(ηδ)θ

′
δ‖L2 ,

where M is the same constant as in (A1), |Ω| stands for the volume of Ω and C3

is a positive constant satisfying ‖z‖L6 ≤ C3‖z‖H1
0

for all z ∈ H1
0 . Hence

(3.15)

‖[
√

αδ(ηδ)θδ]
′‖2

L2(0,T ;L
3
2 )

≤

≤ 2(M2C2
3 + |Ω| 13 )

{
‖θδ‖2

L∞(0,T ;H1
0 )‖η′

δ‖2
L2(0,T ;L2)+

+ ‖
√

αδ(ηδ)θ
′
δ‖2

L2(0,T ;L2)

}
.

Similarly, with C4 := sup0≤r≤1

√
α0(r) + 1, we have by (3.14)

‖∇[
√

αδ(ηδ)θδ]‖
L

3
2
≤ M‖∇ηδ‖L2‖θδ‖L6 + ‖

√
αδ(ηδ)∇θδ‖

L
3
2
≤

≤ MC3‖∇ηδ‖L2‖θδ‖H1
0

+ C4|Ω| 16 ‖∇θδ‖L2 ,

whence

(3.16)
‖∇[

√
αδ(ηδ)θδ]‖2

L2(0,T ;L
3
2 )

≤

≤ 2(M2C2
3 + TC2

4 |Ω| 13 )‖θδ‖2
L∞(0,T ;H1

0 )

(
‖∇ηδ‖2

L2(0,T ;L2) + 1
)

.

Now, by (3.15) and (3.16) it is easy to find a constant C2(η0, θ0) such that (3.12)
holds. In a way similar to the case (3.12), we obtain (3.11), too.
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4 – Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1 in three steps.

First step. By the uniform estimates (3.5), (3.6), (3.11) and (3.12), we
see that {θδ} is bounded in L∞(0, T ;H1

0 ), {ηδ} is bounded in W 1,2(0, T ;L2) ∩
L∞(0, T ;H1) ∩ L∞(0, T ;L∞), hence is bounded in L2(0, T ;H2) by (3.1), and

{uδ := αδ(ηδ)θδ} and {vδ :=
√

αδ(ηδ)θδ} are bounded in W 1,2(0, T ;L
3
2 ) ∩

L2(0, T ;W
1, 3

2
0 ). Since W

1, 3
2

0 ↪→ L2 ⊂ L
3
2 and the first imbedding is compact,

it follows from the Aubin’s compactness theorem (cf. [13]) that we can extract a
subsequence {δn} from (0, 1] with δn ↓ 0 (as n → ∞) and find functions η, θ, χ, ζ
such that

ηn := ηδn →η in C([0, T ];L2), weakly in W 1,2(0, T ;L2),(4.1)

weakly in L2(0, T ;H2),(4.2)

and weakly∗ in L∞(0, T ;H1) ∩ L∞(0, T ;L∞),(4.3)

θn := θδn →θ weakly∗ in L∞(0, T ;H1
0 ),(4.4)

un :=αδn
(ηδn

)θδn
→χ in L2(0, T ;L2),(4.5)

and weakly in W 1,2(0, T ;L
3
2 ) ∩ L2(0, T ;W

1, 3
2

0 ),(4.6)

vn :=
√

αδn
(ηδn

)θδn
→ζ in L2(0, T ;L2),(4.7)

and weakly in W 1,2(0, T ;L
3
2 ) ∩ L2(0, T ;W

1, 3
2

0 ).(4.8)

Clearly, η ∈ W 1,2(0, T ;L2)∩L∞(0, T ;H1)∩L2(0, T ;H2), θ ∈ L∞(0, T ;H1
0 ), χ ∈

W 1,2(0, T ;L
3
2 )∩L2(0, T ;W

1, 3
2

0 )∩L2(0, T ;L2),ζ∈W 1,2(0, T ;L
3
2 )∩L2(0, T ;W

1, 3
2

0 )∩
L2(0, T ;L2), η(0) = η0 in L2 and

(4.9) 0 ≤ η ≤ 1, hence 0 ≤ α0(η) ≤ C5 := sup
0≤r≤1

α0(r) a.e on QT .

Moreover, by (4.1)-(4.3),

(4.10) αδn(ηδn) → α0(η) in C([0, T ];L2) and weakly∗ in L∞(0, T ;L∞).

It is easy to see from (4.4), (4.5), (4.7) and (4.10) that

(4.11)
un = αδn(ηδn)θδn → α0(η)θ weakly in L2(0, T ;L2),

vn =
√

αδn(ηδn)θδn →
√

α0(η)θ weakly in L2(0, T ;L2).

Accordingly, we have by (4.11) that χ = α0(η)θ := u and ζ =
√

α0(η)θ := v. By
the way, on account of the Aubin’s compactness theorem, (4.6) implies that

(4.12) un → u = α0(η)θ in C([0, T ];L
3
2 ) and hence u(0) = α0(η0)θ0 in L2.
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Second step. In this step we show

(4.13) θn → θ in L2(0, T ;H1
0 ) (as n → ∞),

which is the key convergence in proving that the pair of functions [η, θ] is a
solution of (P) in the sense of Definition 2.1.

Since [ηn, θn] is a solution of (P)δn
, the following variational inequality holds

(cf. (3.2)):

(4.14)

∫ T

0

(αn(ηn(t))θ′n(t), θn(t)−θm(t)) dt+ν

∫ T

0

(∇θn(t),∇(θn(t)−θm(t))) dt+

+

∫ T

0

∫

Ω

α(ηn(x, t))|∇θn(x, t)|dxdt ≤
∫ T

0

∫

Ω

α(ηn(x, t))|∇θm(x, t)|dxdt,

where αn(·) := αδn
(·) for simplicity. Adding (4.14) and the inequality obtained

by exchanging n for m in (4.14), we get:

∫ T

0

(αn(ηn(t))θ′n(t) − αm(ηm(t))θ′m(t), θn − θm)dt + ν

∫ T

0

‖∇(θn − θm)‖2
L2dt ≤

≤ L(α)

∫ T

0

‖ηn − ηm‖L2‖∇(θn − θm)‖L2dt,

whence

(4.15)

ν

2

∫ T

0

‖∇(θn − θm)‖2
L2dt ≤

≤
∣∣∣∣∣

∫ T

0

(αn(ηn(t))θ′n(t) − αm(ηm(t))θ′m(t), θn − θm)dt

∣∣∣∣∣ +

+
L(α)2

2ν

∫ T

0

‖ηn − ηm‖2
L2dt =:

=: I1 + I2.

Clearly, we observe from (4.1) that I2 → 0 as n, m → ∞. As to I1 we note the
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following inequality:

I1 ≤
∣∣∣∣∣

∫ T

0

(
√

αn(ηn(t))θ′n(t),
√

αn(ηn(t))θn(t) −
√

αn(ηn(t))θm(t))dt

∣∣∣∣∣ +

+

∣∣∣∣∣

∫ T

0

(
√

αm(ηm(t))θ′m(t),
√

αm(ηm(t))θn(t) −
√

αm(ηm(t))θm(t))dt

∣∣∣∣∣ ≤

≤
∣∣∣∣∣

∫ T

0

(
√

αn(ηn(t))θ′n(t),
√

αn(ηn(t))θn(t) −
√

αm(ηm(t))θm(t))dt

∣∣∣∣∣ +

+

∣∣∣∣∣

∫ T

0

(√
αn(ηn(t))θ′n(t),

[√
αm(ηm(t)) −

√
αn(ηn(t))

]
θm(t)

)
dt

∣∣∣∣∣ +

+

∣∣∣∣∣

∫ T

0

(√
αm(ηm(t))θ′m(t),

[√
αm(ηm(t)) −

√
αn(ηn(t))

]
θn(t)

)
dt

∣∣∣∣∣ +

+

∣∣∣∣∣

∫ T

0

(
√

αm(ηm(t))θ′m(t),
√

αn(ηn(t))θn(t) −
√

αm(ηm(t))θm(t))dt

∣∣∣∣∣ =:

=: I3 + I4 + I5 + I6.

In these inequalities, we infer from (3.6) and (4.7) that I3 → 0 and I6 → 0 as
n, m → ∞. On the other hand, we observe from (3.6) and (4.10) with the help
of the Lebesgue’s dominated convergence theorem and a Sobolev inequality that

(4.16)

∥∥∥
[√

αm(ηm) −
√

αn(ηn)
]
θm

∥∥∥
2

L2(0,T ;L2)
≤

≤
∫ T

0

∥∥∥
√

αm(ηm(t)) −
√

αn(ηn(t))
∥∥∥

2

L4
‖θm(t)‖2

L4 dt ≤

≤ C2
6 ‖θm‖2

L∞(0,T ;H1
0 )

∫ T

0

∥∥∥
√

αm(ηm(t)) −
√

αn(ηn(t))
∥∥∥

2

L4
dt −→

−→ 0 as n, m → ∞,

where C6 is a positive constant such that

‖z‖L4 ≤ C6‖z‖H1
0
, ∀z ∈ H1

0 .

Therefore, by (3.6) and (4.16) that I4 → 0 as n, m → ∞. Similarly, we see
that I5 → 0 as n, m → ∞. Thus, letting n, m → ∞ in (4.15), we see that
∇(θn − θm) → 0 in L2(0, T ;L2) as n, m → ∞. This implies that θn → θ in
L2(0, T ;H1

0 ). Thus (4.13) holds.

Third step. In this step, we accomplish the proof of Theorem 2.1, namely
we show that the pair of functions [η, θ] is a solution of (P) in the sense of
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Definition 2.1. Conditions (1) and (4) of Definition 2.1 are already seen in the
first and second steps (cf. (4.1)-(4.9), (4.12)). We shall prove conditions (2)
and (3) of Definition 2.1.

Since [ηn, θn] is a solution of (P)δn
, the following equation holds (cf. (3.1)):

(4.17)
η′

n(t) − κΔNηn(t) + g(ηn(t)) + α′(ηn(t))|∇θn(t)| = 0 in L2

for a.a. t ∈ (0, T ).

Now, letting n → ∞ in (4.17), we easily see by (4.1), (4.2) and (4.13) that

η′(t) − κΔNη(t) + g(η(t)) + α′(η(t))|∇θ(t)| = 0 in L2 for a.a. t ∈ (0, T ).

Thus (2) of Definition 2.1 has been obtained.
Finally, we show the variational inequality (2.2). By (3.2) we have for each

n = 1, 2, · · · , and z ∈ L2(0, T ;H1
0 )

(4.18)

∫ T

0

(αn(ηn(t))θ′n(t), θn(t)−z(t)) dt+ν

∫ T

0

(∇θn(t),∇θn(t)−∇z(t)) dt+

+

∫ T

0

∫

Ω

α(ηn(x, t))|∇θn(x, t)|dxdt≤
∫ T

0

∫

Ω

α(ηn(x, t))|∇z(x, t)|dxdt.

Here, note that the first term in the left hand side of (4.18) is written in the
following form:

(4.19)

∫ T

0

(αn(ηn(t))θ′n(t), θn(t) − z(t)) dt =

=

∫ T

0

∫

Ω

u′
n(t)(θn(x, t) − z(x, t))dxdt+

−
∫ T

0

∫

Ω

α′
n(ηn(x, t))η′

n(x, t)θn(x, t)(θn(x, t) − z(x, t))dxdt.

Here we note from (4.1)-(4.3) that

α′
n(ηn)η′

n = α′
0(ηn)η′

n → α′
0(η)η′ weakly in L2(0, T ;L2).

Also, by (4.13), the compact imbedding H1
0 ↪→ L4 and the Lebesgue’s dominated

convergence theorem, we easily see that

θ2
n → θ2 and θnz → θz in L2(0, T ; L2).

Therefore, by (4.6), (4.13), (4.19) and the above convergences, we have

(4.20)

lim
n→∞

∫ T

0

(αn(ηn(t))θ′n(t), θn(t) − z(t))dt =

=

∫ T

0

∫

Ω

u′(x, t)(θ(x, t) − z(x, t))dxdt−

−
∫ T

0

∫

Ω

α′
0(η(x, t))η′(x, t)θ(x, t)(θ(x, t) − z(x, t))dt.
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Hence, passing to the limit as n → ∞ in (4.18), we infer from (4.20) that [η, θ]
satisfies that

∫ T

0

∫

Ω

u′(x, t)(θ(x, t) − z(x, t))dxdt−

−
∫ T

0

∫

Ω

α′
0(η(x, t))η′(x, t)θ(x, t)(θ(x, t) − z(x, t))dxdt+

+ ν

∫ T

0

(∇θ(t),∇(θ(t) − z(t))) dt +

∫ T

0

∫

Ω

α(η(x, t))|∇θ(x, t)|dxdt ≤

≤
∫ T

0

∫

Ω

α(η(x, t))|∇z(x, t)|dxdt, ∀z ∈ L2(0, T ;H1
0 ).

This is equivalent to the statement that (2.2) holds for a.a. t ∈ (0, T ) and all
z ∈ H1

0 . Hence, we conclude that [η, θ] is a solution of (P) in the sense of
Definition 2.1. Thus, the proof of Theorem 2.1 has been completed.
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