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A compactness result for quasilinear elliptic equations

by mountain pass techniques
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Abstract: A class of solutions to some quasilinear elliptic equations is con-
sidered. Some estimates due to some Mountain Pass techniques allow to obtain a
compactness result for this class of solutions, with a suitable continuous dependence on
the data.

1 – Introduction

In [2], [3] a method to solve a quasilinear elliptic problem of the type

(∗)
{ −Δu(x) = f(x, u(x), ∇u(x)) x ∈ Ω

u(x) = 0 x ∈ ∂Ω

(where Ω is a bounded open subset of RN , N ≥ 3) was proposed. It is based
on the consideration of “approximated” Mountain Pass solutions um to some
semilinear problems associated with the quasilinear one. When the parameter
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m goes to +∞, it is proved that {um} converges to a classical solution of the
quasilinear problem. In the following, an analogous way of approximating a
quasilinear problem by a sequence of semilinear ones was applied in order to find
periodic solutions of some quasilinear nonautonomous second order Hamiltonian
systems (see [4]).

The aim of the present paper is to give a compactness result for the solu-
tions obtained by this method for a class of quasilinear elliptic problems. More
precisely, one considers, for any n ∈ N, a problem of the type

⎧
⎪⎨
⎪⎩

−
N∑

i,j=1

∂

∂xj

(
a
(n)
ij (x)

∂un

∂xi

)
= fn(x, un(x), ∇un(x)) x ∈ Ω

un(x) = 0 x ∈ ∂Ω

where a
(n)
ij ∈ C1(Ω) ∀n ∈ N, i, j = 1, . . . , N , are equibounded with respect to n

and satisfy the following uniform ellipticity condition

N∑

i,j=1

a
(n)
ij

(x)ξiξj ≥ λ|ξ|2 , ∀ ξ = (ξ1, . . . , ξN ) ∈ RN , x ∈ Ω , for some λ > 0,

and fn satisfies a list of hypotheses of the same type as f in (∗), but with
some suitable “uniformity” with respect to n. Then one can state that, if {fn}
converges to f in a suitable way (in particular, if {fn} converges to f uniformly

on each compact subset of Ω × R × RN , and a
(n)
ij → aij in C1(Ω)), then a

subsequence of the solutions un, obtained by Mountain Pass techniques as in [3],
actually converges to a classical solution u of the limit problem

⎧
⎪⎨
⎪⎩

−
N∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
= f(x, u(x) , ∇u(x)) x ∈ Ω

u(x) = 0 x ∈ ∂Ω.

In order to state the result, we apply, for any n ∈ N, the approximation procedure
proposed in [3], which exhibits a solution un of the quasilinear problem as the
limit of solutions {un

m}m of semilinear ones. The significant originality with
respect to the result of [3] is that the suitable “uniformity” of assumptions on
fn with respect to n enable to give some estimates on um

n which are uniform not
only with respect to m, but also with respect to n. This allows to go to the limit
on a subsequence of {un} and to obtain a classical solution of the limit problem.

1. Let us consider the following problem, for any n ∈ N,

(Pn)

{
An un(x) = fn(x, un(x),∇un(x)) x ∈ Ω

un(x) = 0 x ∈ ∂Ω
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where:

• Ω is a sufficiently smooth bounded open subset of Rn(N ≥ 3)

• An : H1
0 (Ω) → H−1(Ω) is the operator defined as

An v(x) = −
N∑

i,j=1

∂

∂xj

(
a
(n)
ij (x)

∂v(x)

∂xi

)
∀ v ∈ H1

0 (Ω) , x ∈ Ω

for some a
(n)
ij ∈ C1(Ω), with a

(n)
ij = a

(n)
ji (i, j = 1, . . . , N) satisfying the

equiuniform ellipticity condition

(1)
∑N

i,j=1 a
(n)
ij (x)ξiξj ≥ λ|ξ|2 ∀ξ = (ξ1, . . . , ξN ) ∈ RN , ∀, x ∈ Ω, for some

λ > 0

and the equiboundedness condition

(2)
∑N

i,j=1 a
(n)
ij (x)ξiξj ≤ Λ|ξ|2 ∀ξ = (ξ1, . . . , ξN ) ∈ RN ∀x ∈ Ω, for

some Λ > 0

• fn : Ω × R × RN → R verifies the following conditions:

(3) fn is locally Lipschitz continuous on Ω × R × RN , uniformly w.r. to
n ∈ N

(4) limt→0
fn(x,t,ξ)

t = 0 uniformly w.r. to Ω and to each bounded subset of
RN

(5) ∃ a1 > 0, p ∈
(
1, N+1

N−1

)
, r ∈ (0, 1), sufficiently small in dependence of

p and N , such that

|fn(x, t, ξ)| ≤ a1(1 + |t|p)(1 + |ξ|r) ∀x ∈ Ω , t ∈ R , ξ ∈ RN , n ∈ N

(6) ∃ϑ > 2 such that

0 < ϑFn(x, t, ξ) ≤ tfn(x, t, ξ) ∀x ∈ Ω, t ∈ R\{0}, ξ ∈ RN , n ∈ N

where

Fn(x, t, ξ) =

∫ t

0

fn(x, τ, ξ)dτ

(7) ∃ a2, a3 > 0 such that

Fn(x, t, ξ) ≥ a2|t|ϑ − a3 ∀x ∈ Ω , t ∈ R, ξ ∈ RN , n ∈ N
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(8) ∃R > 0, depending on p, ϑ, a1, a2, a3, N, |Ω| in an explicite way, such
that the smallest positive numbers L′

R
, L′′

R
for which

|fn(x, t1, ξ) − fn(x, t2, ξ)| ≤ L′
R
|t1 − t2|

∀x ∈ Ω, |t1| ≤ R, |t2| ≤ R, |ξ| ≤ R

|fn(x, t, ξ1) − fn(x, t, ξ2)| ≤ L′′
R
|ξ1 − ξ2|

∀x ∈ Ω, |t| ≤ R, |ξ1| ≤ R, |ξ2| ≤ R

verify the relation

λ−1
1 L′

R
+ λ

−1/2
1 L′′

R
< λ

where λ1 is the first eigenvalue of the operator −Δ on H1
0 (Ω).

The following theorem can be proved (see also [3])

Theorem 1. Let (1), . . . ,(8) be satisfied. Then, for any n ∈ N, there exists
a classical solution un of (Pn) such that

(9) ‖un‖H1
0 (Ω) ≥ c1 > 0 ∀n ∈ N

and

(10) ‖un‖C2(Ω) ≤ c2 ∀n ∈ N

Let us suppose now that

(11) a
(n)
ij → aij in C1(Ω) as n → +∞, for i, j = 1, . . . , N

and consider the following problem:

(P )

{
Au(x) = f(x, u(x), ∇u(x)), x ∈ Ω

u(x) = 0 x ∈ ∂Ω

where A is defined as An with a
(n)
ij replaced by aij and f : Ω×R×RN → R.

Then the following stability theorem holds:

Theorem 2. Let (1), . . . ,(8), (11) be satisfied and let un be the solution of
(Pn) given by Theorem 1, for any n ∈ N. Moreover let the following condition
be satisfied:

(12) For any sequence {vn} converging to some v in C1,β(Ω) for any β ∈ (0, 1),
one has

fn(x, vn(x,∇vn(x)) → f(x, v(x),∇v(x)) as n → +∞, ∀x ∈ Ω.

Then {un} possesses a subsequence converging in C2(Ω) to a nontrivial so-
lution u of (P ).
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Remark 1. One can replace assumption (6) with the following one

(6′) There exist some compact subset K of R × RN and some numbers ϑ > 2
and c3 > 0 such that
⎧
⎪⎨
⎪⎩

0 < Fn(x, t, ξ) ≤ c3 ∀n ∈ N ∀(x, t, ξ) ∈ Ω × K, t �= 0

0 < ϑFn(x, t, ξ) ≤ tfn(x, t, ξ) ∀n ∈ N ∀(x, t, ξ) ∈ Ω × ((R × RN )\K),

t �= 0.

Remark 2. As a standard example of a function fn satisfying (1), . . . ,(8),
one can choose

fn(x, t, ξ) = ϕ(x)|t|(p+1) n+1
n (1 + |ξ| rn

n+1 )

where ϕ ∈ Lip(Ω), with ϕ(x) > 0 ∀x ∈ Ω.
In order to obtain other examples, one can use the alternative condition (6′)

to (6) expressed in Remark 1, by standard truncature arguments at zero and at
infinity in the (t, ξ) variable.

Remark 3. A sufficient condition assuring (12) is that {fn} converges to f
uniformly on each compact subset of Ω × R × RN . In particular, this condition
is verified by the function fn given in Remark 2 with

f(x, t, ξ) = ϕ(x)|t|p+1(1 + |ξ|r).

Remark 4. Let us note that, if one considers the critical exponent of
H1

0 (Ω), that is

2∗ =
2N

N − 2

one can check that the number p appearing in condition (5) is less that 2∗ − 1,
since N+1

N−1 < N+2
N−2 .

First let us fix n ∈ N, and consider, for any w ∈ H1
0 (Ω), the following

semilinear problem

(Pw
n )

{
An uw

n (x) = fn(x, uw
n (x), ∇w(x)) x ∈ Ω

uw
n (x) = 0 x ∈ ∂Ω.

As An is selfadjoint, any weak solution uw
n of (Pw

n ) is a critical point of the
functional

Iw
n (x) =

1

2

∫

Ω

(Anv, v) −
∫

Ω

Fn(x, v(x),∇w(x)) v ∈ H1
0 (Ω).

Note that, denoting the H1
0 -norm of v by ‖v‖, one has, by (1),

(13) Iw
n (v) ≥ λ

2
‖v‖2 −

∫

Ω

Fn(x, v(x),∇w(x)) ∀ v ∈ H1
0 (Ω)
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and, by (2),

(14) Iw
n (v) ≤ Λ

2
‖v‖2 −

∫

Ω

Fn(x, vx),∇w(x)) ∀ v ∈ H1
0 (Ω).

One can state that Iw
n has a Mountain Pass critical point uw

n �≡ 0 for any w
belonging to the following set CR,α with a fixed R > 0 and α ∈ (0, 1)

CR,α = {w ∈ C1,α(Ω) : ‖w‖C1,α(Ω) ≤ R}.

Lemma 1. For any w ∈ CR,α, there exist ρR, σR > 0, depending on R, but
not on w, such that

Iw
n (v) ≥ σR ∀ v ∈ H1

0 (Ω) with ‖v‖ = ρR.

Proof. From (4) it follows that, for any ε > 0, there exists some δ > 0
such that

Fn(x, v(x),∇w(x)) <
1

2
ε|v(x)|2 ∀x ∈ Ω , |v(x)| ≤ δ

hence, from (5)

∫

Ω

Fn(x, v(x),∇w(x)) ≤ ε

2

∫

Ω

|v(x)|2 + K(1 + R)r

∫

Ω

|v(x)|p+1 ≤

≤ K ′
(ε

2
+ K(1 + R)r‖v‖p−1

)
‖v‖2 ∀ v ∈ H1

0 (Ω)

with a positive constant number K ′ depending on the Poincaré and Sobolev
inequalities.

By choosing ‖v‖ =
(

ε
2K(1+R)r

) 1
p−1

= ρR, one gets

∫

Ω

Fn(x, v(x),∇w(x)) ≤ K ′ε‖v‖2.

Therefore the thesis follows from (13) by taking ε < λ
2K′ and σR =

(
λ
2 − K ′ε

)
ρ2

R.

Lemma 2. Let w ∈ Cr,α and let us fix ṽ in H1
0 (Ω)\{0}. Then there exists

some s̃ > 0 independent of w and R such that

(15) Iw
n (sṽ) ≤ 0 ∀ s ≥ s̃,
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so v = s̃ṽ verifies
‖v‖ > ρR Iw

n (v) ≤ 0.

Proof. It follows from (7), (13) that

Iw
n (sṽ) ≤ Λ

2
s2‖ṽ‖2 − a2|s|ϑ

∫

Ω

|ṽ|ϑ + a3|Ω|.

As ϑ > 2, one can find s̃ in such a way that (15) holds.

Proposition 1. Let w ∈ CR,α. Then there exists a Mountain Pass critical
point uw

n for Iw
n on H1

0 (Ω), that is

(16) Iw
n (uw

n ) = inf
γ∈Γ

max
t∈[0,1]

Iw
n (γ(t))

where
Γ = {γ ∈ C0([0, 1]; H1

0 (Ω)) : γ(0) = 0, γ(1) = v}
and

Iw
n (uw

n ) ≥ σR > 0,

so uw
n �≡ 0.

Proof. It is an immediate consequence of the Ambrosetti and Rabinowitz
theorem (see [1]), as Iw

n (0) = 0, Lemma 1 and Lemma 2 hold, and the Palais–
Smale condition is satisfied by Iw

n due to the continuous embedding of H1
0 (Ω) in

Lp(Ω) (as p < N+2
N−2 , see Remark 4).

At this point, one can give the

Proof of Theorem 1. Let us proceed by steps.

Step 1. Let w ∈ CR,α and let uw
n a Mountain Pass solution of (Pw

n ) given
by Proposition 1. Then there exists a positive number c1(R) depending on R
but not on w, nor on n, such that

‖uw
n ‖ ≥ c1(R).

Proof. Actually the estimate holds for any critical point uw
n of Iw

n with
uw

n �≡ 0 and it does not depend by the Mountain Pass nature of uw
n . Indeed,

putting v = uw
n in the relation

∫

Ω

(Anuw
n , v) =

∫

Ω

Fn(x, uw
n (x),∇w(x))v(x) ∀ v ∈ H1

0 (Ω)
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one gets, by using (3),

(17) ‖uw
n ‖2 ≤ Λ

∫

Ω

Fn(x, un
w(x),∇w(x))uw

n (x).

From (4), (5) it follows that, for any ε > 0, there exists a positive number cε,R,
depending on ε and R, but not on w nor on n, such that

|Fn(x, un
w(x),∇w(x))| ≤ ε|un

w(x)| + cε,R|un
w(x))|p ∀x ∈ Ω.

Then, by (17),

‖uw
n ‖2 ≤ ε

∫

Ω

|uw
n |2 + Λcε,R

∫

Ω

|uw
n |p+1

so, by Poincaré and Sobolev inequalities, one gets

(1 − cε)2‖uw
n ‖2 ≤ c̃ε,R‖uw

n ‖p+1

which implies the thesis if one chooses ε < 1
c , as p + 1 > 2.

Step 2. Let w ∈ CR,α and let uw
n a Mountain Pass solution of (Pw

n ) given
by Proposition 1. Then there exists a positive number C independent of w, R
and n such that

‖uw
n ‖ ≤ C.

Proof. From the characterization (16) of uw
n , by choosing as γ in Γ the

segment line joining 0 with v in H1
0 (Ω), one gets

Iw
n (uw

n ) ≤ sup
s≥0

Iw
n (sv)

hence, by (7), (2)

Iw
n (uw

n ) ≤ sup
s≥0

{
Λ2s2

2
‖v‖2 − a2|s|ϑ

∫

Ω

|v|ϑ + a3|Ω|
}

.

As ϑ > 2, this supremum is indeed a maximum and it does not depend on
n, R, w, hence

Iw
n (uw

n ) ≤ const. ∀R > 0 w ∈ CR,α ∀n ∈ N.

At this point, using the criticality of uw
n , (6), (17), (2), one gets

1

2
‖uw

n ‖2 ≤ const. +
1

ϑ

∫

Ω

fn(x, uw
n (x),∇w(x))uw

n (x) ≤ const. +
1

ϑ
‖uw

n ‖2

and the thesis follows from the fact that ϑ > 2.
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Step 3. For any R > 0 and any w ∈ CR,α, uw
n belongs to C2(Ω). Moreover

there exist two numbers α ∈ (0, 1), μ > 0 such that

(18) ‖uw
n ‖C1,α ≤ μ(1 + R)rp,N ,

with a suitable number rp,N ∈ (0, 1), ∀n ∈ N, R > 0, w ∈ CR,α.

Proof. At first, as uw
n is a solution of the equation

(19) Anuw
n = f(x, uw

n (x),∇w(x)),

in particular uw
n belongs to L2∗

, then f(x, uw
n (x),∇w(x)), by (5), the definition

of CR,α and the Nemitsky theorem, belongs to L2∗/p, therefore, by the Agmon–
Douglis–Nirenberg theorem, uw

n belongs to H2,2∗/p. At this point, one applies
Morrey or Sobolev embedding theorems. Actually, one has three possibilities:

p

2∗
− 2

N
< 0(20)

p

2∗
− 2

N
= 0(21)

p

2∗
− 2

N
> 0.(22)

In case (20), the Morrey’s theorem directly yields the α1-Hölder continuity of
uw

n for some α1 ∈ (0, 1). In case (21), uw
n belongs to Lq(Ω) ∀ q ∈ [1,+∞), so

that, by (19), (5) and the Agmon-Douglis-Nirenberg theorem, uw
n belongs to H2,q

for any q ∈ [1,+∞), in particular for q > N , which still yields the α1–Hölder

continuity of uw
n . Finally, if (22) holds, putting q =

(
p
2∗ − 2

N

)−1
, the Sobolev

embedding theorem implies that uw
n belongs to Lq(Ω) with

(23) q =

(
p

2∗
− 2

N

)−1

=
2N

(N − 2)p − 4
,

so that fn(x, uw
n (x), w(x)) belongs to Lq/p with q given by (23), thus un

n belongs
to H2,q/p. At this point one continues the same argument as above and, after a
finite number j of steps, one arrives to some cases analogous to (20) and (21),
which yields the α1-Hölder continuity of uw

n , otherwise one can define a number
analogous to q as

(24)
2N

((N − 2)p − 4)p − 4)p − 4 · · · )
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with p repeated exactly j times. Actually it is possible to check that the denom-
inator of the number appearing in (24) becomes not positive if j is sufficiently
large, as a consequence of the fact that p < N+2

N−2 (see Remark 4). Let us note
j(p, N) the first of these numbers.

At this point one comes back to a situation as (20) and the same argument
still implies the conclusion that uw

n is α1-Hölder continuous for some α1 ∈ (0, 1).
Moreover, Step 2, (5) and the very definition of CR,α1

imply that there exists
μ0 > 0 such that

(25) ‖uw
n ‖C0,α1 ≤ μ0(1 + R)r′

p,N , ∀n ∈ N ∀w ∈ CR,α1

where r′p,N = r(j(p, N)) is a suitable positive number. Obviously if r is suffi-
ciently small w.r. to p and N, r′p,N is less than 1.

As for ∇uw
n , one starts from the fact that it belongs to H1,2∗/p, as uw

n ∈
H2,2∗/p. Now the alternatives analogous to (20), (21), (22) are the following:

p

2∗
− 1

N
< 0(26)

p

2∗
− 1

N
= 0(27)

p

2∗
− 1

N
> 0.(28)

At this point, one argues exactly as before for uw
n , arriving to the same conclusion

due to the fact that, in this case, the denominator of the number

4N

(2N − 2)p − 4)p − 4)p − 4) · · · )

with p repeated j times for some j ∈ N, becomes not positive for j sufficiently
large, as a consequence, in this case, of the condition p < N+1

N−1 . Therefore one

can still conclude that ∇uw
n belong to C0,α2(Ω), for some α2 ∈ (0, 1) and that,

by Step 2, (5) and the very definition of CR,α2
, there exists some μ1 > 0 such

that

(29) ‖∇uw
n ‖C0,α2 ≤ μ1(1 + R)r′′

p,N , ∀n ∈ N ∀w ∈ CR,α2

with a suitable number r′′p,N ∈ (0, 1). Finally, one gets (18), as a consequence
of (25) and (29), by choosing α = min(α0, α1), μ = max(μ0, μ1) and rp,N =
min(r′p,N , r′′p,N ).
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Step 4. There exists some R > 0 such that

(30) w ∈ CR,α ⇒ uw
n ∈ CR,α ∀n ∈ N.

Proof. It is an obvious consequence of (18), by choosing, in CR,α, α = α
and R sufficiently large in such a way that

μ(1 + R)rp,N ≤ R.

Note that such a number R exists, since rp,N ∈ (0, 1).
At this point, it is very natural to introduce an iterative scheme in the

following way. Let R and α be given by Step 4 and let u0
n be arbitrarily fixed in

CR,α. Let us define um
n as a Mountain Pass solution of the following problem,

for any m, n ∈ N:

(Pm
n )

{
Anum

n (x) = fn(x, um
n (x) , ∇um−1

n (x)) x ∈ Ω

um
n (x) = 0 x ∈ ∂Ω.

Obviously, by Step 4, one has um
n ∈ CR,α for any m, n ∈ N. Now we are in a

position to give the proof of Theorem 1.

Proof of Theorem 1. Let m and n be fixed in N, let u0
n ∈ CR,α, with

R, α given by Step 4, and let um
n be a Mountain Pass solution of (Pm

n ). First of
all we prove that the whole sequence {um

n }m strongly converges in H1
0 (Ω) for all

n ∈ N. Indeed, using (Pm
n ) and (Pm+1

n ), one gets

∫

Ω

Anum+1
n (um+1

n − um
n ) =

∫

Ω

fn(x, um+1
n (x),∇um

n (x))(um+1
n − um

n )(31)

∫

Ω

Anum
n (um+1

n − um
n ) =

∫

Ω

fn(x, um
n (x),∇um−1

n (x))(um+1
n − um

n ).(32)

So, by subtracting (32) from (31) and taking into account (1), (8), one gets

λ‖um+1
n − um

n ‖2 ≤
(

L′
R

∫

Ω

(um+1
n (x) − um

n (x))2+

+ L′′
R

∫

Ω

|∇um
n (x) −∇um−1

n (x)| |um+1
n (x) − um

n (x)|
)

≤

≤λ−1
1 L′

R
‖um+1

n − um
n ‖2+λ−1/2L′′

R
‖um

n − um−1
n ‖‖um+1

n − um
n ‖,

thus
(λ − λ−1

1 L′
R
)‖um+1

n − un‖ ≤ λ
−1/2
1 L′′

R
‖um

n − um−1
n ‖
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then {um
n }m is a Cauchy sequence in H1

0 (Ω), as a consequence of (8), therefore
{um

n }m strongly converges in H1
0 (Ω) to some un for any n ∈ N. On the other

side, by (3), Step 4, (5) and the Schauder’s theorem, one has um
n ∈ C2,α(Ω) for

any n ∈ N, and

‖um
n ‖C2,α ≤ const ∀n, m ∈ N.

Therefore, by the Ascoli–Arzela’s theorem, the whole sequence {um
n }m converges

in C2(Ω) to un, which satisfies the estimate

‖un‖C2 ≤ c2.

At this point, it is easy to verify, by the regularity properties of An and fn, that
un is a classical solution of (Pn). Finally estimate (9) (so the nontriviality of un)
derives from Step 1 with c1 = c1(R).

Now it is quite easy to give the proof of Theorem 2.

Proof of Theorem 2. First of all, by (10), (5) and the Schauder’s theo-
rem, one has

‖un‖C2,β ≤ const ∀n ∈ N and ∀β ∈ (0, 1)

then, still by Ascoli–Arzela’s theorem, there exists a subsequence {unk
}k con-

verging in C2(Ω) to some u, with

‖u‖H1
0 (Ω) ≥ c1.

Actually u is a (nontrivial) solution of problem (P ), due to (11) and (12).

Remark 5. Assumption (3) can be weakened for the proof of Theorem 1,
2. Indeed in the proof of Theorem 1 one only uses the Lipschitz continuity with
respect the variables t, ξ for |t| ≤ R , |ξ| ≤ R. Similarly, in Theorem 2, one uses
this property only for |t| ≤ R̃, |ξ| ≤ R̃, where R̃ is determined by the use of the
Schauder’s Theorem in the proof of this theorem.
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Leonardo Murialdo – 00146 Roma, Italy
E-mail: girardi@mat.uniroma3.it

Michele Matzeu – Dipartimento di Matematica – Università Roma “Tor Vergata” – Viale della
Ricerca Scientifica – 00133 Roma, Italy
E-mail: matzeu@mat.uniroma2.it


