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Partial results on extending the Hopf Lemma

YAN YAN LI – LOUIS NIRENBERG

Dedicated with affection to Umberto Mosco on his 70th birthday

Abstract: We proved in [1] a generalization of the Hopf Lemma in one di-
mension. In this paper we present two conjectures as possible extensions to higher
dimensions, and give a very partial answer.

1 – Introduction

In [1], Theorem 3, the authors proved, in one dimension, a generalization
of the Hopf Lemma, and the question arose if it could be extended to higher
dimensions. In this paper we present two conjectures as possible extensions, and
give a very partial answer. We write this paper to call attention to the problem.

The one dimensional result of [1] was

Theorem 1. Let u ≥ v be positive C3, C2 functions respectively on (0, b)
which are also in C1([0, b]). Assume

(1) u(0) = u̇(0) = 0

and
either u̇ > 0 on (0, b) or v̇ > 0 on (0, b).
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Main condition:

(2) whenever u(t) = v(s) for 0 < t ≤ s < b, there ü(t) ≤ v′′(s),

(here · = d
dt ,

′ = d
ds ).

Then

(3) u ≡ v on [0, b].

The proof given in [1] is somewhat roundabout. In the Appendix we present a
more direct one, but it is still a bit tricky. In [1], it was assumed that u is of
class C2 on (0, b), but its proof there actually required that u be of class C3.

Turn now to higher dimensions. Let u ≥ v be C∞ functions of (t, y), y ∈ Rn,
in

Ω = {(t, y) | 0 < t < 1, |y| < 1},
and C∞ in the closure of Ω. Assume that

(4) u > 0, v > 0, ut > 0 in Ω

and

(5) u(0, y) = 0 for |y| < 1.

We impose a main condition:

(6)
whenever u(t, y) = v(s, y) for 0 < t ≤ s < 1, |y| < 1,

there Δu(t, y) ≤ Δv(s, y).

Under some additional conditions we wish to conclude that

(7) u ≡ v.

Here are two conjectures, in decreasing strength, which would extend Theorem 1.
In each, we consider u and v as above.

Conjecture 1. Assume, in addition, that

(8) ut(0, 0) = 0.

Then (3) holds:
u ≡ v.

Conjecture 2. In addition to (8) assume that

(9) u(t, 0) and v(t, 0) vanish at t = 0 of finite order.
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Then
u ≡ v.

We have not succeeded in proving them. What we present here is a partial
answer to Conjecture 2: Here let k, l be the orders of the first t−derivative of u,
v respectively at the origin which are not zero. Clearly k ≤ l.

Theorem 2. In addition to the conditions of Conjecture 2, we assume the
annoying condition

(10) ∇yutt(0, 0) = 0.

Then u ≡ v provided k = 2 or 3.

For k < 3 the proof is simple, but not that for k = 3.
We will always use Taylor series expansions for u, v, in t,

(11)
u = a1(y)t + a2(y)

t2

2!
+ a3(y)

t3

3!
+ · · · ,

v = b1(y)t + b2(y)
t2

2!
+ b3(y)

t3

3!
+ · · · .

The conditions on u and v are as follows

(12) 0 ≤ u(t) − v(t) = (a1 − b1)t + (a2 − b2)
t2

2!
+ (a3 − b3)

t3

3!
+ · · ·

where
u(t, y) = v(s, y), t ≤ s,

i.e.

(13) a1(y)t + a2(y)
t2

2!
+ a3(y)

t3

3!
+ · · · = b1(y)s + b2(y)

s2

2!
+ b3(y)

s3

3!
+ · · · ,

there

(14)

0 ≥ Δu − Δv = (a2 − b2) + t(Δa1 + a3) − s(Δb1 + b3)+

+
t2

2
(Δa2 + a4) −

s2

2
(Δb2 + b4) + · · · .

We first present the proof of the more difficult case k = 3. It takes up Sections 2-
5. In Section 6 we treat the case k = 2.
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2 –

Steps of the proof. We are assuming k = 3. The proof consists of two
steps:

Step A. This consists in proving

Theorem 3. Under the conditions of Theorem 2, where k = 3, we have

(15) l = 3, and b3(0) = a3(0).

Step B. In this step we consider our condition

(16) u(t, y) = v(s, y) for 0 ≤ t ≤ s.

Since ut > 0 for t > 0, we may solve this for t = t(s, y). Assuming that u is not
identically equal to v, for

(17) τ(s, y) = s − t(s, y)

we derive, from (6), an elliptic differential inequality for τ(s, y). Using a com-
parison function we prove that

(18) τ(s, 0) ≥ εs for some 0 < ε small.

On the other hand, for y = 0, we have, by (15) and (11),

u(t, 0) = v(s, 0)

i.e. after dividing by a3(0),

t3 + higher order terms = s3 + higher order terms.

Hence

t(s, 0) = s + higher order terms.

But this contradicts (18), and the proof of Theorem 2 is then complete.

For k = 3, we will first present the proof of Step B; it seems more interesting
to us.
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3 –

Proof of (18) in case k = 3. Here we assume that (15) holds, i.e.

b3(0) = a3(0) > 0

and first derive the elliptic inequality for τ(s, y) = s− t(s, y), where t(s, y) is the
solution of

(19) u(t(s, y), y) = v(s, y).

Differentiating this we find, setting vi = ∂yi
v,

vs = utts, vss = uttss + uttt
2
s,

vi = utti + ui, vii = uttii + 2utiti + uttt
2
i + uii.

Hence
0 ≤ Δv(s, y) − Δu(t, y) = utΔt + 2utiti + utt(|∇t|2 − 1).

In terms of τ = s − t, this becomes, after dividing by ut,

(20) F (τ) := Δτ − utt

ut
(|∇τ |2 − 2τs) + 2

uti

ut
τi ≤ 0.

This is the differential inequality for τ .
We will consider this in the region

(21) D = {(s, y) | s > K|y|2}, K large, near the origin,

and use a comparison function:

(22) h = s + s1+δ − C|y|2, δ =
1

4
, C = K + 1.

Near the origin we have

(23) h(s, y) ≤ 0 where s = K|y|2.

We assume now that v is not identically equal to u near the origin and argue by
contradiction.

Observe first that if v(s̄, ȳ) = u(s̄, ȳ) for some ȳ and some s̄ > 0 then
τ(s̄, ȳ) = 0. But near (s̄, ȳ), τ ≥ 0 satisfies the inequality (20), which is elliptic
there. By the strong maximum principle, it would follow that τ ≡ 0 there. Then,
again by the strong maximum principle τ ≡ 0 everywhere, i.e. v ≡ u near the
origin, for t ≥ 0. Contradiction.

Thus we may assume that τ > 0 for s > 0.
The basic result of this section is

Lemma 1. For 0 < ε small, τ ≥ εh in D near the origin.
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Once the lemma is proved, it follows that τ(s, 0) ≥ εs for 0 < s small,
i.e., (18) holds, and Step B would be complete.

Proof of Lemma 1. Choose positive ε ≤ 1/10, so small that on D ∩ {s =
c}, c to be fixed – where τ is positive, and hence bounded away from zero –

(24) τ ≥ εh,

ε depends on c.
In view of (23) it follows then that

τ − εh ≥ 0, on the boundary of G = D ∩ {s < c}.

We now use the maximum principle, suitably to show that

(25) τ ≥ εh in G.

Completing the proof of Lemma 1. We argue by contradiction.
Suppose τ − εh has a negative minimum at some point (s̄, ȳ) in G. There,

of course,

τ < ε(s + s1+δ) < 2εs,

and so

(26) t = s − τ ≥ (1 − 2ε)s ≥ 4

5
s.

At (s̄, ȳ), ∇τ = ε∇h and

Δτ ≥ εΔh.

Therefore, there, εh satisfies the inequality

Δ(εh) − utt

ut
(ε2|∇h|2 − 2εhs) + 2ε

uti

ut
hi ≤ 0

i.e. after dividing by ε,

(27)

F [εh] = Δh − utt

ut

{
ε[(1 + (1 + δ)sδ)2 + 4C2|y|2] − 2 − 2(1 + δ)sδ

}
+

− 4C
utiyi

ut
≤ 0.

For small ε and c (which may depend on K),

(28) the expression { } in (27) is negative.
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We will choose K to ensure that

(29) utt(t(s̄, ȳ), ȳ) ≥ 0.

We have

(30) utt = a2 + a3t + · · · .

Since a3(0) > 0, near the origin,

(31) a3(t, y) ≥ a3(0)

2
.

Recall that ut > 0, i.e.

(32) 0 < a1 + ta2 +
t2

2
a3 + · · · .

Thus a1 ≥ 0 and a1 = O(|y|2). By (10), and it is only here that (10) is used,

(33) |a2| ≤ A|y|2

for some A > 0.
Now, still at (s̄, ȳ), and for t = t(s̄, ȳ), we have

utt = a2 + a3t + · · · ≥ a3(0)

2
t − A|y|2 + O(t2) ≥

≥ a3(0)

4
t − A|y|2 (for c small) ≥

≥ a3(0)

5
s − A|y|2

by (26). We require

K ≥ 5A

a3(0)
.

Then (29) holds:

utt ≥ 0,

(we may suppose K > 1.)
Consequently, from (27) we find

(34) Δh − 4C

ut
utiyi ≤ 0 at (s̄, ȳ).
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Next, by a well known elementary inequality which uses the fact that the second
order derivatives in y of ut are bounded in absolute value we have, for some
constant B,

|uti| ≤ B
√

ut ∀ i.

So

(35) M :=
4C

ut
|utiyi| ≤

4CB|y|√
ut

.

Now, recall, t = t(s̄, ȳ),

ut = a1 + a2t +
a3t

2

2
+ · · · ≥ t

(
a2 +

a3t

2
+ · · ·

)
≥ t

(
−A|y|2 +

a3(0)

4
t

)

by (33), for t small. So

ut ≥ t

(
−A

K
s +

a3(0)

4
t

)
≥ 4

5
s

(
−A

K
s +

a3(0)

5
s

)

by (26). Hence

(36) ut ≥
a3(0)

10
s2

provided

(37)
A

K
≤ a3(0)

100
.

Inserting (36) in (35) we find

(38) M =

∣∣∣∣
4C

ut

∑
utiyi

∣∣∣∣ ≤
L|y|
s

where

L =
4
√

10CB√
a3(0)

.

Thus, by (21),

M ≤ L√
Ks

.

We now insert this in (34) and, computing Δh, we find

δ(1 + δ)sδ−1 − 2nC ≤ 4
√

10√
a3(0)

K + 1√
K

B√
s
.

But for δ = 1/4, and c restricted still further if necessary, we see that this is
impossible.

Remark 1. Our use of the maximum principle is somewhat unusual. Nor-
mally, one would prove that F [εh], in (27) is positive in G; in fact we do not
know how to prove that. But, as we see, it suffices only to show that it is positive
at (t(s̄, ȳ), ȳ).
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4 – Step A

4.1 – We turn now to Step A

Let

(39) âi(y) be the lowest order terms of ai(y)

in its Taylor expansion; âi is a homogeneous polynomial. We know that

(40) deg â1,deg b̂1,deg(â2 − b̂2) ≥ 2,

since, by (14), â2 − b̂2 is non-positive.
Our aim is to prove, in this and the next section, that if k = 3 then

(41) l = 3 and b3(0) = a3(0).

We will constantly use (12)-(14).

Proof that if l = 3 then b3(0) = a3(0). Since u ≥ v > 0 in Ω, necessarily

a3(0) ≥ b3(0) > 0.

In (13) set y = 0 and solve for t = t(s). Clearly

t =

(
b3(0)

a3(0)

) 1
3

s + O(s2).

Inserting this value for t(s) in (14) we find, by looking at the coefficients,

0 ≥
(

b3(0)

a3(0)

) 1
3

(Δâ1(0) + a3(0)) − (Δb̂1(0) + b3(0)),

i.e.

(42) (b3)
1
3 Δâ1 − (a3)

1
3 Δb̂1 + (b3)

1
3 a3 − (a3)

1
3 b3 ≤ 0, at y = 0.

Since a3 ≥ b3 > 0 at y = 0, we infer that

(43) (b3)
1
3 Δâ1 − (a3)

1
3 Δb̂1 ≤ 0, at y = 0.

Now â1 ≥ b̂1 ≥ 0. This implies Δâ1(0) ≥ Δb̂1(0) ≥ 0. If both = 0 then (42)
implies a3(0) = b3(0).

Then, since Δâ1(0) > 0, it follows that

(44) Δb̂1(0) > 0.

In particular, deg b̂1 = deg â1 = 2.
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Next, at a point y where b̂1(y) > 0, take

s = Kâ1(y), K large.

Then from (13) we solve for t = t(s) and find, looking at terms of various degrees
in y,

t = Kb̂1(y) + ◦(|y|2).
Insert this in (14); we obtain, looking at terms of second degree in y, and using
the fact that K is arbitrarily large,

(45) 0 ≥ b̂1(y)(Δâ1(0) + a3(0)) − â1(y)(Δb̂1(0) + b3(0)).

Since the right hand side is a homogeneous quadratic, its Laplacian is ≤ 0, i.e.

0 ≥ Δb̂1(Δâ1 + a3(0)) − Δâ1(Δb̂1 + b3(0)),

so
a3(0)Δb̂1 − b3(0)Δâ1 ≤ 0.

Using (43) it follows, then, that

a
2
3
3 b

1
3
3 Δâ1 ≤ b3Δâ1

which implies (41):
b3(0) = a3(0).

From now on we assume l > 3 and prove that this is impossible.

4.2 – The case l > 3

Claim 1. In this case

(46) b1 = O(|y|4).

Proof. Suppose not, then b̂1 has degree 2 since by the positivity of v,
b̂1 ≥ 0. â1 also has degree 2 since a1 ≥ b1. The proof above of (45) still works,
and yields

(47) 0 ≥ b̂1(Δâ1 + a3(0)) − â1Δb̂1.

Taking trace we find
0 ≥ Δb̂1a3(0)

i.e. b̂1 = 0 – recall that b̂1 ≥ 0. Contradiction. The claim is proved.
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Next, set y = 0 and solve for t(s) in (13). We find

t =

(
6

l!

bl(0)

a3(0)

)1/3

sl/3 + ◦(sl/3).

Inserting this in (14) we find, at y = 0, since Δb̂1 = 0,

0 ≥
(

6

l!

) 1
3

(
bl

a3

)1/3

sl/3(Δa1 + a3) − s2(Δb2 + b4) + ◦(sl/3 + s2).

Consequently
l ≥ 6.

We shall make use of the following

Lemma 2. Let v ≥ 0 be given by (11) and assume that l is the order of the
first t−derivative of v which is > 0 at the origin. Let m be the first value of i (if
it exists) such that

deg b̂i = 1.

Suppose that for some j, 1 ≤ j ≤ (l + 4)/3,

deg b̂i ≥ 3 for i < j.

Then

(48) m ≥ l + j

2
.

Proof. Clearly j ≤ m < l. At some y, b̂m(y) < 0. Then, at that y, if we
set

s = |y|a, 0 < a to be chosen,

we have, since v ≥ 0,

(49) 0 ≤
∑

i<j

1

i!
bi(y)si +

∑

j≤i≤m−1

1

i!
bi(y)si +

∑

m≤i≤l−1

1

i!
bi(y)si + O(sl).

In case j = 1 we find

(50) 0 ≤ − 1

2m!
b̂msm = O(|y|2s) + O(sl).

Suppose that (48) does not hold, i.e.

m <
l + 1

2
.
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Then there exists a > 0 such that deg LHS of (50) < deg of each term on RHS
of (50). One easily verifies this using the fact that

1

l − m
<

1

m − 1
.

But then (50) is impossible.

In case j > 1 we find from (49) and the fact that b̂1 = O(|y|4), that

(51) 0 ≤ − b̂m(y)|y|am

2m!
≤ O(|y|4+a) + O(|y|3+2a) + O(|y|2+ja) + O(|y|la).

Suppose that (48) does not hold, i.e.

(52) m <
l + j

2
.

Claim. There exists a > 0 such that the degree of LHS of (51) < the degree
of each term on RHS of (51).

If so, (52) is impossible.

Proof of Claim. The claim asserts the existence of a > 0 such that

(53)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + ma < 4 + a, i.e. a <
3

m − 1
,

1 + ma < 3 + 2a, i.e. a < 2
m−2 if m > 2,

1 + ma < 2 + ja, i.e. a <
1

m − j
if m > j,

1 + ma < la, i.e. a >
1

l − m
.

If m = 2, the second and third inequalities automatically hold, so does the third
if m = j. Otherwise it says that

a <
1

m − j
.

One easily verifies using (52) that

1

l − m
<

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3

m − 1
, if m = j = 2,

min

{
3

m − 1
,

2

m − 2

}
if m = j ≥ 3,

min

{
3

m − 1
,

2

m − 2
,

1

m − j

}
if m > j.

It follows that the required a exists. Hence, Lemma 2 is proved.
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5 –

We come now to a crucial step.

Proposition 1. If l ≥ 3i, l > 3, i ≥ 1, then

deg b̂i ≥ 3.

Using the proposition we may now give the

Completion of the proof of Theorem 3. At y = 0, if we solve (13)
for t we find as before,

t = Asl/3 + ◦(sl/3),

where

A =

(
6

l!

bl

a3

)1/3

.

Inserting this in (14) and using Proposition 1 we see that

0 ≥ Asl/3(Δa1 + a3) + O(s[l/3]+1).

But this is impossible, and Theorem 3 is proved.

Proof of Proposition 1. By Lemma 2,

deg b̂i > 1 for i <
l

2
+ 1.

Suppose the proposition is false. Then there is a first j ≤ l/3 such that

deg b̂j = 2.

We will show that this is impossible.
By (46), j ≥ 2.

Claim. b̂j ≥ 0.

If not, at some y, b̂j(y) < 0. Then, setting

s = |y|a,

we have, using Lemma 2, and (46),

(54) 0 < − b̂j |y|ja

2j!
= O(|y|4+a) + O(|y|2a+3) + O(|y|1+a(l+j)/2) + O(|y|al).
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Setting a > 1/j but very close to 1/j, we see that the degree in y of LHS of (54)
< the degree of each term on RHS of (54), i.e. (here we use j ≤ l/3)

(55) 2 + ja < min{4 + a, 2a + 3, 1 + a(l + j)/2, al}.

But then (54) is impossible. The claim is proved.
We now distinguish two cases.

Case 1. deg â1 = 2. We have b̂j ≥ 0.

Fix y so that b̂j(y) > 0; since â1 cannot vanish on an open set we may also
ensure that â1(y) > 0.

As before, set s = |y|a, with a > 1/j but very close to 1/j, so that (55)
holds. Then, as before, in the expression for v the term

(56) J =
1

j!
b̂j(y)sj =

1

j!
b̂j(y)|y|aj

has degree smaller than that of any other term.
Consequently we may solve (13) first, and find

t =
b̂j(y)

j!â1(y)
|y|aj + ◦(|y|aj).

Inserting these values for s and t in (14) we find

0 ≥ |y|aj

j!

b̂j

â1
(Δâ1 + a3(0)) − |y|aj

j!
Δb̂j + ◦(|y|aj),

i.e.
0 ≥ b̂j(Δâ1 + a3(0)) − â1Δb̂j .

As before, taking trace, we conclude that b̂j = 0. Contradiction.

Case 2. deg â1 > 2. Then deg â1 ≥ 4.
Still take s = |y|a, with a > 1/j but very close to 1/j, so that (55) holds.

We still have that in the expression for v, the term J in (56) has degree smaller
than that of every other term. To solve (13) for t, we note that the leading terms
of u(t, y) are now

u(t, y) = a1(y)t+
1

2
a2(y)t2+

1

6
a3(y)t3+ · · · = O(|y|4t)+O(|y|2t2)+a3(0)t3+ · · · ,

where we have used deg â2 ≥ 2 which follows from Lemma 2. Thus

t =

(
6

a3(0)
J

) 1
3

+ ◦(|y| 2+aj
3 ).
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Inserting these values for s and t in (14) we find

0 ≥ ta3(0) − sj

j!
Δb̂j + ◦(|y| 2+aj

3 ) + ◦(|y|aj).

It follows, since (2 + aj)/3 < aj, that 0 ≥ a3(0), a contradiction.
The proof of Proposition 1 in case deg â1 > 2 is complete. Theorem 3 is

proved.

6 – Proof of Theorem 2 in case k = 2

The proof has again Step A and Step B. i.e. we first prove that

(57) l = 2 and b2(0) = a2(0),

and then if u is not identically equal to v, using the differential inequality (20)
for τ , and the same comparison function h of (22) we derive a contradiction.

The proof of (57) is trivial: from (12),

a2(0) − b2(0) ≥ 0

while from (14), at t = 0, the opposite inequality holds.
Turn now to the equation for τ . We follow the argument of Section 3. We

have to prove that τ − εh cannot have a negative minimum in G. To do this
we have to check, as before that F [εh] in (27) is positive at a possible minimum
point (s̄, ȳ), i.e.

(58) δ(1 + δ)s̄−δ−1 − 2nC − utt

ut
{ } − 4Cutiȳi

ut
> 0.

The term { } < 0, and utt = a2 + O(t) > 0, since a2(0) > 0. In addition,

M =
4C

ut
|utiȳi| ≤

4C
√∑ |uti|2|ȳ|

ut
.

Now

ut = a1 + a2t + · · · ≥ 1

2
a2(0)t >

2

5
a2(0)s

by (26). Thus, since s > K|y|2,

M ≤ 10C|∇2u|
a2(0)

√
K
√

s
.

We conclude that (recall C = K + 1),

F [εh] ≥ δ(1 + δ)sδ−1 − 2nC − constant ·
√

K√
s

> 0

since δ = 1/4. (40) is proved, and the proof of Theorem 2 for k = 2 is complete.
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7 – Appendix. A simple proof of Theorem 1

We treat only the case:

(59) u̇ > 0 on (0, b).

We have to prove that

(60) u ≡ v.

The proof proceeds in two steps:

Step A. (60) holds in case

(61) v′(s) ≥ 0.

Step B. Necessarily,
v′(s) ≥ 0.

Step A. Proof of (60) if v′ ≥ 0.
We have

u(t) = v(s),

since u′ > 0, for t > 0, we may solve for t = t(s). Here · = d
dt ,

′ = d
ds . Then

v′ = u̇t′.

Compute

(62)
(v′2 − u̇2)′ = 2v′v′′ − 2u̇üt′ = 2v′(v′′ − ü) ≥

≥ 0

by our main condition (2). But at the origin,

v′2 − u̇2 = 0,

so
v′2 − u̇2 = u̇2(t′2 − 1) ≥ 0.

Hence
t′2 ≥ 1.

Since t′ ≥ 0 somewhere for s arbitrarily small, it follows that t′ ≥ 1, i.e. t ≥ s.
But then t ≡ s and so u ≡ v.

Step B. Proof that v′ ≥ 0.
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(i) We use part of an argument of [1]:

ü(t) is a function of t

but since u̇ > 0 it may be written as a function of u, i.e.

(63) ü = f(u),

with, however, f an unknown function. f is continuous on an interval [0, m]
for some m > 0, and of class C1 on (0, m], since u is of class C3 for t > 0.

The main condition (2):

ü(t) ≤ v′′(s) whenever u(t) = v(s), t ≤ s,

is equivalent to the inequality

(64) v′′ ≥ f(v).

We have u ≥ v and both vanish, with their first derivatives at the origin. But we
cannot apply the Hopf Lemma to (u−v) because f is not known to be Lipschitz
near the origin.

Lemma 3. If v(s) = u(s) for some s > 0, then

v ≡ u.

Proof. We use a differential inequality which holds for τ = s−t(s). Namely,
we have

v′ = u̇t′,

v′′ = u̇t′′ + üt′2 = −u̇τ ′′ + ü(1 − τ ′)2.

So
0 ≤ v′′ − ü = −u̇τ ′′ + ü(τ ′2 − 2τ ′).

Now if u(s) = v(s) for some s > 0, then, there, τ = 0. But τ ≤ 0. By the strong
maximum principle it would follow that τ ≡ 0, i.e. v ≡ u.

To prove that v′ ≥ 0 we argue by contradiction. Suppose v′ < 0 somewhere.

(ii) We cannot have v′ ≥ 0 on an interval (0, c), for if this holds, by Step A, we
would have

v ≡ u on (0, c).

By Lemma 3, we would have

v ≡ u everywhere.
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So, arbitrarily near the origin there are points where v′ < 0. But then there
must be an interval (a, c), 0 < a < c < b on which

v′ < 0 and v′(a) = 0.

On this interval, by (62),

(v′2 − u̇2)′ ≤ 0.

Hence

v′(s)2 − u̇(t(s))2 ≤ −u̇2(t(a)) on (a, c)

and, consequently,

u̇(t(a)) ≤ u̇(t(s)) for a < s < c.

It follows that

ü(t(a)) ≥ 0.

By our main condition, then

v′′(a) ≥ ü(t(a)) ≥ 0.

Now we cannot have v′′(a) > 0 since 0 = v̇(a) > v̇(s) for a < s < c. Thus

(65) v′′(a) = 0, and so ü(t(a)) = 0.

(iii) We now make use of (63) and (64). By (63),

0 = f(u(t(a))) = f(v(a)).

Hence, by (64), on (a, c),

v′′(s) ≥ f(v(s)) = f(v(s)) − f(v(a)) = f ′(ξ)(v(s) − v(a))

for some ξ in (v(s), v(a)).
But v(s) − v(a) has its maximum at a. We may apply the classical Hopf

Lemma to infer that

v′(a) < 0.

This contradicts the fact that v′(a) = 0.
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