Partial results on extending the Hopf Lemma

YAN YAN LI - LOUIS NIRENBERG

Dedicated with affection to Umberto Mosco on his $70^{\text {th }}$ birthday

Abstract: We proved in [1] a generalization of the Hopf Lemma in one dimension. In this paper we present two conjectures as possible extensions to higher dimensions, and give a very partial answer.

1 - Introduction

In [1], Theorem 3, the authors proved, in one dimension, a generalization of the Hopf Lemma, and the question arose if it could be extended to higher dimensions. In this paper we present two conjectures as possible extensions, and give a very partial answer. We write this paper to call attention to the problem.

The one dimensional result of [1] was
THEOREM 1. Let $u \geq v$ be positive C^{3}, C^{2} functions respectively on $(0, b)$ which are also in $C^{1}([0, b])$. Assume

$$
\begin{equation*}
u(0)=\dot{u}(0)=0 \tag{1}
\end{equation*}
$$

and

$$
\text { either } \dot{u}>0 \text { on }(0, b) \text { or } \dot{v}>0 \text { on }(0, b) \text {. }
$$

Main condition:

(2) \quad whenever $u(t)=v(s)$ for $0<t \leq s<b$, there $\ddot{u}(t) \leq v^{\prime \prime}(s)$,
$\left(\right.$ here $\left.\cdot=\frac{d}{d t},{ }^{\prime}=\frac{d}{d s}\right)$.
Then

$$
\begin{equation*}
u \equiv v \quad \text { on }[0, b] . \tag{3}
\end{equation*}
$$

The proof given in [1] is somewhat roundabout. In the Appendix we present a more direct one, but it is still a bit tricky. In [1], it was assumed that u is of class C^{2} on $(0, b)$, but its proof there actually required that u be of class C^{3}.

Turn now to higher dimensions. Let $u \geq v$ be C^{∞} functions of $(t, y), y \in \mathbb{R}^{n}$, in

$$
\Omega=\{(t, y)|0<t<1,|y|<1\},
$$

and C^{∞} in the closure of Ω. Assume that

$$
\begin{equation*}
u>0, v>0, u_{t}>0 \quad \text { in } \Omega \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
u(0, y)=0 \quad \text { for }|y|<1 \tag{5}
\end{equation*}
$$

We impose a main condition:

$$
\begin{align*}
& \text { whenever } u(t, y)=v(s, y) \text { for } 0<t \leq s<1,|y|<1 \text {, } \\
& \text { there } \Delta u(t, y) \leq \Delta v(s, y) \tag{6}
\end{align*}
$$

Under some additional conditions we wish to conclude that

$$
\begin{equation*}
u \equiv v \tag{7}
\end{equation*}
$$

Here are two conjectures, in decreasing strength, which would extend Theorem 1. In each, we consider u and v as above.

Conjecture 1. Assume, in addition, that

$$
\begin{equation*}
u_{t}(0,0)=0 . \tag{8}
\end{equation*}
$$

Then (3) holds:

$$
u \equiv v
$$

Conjecture 2. In addition to (8) assume that

$$
\begin{equation*}
u(t, 0) \text { and } v(t, 0) \text { vanish at } t=0 \text { of finite order. } \tag{9}
\end{equation*}
$$

Then

$$
u \equiv v
$$

We have not succeeded in proving them. What we present here is a partial answer to Conjecture 2: Here let k, l be the orders of the first t-derivative of u, v respectively at the origin which are not zero. Clearly $k \leq l$.

Theorem 2. In addition to the conditions of Conjecture 2, we assume the annoying condition

$$
\begin{equation*}
\nabla_{y} u_{t t}(0,0)=0 \tag{10}
\end{equation*}
$$

Then $u \equiv v$ provided $k=2$ or 3 .
For $k<3$ the proof is simple, but not that for $k=3$.
We will always use Taylor series expansions for u, v, in t,

$$
\begin{align*}
& u=a_{1}(y) t+a_{2}(y) \frac{t^{2}}{2!}+a_{3}(y) \frac{t^{3}}{3!}+\cdots \\
& v=b_{1}(y) t+b_{2}(y) \frac{t^{2}}{2!}+b_{3}(y) \frac{t^{3}}{3!}+\cdots \tag{11}
\end{align*}
$$

The conditions on u and v are as follows

$$
\begin{equation*}
0 \leq u(t)-v(t)=\left(a_{1}-b_{1}\right) t+\left(a_{2}-b_{2}\right) \frac{t^{2}}{2!}+\left(a_{3}-b_{3}\right) \frac{t^{3}}{3!}+\cdots \tag{12}
\end{equation*}
$$

where

$$
u(t, y)=v(s, y), \quad t \leq s
$$

i.e.

$$
\begin{equation*}
a_{1}(y) t+a_{2}(y) \frac{t^{2}}{2!}+a_{3}(y) \frac{t^{3}}{3!}+\cdots=b_{1}(y) s+b_{2}(y) \frac{s^{2}}{2!}+b_{3}(y) \frac{s^{3}}{3!}+\cdots \tag{13}
\end{equation*}
$$

there

$$
\begin{align*}
0 \geq & \Delta u-\Delta v=\left(a_{2}-b_{2}\right)+t\left(\Delta a_{1}+a_{3}\right)-s\left(\Delta b_{1}+b_{3}\right)+ \\
& +\frac{t^{2}}{2}\left(\Delta a_{2}+a_{4}\right)-\frac{s^{2}}{2}\left(\Delta b_{2}+b_{4}\right)+\cdots \tag{14}
\end{align*}
$$

We first present the proof of the more difficult case $k=3$. It takes up Sections 2-
5 . In Section 6 we treat the case $k=2$.

Steps of the proof. We are assuming $k=3$. The proof consists of two steps:

Step A. This consists in proving

Theorem 3. Under the conditions of Theorem 2, where $k=3$, we have

$$
\begin{equation*}
l=3, \quad \text { and } b_{3}(0)=a_{3}(0) . \tag{15}
\end{equation*}
$$

Step B. In this step we consider our condition

$$
\begin{equation*}
u(t, y)=v(s, y) \text { for } 0 \leq t \leq s \tag{16}
\end{equation*}
$$

Since $u_{t}>0$ for $t>0$, we may solve this for $t=t(s, y)$. Assuming that u is not identically equal to v, for

$$
\begin{equation*}
\tau(s, y)=s-t(s, y) \tag{17}
\end{equation*}
$$

we derive, from (6), an elliptic differential inequality for $\tau(s, y)$. Using a comparison function we prove that

$$
\begin{equation*}
\tau(s, 0) \geq \epsilon s \text { for some } 0<\epsilon \text { small. } \tag{18}
\end{equation*}
$$

On the other hand, for $y=0$, we have, by (15) and (11),

$$
u(t, 0)=v(s, 0)
$$

i.e. after dividing by $a_{3}(0)$,

$$
t^{3}+\text { higher order terms }=s^{3}+\text { higher order terms }
$$

Hence

$$
t(s, 0)=s+\text { higher order terms. }
$$

But this contradicts (18), and the proof of Theorem 2 is then complete.
For $k=3$, we will first present the proof of Step B; it seems more interesting to us.

3 -

Proof of (18) in case $k=3$. Here we assume that (15) holds, i.e.

$$
b_{3}(0)=a_{3}(0)>0
$$

and first derive the elliptic inequality for $\tau(s, y)=s-t(s, y)$, where $t(s, y)$ is the solution of

$$
\begin{equation*}
u(t(s, y), y)=v(s, y) \tag{19}
\end{equation*}
$$

Differentiating this we find, setting $v_{i}=\partial_{y_{i}} v$,

$$
\begin{array}{ll}
v_{s}=u_{t} t_{s}, & v_{s s}=u_{t} t_{s s}+u_{t t} t_{s}^{2}, \\
v_{i}=u_{t} t_{i}+u_{i}, & v_{i i}=u_{t} t_{i i}+2 u_{t i} t_{i}+u_{t t} t_{i}^{2}+u_{i i}
\end{array}
$$

Hence

$$
0 \leq \Delta v(s, y)-\Delta u(t, y)=u_{t} \Delta t+2 u_{t i} t_{i}+u_{t t}\left(|\nabla t|^{2}-1\right)
$$

In terms of $\tau=s-t$, this becomes, after dividing by u_{t},

$$
\begin{equation*}
F(\tau):=\Delta \tau-\frac{u_{t t}}{u_{t}}\left(|\nabla \tau|^{2}-2 \tau_{s}\right)+2 \frac{u_{t i}}{u_{t}} \tau_{i} \leq 0 \tag{20}
\end{equation*}
$$

This is the differential inequality for τ.
We will consider this in the region

$$
\begin{equation*}
D=\left\{\left.(s, y)|s>K| y\right|^{2}\right\}, \quad K \text { large, near the origin, } \tag{21}
\end{equation*}
$$

and use a comparison function:

$$
\begin{equation*}
h=s+s^{1+\delta}-C|y|^{2}, \quad \delta=\frac{1}{4}, C=K+1 . \tag{22}
\end{equation*}
$$

Near the origin we have

$$
\begin{equation*}
h(s, y) \leq 0 \text { where } s=K|y|^{2} \tag{23}
\end{equation*}
$$

We assume now that v is not identically equal to u near the origin and argue by contradiction.

Observe first that if $v(\bar{s}, \bar{y})=u(\bar{s}, \bar{y})$ for some \bar{y} and some $\bar{s}>0$ then $\tau(\bar{s}, \bar{y})=0$. But near $(\bar{s}, \bar{y}), \tau \geq 0$ satisfies the inequality (20), which is elliptic there. By the strong maximum principle, it would follow that $\tau \equiv 0$ there. Then, again by the strong maximum principle $\tau \equiv 0$ everywhere, i.e. $v \equiv u$ near the origin, for $t \geq 0$. Contradiction.

Thus we may assume that $\tau>0$ for $s>0$.
The basic result of this section is
Lemma 1. For $0<\epsilon$ small, $\tau \geq \epsilon h$ in D near the origin.

Once the lemma is proved, it follows that $\tau(s, 0) \geq \epsilon s$ for $0<s$ small, i.e., (18) holds, and Step B would be complete.

Proof of Lemma 1. Choose positive $\epsilon \leq 1 / 10$, so small that on $D \cap\{s=$ $c\}, c$ to be fixed - where τ is positive, and hence bounded away from zero -

$$
\begin{equation*}
\tau \geq \epsilon h \tag{24}
\end{equation*}
$$

ϵ depends on c.
In view of (23) it follows then that

$$
\tau-\epsilon h \geq 0, \text { on the boundary of } G=D \cap\{s<c\}
$$

We now use the maximum principle, suitably to show that

$$
\begin{equation*}
\tau \geq \epsilon h \quad \text { in } G \tag{25}
\end{equation*}
$$

Completing the proof of Lemma 1 . We argue by contradiction.
Suppose $\tau-\epsilon h$ has a negative minimum at some point (\bar{s}, \bar{y}) in G. There, of course,

$$
\tau<\epsilon\left(s+s^{1+\delta}\right)<2 \epsilon s
$$

and so

$$
\begin{equation*}
t=s-\tau \geq(1-2 \epsilon) s \geq \frac{4}{5} s \tag{26}
\end{equation*}
$$

At $(\bar{s}, \bar{y}), \nabla \tau=\epsilon \nabla h$ and

$$
\Delta \tau \geq \epsilon \Delta h
$$

Therefore, there, ϵh satisfies the inequality

$$
\Delta(\epsilon h)-\frac{u_{t t}}{u_{t}}\left(\epsilon^{2}|\nabla h|^{2}-2 \epsilon h_{s}\right)+2 \epsilon \frac{u_{t i}}{u_{t}} h_{i} \leq 0
$$

i.e. after dividing by ϵ,

$$
\begin{align*}
F[\epsilon h]= & \Delta h-\frac{u_{t t}}{u_{t}}\left\{\epsilon\left[\left(1+(1+\delta) s^{\delta}\right)^{2}+4 C^{2}|y|^{2}\right]-2-2(1+\delta) s^{\delta}\right\}+ \\
& -4 C \frac{u_{t i} y_{i}}{u_{t}} \leq 0 . \tag{27}
\end{align*}
$$

For small ϵ and c (which may depend on K),

$$
\begin{equation*}
\text { the expression }\} \text { in }(27) \text { is negative. } \tag{28}
\end{equation*}
$$

We will choose K to ensure that

$$
\begin{equation*}
u_{t t}(t(\bar{s}, \bar{y}), \bar{y}) \geq 0 \tag{29}
\end{equation*}
$$

We have

$$
\begin{equation*}
u_{t t}=a_{2}+a_{3} t+\cdots \tag{30}
\end{equation*}
$$

Since $a_{3}(0)>0$, near the origin,

$$
\begin{equation*}
a_{3}(t, y) \geq \frac{a_{3}(0)}{2} \tag{31}
\end{equation*}
$$

Recall that $u_{t}>0$, i.e.

$$
\begin{equation*}
0<a_{1}+t a_{2}+\frac{t^{2}}{2} a_{3}+\cdots \tag{32}
\end{equation*}
$$

Thus $a_{1} \geq 0$ and $a_{1}=O\left(|y|^{2}\right)$. By (10), and it is only here that (10) is used,

$$
\begin{equation*}
\left|a_{2}\right| \leq A|y|^{2} \tag{33}
\end{equation*}
$$

for some $A>0$.
Now, still at (\bar{s}, \bar{y}), and for $t=t(\bar{s}, \bar{y})$, we have

$$
\begin{aligned}
u_{t t} & =a_{2}+a_{3} t+\cdots \geq \frac{a_{3}(0)}{2} t-A|y|^{2}+O\left(t^{2}\right) \geq \\
& \geq \frac{a_{3}(0)}{4} t-A|y|^{2} \quad(\text { for } c \text { small }) \geq \\
& \geq \frac{a_{3}(0)}{5} s-A|y|^{2}
\end{aligned}
$$

by (26). We require

$$
K \geq \frac{5 A}{a_{3}(0)}
$$

Then (29) holds:

$$
u_{t t} \geq 0
$$

(we may suppose $K>1$.)
Consequently, from (27) we find

$$
\begin{equation*}
\Delta h-\frac{4 C}{u_{t}} u_{t i} y_{i} \leq 0 \quad \text { at }(\bar{s}, \bar{y}) \tag{34}
\end{equation*}
$$

Next, by a well known elementary inequality which uses the fact that the second order derivatives in y of u_{t} are bounded in absolute value we have, for some constant B,

$$
\left|u_{t i}\right| \leq B \sqrt{u_{t}} \quad \forall i .
$$

So

$$
\begin{equation*}
M:=\frac{4 C}{u_{t}}\left|u_{t i} y_{i}\right| \leq \frac{4 C B|y|}{\sqrt{u_{t}}} \tag{35}
\end{equation*}
$$

Now, recall, $t=t(\bar{s}, \bar{y})$,

$$
u_{t}=a_{1}+a_{2} t+\frac{a_{3} t^{2}}{2}+\cdots \geq t\left(a_{2}+\frac{a_{3} t}{2}+\cdots\right) \geq t\left(-A|y|^{2}+\frac{a_{3}(0)}{4} t\right)
$$

by (33), for t small. So

$$
u_{t} \geq t\left(-\frac{A}{K} s+\frac{a_{3}(0)}{4} t\right) \geq \frac{4}{5} s\left(-\frac{A}{K} s+\frac{a_{3}(0)}{5} s\right)
$$

by (26). Hence

$$
\begin{equation*}
u_{t} \geq \frac{a_{3}(0)}{10} s^{2} \tag{36}
\end{equation*}
$$

provided

$$
\begin{equation*}
\frac{A}{K} \leq \frac{a_{3}(0)}{100} \tag{37}
\end{equation*}
$$

Inserting (36) in (35) we find

$$
\begin{equation*}
M=\left|\frac{4 C}{u_{t}} \sum u_{t i} y_{i}\right| \leq \frac{L|y|}{s} \tag{38}
\end{equation*}
$$

where

$$
L=\frac{4 \sqrt{10} C B}{\sqrt{a_{3}(0)}}
$$

Thus, by (21),

$$
M \leq \frac{L}{\sqrt{K s}}
$$

We now insert this in (34) and, computing Δh, we find

$$
\delta(1+\delta) s^{\delta-1}-2 n C \leq \frac{4 \sqrt{10}}{\sqrt{a_{3}(0)}} \frac{K+1}{\sqrt{K}} \frac{B}{\sqrt{s}}
$$

But for $\delta=1 / 4$, and c restricted still further if necessary, we see that this is impossible.

Remark 1. Our use of the maximum principle is somewhat unusual. Normally, one would prove that $F[\epsilon h]$, in (27) is positive in G; in fact we do not know how to prove that. But, as we see, it suffices only to show that it is positive at $(t(\bar{s}, \bar{y}), \bar{y})$.

4-Step A

4.1 - We turn now to Step A

Let

$$
\begin{equation*}
\hat{a}_{i}(y) \text { be the lowest order terms of } a_{i}(y) \tag{39}
\end{equation*}
$$

in its Taylor expansion; \hat{a}_{i} is a homogeneous polynomial. We know that

$$
\begin{equation*}
\operatorname{deg} \hat{a}_{1}, \operatorname{deg} \hat{b}_{1}, \operatorname{deg}\left(\hat{a}_{2}-\hat{b}_{2}\right) \geq 2 \tag{40}
\end{equation*}
$$

since, by (14), $\hat{a}_{2}-\hat{b}_{2}$ is non-positive.
Our aim is to prove, in this and the next section, that if $k=3$ then

$$
\begin{equation*}
l=3 \text { and } b_{3}(0)=a_{3}(0) \tag{41}
\end{equation*}
$$

We will constantly use (12)-(14).
Proof that if $l=3$ then $b_{3}(0)=a_{3}(0)$. Since $u \geq v>0$ in Ω, necessarily

$$
a_{3}(0) \geq b_{3}(0)>0 .
$$

In (13) set $y=0$ and solve for $t=t(s)$. Clearly

$$
t=\left(\frac{b_{3}(0)}{a_{3}(0)}\right)^{\frac{1}{3}} s+O\left(s^{2}\right)
$$

Inserting this value for $t(s)$ in (14) we find, by looking at the coefficients,

$$
0 \geq\left(\frac{b_{3}(0)}{a_{3}(0)}\right)^{\frac{1}{3}}\left(\Delta \hat{a}_{1}(0)+a_{3}(0)\right)-\left(\Delta \hat{b}_{1}(0)+b_{3}(0)\right)
$$

i.e.

$$
\begin{equation*}
\left(b_{3}\right)^{\frac{1}{3}} \Delta \hat{a}_{1}-\left(a_{3}\right)^{\frac{1}{3}} \Delta \hat{b}_{1}+\left(b_{3}\right)^{\frac{1}{3}} a_{3}-\left(a_{3}\right)^{\frac{1}{3}} b_{3} \leq 0, \quad \text { at } y=0 \tag{42}
\end{equation*}
$$

Since $a_{3} \geq b_{3}>0$ at $y=0$, we infer that

$$
\begin{equation*}
\left(b_{3}\right)^{\frac{1}{3}} \Delta \hat{a}_{1}-\left(a_{3}\right)^{\frac{1}{3}} \Delta \hat{b}_{1} \leq 0, \quad \text { at } y=0 \tag{43}
\end{equation*}
$$

Now $\hat{a}_{1} \geq \hat{b}_{1} \geq 0$. This implies $\Delta \hat{a}_{1}(0) \geq \Delta \hat{b}_{1}(0) \geq 0$. If both $=0$ then (42) implies $a_{3}(0)=b_{3}(0)$.

Then, since $\Delta \hat{a}_{1}(0)>0$, it follows that

$$
\begin{equation*}
\Delta \hat{b}_{1}(0)>0 \tag{44}
\end{equation*}
$$

In particular, $\operatorname{deg} \hat{b}_{1}=\operatorname{deg} \hat{a}_{1}=2$.

Next, at a point y where $\hat{b}_{1}(y)>0$, take

$$
s=K \hat{a}_{1}(y), K \text { large }
$$

Then from (13) we solve for $t=t(s)$ and find, looking at terms of various degrees in y,

$$
t=K \hat{b}_{1}(y)+\circ\left(|y|^{2}\right)
$$

Insert this in (14); we obtain, looking at terms of second degree in y, and using the fact that K is arbitrarily large,

$$
\begin{equation*}
0 \geq \hat{b}_{1}(y)\left(\Delta \hat{a}_{1}(0)+a_{3}(0)\right)-\hat{a}_{1}(y)\left(\Delta \hat{b}_{1}(0)+b_{3}(0)\right) \tag{45}
\end{equation*}
$$

Since the right hand side is a homogeneous quadratic, its Laplacian is ≤ 0, i.e.

$$
0 \geq \Delta \hat{b}_{1}\left(\Delta \hat{a}_{1}+a_{3}(0)\right)-\Delta \hat{a}_{1}\left(\Delta \hat{b}_{1}+b_{3}(0)\right)
$$

so

$$
a_{3}(0) \Delta \hat{b}_{1}-b_{3}(0) \Delta \hat{a}_{1} \leq 0
$$

Using (43) it follows, then, that

$$
a_{3}^{\frac{2}{3}} b_{3}^{\frac{1}{3}} \Delta \hat{a}_{1} \leq b_{3} \Delta \hat{a}_{1}
$$

which implies (41):

$$
b_{3}(0)=a_{3}(0)
$$

From now on we assume $l>3$ and prove that this is impossible.

4.2-The case $l>3$

Claim 1. In this case

$$
\begin{equation*}
b_{1}=O\left(|y|^{4}\right) \tag{46}
\end{equation*}
$$

Proof. Suppose not, then \hat{b}_{1} has degree 2 since by the positivity of v, $\hat{b}_{1} \geq 0$. \hat{a}_{1} also has degree 2 since $a_{1} \geq b_{1}$. The proof above of (45) still works, and yields

$$
\begin{equation*}
0 \geq \hat{b}_{1}\left(\Delta \hat{a}_{1}+a_{3}(0)\right)-\hat{a}_{1} \Delta \hat{b}_{1} \tag{47}
\end{equation*}
$$

Taking trace we find

$$
0 \geq \Delta \hat{b}_{1} a_{3}(0)
$$

i.e. $\hat{b}_{1}=0-$ recall that $\hat{b}_{1} \geq 0$. Contradiction. The claim is proved.

Next, set $y=0$ and solve for $t(s)$ in (13). We find

$$
t=\left(\frac{6}{l!} \frac{b_{l}(0)}{a_{3}(0)}\right)^{1 / 3} s^{l / 3}+\circ\left(s^{l / 3}\right)
$$

Inserting this in (14) we find, at $y=0$, since $\Delta \hat{b}_{1}=0$,

$$
0 \geq\left(\frac{6}{l!}\right)^{\frac{1}{3}}\left(\frac{b_{l}}{a_{3}}\right)^{1 / 3} s^{l / 3}\left(\Delta a_{1}+a_{3}\right)-s^{2}\left(\Delta b_{2}+b_{4}\right)+\circ\left(s^{l / 3}+s^{2}\right)
$$

Consequently

$$
l \geq 6
$$

We shall make use of the following
Lemma 2. Let $v \geq 0$ be given by (11) and assume that l is the order of the first t-derivative of v which is >0 at the origin. Let m be the first value of i (if it exists) such that

$$
\operatorname{deg} \hat{b}_{i}=1
$$

Suppose that for some $j, 1 \leq j \leq(l+4) / 3$,

$$
\operatorname{deg} \hat{b}_{i} \geq 3 \text { for } i<j
$$

Then

$$
\begin{equation*}
m \geq \frac{l+j}{2} \tag{48}
\end{equation*}
$$

Proof. Clearly $j \leq m<l$. At some $y, \hat{b}_{m}(y)<0$. Then, at that y, if we set

$$
s=|y|^{a}, \quad 0<a \text { to be chosen }
$$

we have, since $v \geq 0$,

$$
\begin{equation*}
0 \leq \sum_{i<j} \frac{1}{i!} b_{i}(y) s^{i}+\sum_{j \leq i \leq m-1} \frac{1}{i!} b_{i}(y) s^{i}+\sum_{m \leq i \leq l-1} \frac{1}{i!} b_{i}(y) s^{i}+O\left(s^{l}\right) \tag{49}
\end{equation*}
$$

In case $j=1$ we find

$$
\begin{equation*}
0 \leq-\frac{1}{2 m!} \hat{b}_{m} s^{m}=O\left(|y|^{2} s\right)+O\left(s^{l}\right) . \tag{50}
\end{equation*}
$$

Suppose that (48) does not hold, i.e.

$$
m<\frac{l+1}{2} .
$$

Then there exists $a>0$ such that deg LHS of (50) $<$ deg of each term on RHS of (50). One easily verifies this using the fact that

$$
\frac{1}{l-m}<\frac{1}{m-1}
$$

But then (50) is impossible.
In case $j>1$ we find from (49) and the fact that $\hat{b}_{1}=O\left(|y|^{4}\right)$, that

$$
\begin{equation*}
0 \leq-\frac{\hat{b}_{m}(y)|y|^{a m}}{2 m!} \leq O\left(|y|^{4+a}\right)+O\left(|y|^{3+2 a}\right)+O\left(|y|^{2+j a}\right)+O\left(|y|^{l a}\right) \tag{51}
\end{equation*}
$$

Suppose that (48) does not hold, i.e.

$$
\begin{equation*}
m<\frac{l+j}{2} \tag{52}
\end{equation*}
$$

Claim. There exists $a>0$ such that the degree of LHS of $(51)<$ the degree of each term on RHS of (51).

If so, (52) is impossible.
Proof of Claim. The claim asserts the existence of $a>0$ such that

$$
\begin{cases}1+m a<4+a, \text { i.e. } a<\frac{3}{m-1}, & \tag{53}\\ 1+m a<3+2 a, \text { i.e. } a<\frac{2}{m-2} & \text { if } m>2 \\ 1+m a<2+j a, \text { i.e. } a<\frac{1}{m-j} & \text { if } m>j \\ 1+m a<l a, \text { i.e. } a>\frac{1}{l-m}\end{cases}
$$

If $m=2$, the second and third inequalities automatically hold, so does the third if $m=j$. Otherwise it says that

$$
a<\frac{1}{m-j} .
$$

One easily verifies using (52) that

$$
\frac{1}{l-m}< \begin{cases}\frac{3}{m-1}, & \text { if } m=j=2 \\ \min \left\{\frac{3}{m-1}, \frac{2}{m-2}\right\} & \text { if } m=j \geq 3 \\ \min \left\{\frac{3}{m-1}, \frac{2}{m-2}, \frac{1}{m-j}\right\} & \text { if } m>j\end{cases}
$$

It follows that the required a exists. Hence, Lemma 2 is proved.

5 -

We come now to a crucial step.
Proposition 1. If $l \geq 3 i, l>3, i \geq 1$, then

$$
\operatorname{deg} \hat{b}_{i} \geq 3
$$

Using the proposition we may now give the
Completion of the proof of Theorem 3. At $y=0$, if we solve (13) for t we find as before,

$$
t=A s^{l / 3}+\circ\left(s^{l / 3}\right)
$$

where

$$
A=\left(\frac{6}{l!} \frac{b_{l}}{a_{3}}\right)^{1 / 3}
$$

Inserting this in (14) and using Proposition 1 we see that

$$
0 \geq A s^{l / 3}\left(\Delta a_{1}+a_{3}\right)+O\left(s^{[l / 3]+1}\right)
$$

But this is impossible, and Theorem 3 is proved.
Proof of Proposition 1. By Lemma 2,

$$
\operatorname{deg} \hat{b}_{i}>1 \quad \text { for } i<\frac{l}{2}+1 .
$$

Suppose the proposition is false. Then there is a first $j \leq l / 3$ such that

$$
\operatorname{deg} \hat{b}_{j}=2
$$

We will show that this is impossible.
By (46), $j \geq 2$.
Claim. $\hat{b}_{j} \geq 0$.
If not, at some $y, \hat{b}_{j}(y)<0$. Then, setting

$$
s=|y|^{a},
$$

we have, using Lemma 2, and (46),

$$
\begin{equation*}
0<-\frac{\hat{b}_{j}|y|^{j a}}{2 j!}=O\left(|y|^{4+a}\right)+O\left(|y|^{2 a+3}\right)+O\left(|y|^{1+a(l+j) / 2}\right)+O\left(|y|^{a l}\right) \tag{54}
\end{equation*}
$$

Setting $a>1 / j$ but very close to $1 / j$, we see that the degree in y of LHS of (54) $<$ the degree of each term on RHS of (54), i.e. (here we use $j \leq l / 3$)

$$
\begin{equation*}
2+j a<\min \{4+a, 2 a+3,1+a(l+j) / 2, a l\} \tag{55}
\end{equation*}
$$

But then (54) is impossible. The claim is proved.
We now distinguish two cases.
CASE 1. $\operatorname{deg} \hat{a}_{1}=2$. We have $\hat{b}_{j} \geq 0$.
Fix y so that $\hat{b}_{j}(y)>0$; since \hat{a}_{1} cannot vanish on an open set we may also ensure that $\hat{a}_{1}(y)>0$.

As before, set $s=|y|^{a}$, with $a>1 / j$ but very close to $1 / j$, so that (55) holds. Then, as before, in the expression for v the term

$$
\begin{equation*}
J=\frac{1}{j!} \hat{b}_{j}(y) s^{j}=\frac{1}{j!} \hat{b}_{j}(y)|y|^{a j} \tag{56}
\end{equation*}
$$

has degree smaller than that of any other term.
Consequently we may solve (13) first, and find

$$
t=\frac{\hat{b}_{j}(y)}{j!\hat{a}_{1}(y)}|y|^{a j}+\circ\left(|y|^{a j}\right)
$$

Inserting these values for s and t in (14) we find

$$
0 \geq \frac{|y|^{a j}}{j!} \frac{\hat{b}_{j}}{\hat{a}_{1}}\left(\Delta \hat{a}_{1}+a_{3}(0)\right)-\frac{|y|^{a j}}{j!} \Delta \hat{b}_{j}+\circ\left(|y|^{a j}\right)
$$

i.e.

$$
0 \geq \hat{b}_{j}\left(\Delta \hat{a}_{1}+a_{3}(0)\right)-\hat{a}_{1} \Delta \hat{b}_{j}
$$

As before, taking trace, we conclude that $\hat{b}_{j}=0$. Contradiction.
CASE 2. $\operatorname{deg} \hat{a}_{1}>2$. Then $\operatorname{deg} \hat{a}_{1} \geq 4$.
Still take $s=|y|^{a}$, with $a>1 / j$ but very close to $1 / j$, so that (55) holds. We still have that in the expression for v, the term J in (56) has degree smaller than that of every other term. To solve (13) for t, we note that the leading terms of $u(t, y)$ are now
$u(t, y)=a_{1}(y) t+\frac{1}{2} a_{2}(y) t^{2}+\frac{1}{6} a_{3}(y) t^{3}+\cdots=O\left(|y|^{4} t\right)+O\left(|y|^{2} t^{2}\right)+a_{3}(0) t^{3}+\cdots$,
where we have used deg $\hat{a}_{2} \geq 2$ which follows from Lemma 2. Thus

$$
t=\left(\frac{6}{a_{3}(0)} J\right)^{\frac{1}{3}}+\circ\left(|y|^{\frac{2+a j}{3}}\right)
$$

Inserting these values for s and t in (14) we find

$$
0 \geq t a_{3}(0)-\frac{s^{j}}{j!} \Delta \hat{b}_{j}+\circ\left(|y|^{\frac{2+a j}{3}}\right)+\circ\left(|y|^{a j}\right)
$$

It follows, since $(2+a j) / 3<a j$, that $0 \geq a_{3}(0)$, a contradiction.
The proof of Proposition 1 in case $\operatorname{deg} \hat{a}_{1}>2$ is complete. Theorem 3 is proved.

6 - Proof of Theorem 2 in case $k=2$

The proof has again Step A and Step B. i.e. we first prove that

$$
\begin{equation*}
l=2 \text { and } b_{2}(0)=a_{2}(0), \tag{57}
\end{equation*}
$$

and then if u is not identically equal to v, using the differential inequality (20) for τ, and the same comparison function h of (22) we derive a contradiction.

The proof of (57) is trivial: from (12),

$$
a_{2}(0)-b_{2}(0) \geq 0
$$

while from (14), at $t=0$, the opposite inequality holds.
Turn now to the equation for τ. We follow the argument of Section 3. We have to prove that $\tau-\epsilon h$ cannot have a negative minimum in G. To do this we have to check, as before that $F[\epsilon h]$ in (27) is positive at a possible minimum point (\bar{s}, \bar{y}), i.e.

$$
\begin{equation*}
\delta(1+\delta) \bar{s}^{-\delta-1}-2 n C-\frac{u_{t t}}{u_{t}}\{\quad\}-\frac{4 C u_{t i} \bar{y}_{i}}{u_{t}}>0 . \tag{58}
\end{equation*}
$$

The term $\{\quad\}<0$, and $u_{t t}=a_{2}+O(t)>0$, since $a_{2}(0)>0$. In addition,

$$
M=\frac{4 C}{u_{t}}\left|u_{t i} \bar{y}_{i}\right| \leq \frac{4 C \sqrt{\sum\left|u_{t i}\right|^{2}}|\bar{y}|}{u_{t}}
$$

Now

$$
u_{t}=a_{1}+a_{2} t+\cdots \geq \frac{1}{2} a_{2}(0) t>\frac{2}{5} a_{2}(0) s
$$

by (26). Thus, since $s>K|y|^{2}$,

$$
M \leq \frac{10 C\left|\nabla^{2} u\right|}{a_{2}(0) \sqrt{K} \sqrt{s}}
$$

We conclude that (recall $C=K+1$),

$$
F[\epsilon h] \geq \delta(1+\delta) s^{\delta-1}-2 n C-\text { constant } \cdot \frac{\sqrt{K}}{\sqrt{s}}>0
$$

since $\delta=1 / 4$. (40) is proved, and the proof of Theorem 2 for $k=2$ is complete.

7 - Appendix. A simple proof of Theorem 1

We treat only the case:

$$
\begin{equation*}
\dot{u}>0 \quad \text { on }(0, b) . \tag{59}
\end{equation*}
$$

We have to prove that

$$
\begin{equation*}
u \equiv v \tag{60}
\end{equation*}
$$

The proof proceeds in two steps:
Step A. (60) holds in case

$$
\begin{equation*}
v^{\prime}(s) \geq 0 \tag{61}
\end{equation*}
$$

Step B. Necessarily,

$$
v^{\prime}(s) \geq 0
$$

Step A. Proof of (60) if $v^{\prime} \geq 0$.
We have

$$
u(t)=v(s)
$$

since $u^{\prime}>0$, for $t>0$, we may solve for $t=t(s)$. Here $\cdot=\frac{d}{d t},{ }^{\prime}=\frac{d}{d s}$. Then

$$
v^{\prime}=\dot{u} t^{\prime} .
$$

Compute

$$
\begin{align*}
\left(v^{\prime 2}-\dot{u}^{2}\right)^{\prime} & =2 v^{\prime} v^{\prime \prime}-2 \dot{u} \ddot{u} t^{\prime}=2 v^{\prime}\left(v^{\prime \prime}-\ddot{u}\right) \geq \tag{62}\\
& \geq 0
\end{align*}
$$

by our main condition (2). But at the origin,

$$
v^{\prime 2}-\dot{u}^{2}=0
$$

so

$$
v^{\prime 2}-\dot{u}^{2}=\dot{u}^{2}\left(t^{\prime 2}-1\right) \geq 0
$$

Hence

$$
t^{\prime 2} \geq 1
$$

Since $t^{\prime} \geq 0$ somewhere for s arbitrarily small, it follows that $t^{\prime} \geq 1$, i.e. $t \geq s$.
But then $t \equiv s$ and so $u \equiv v$.
Step B. Proof that $v^{\prime} \geq 0$.
(i) We use part of an argument of [1]:

$$
\ddot{u}(t) \text { is a function of } t
$$

but since $\dot{u}>0$ it may be written as a function of u, i.e.

$$
\begin{equation*}
\ddot{u}=f(u), \tag{63}
\end{equation*}
$$

with, however, f an unknown function. f is continuous on an interval $[0, m]$ for some $m>0$, and of class C^{1} on $(0, m]$, since u is of class C^{3} for $t>0$. The main condition (2):

$$
\ddot{u}(t) \leq v^{\prime \prime}(s) \quad \text { whenever } u(t)=v(s), t \leq s
$$

is equivalent to the inequality

$$
\begin{equation*}
v^{\prime \prime} \geq f(v) \tag{64}
\end{equation*}
$$

We have $u \geq v$ and both vanish, with their first derivatives at the origin. But we cannot apply the Hopf Lemma to $(u-v)$ because f is not known to be Lipschitz near the origin.

Lemma 3. If $v(s)=u(s)$ for some $s>0$, then

$$
v \equiv u
$$

Proof. We use a differential inequality which holds for $\tau=s-t(s)$. Namely, we have

$$
\begin{aligned}
v^{\prime} & =\dot{u} t^{\prime} \\
v^{\prime \prime} & =\dot{u} t^{\prime \prime}+\ddot{u} t^{\prime 2}=-\dot{u} \tau^{\prime \prime}+\ddot{u}\left(1-\tau^{\prime}\right)^{2} .
\end{aligned}
$$

So

$$
0 \leq v^{\prime \prime}-\ddot{u}=-\dot{u} \tau^{\prime \prime}+\ddot{u}\left(\tau^{\prime 2}-2 \tau^{\prime}\right)
$$

Now if $u(s)=v(s)$ for some $s>0$, then, there, $\tau=0$. But $\tau \leq 0$. By the strong maximum principle it would follow that $\tau \equiv 0$, i.e. $v \equiv u$.

To prove that $v^{\prime} \geq 0$ we argue by contradiction. Suppose $v^{\prime}<0$ somewhere.
(ii) We cannot have $v^{\prime} \geq 0$ on an interval $(0, c)$, for if this holds, by Step A, we would have

$$
v \equiv u \quad \text { on }(0, c) .
$$

By Lemma 3, we would have

$$
v \equiv u \quad \text { everywhere. }
$$

So, arbitrarily near the origin there are points where $v^{\prime}<0$. But then there must be an interval $(a, c), 0<a<c<b$ on which

$$
v^{\prime}<0 \text { and } v^{\prime}(a)=0
$$

On this interval, by (62),

$$
\left(v^{\prime 2}-\dot{u}^{2}\right)^{\prime} \leq 0
$$

Hence

$$
v^{\prime}(s)^{2}-\dot{u}(t(s))^{2} \leq-\dot{u}^{2}(t(a)) \quad \text { on }(a, c)
$$

and, consequently,

$$
\dot{u}(t(a)) \leq \dot{u}(t(s)) \quad \text { for } \quad a<s<c .
$$

It follows that

$$
\ddot{u}(t(a)) \geq 0 .
$$

By our main condition, then

$$
v^{\prime \prime}(a) \geq \ddot{u}(t(a)) \geq 0
$$

Now we cannot have $v^{\prime \prime}(a)>0$ since $0=\dot{v}(a)>\dot{v}(s)$ for $a<s<c$. Thus

$$
\begin{equation*}
v^{\prime \prime}(a)=0, \quad \text { and so } \ddot{u}(t(a))=0 . \tag{65}
\end{equation*}
$$

(iii) We now make use of (63) and (64). By (63),

$$
0=f(u(t(a)))=f(v(a))
$$

Hence, by (64), on (a, c),

$$
v^{\prime \prime}(s) \geq f(v(s))=f(v(s))-f(v(a))=f^{\prime}(\xi)(v(s)-v(a))
$$

for some ξ in $(v(s), v(a))$.
But $v(s)-v(a)$ has its maximum at a. We may apply the classical Hopf
Lemma to infer that

$$
v^{\prime}(a)<0 .
$$

This contradicts the fact that $v^{\prime}(a)=0$.

REFERENCES

[1] Y. Y. Li - L. Nirenberg: A geometric problem and the Hopf Lemma. I, J. Eur. Math. Soc., 8 (2006), 317-339.

Lavoro pervenuto alla redazione il 1 dicembre 2008 ed accettato per la pubblicazione il 2 febbraio 2009.

Bozze licenziate il 18 marzo 2009

INDIRIZZO DEGLI AUTORI:

Yan Yan Li - Department of Mathematics - Rutgers University - 110 Frelinghuysen Road Piscataway, NJ 08854
E-mail: yyli@math.rutgers.edu
Louis Nirenberg - Courant Institute - 251 Mercer Street - New York, NY 10012
E-mail: nirenl@cims.nyu.edu

