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Partial results on extending the Hopf Lemma

YAN YAN LI - LOUIS NIRENBERG

Dedicated with affection to Umberto Mosco on his 70t" birthday

ABSTRACT: We proved in [1] a generalization of the Hopf Lemma in one di-
mension. In this paper we present two conjectures as possible extensions to higher
dimensions, and give a very partial answer.

1— Introduction

In [1], Theorem 3, the authors proved, in one dimension, a generalization
of the Hopf Lemma, and the question arose if it could be extended to higher
dimensions. In this paper we present two conjectures as possible extensions, and
give a very partial answer. We write this paper to call attention to the problem.

The one dimensional result of [1] was

THEOREM 1. Let u > v be positive C, C? functions respectively on (0,b)
which are also in C1([0,b]). Assume

(1) w(0) = w(0) =0

and
either w > 0 on (0,b) or © > 0 on (0,D).
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Main condition:

(2) whenever u(t) = v(s) for 0 <t < s <b, there i(t) <v"(s),
(here - = %, f= %)

Then
(3) u=v onl0,b].

The proof given in [1] is somewhat roundabout. In the Appendix we present a
more direct one, but it is still a bit tricky. In [1], it was assumed that u is of
class C? on (0,b), but its proof there actually required that u be of class C3.
Turn now to higher dimensions. Let u > v be C*° functions of (¢,y), y € R™,
in
Q={ty) [0<t <1yl <1},

and C° in the closure of ). Assume that

(4) u>0,v>0 u >0 in
and
(5) u(0,y) =0 for |y| < 1.

We impose a main condition:

whenever u(t,y) = v(s,y) for 0 <t <s <1,y <1,

(6) there Au(t,y) < Av(s,y).

Under some additional conditions we wish to conclude that
(7) u= .

Here are two conjectures, in decreasing strength, which would extend Theorem 1.
In each, we consider u and v as above.

CONJECTURE 1. Assume, in addition, that
(8) u(0,0) = 0.

Then (3) holds:

u="v.

CONJECTURE 2. In addition to (8) assume that

9) u(t,0) and v(¢,0) vanish at ¢t = 0 of finite order.
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Then

u="v.

We have not succeeded in proving them. What we present here is a partial
answer to Conjecture 2: Here let k,[ be the orders of the first t—derivative of u,
v respectively at the origin which are not zero. Clearly k < I.

THEOREM 2. In addition to the conditions of Conjecture 2, we assume the
annoying condition

Then uw = v provided k =2 or 3.

For k < 3 the proof is simple, but not that for k = 3.
We will always use Taylor series expansions for u, v, in t,

2 3

t
u=ai(y)t+ az(y)g + GS(ZU)g +oeey
(11) t2. t3'
v="bi1(y)t + b2(y>§ + b3(y)§ +

The conditions on v and v are as follows

12 3
(12) 0 <u(t)—o(t) = (a1 — b))t + (az — 62)5 + (az — bs)? N
where
u(t7 y) = ’U(Sﬂ y)7 t S 87
i.€e.
t2 3 §2 3
(13)  ax(y)t + a2(y)§ + as(y)g + - =bi(y)s + b2(y)§ + b3(y)§ +--
there

0> Au—Av=(az — bg) + t(Aar + (13) — s(Ab + bg)+

(14) t2 52
+ E(ACLQ +a4) — E(Ab2 +b4) +oee

We first present the proof of the more difficult case k = 3. It takes up Sections 2-
5. In Section 6 we treat the case k = 2.
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2 —

STEPS OF THE PROOF. We are assuming k& = 3. The proof consists of two
steps:

STEP A. This consists in proving

THEOREM 3. Under the conditions of Theorem 2, where k = 3, we have
(15) I =3, and b3(0) = a3(0).

STEP B. In this step we consider our condition
(16) u(t,y) =v(s,y) for 0 <t <s.

Since u; > 0 for ¢t > 0, we may solve this for ¢t = ¢(s,y). Assuming that u is not
identically equal to v, for

(17) T<Svy) =5—= t(S,y)

we derive, from (6), an elliptic differential inequality for 7(s,y). Using a com-
parison function we prove that

(18) 7(s,0) > es for some 0 < € small.
On the other hand, for y = 0, we have, by (15) and (11),
u(t,0) = v(s,0)
i.e. after dividing by a3(0),
t2 + higher order terms = s® + higher order terms.

Hence
t(s,0) = s + higher order terms.

But this contradicts (18), and the proof of Theorem 2 is then complete.
For k = 3, we will first present the proof of Step B; it seems more interesting
to us.
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37
PROOF OF (18) IN CASE k = 3. Here we assume that (15) holds, i.e.
b3(0) = (13(0) >0

and first derive the elliptic inequality for 7(s,y) = s —t(s,y), where t(s,y) is the
solution of

(19) u(t(s,y),y) = U(87y)'

Differentiating this we find, setting v; = 0y, v,

Vg = uttsv Vgs = Utlgs + utttia

v = wet; + uy, Vi = Ugti; 4 2upit; + upt; + ug.
Hence

0 < Av(s,y) — Au(t,y) = ugAt + 2ugit; + ug(|VE? — 1),
In terms of 7 = s — ¢, this becomes, after dividing by u,
(20) F(r) = Ar — 2L (V72 — 2r,) + 2287, < 0.
Ut Ut
This is the differential inequality for 7.
We will consider this in the region

(21) D ={(s,y) | s > K|y|*}, K large, near the origin,

and use a comparison function:
1
(22) h=s+s10 - Clyf, 0= C=K+1

Near the origin we have
(23) h(s,y) <0 where s = K|y|?.

We assume now that v is not identically equal to u near the origin and argue by
contradiction.

Observe first that if v(5,7) = u(5,7) for some § and some 5 > 0 then
7(8,7) = 0. But near (5,7), 7 > 0 satisfies the inequality (20), which is elliptic
there. By the strong maximum principle, it would follow that 7 = 0 there. Then,
again by the strong maximum principle 7 = 0 everywhere, i.e. v = u near the
origin, for t > 0. Contradiction.

Thus we may assume that 7 > 0 for s > 0.

The basic result of this section is

LEMMA 1. For 0 < € small, 7 > €h in D near the origin.
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Once the lemma is proved, it follows that 7(s,0) > es for 0 < s small,
i.e., (18) holds, and Step B would be complete.

PROOF OF LEMMA 1. Choose positive € < 1/10, so small that on DN {s =
¢}, ¢ to be fixed — where 7 is positive, and hence bounded away from zero —

(24) T > €h,

€ depends on c.
In view of (23) it follows then that

T —eh > 0, 0n the boundary of G =Dn{s < c}.
We now use the maximum principle, suitably to show that
(25) T>¢eh inG.

Completing the proof of Lemma 1. We argue by contradiction.
Suppose T — eh has a negative minimum at some point (§,7) in G. There,
of course,
T < €(s+ s'10) < 2es,

and so
4
(26) t:s—TZ(l—Qe)szgs.
At (5,9), VT = eVh and
AT > eAh.

Therefore, there, eh satisfies the inequality

Aleh) — 2|V — 2¢hy) +2¢ 2 h; < 0
Uy Ut

i.e. after dividing by e,
Fleh] = Ah — 2 {e[(1 4 (14 0)s°)2 + 4C2|y[2] — 2 — 2(1 + 6)s°} +
Ut
(27) _4Cutiyi <0
Uy ’
For small € and ¢ (which may depend on K),

(28) the expression { } in (27) is negative.
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We will choose K to ensure that

We have
(30) Uy = Qg +asgt +--- .

Since a3(0) > 0, near the origin,

0
(31) as(t.y) = 2.
Recall that u; > 0, i.e.
t2
(32) 0<a1+ta2—|—5a3—|—-~-.

Thus a; > 0 and a; = O(Jy|?). By (10), and it is only here that (10) is used,

(33) laz] < Aly|?

for some A > 0.
Now, still at (8, y), and for t = ¢(s,y), we have

0
Uy = ag +agt + -+ > a3§ )t_ A|y|2 +O(t2) >
> QBT(O)L‘ — Aly|? (for ¢ small) >
> 0 P
5
by (26). We require
K> 54 .
az(0)
Then (29) holds:
uy > 0,

(we may suppose K > 1.)
Consequently, from (27) we find

4
(34) Ah— u—Cuty <0 at(59)
t
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Next, by a well known elementary inequality which uses the fact that the second
order derivatives in y of u; are bounded in absolute value we have, for some
constant B,

|uti| §Bwut Y 1.
So

4C
(35) M = —|uyy| < ——=
Ut
Now, recall, t = (8, §),
agt” ast az(0
ut:a1+a2t+37+...>t<a2+%+...> >t<—A|y|2—|— di )t>

by (33), for ¢ small. So

A CLg(O) 4 A a3(0)
> J— > - -
ut_t< K5+ 1 t)_5s< Ks—!— 5 S

by (26). Hence

az(0) ,
>
(36) T
provided
A _ a3(0)
— < .
(37) K — 100
Inserting (36) in (35) we find
4C Lly|
(38) u Zut Y s
where
; _ H10CB
az(0) -
Thus, by (21),
L
M < .
T VKs
We now insert this in (34) and, computing Ah, we find
410 K+1 B
5(146)s° 1 —2nC < V10 Atlo
a3(0) VK /s

But for § = 1/4, and c restricted still further if necessary, we see that this is
impossible.

REMARK 1. Our use of the maximum principle is somewhat unusual. Nor-

mally, one would prove that Feh], in (27) is positive in G; in fact we do not
know how to prove that. But, as we see, it suffices only to show that it is positive

at (t(s,9),9)-
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4— Step A
4.1 - We turn now to Step A
Let
(39) a;(y) be the lowest order terms of a;(y)

in its Taylor expansion; a; is a homogeneous polynomial. We know that
(40) deg dl, deg lA)l, deg(dg — IA)Q) > 2,

since, by (14), a2 — b is non-positive.
Our aim is to prove, in this and the next section, that if £ = 3 then

(41) I =3 and b3(0) = a3(0).

We will constantly use (12)-(14).

PROOF THAT IF | = 3 THEN b3(0) = a3(0). Since v > v > 0 in €2, necessarily
a3(0) > b3(0) > 0.

In (13) set y = 0 and solve for ¢t = t(s). Clearly

- (2) o

Inserting this value for ¢(s) in (14) we find, by looking at the coefficients,

ZON :
02 (a3(0)> (Aa1(0) + a3(0)) — (Ab (0) + b3(0)),

i.€.
(42) (bg)%A(?q - (ag)%AlAh + (b3)%a3 — (ag)%bg <0, at y=0.
Since a3 > by > 0 at y = 0, we infer that
(43) (b3)3Ady — (a3)3Ab; <0,  aty=0.
Now é; > by > 0. This implies Ad;(0) > Aby(0) > 0. If both = 0 then (42)
implies a3(0) = b3(0).
Then, since Aa;(0) > 0, it follows that
(44) Aby(0) > 0.

In particular, deg 131 =dega; = 2.
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Next, at a point y where by (y) > 0, take
s = Kay(y), K large.

Then from (13) we solve for ¢t = t(s) and find, looking at terms of various degrees
in y, R
t=Kbi(y) +o(yl*).

Insert this in (14); we obtain, looking at terms of second degree in y, and using
the fact that K is arbitrarily large,

(45) 0> b1 (y)(Aa1(0) + a3(0)) — a1 (y) (Ab1(0) + b3(0)).
Since the right hand side is a homogeneous quadratic, its Laplacian is < 0, i.e.
0> Aby(Aay + as(0)) — Aay (Aby + b3(0)),

SO
(@,(O)Ai)l — b3(0)A€l1 S 0.

Using (43) it follows, then, that
2 1
a§’ b§ Aél S bgAle

which implies (41):
bs(0) = a5(0).

From now on we assume [ > 3 and prove that this is impossible.

42—-Thecasel >3

CrAIM 1. In this case
(46) by = O(|y[*).

~ PrOOF. Suppose not, then by has degree 2 since by the positivity of v,
by > 0. a; also has degree 2 since a; > by. The proof above of (45) still works,
and yields

(47) 0> by (Ady + a3(0)) — a1 Ab;.

Taking trace we find R
0 Z Ablag (O)

i.e. 131 = 0 — recall that 131 > 0. Contradiction. The claim is proved.
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Next, set y = 0 and solve for ¢(s) in (13). We find

1/3
SE

Inserting this in (14) we find, at y = 0, since Ab; =0,

3 1/3
0> G) (Z—l) s'/3(Aay + az) — s2(Aby 4 by) + o(s/3 + 5?).
. 3

Consequently
[>6.

We shall make use of the following

LEMMA 2. Let v > 0 be given by (11) and assume that 1 is the order of the
first t—derivative of v which is > 0 at the origin. Let m be the first value of i (if
it exists) such that

deg 61 =1.

Suppose that for some j, 1 <j < (14+4)/3,

degl;i >3 fori<j.

(48) m > ITJ

Proor. Clearly j < m < I. At some y, b,,(y) < 0. Then, at that y, if we
set
s=ly|% 0 < a to be chosen,

we have, since v > 0,

19 0SY nst X ghs Y ks +06).

i<j j<i<m—1 m<i<l—1

In case j = 1 we find
1. m __ 2 l
(50) 0< —ﬁbms = O(ly|*s) + O(s").

Suppose that (48) does not hold, i.e.
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Then there exists a > 0 such that deg LHS of (50) < deg of each term on RHS
of (50). One easily verifies this using the fact that

1 1

l—m m-—-1

But then (50) is impossible.
In case j > 1 we find from (49) and the fact that by = O(|y|*), that

b (y)y|*™
2m)

Suppose that (48) does not hold, i.e.

(G1)  0<- < O(lyl"**) + O(lyI****) + O(ly*7*) + O(ly|").

[
(52) m < %

CLAIM. There exists @ > 0 such that the degree of LHS of (51) < the degree
of each term on RHS of (51).
If so, (52) is impossible.

PROOF OF CLAIM. The claim asserts the existence of a > 0 such that

l+ma<4+a,ie a< ,
m—1

1+ma<3+2a,z’.e.a<% if m > 2,
(53)

1+ma<2+ja,ie a< if m > j,

1
1+ma<la, ie. a > ——.
l—m

If m = 2, the second and third inequalities automatically hold, so does the third
if m = j. Otherwise it says that

1
a < <.
m-=7
One easily verifies using (52) that
3
9 lfm:j:2,
m—1
1 . 3 2 . )
L . fm=j>3
< mm{m—l’m—Q} itm=j>
. 3 2 1 . .
min , , - if m > j.
m—1"m—2 m-—j

It follows that the required a exists. Hence, Lemma 2 is proved.
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5 —
We come now to a crucial step.
PropoSITION 1. Ifl > 3i,1> 3,1 > 1, then
deg l;Z > 3.

Using the proposition we may now give the

COMPLETION OF THE PROOF OF THEOREM 3. At y = 0, if we solve (13)
for t we find as before,

t = As'/3 4 o(s!/?),

where

Inserting this in (14) and using Proposition 1 we see that
0> As'/3(Aay + a3) + O(s!/3+1),
But this is impossible, and Theorem 3 is proved.
Proor oF PROPOSITION 1. By Lemma 2,
~ . l
degb;, >1 fori< 5—1—1.
Suppose the proposition is false. Then there is a first j < /3 such that
deg l;j =2.

We will show that this is impossible.
By (46), j > 2.

CrAM. b; > 0.
If not, at some y, b;(y) < 0. Then, setting

s = y|*,

we have, using Lemma 2, and (46),

l;l ja a a a j a
(54) 0< _I%I' = O(ly*+) + O(yP*+*) + O(y[+0+)/2) 1 O(Jy|).
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Setting a > 1/j but very close to 1/j, we see that the degree in y of LHS of (54)
< the degree of each term on RHS of (54), i.e. (here we use j <1/3)

(55) 2+ ja <min{4d +a,2a+ 3,1+ a(l+5)/2,al}.

But then (54) is impossible. The claim is proved.

We now distinguish two cases.

CASE 1. dega; = 2. We have b; > 0.

Fix y so that b;(y) > 0; since d; cannot vanish on an open set we may also
ensure that a;(y) > 0.

As before, set s = |y|®, with a > 1/j but very close to 1/j, so that (55)
holds. Then, as before, in the expression for v the term

1
jt

. 1. .

(56) J==bi(y)s’ = ﬁbj(y)lyl‘”

has degree smaller than that of any other term.
Consequently we may solve (13) first, and find

l;j aj aj
t—ﬂdf?y)m Tolyl*).

Inserting these values for s and ¢ in (14) we find
[yl b;

4!

ylv
!

0> (Ady + a3(0)) Ab; + o(Jy|*),

23
ay
i.e.

0 Z ZA)j(A(All + 113(0)) - &1Ai)j.
As before, taking trace, we conclude that I;j = 0. Contradiction.

CASE 2. degay > 2. Then dega, > 4.

Still take s = |y|*, with @ > 1/j but very close to 1/j, so that (55) holds.
We still have that in the expression for v, the term J in (56) has degree smaller
than that of every other term. To solve (13) for ¢, we note that the leading terms
of u(t,y) are now

1 1
u(t,y) = ai(y)t+ iaz(y)t2+8a3(y)t3+' = O0(lyl*) +O(|y*t*) +az(0)t> +- - -,

where we have used degas > 2 which follows from Lemma 2. Thus

- (%)J) +ofjy| ).
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Inserting these values for s and ¢ in (14) we find

0 > tas(0 )——Ab + oy 75 + o(ly|*).

It follows, since (2 + aj)/3 < aj, that 0 > a3(0), a contradiction.
The proof of Proposition 1 in case dega; > 2 is complete. Theorem 3 is
proved.

6 — Proof of Theorem 2 in case k = 2
The proof has again Step A and Step B. i.e. we first prove that
(57) I =2 and b2(0) = a2(0),

and then if « is not identically equal to v, using the differential inequality (20)
for 7, and the same comparison function h of (22) we derive a contradiction.
The proof of (57) is trivial: from (12),

GQ(O) - b2(0) >0

while from (14), at t = 0, the opposite inequality holds.

Turn now to the equation for 7. We follow the argument of Section 3. We
have to prove that 7 — eh cannot have a negative minimum in G. To do this
we have to check, as before that F[eh] in (27) is positive at a possible minimum
point (8,7), i.e
{ - 4Cu:1yz

The term { } <0, and uy = as + O(t ) > 0, since a2(0) > 0. In addition,

4C _ 40\/ ’LLZ'QQ
M = u_lutiyil < %
t t

Utt

(58) S(146)57°71 —2nC — > 0.

Now

1 2
up = ay + agt + - 5 az(0)t > gag(O)S

by (26). Thus, since s > K|y|?,
10C| V2|
<—F.
az(0)VK+/s
We conclude that (recall C = K + 1),
VK
Fleh] > 6(1+6)s°~! — 2nC — constant - 7 >0
B

since 6 = 1/4. (40) is proved, and the proof of Theorem 2 for k = 2 is complete.
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7 — Appendix. A simple proof of Theorem 1

We treat only the case:
(59) >0 on (0,b).
We have to prove that
(60) u=v.

The proof proceeds in two steps:

STEP A. (60) holds in case

(61) v'(s) > 0.
STEP B. Necessarily,
v'(s) > 0.
STEP A. Proof of (60) if ' > 0.
We have
u(t) = v(s),
since v’ > 0, for ¢ > 0, we may solve for ¢t = ¢(s). Here - = %, = %. Then
v =t
Compute
(62) (W? —a?) = 220" — 20t = 20’ (v — i) >

>0

by our main condition (2). But at the origin,

SO
Hence
Since t’ > 0 somewhere for s arbitrarily small, it follows that ¢ > 1, i.e. t > s.

But then ¢t = s and so u = v.

STEP B. Proof that v/ > 0.
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(i) We use part of an argument of [1]:
ii(t) is a function of ¢

but since % > 0 it may be written as a function of u, i.e.

(63) i = f(u),

with, however, f an unknown function. f is continuous on an interval [0, m]
for some m > 0, and of class C! on (0,m], since u is of class C* for ¢t > 0.

The main condition (2):

i(t) <v”(s) whenever u(t) = v(s), t < s,
is equivalent to the inequality
(64) o > ().

We have u > v and both vanish, with their first derivatives at the origin. But we
cannot apply the Hopf Lemma to (u —v) because f is not known to be Lipschitz
near the origin.

LEMMA 3. Ifv(s) = u(s) for some s > 0, then

V= U.

ProoF. We use a differential inequality which holds for 7 = s—t(s). Namely,
we have

v o=t
V' =0t 4+ at? = —ar” il — )2
So
0 <" —ii = —ar” +i(r'"? - 27').

Now if u(s) = v(s) for some s > 0, then, there, 7 = 0. But 7 < 0. By the strong
maximum principle it would follow that 7 =0, i.e. v = u.

To prove that v’ > 0 we argue by contradiction. Suppose v’ < 0 somewhere.

(ii) We cannot have v' > 0 on an interval (0, ¢), for if this holds, by Step A, we
would have
v=u on (0,c).

By Lemma 3, we would have

v=u everywhere.
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So, arbitrarily near the origin there are points where v’ < 0. But then there
must be an interval (a,c), 0 < a < ¢ < b on which

v’ < 0 and v'(a) = 0.

On this interval, by (62),

Hence

and, consequently,

It follows that

By our main condition, then

v"(a) > i(t(a)) > 0.

Now we cannot have v”(a) > 0 since 0 = ©(a) > 0(s) for a < s < ¢. Thus
(65) v”(a) =0, and so ii(t(a)) = 0.

(iii) We now make use of (63) and (64). By (63),

for some & in (v(s),v(a)).
But v(s) — v(a) has its maximum at a. We may apply the classical Hopf
Lemma to infer that
v'(a) < 0.

This contradicts the fact that v’(a) = 0.
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