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On the weak closure of convex sets

of probability measures

NICOLA GIGLI

Abstract: We prove that a closed, geodesically convex subset C of Pr
2 (IRd) is

closed with respect to weak convergence in Pr
2 (IRd). This means that if (μn) ⊂ C is such

that μn ⇀ μ in duality with continuous bounded functions and supn

∫
|x|2dμn < ∞,

then μ ∈ C as well.

1 – Introduction

The aim of this paper is to study the weak closure properties of geodesi-
cally convex sets. The reasons of such an interest come from the fact that the
distance W was recently studied because of the strict relations with some evo-
lution PDE’s which may be interpreted as curves of maximal slope of certain
geodesically convex functionals, i.e. functionals that are convex along geodesics.
Such an approach, introduced by Otto in [8] and then further analyzed by sev-
eral authors Carrillo-McCann-Villani in [4], by Agueh in [1] and by the author
together with Ambrosio and Savaré in [2] (see [2] for more detailed references),
leads to the study of the problem of existence and uniqueness of those curves: the
theory of minimizing movements introduced by De Giorgi ([6]) provides a sat-
isfactory answer to these questions under only weak compactness assumptions.
In [2] there are mainly two theorems on existence of curves of maximal slope for
geodesically convex functionals which rely on two different kind of assumptions
on the functional F :
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(i) F is lower semicontinuous w.r.t. the weak topology and satisfies

F (γ[t]) ≤ (1 − t)F (γ[0]) + tF (γ[1])

for any optimal plan γ ∈ P2(IR
2d) (see Corollaries 2.4.11 and 2.4.12 of [2]),

(ii) F is lower semicontinuous w.r.t. the strong topology and satisfies

F (γ[t]) ≤ (1 − t)F (γ[0]) + tF (γ[1])

for any plan γ ∈ P2(IR
2d) (see Theorem 4.0.4 of [2]).

Here and in the following strong topology stands for the topology induced
by W2, and weak topology stands for a(1) topology for which a sequence (μn) is
converging to μ if and only if (μn) converges to μ in duality with continuous and
bounded functions, and supn

∫
|x|2dμn < ∞.

The two notions of convexity along geodesics just introduced are strictly
related to the following notions of geodesic convexity for sets:

Definition 1.1(Geodesically convex sets) We say that a set C ⊂ P2(IR
d) is

geodesically convex if for any μ1, μ0 ∈ C there exists a γ ∈ Γo(μ0, μ1) such that
the whole segment joining μ0 to μ1 through γ belongs to C, that is:

(
(1 − t)π1 + tπ2

)
#

γ ∈ C, ∀t ∈ [0, 1].

Definition 1.2(Strongly geodesically convex sets) We will say that a set
C ⊂ P2(IR

d) is strongly geodesically convex if for any μ1, μ0 ∈ C and every
γ ∈ Γ(μ0, μ1) the whole segment joining μ0 to μ1 through γ belongs to C, that
is: (

(1 − t)π1 + tπ2
)
#

γ ∈ C, ∀t ∈ [0, 1].

It is easy to check that if a functional F l.s.c. w.r.t. the W2−topology is
convex along geodesics in the sense of (i) (respectively, (ii)), then its sublevels
are geodesically convex (respectively, strongly geodesically convex).

The main result of this work is to show that in case (i) the assumption of
lower semicontinuity w.r.t. the weak topology is redundant and may be sub-
stituted with semicontinuity w.r.t. W2 provided we know that the functional
attains the value +∞ at non regular measures. In order to prove this we will
show that any W2−closed geodesically convex subset of P2(IR

d) is closed w.r.t.
weak convergence of measures in P2(IR

d).

(1)We will state and prove our result in term of sequential closure of geodesically convex
sets, as the introduction of the weak topology in P2(IR

d) (i.e. the natural topology for
which converging sequences are those weakly converging in the sense of definition 2.1),
is a bit technical and does not add really much to our understanding of the geometry
of P2(IR

d). The interested reader may have a look at Chapters 2 and 5 of [7] for a

detailed discussion.
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The idea comes from functional analysis: indeed it is well known that a
closed convex subset of an Hilbert space is weakly closed, as it may be written
as intersection of a family of halfspaces. Here we first introduce the notion
halfspace in P2(IR

d) and show that an halfspace is weakly closed; then we prove
that W2−closed geodesically convex subsets of Pr

2 (IRd) are intersections of a
family of halfspaces, and thus weakly closed as well.

A technical issue arises when dealing with non regular measures, the author
doesn’t know whether the same result holds for general measures or not.

2 – Preliminaries

In this section we recall the basic facts of optimal transport theory we will
need in the rest of the paper. This introduction is very far from being exhaustive,
the interested reader may look at [2] and [10] for proofs and generalizations.

We will denote by P2(IR
d) the set of probability measures with finite second

moment, i.e.:

P2(IR
d) :=

{
μ ∈ P(IRd) :

∫
|x|2dμ < ∞

}
,

and by Pr
2 (IRd) its subset made of regular measures, which are those measures

which give 0 mass to n − 1 rectifiable sets.

We endow P2(IR
d) with the quadratic Wasserstein distance, defined as:

W2(μ, ν) :=

√
inf

∫
|x − y|2dγ,

where the infimum is taken among all admissible plans γ ∈ P(IRd×IRd) satisfying
π1

#γ = μ and π2
#γ = ν, where π1, π2 are the projection onto the first and second

coordinate respectively. A plan which realizes the minimum is called optimal.

Definition 2.1 (Convergences in P2(IR
d)) We will say that a sequence (μn)

converges strongly to μ if W (μn, μ) → 0 as n → ∞ and that it converges weakly
if

∫
ψdμn →

∫
ψdμ as n → ∞ for every ψ ∈ Cb(IR

d) and supn

∫
|x|2dμn < ∞.

The following celebrated result is due to Brenier.

Theorem 2.2. Let μ ∈ Pr
2 (IRd) and ν ∈ P2(IR

d). Then there exists only
one optimal plan γ and this plan is induced by an optimal map. Furthermore,
this map is the gradient of a convex function. That is, there exists a convex
function ϕ : IRd → IR such that γ = (Id,∇ϕ)#μ.
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We will denote by T ν
μ the optimal map given by Brenier’s theorem. For a

given μ ∈ P2(IR
d) we will write L2

μ for the set of measurable maps T : IRd → IRd

such that ‖T‖2
μ :=

∫
|T (x)|2dμ(x) < ∞. The space L2

μ is endowed with a natural
inner product: 〈T, S〉μ :=

∫
〈T (x), S(x)〉dμ(x).

The following is a well known stability result of optimal maps.

Proposition 2.3.
Let ν, νn ∈ P2(IR

d), n ∈ IN, and μ ∈ Pr
2 (IRd). Then the sequence (νn)

converges strongly (resp. weakly) to ν if and only if the sequence (T νn
μ ) converges

strongly (resp. weakly) to T ν
μ in L2

μ.

Recall that if μ ∈ Pr
2 (IRd) and ν ∈ P2(IR

d) the unique constant speed
geodesic on [0, 1] starting from μ and finishing at ν is given by t �→ μt :=
(Id + t(T ν

μ − Id))#μ, where Id is the identity map. In this case it is said that
the geodesic is induced by T ν

μ . It is known that if μ1
t and μ2

t are two constant
spees geodesics starting from μ and induced by T, S respectively, then it holds:

(1) lim
t↓0

W2(μ
1
t , μ

2
t )

t
= ‖T − S‖μ.

For a proof of this fact see Appendix of [2] or Chapter 4 of [7].
Finally recall that, with the same notation as above, it holds

(2) lim
t↓0

W2(μ
1
t , ν)

t
= −2〈T − Id, T ν

μ − Id〉μ, ∀ν ∈ P2(IR
d),

see Proposition 7.3.6. of [2] for a proof of this fact.

3 – The result

The basic object we will need for our result is the following:

Definition 3.1 (Halfspace) Let μ ∈ Pr
2 (IRd), v ∈ L2

μ and C ∈ IR. The two

halfspaces H+
v;C and H−

v;C identified by v, C are:

H+
v;C :=

{
ν : 〈T ν

μ − Id, v〉μ ≥ C
}

,

H−
v;C :=

{
ν : 〈T ν

μ − Id, v〉μ ≤ C
}

.

As said, we are going to study only sequential closure of sets: the following
proposition is the enabler of the theory.

Proposition 3.2. Let μ ∈ Pr
2 (IRd), v ∈ L2

μ and C ∈ IR. Then the two

halfspaces H+
v;C and H−

v;C are weakly sequentially closed.
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Proof. Consider a sequence (νn) ⊂ P2(IR
d) which weakly converges to

ν. By proposition 2.3 we know that the sequence of optimal transport maps
(T νn

μ ) weakly converges to the optimal transport map T ν
μ . Thus the bound

〈T νn
μ − Id, v〉μ ≥ C (or 〈T νn

μ − Id, v〉μ ≤ C) passes to the limit.

We want to prove that any geodesically convex subset C of Pr
2 (IRd) is the

intersection of a family of halfspaces. The idea is to find, for every ν /∈ C, an
halfspace which contains C and does not contain ν. Observe that if we knew a
priori the existence of a measure μ ∈ C which realizes the minimum distance from
ν to C, then the halfspace H−

T ν
μ−Id;0 has the needed property. Indeed, pick any

measure σ ∈ C and let μt := (Id + t(T σ
μ − Id))#μ and νt := (Id + t(T σ

μ − Id))#μ
be the two geodesics connecting μ to σ and ν respectively. From the minimality
of μ and the geodesic convexity of C, it follows that W (μt, ν) ≥ W (μ, ν), thus
from formula (2) we obtain

−2〈T σ
μ − Id, T ν

μ − Id〉μ = lim
t↓0

W 2(μt, ν) − W 2(μ, ν)

t
≥ 0.

However, a priori we don’t know that such μ exists (we will know this fact a
posteriori, once weak closure will be estabilished), so we need to procede proving
the existence of quasi-minima, and then showing that that the above argument
still applies to quasi-minima.

The key lemma we will need is the following.

Lemma 3.3. Let (E, d) be a complete geodesic metric space, C ⊂ E a closed
set, P ∈ E \ C, and 0 ≤ a < 1. Then there exists a point Q ∈ C such that

(3)
d(Qt, C)

t
≥ a, ∀t ∈ (0, d(P, Q)],

where Qt : [0, d(P, Q)] → E is any choice of a geodesic connecting Q to P
(Q0 = Q, Q1 = P ) parameterized by arc length.

Proof. Let we fix a notation: for any point R ∈ C let R be the set of
geodesics connecting R to P parameterized by arc length, and let Rt ∈ R be a
generic element of this set.

We will say that a point R ∈ C has the property G iff for every Rt ∈ R it
holds

d(Rt, C)

t
≥ a, ∀t ∈ (0, d(P, R)].

Our aim is to prove that a point with the property G exists.
Start choosing any point R ∈ C and suppose that it doesn’t have the prop-

erty G. Then there exists a point R′ ∈ C such that

(4) d(Rt, R
′) < at, for some t > 0 and some Rt ∈ R.
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From this we get

d(R, R′) ≤ d(R, Rt) + d(Rt, R
′) < t(a + 1),

and d(R′, P ) ≤ d(R′, Rt) + d(Rt, P ) < at + d(R, P ) − t from which it follows

(5) d(R, P ) − d(R′, P ) > t(1 − a).

Putting together the last two inequalities we get the key estimate

(6) d(R, R′) <
1 + a

1 − a
(d(R, P ) − d(R′, P )) .

This inequality is all we need to prove the thesis: we will proceed by transfinite
induction by using its telescopic property.

Let Ω be the first uncountable ordinal. Define a function

Ω → C

α → Rα,

beginning by choosing R0 ∈ C in any way. Then if α is the successor of some
ordinal, we have two cases:

i) Rα−1 has the property G,
ii) Rα−1 does not have the property G.

In the first case we put Rα := Rα−1, in the second one we choose Rα among
those points R′ satisfying (4) with R = Rα−1. Finally, if α is a limit ordinal we
let Rα be the limit of Rα′ with α′ < α.

We have to prove that this is a good definition, we will do this by proving
at the same time that the following “extended” version of (6) holds:

(7) d(Rα, Rβ) <
1 + a

1 − a
(d(Rα, P ) − d(Rβ , P )) , ∀α ≤ β.

We prove this inequality by transfinite induction on β: it is true for 0, and it is
easy to see that if it holds for β then it holds for β + 1. Indeed by construction
and from the first part of the proof, Rβ+1 satisfies (6) with R = Rβ , R′ = Rβ+1,
therefore combining (6) and (7) we get

d(Rα, Rβ+1) ≤ d(Rα, Rβ) + d(Rβ , Rβ+1)

<
1 + a

1 − a
(d(Rα, P ) − d(Rβ , P ) + d(Rβ , P ) − d(Rβ+1, P ))

=
1 + a

1 − a
(d(Rα, P ) − d(Rβ+1, P )) , ∀α ≤ β.

Given that the case α = β + 1 is obvious, we get the claim.
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Now let β be a limit ordinal, observe that we can’t write inequality (7) for
such a β, yet, since we have still to prove that Rβ exists: we are going to prove
at the same time that Rβ is well defined and that for this point (7) holds. Since
β < Ω there exists an increasing sequence (αn) converging to β; for every αn the
inequality (7) holds, therefore we have

d(Rαm
, Rαn

) <
1 + a

1 − a
(d(Rαm

, P ) − d(Rαn
, P )) , ∀m ≤ n.

Being the sequence d(Rαn
, P ) non increasing (by equation (5)) and bounded

from below, it is a Cauchy sequence and the previous inequality shows that the
same is true for the sequence Rαn

, which therefore converges to some point we
call Rβ . Since the previous argument applies to every increasing sequence αn,
showing that the corrispond points Rαn form a Cauchy sequence, we get that Rβ

is well defined (i.e. it does not depend on the particular sequence (αn) chosen),
that the function α → Rα is continuous (with respect to the order topology) and
that (7) holds for any β < Ω.

Observe that from inequality (5) it follows that if Rα+1 �= Rα, then
d(Rα+1, P ) is strictly less than d(Rα, P ). We are almost done: since there is
no strictly decreasing function from Ω to IR, we have that the map α → Rα

has to be eventually constant, therefore for some α we have Rα = Rα+1, which
means by construction that the point Q = Rα satisfies the thesis.

Note that this proposition is a generalization of the Drop Theorem of Daneš
valid in Banach spaces, see [5] for further reference.

This lemma is closely related to the Ekeland-Bishop-Phelps principle. Actu-
ally a shorter proof may be given with a direct application of the EBP principle:
we present here one found by B.Kirchheim. Use EBP principle to find Q ∈ C
which is a minimizer of

x → f(x) := d(x, P ) +
1 − a

1 + a
d(x, Q).

Then such a Q has the claimed property. Indeed, if this is not the case, there
exists R ∈ C and 0 ≤ t ≤ d(P, Q) such that d(R, Qt) < at. For such R we have
the following bounds

d(R, P ) ≤ d(R, Qt) + d(Qt, P ) < at + d(P, Q) − t,

d(R, Q) ≤ d(R, Qt) + d(Qt, Q) < at + t.

Therefore it holds

f(Q) = d(P, Q) =

= d(P, Q) − t(1 − a) +
1 − a

1 + a
t(a + 1) > d(R, P ) +

1 − a

1 + a
d(R, Q) = f(R),

which contradicts the minimality of Q.
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Now we have all the elements to prove our main result.

Theorem 3.4. Let C be a strongly closed, geodesically closed subset of
Pr

2 (IRd). Then C is sequentially weakly closed.

Proof. Given the structure of weakly converging sequences in P2(IR
d), we

can assume without loss of generality, that C is bounded; let R be its diameter.
Choose any measure ν /∈ C: the claim will be achieved if we show that there
exist a measure μ ∈ C and a constant c ∈ IR such that

〈T ν
μ − Id, T σ

μ − Id〉 ≤ c < ‖T ν
μ − Id‖2

μ = W 2(μ, ν), ∀σ ∈ C.

Indeed in this case the set C would be included in the halfspace H−
T ν

μ−Id;c which

is weakly closed by proposition 3.2 and does not contain ν. By the arbitrariness
of ν we can conclude.

Let us prove our claim. Fix a < 1 and apply proposition 3.3 with P = ν to
find a measure μa satisfying

W (μa
t , C) ≥ atW (ν, μa

t ),

where μa
t := (Id + t(T ν

μa − Id))#μa. Now fix σ ∈ C and define va = T ν
μ − Id,

w = T σ
μ − Id. Observe that for small t > 0 it holds

σt :=

(
Id + t

√
1 − a2

‖va‖μa

‖w‖μa

w

)

#

μa ∈ C,

therefore we know that

W 2(μa
t , σt) ≥ a2t2‖va‖2

μa .

Recalling equation (1), we get

lim
t→0+

W 2(μa
t , σt)

t2
= ‖va − w‖2

μ,

we obtain ∥∥∥∥∥va −
√

1 − a2
‖va‖μa

‖w‖μa

w

∥∥∥∥∥

2

μa

≥ a2‖va‖2
μa .

Some algebraic manipulations show that the previous inequality implies

〈va,
√

1 − a2
‖va‖μa

‖w‖μa

w〉μa ≤ ‖va‖μa‖w‖μa

√
1 − a2 ≤ R‖va‖μa

√
1 − a2.

By choosing a near to 1 and observing that ‖va‖μa ≤ W (ν, C) + R we get that
the last term of the previous inequality is close to 0. Therefore it is smaller than
d2(ν, C), which in turn is smaller then W 2(ν, μa) and the claim is achieved.
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