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Uniform approximation of continuous functions

on compact sets by biharmonic

and bisuperharmonic functions in a biharmonic space

MOHAMED EL KADIRI

Abstract: We give a characterization of functions that are uniformly approx-
imable on a compact K of a biharmonic space satisfying the axiom D by biharmonic
functions or by bisuperharmonic in neighborhoods of K.

1 – Introduction

Let X be a harmonic space satisfying the axiom D. For any compact K ⊂ X
let us write

H0(K) = {u|K |u is harmonic in some open set ⊃ K}
S0(K) = {u|K |u ∈ C(U) ∩ S(U) for some open set U ⊃ K},

where C(U) and S(U) are respectively the space of real and continuous functions
on U and the convex cone of superharmonic functions on U .

Denoting by C(K) the space of continuous functions K −→ R, and by K ′

the fine interior of K, we have

Theorem 1.1. The uniform closure H(K) = H0(K) (resp. S(K) = S0(K))
in C(K) consists of all u ∈ C(K) such that u|K′ is finely harmonic (resp. finely
superharmonic).

Key Words and Phrases: Harmonic function and space – Biharmonic function and
space – Fine topology – Finely biharmonic function
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This result is due to Debiard and Gaveau [7] for the harmonic case in the
classical harmonic space Rn endowed with the harmonic sheaf defined by the
Laplace operator, and was extended for both the harmonic and superharmonic
cases by Bliedtner and Hansen in [3] for the general setting of a harmonic space
satisfying axiom D.

In [2] we have introduced and studied the notion of finely biharmonic pairs
and functions in a fine open of a biharmonic space in the sense of Smyrnelis
whose associated harmonic spaces satisfy axiom D and having the same fine
topology. We have proved that all essential properties of finely harmonic and
hyperharmonic extend naturally to this setting.

Our main purpose in this work is to extend the above theorem to the pairs
of functions which are uniformly approximable on a compact set K of a bihar-
monic space X in the sense of Smyrnelis, satisfying axiom D and whose associated
harmonic spaces have the same fine topologies, by the restrictions to K of bi-
harmonic pairs of functions on neighborhoods of K. More precisely, let BH0(K)
(resp. BS0(K)) the set of restrictions to K of biharmonic (resp. superharmonic)
pairs of functions in neighborhoods of K equipped with the norm

||(f, g)|| = sup
x∈K

|f(x)| + sup
x∈K

|g(x)|,

then we shall prove that the completion of BH0(K) (resp. BS0(K))under the
norm || || is exactly the space BH(K) (resp. BS(K)) of pairs of continuous
functions on K which are finely biharmonic (resp. superharmonic) in K ′.

We recall here that the fine topology on a harmonic space X is the coarsest
one making continuous the superharmonic functions in X. We will use the word
fine (finely) to distinguish between the notions relative to the initial topology
from those relative to the fine topology. The fine topology on a harmonic space
has been extensively studied by Fuglede in many papers, where he showed in
particular that it has nice properties such as local connectedness which allow
him to develop a nice (fine) potential theory on the fine open sets (see [10]).

The word function always means, unless mentionned, function with values
in R. The order on the set of pairs of functions on a set M is the usual order
product:

(f, g) ≤ (h, k) ⇐⇒ f ≤ h et g ≤ k.

We also write (h, k) ≥ (f, g) instead of (f, g) ≤ (h, k). If (f, g) ≥ (0, 0), we
simply write (f, g) ≥ 0.

2 – Biharmonic measures

For the definition of the notion of finely biharmonic functions we need to
use the notion of biharmonic measures on fine open sets of a biharmonic space
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X. The definition of these measures is based on a result from the general theory
of biharmonic spaces of Smyrnelis ([10] and [11]).

Let (X,H) be a biharmonic space in the sense of Smyrnelis [10], we denote
by U+(X) the convexe cone of hyperharmonic pairs ≥ 0 on X. For every pair
Φ = (f, g) of functions on X, and every subset E of Ω, we denote by ΦE the
reduced pair of Φ on E. We recall that this pair is defined by

ΦE = inf{(u, v) ∈ U+(X); (u, v) ≥ Φ sur E},

where the infimum is taken in the sense of the order product. The balayedged
pair of Φ on E is denoted by Φ̂E and defined by Φ̂E = (Φ̂E

1 , Φ̂E
2 ), where, for

a function h on X, ĥ denotes the l.s.c. (lower semicontinuous) regularization
of h, that is, the greatest l.s.c. minorant of h in X. We remark that we have
ΦE = (Φ+)E , where Φ+ = max(Φ, 0).

As in the theory of harmonic spaces, it is the notion of balayedged of a
pair of measures which allows to define the notion of finely bihyperharmonic,
bisuperharmonic or biharmonic functions. To that effect we recall the following
result ([11], Theorem 7.11 and Theorem 7.12):

Theorem 2.1. For every pair (σ, τ) of positive Radon measures on X and
every subset E of X, there exist three positive Radon measures σE , ςE and τE

on X such that, for every H-potential P = (p, q), one has

∫ ∗
P̂E

1 dσ =

∫ ∗
pdσE +

∫ ∗
qdςE ,

∫ ∗
P̂E

2 dτ =

∫ ∗
qdτE ,

where P̂E = (P̂E
1 , P̂E

2 ).)

Remark 1. The above relations are true for any pair P = (p, q) ∈ U+(X).
This can be easily seen by remarking that every pair P ∈ U+(X) is the supremum
of an increasing sequence (Pn) of H-potentials in X.

Remark 2. The measures σE and τE are just the balayaged of the measures
σ and τ with respect to the harmonic spaces associated with the biharmonic space
(X,H) (see [2], [11] and the proof of Proposition 2.3 below).

When σ = τ = εx, x ∈ X, we denote the corresponding measures σE , ςE

and τE in the above theorem by μCE
x , νCE

x and λCE
x respectively. These are the

measures which allow us to define the notion of finely biharmonic and finely hy-
perharmonic or superharmonic pairs of functions. Let’s recall that these notions
have been introduced and studied in [2] for which we refer for more details on
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them. Note that if ω is a H-regular open of X, then for any x ∈ ω, μω
x , νω

x and
λω

x are just the biharmonic measures of ω at x (see [2]).

Proposition 2.2. ([2], Prop. 2.3) For any subset E of X, and any x ∈ X,
one has μE

x = 1εCE
x , and μE

x = 2εCE
x , where jεCE

x is the balayaged (or the
sweepted out) measure of εx on CE in the harmonic space (X,Hj), j = 1, 2.

3 – Finely biharmonic pairs and functions

Let us consider a strong biharmonic space (X,H) (that is, there exists a
H-potential (p, q) such that q > 0 on X) satisfying the domination axiom D
and whose associated harmonic spaces (X,H1) and (X,H2) have the same fine
topology that we will simply call the fine topology of X. This space will be fixed
in all the sequel. We will use the word fine (finely) to distinguish between the
notions relative to the fine topology from those relative to the topology of X
(the initial topology).

Definition 3.1. Let ω be a relatively compact (in the initial topology)
fine open subset of X, the triple (μω

x , νω
x , λω

x ) is called the triple of biharmonic
measures at x.

For every fine open V we denote by ∂fV the fine boundary of V and by Ṽ its
fine closure. It is well known that if a fine open ω is regular, then the measures
1εCω

x and 2εCω
x are supported by ∂fω (see [8]). By corollary 2 of Proposition 2.7

in [2] we have the following

Proposition 3.2. If ω is regular, then, for every x ∈ ω, the measures μω
x ,

νω
x and λω

x are supported by ∂fω.

Let us now recall the definitions of finely hyperharmonic and harmonic pairs
of functions studied in [2].

Definition 3.3. A pair (u, v) of functions on a fine open subset U of X
is said to be finely hyperharmonic in U if u and v are finely l.s.c. (lower semi-
continuous) with values in ]−∞,+∞] and if the fine topology induced on U has
a base B formed by open sets ω such that ω̃ ⊂ U and

u(x) ≥
∫ ∗

udμω
x +

∫ ∗
vdνω

x , v(x) ≥
∫ ∗

vdλω
x

for every x ∈ ω.

For more details on H-harmonic and H-hyperharmonic pairs, the reader
should be referred to [2] where these notions are extensively studied.
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Definition 3.4. A pair (u, v) of functions on a fine open set U of X is
said to be finely biharmonic in U if the pairs (u, v) and (−u,−v) are finely
hyperharmonic in U .

This definition makes sense because for every x ∈ ω the measures μω
x , νω

x

and λω
x are supported by ∂fω and the H-polar sets are negligeable for these

measures.
A finely hyperharmonic pair (u, v) on a fine open U of X is said to be finely

superharmonic if u and v are finite on a dense subset of U . For more details on
finely hyperharmonic and related notions see [2].

Lemma 3.5. For any relatively compact (in the initial topology) finely open
set ω of X and any x ∈ ω, we have

∫
dνω

x > 0.

Proof. It follows easily from [2], Theorem 8.1. and Theorem 8.2, that
the pair (

∫
dνω

. ,
∫

dλω
. ) is non-negative finely superharmonic, not identically 0 in

each finely connected component of ω, hence
∫

dνω
x > 0 for any x ∈ ω.

Let us now consider for a finely open set U the family D(U) of finely con-
tinuous functions f on U such that the limit

Lf(x) = lim
ω↓x

f(x) −
∫

fdνω
x∫

dνω
x

along the filter of fine neighborhoods ω of x exists and is finite for every x ∈ U .

Definition 3.6 A continuous function on U is said to be finely biharmonic
on U if f ∈ D(U) and Lf is finely harmonic on U .

The following proposition underlines the link between the notion of finely
biharmonic function in the sense of definition 3.6 and the notion of finely bihar-
monic pair in the sense of definition 3.4:

Proposition 3.7. If a pair (u, v) is finely biharmonic in a fine open U ,
then u ∈ D(U) and Lu = v.

Proof. Let x ∈ U and ε > 0, there exists a fine open ω0 ⊂ U , x ∈ ω0, such
that |v(x) − v(y)| < ε for any y ∈ ω0. Then, for any fine open ω ⊂ ω̃ ⊂ ω0,
x ∈ ω, we have

|u(x) −
∫

udμω
x − v(x)

∫
dνω

x | < ε

∫
dνω

x

and therefore u ∈ D(U) and Lu = v.

Remark. We do not know if the converse of Proposition 3.7 is true or not.
In the case where U is an open of the initial topology and v is H2-harmonic in
U , then it can be easyly seen that the pair (u, v) is H-harmonic.
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4 – Approximation of continuous functions by biharmonic functions

We begin by recalling the following result on approximation by harmonic
functions:

Theorem 4.1. ([1], Th. 1.2) Let (Ω,K) be a P-harmonic space in the sense
of Constantinesu- Cornea [6], and K a compact set of Ω and (Vn) a sequence of
open subsets of Ω such that V n+1 ⊂ Vn for all n and ∩nVn = K. Then for for
every continuous function f on Ω and finely harmonic on K ′, the sequence HVn

f

converges uniformly to f in K.

Here Hω
f is the solution of the Dirichlet problem on ω in the biharmonic

space (Ω,K) for the data function f on ∂ω.
Let us also recall the following result due to Bouleau [4]:

Theorem 4.2. Let (X,H) be a strong biharmonic space in the sense of
Smyrnelis. Then there exists a unique Borel kernel V on X such that

i) For every continuous finite fonction ϕ on X with compact support, the func-
tion V(ϕ) is harmonic outside of the support of ϕ.

ii) For every non-negative H2-hyperharmonic function v on X, V(v) is the
smallest non-negative H1-hyperharmonic function on X such that the pair
(V(v), v) is H-hyperharmonic.

For any domain (open and connected) V of X, we denote by VV the kernel
associated to the biharmonic space V endowed with the sheaf induced on V by
H. For an arbitrary open subset of X, let us denote by VV the kernel on V
which coincides with Vω on each connected component ω of V .

Let us note that if V is relatively compact, then for any bounded harmonic
function k on V the function VV (k) is biharmonic in V . In fact, let q be a H2-
potential > 0 on X such that V(q) < +∞. Then we have VV (k) ≤ CV(q) for
some constant C > 0, hence the pair (V(k), k) is biharmonic.

Let U be a relatively compact open subset of X. We denote by HU
(f,g) the

solution of the Riquier problem on U with boundary data (f, g) ∈ C(∂U)2 and by

HU,j
f the solution of the Dirichlet problem in U with boundary data f ∈ C(∂U)

in the harmonic space (X,Hj), j = 1, 2.

Lemma 4.3. ([2], cor. 1 du th. 8.1) For every pair (f, g) ∈ C(∂U)2, we have

HU
(f,g) = (HU,1

f + VUHU,2
g , HU,2

g ).
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Now we can prove the following

Theorem 4.4. Let K be a compact set of X and (Vn) a sequence of open
subsets of Ω such that V n+1 ⊂ Vn for all n and ∩nVn = K. Then for every pair
(f, g) of continuous function on X, finely biharmonic on K ′, the sequence HVn

(f,g)

converges uniformly to (f, g) in K.

Proof. Let K be a compact set of X and (f, g) a pair of continuous func-
tions on X, finely biharmonic on K ′. It follows from Theorem 4.1 that the
sequence (HVn,2

g ) converges uniformly on K to the function g. For every n, put

Vn = VVn
and kn = Vn(H2,Vn

g ). The function kn extends continuously to Vn

to a function k̄n such that k̄n = 0 on ∂V n, because it is the first component of
the solution of the fine Riquier problem for the given data (0, g) on ∂V n. The
sequence (kn) converge uniformly on K to a continuous function k. Let k̄ be a
continuous function on X which coincides with k on K. The function f − k̄ is
continuous on K and finely H1-harmonic in K ′. It follows then by Lemma 4.3
and Theorem 4.1 that the sequence (HVn,2

f−kn
) converges uniformly on K to f −k.

Let us put HVn

(f,g) = (HVn,1
(f,g), H

Vn,2
(f,g)), then by Lemma 4.3, we have

H(f, g)Vn,1 = HVn,1
f + Vn(HVn,2

g )

= 1HVn

f−k̄n
+ Vn(2HVn

g ).

Hence the sequence (H(f, g)Vn,1) converges uniformly on K to f − k + k = f .
This ends the proof.

We say that a function f on an open U of X is biharmonic if there exists a
function g on U such that the pair (f, g) is biharmonic on U . It follows from the
hypothesis in the definition of biharmonic spaces [10] that the biharmonic pairs
are compatible (in the sense that if a pair (o, k) is biharmonic in U , then k = 0
in U), thus the function k is unique. We then denote it by Af .

Because of the sheaf property of biharmonic functions, the operator A may
be interpreted as a local operator on biharmonic functions.

Theorem 4.5. Let f be a real function on a compact K of X. Then the
following are equivalent:

1. There exists a sequence (hn) of biharmonic functions, each one is defined
on an open neighborhood of K, such that (hn) converges uniformly on K to
f and (Ahn) converges uniformly on K to a contiuous function g.

2. f is continuous on K and finely biharmonic on K ′, and Lf extends contin-
uously on K.
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Proof. 1. =⇒ 2: Since the pairs (hn, Ahn) are finely biharmonic in K ′ and
converge uniformly in K, it follows from the definition of biharmonic pairs that
the pair (f, g) is finely biharmonic in K ′, and clearly continuous in K.

2. =⇒ 1: Let us suppose that f is continuous in K and finely biharmonic
in K ′ and that the function Lf extends continuously to a function g on K. The
function f −

∫
gdνK′

x is finely harmonic in K ′. On the other hand it follows from

Lemma 4.3 and Theorem 4.4 that the function f −
∫

gdνK′
x is continuous in K.

Then, by Bliedtner-Hansen’s Theorem there exists a sequence (kn) of functions
such that, for every n, kn is H1-harmonic on an open neighborhood Un of K, and
(kn) converges uniformly in K to f −

∫
gdνK′

x . On the other hand, the function
g is finely H2-harmonic in K ′ and extends to a continuous function on K, then
by Bliedtner-Hansen’s Theorem, there exists a sequence (gn) of functions such
that, for each n, gn is H2-harmonic in an open neighborhood Vn of K, and that
(gn) converges uniformly to g in K. For each n, let Wn be an open set of X
such that K ⊂ Wn ⊂ Un ∩ Vn. The functions kn +

∫
gndνCWn are biharmonic

on Wn and converge uniformly in K to f , and we have seen that the harmonic
functions A(kn +

∫
gndνCWn) = gn converge uniformly on K to Lf . This ends

the proof of 2) =⇒ 1).
Let us denote by H(K) the space of continuous functions on K that are finely

H2-harmonic in K ′, the fine interior of K. By Bliedtner-Hansen’s Theorem,
the space H(K) is identical to the one of finely harmonic functions in K ′ with
continuous extension to K. The above theorem can be stated as follows:

Theorem 4.5′. Let f be a real function on a compact K. Then the following
are equivalent:

1. There exists a sequence (hn) of biharmonic functions, each one is defined
on an open neighborhood of K, such that (hn) converges uniformly on K to
f and (Ahn) converges uniformly on K to a contiuous function g.

2′. f is continuous on K, finely biharmonic on K ′, and Lf ∈ H2(K).

Corollary 1.. A function f on U is finely biharmonic if and only if for
every point x ∈ U there exists a compact fine open neighborhood K ⊂ U and
a sequence (hn) of biharmonic functions in neighborhoods of K such that (hn)
converges uniformly on K to f .

Corollary 2.. A pair of functions (f, g) on U is finely biharmonic if and
only if for every point x ∈ U there exist a compact fine open neighborhood K ⊂ U
and a sequence (hn, kn) of biharmonic pairs of functions in neighborhoods of K
such that (hn) and (kn) converge uniformly on K respectively to f and g.
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Theorem 4.5 above can also be stated as follows

Theorem 4.5′′. The uniform closure BH0 of BH0(K) is BH(K).

5 – Approximation by bisuperharmonic functions.

For any compact K ⊂ X we denote by BS0(K) the set

{(u|K ,v|K) : (u, v) is finite continuous H− superharmonic in some open set ⊃K}

and by BS(K) the set of continuous functions on K that are finely H-superhar-
monic on K ′.

Theorem 5.1. The uniform closure BS0(K) in C(K) is identical to BS(K).

Proof. We clearly have BS0(K) ⊂ BS(K). Let (f, g) ∈ BS(K). Then
g ∈ S2(K) and hence by Fuglede’s theorem there exists a sequence (Vn) of open
neighborhoods of K and for each n ≥ 0 a H2-superharmonic function gn on Vn

such that the sequence (gn|K) converges uniformly to g. For each n let Vn be the
kernel VVn . Since the sequence (Vn(gn)) converges uniformly in K, we only have
to show that the pointwise limit of (Vn(gn)) is V(g). By adding if necessary the
second projection of a H-potential to g, we can assume that g > 0. Let u be a
function H1-surharmonic in K ′ such that the pair (u, g) is finely H-surharmonic
in K ′ and let 0 < ε < infK g, then there exists an integer n0 > 0 such that,
for n > n0, one has g ≥ gn − ε > 0 in K, hence the pair (u, gn − ε) is finely
H-surharmonic in K ′. It follows that u + εV(1) ≥ V(gn) for every n ≥ n0, hence
u ≥ V(g). Then V(g) = limV(gn).
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