$a d$-nilpotent ideals containing a fixed number of simple root spaces

PAOLA CELLINI - P. MÖSENEDER FRAJRIA - PAOLO PAPI

Abstract: We give formulas for the number of ad-nilpotent ideals of a Borel subalgebra of a Lie algebra of type B or D containing a fixed number of root spaces attached to simple roots. This result solves positively a conjecture of Panyushev [12, 3.5] and affords a complete knowledge of the above statistics for any simple Lie algebra. We also study the restriction of the above statistics to the abelian ideals of a Borel subalgebra, obtaining uniform results for any simple Lie algebra

1 - Introduction

Let \mathfrak{g} be a complex finite-dimensional simple Lie algebra. Fix a Borel subalgebra \mathfrak{b} of \mathfrak{g}, and let \mathfrak{n} be its nilradical. If \mathfrak{g} is of type X, denote by $\mathcal{I}(X)$ the set of ad-nilpotent ideals \mathfrak{b}, i.e. the ideals of \mathfrak{b} which are contained in \mathfrak{n}. Let Δ^{+}, Π denote respectively the positive and simple systems of the root system Δ of \mathfrak{g} corresponding to \mathfrak{b}. Then $\mathfrak{i} \in \mathcal{I}(X)$ if and only if $\mathfrak{i}=\bigoplus_{\alpha \in \Phi_{\mathfrak{i}}} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} is the root space attached to α and $\Phi_{\mathfrak{i}} \subseteq \Delta^{+}$is a dual order ideal of Δ^{+}(w.r.t. the usual order: $\alpha<\beta$ if $\beta-\alpha$ is a sum of positive roots). ad-nilpotent ideals have been intensively investigated in recent literature: see references in [12]. The first goal of this short paper is to solve positively conjecture 3.5 of [12]. This conjecture regards the following statistics on $\mathcal{I}(X)$:

$$
P_{X}(j)=\left|\left\{\mathfrak{i} \in \mathcal{I}(X):\left|\Pi \cap \Phi_{\mathfrak{i}}\right|=j\right\}\right|
$$

Key Words and Phrases: ad-nilpotent ideal - Lie algebra - Lattice path A.M.S. Classification: 17B20, 17B56.
$(0 \leq j \leq n)$. The formulas expressing $P_{X}(j)$ for the classical Lie algebras are given in the following theorem. The result in type A has been proved in [12, Theorem 3.4], together with the equality $P_{B_{n}}=P_{C_{n}}$. The formulas for types B, D are conjecture 3.5 of the same paper.

Theorem 1.1. For $0 \leq j \leq n$ we have

$$
\begin{aligned}
& P_{A_{n}}(j)=\frac{j+1}{n+1}\binom{2 n-j}{n}, \\
& P_{B_{n}}(j)=P_{C_{n}}(j)=\binom{2 n-j-1}{n-1}, \\
& P_{D_{n}}(j)= \begin{cases}\binom{2 n-2}{n-2}+\binom{2 n-3}{n-3} & \text { if } j=0 \\
\binom{2 n-2-j}{n-2}+\binom{2 n-3-j}{n-2} & \text { if } 1 \leq j \leq n .\end{cases}
\end{aligned}
$$

We remark that the numerical values of $P_{X}(j)$ in the exceptional cases are easily calculated from the knowledge of $P_{X}(0)$ using the inclusion-exclusion principle: see $[12, \S 3]$. On the other hand, the number $P_{X}(0)$ can be uniformly described: see Remark 2.1. The relevance of the statistics P_{X} is motivated by the following discussion. It is known [4] that the cardinality of \mathcal{I} is given by the generalized Catalan number $\frac{1}{|W|} \prod_{i=1}^{n}\left(e_{i}+h+1\right)$ (see Remark 2.1 for undefined notation) as well as that of clusters, certain subsets of $\Delta^{+} \cup-\Pi$ which play a major role in Zelevinsky's theory of cluster algebras [7]. Panyushev noticed that $P_{X}(j)$ also counts the number of clusters having j elements in $-\Pi$. Looking for a conceptual explanation of the interplay between $a d$-nilpotent ideals and clusters is an interesting open problem. Theorem 1.1 is proved in the next section. The final section deals with a formula for the same statistics on the subset $\mathcal{I}^{a b}$ of \mathcal{I} consisting of abelian ideals. The study of $\mathcal{I}^{a b}$, pursued by Kostant, started an intense research activity which was later extended by considering ad-nilpotent ideals. Abelian ideals turn out to appear in several contexts, ranging from the structure of the exterior algebra of \mathfrak{g} [9], to affine algebras [2] and to difficult problems in classical invariant theory [11]. The key fact originating this activity is the following celebrated enumerative result by Dale Peterson, which we are going to exploit:

$$
\begin{equation*}
\left|\mathcal{I}^{a b}\right|=2^{r k(\mathfrak{g})} \tag{1.1}
\end{equation*}
$$

Regarding our statistics, we obtain the following "uniform" result. Let P, Q denote the weight and root lattice of Δ and let $z(\mathfrak{g})=|P / Q|$ be the connection index.

Theorem 1.2. The number $P_{X}^{a b}(j)$ of abelian ideals of \mathfrak{b} in a Lie algebra \mathfrak{g} of type X and rank n containing j simple roots is given by

$$
P_{X}^{a b}(j)= \begin{cases}2^{n}-z(\mathfrak{g})+1 & \text { if } j=0 \\ z(\mathfrak{g})-1 & \text { if } j=1 \\ 0 & \text { if } j>1\end{cases}
$$

2 - Proof of Theorem 1.1

Our approach to Panyushev's conjecture is based on Shi's encoding [13] of $a d$-nilpotent ideals for classical Lie algebras via (possibly shifted) shapes as formulated in [3] . More precisely, consider a staircase diagram T_{X} of shape $(n, n-1, \ldots, 1)$ in type A_{n} (respectively a shifted staircase diagram of shape $(2 n-1,2 n-3, \ldots, 1)$ for B_{n} and C_{n}, and of shape $(2 n-2,2 n-4, \ldots, 2)$ for $\left.D_{n}\right)$. Arrange in the diagram the positive roots of Δ according to the formulas

$$
\begin{aligned}
& \tau_{i, j}=\alpha_{i}+\cdots+\alpha_{n-j+1} . \\
& \tau_{i, j}=\left\{\begin{array}{lr}
\alpha_{i}+\cdots+\alpha_{j-1}+2\left(\alpha_{j}+\cdots+\alpha_{n-1}\right)+\alpha_{n} & \text { if } j \leq n-1, \\
\alpha_{i}+\cdots+\alpha_{2 n-j} & \text { if } n \leq j \leq 2 n-i .
\end{array}\right. \\
& \tau_{i, j}=\left\{\begin{array}{lr}
\alpha_{i}+\cdots+\alpha_{j}+2\left(\alpha_{j+1}+\cdots+\alpha_{n}\right) & \text { if } j \leq n-1, \\
\alpha_{i}+\cdots+\alpha_{2 n-j} & \text { if } n \leq j \leq 2 n-i .
\end{array}\right. \\
& \tau_{i, j}=\left\{\begin{array}{lr}
\alpha_{i}+\cdots+\alpha_{j}+2\left(\alpha_{j+1}+\cdots+\alpha_{n-2}\right)+\alpha_{n-1}+\alpha_{n} & \text { if } j \leq n-2, \\
\alpha_{i}+\cdots+\alpha_{n-2}+\alpha_{n} & \text { if } j=n-1, \\
\alpha_{i}+\cdots+\alpha_{2 n-j-1} & \text { if } n \leq j \leq 2 n-1-i .
\end{array}\right.
\end{aligned}
$$

in types $A_{n}, C_{n}, B_{n}, D_{n}$ respectively. E.g., in types $A_{4}, C_{3}, B_{3}, D_{4}$ we have, respectively

$$
\begin{array}{clll}
\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} & \alpha_{1}+\alpha_{2}+\alpha_{3} & \alpha_{1}+\alpha_{2} & \alpha_{1} \\
\alpha_{2}+\alpha_{3}+\alpha_{4} & \alpha_{2}+\alpha_{3} & \alpha_{2} & \\
\alpha_{3}+\alpha_{4} & \alpha_{3} & & \\
\alpha_{4} & & & \\
& & & \\
2 \alpha_{1}+2 \alpha_{2}+\alpha_{3} & \alpha_{1}+2 \alpha_{2}+\alpha_{3} & \alpha_{1}+\alpha_{2}+\alpha_{3} & \alpha_{1}+\alpha_{2} \tag{1}\\
& 2 \alpha_{2}+\alpha_{3} & \alpha_{2}+\alpha_{3} & \alpha_{2}
\end{array}
$$

$$
\begin{array}{lllll}
\alpha_{1}+2 \alpha_{2}+2 \alpha_{3} & \alpha_{1}+\alpha_{2}+2 \alpha_{3} & \alpha_{1}+\alpha_{2}+\alpha_{3} & \alpha_{1}+\alpha_{2} & \alpha_{1} \\
\alpha_{2}+2 \alpha_{3} & \alpha_{2}+\alpha_{3} & \alpha_{2} & \\
\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4} & \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} & \alpha_{1}+\alpha_{2}+\alpha_{4} & \alpha_{1}+\alpha_{2}+\alpha_{3} & \alpha_{1}+\alpha_{2}
\end{array} \alpha_{1}
$$

Then $\mathcal{I}(X)$ is in bijection with the set \mathcal{S}_{X} of subdiagrams of T_{X} when $X=$ A, B, C whereas in type D one has to consider also the sets of boxes of T_{D} which become subdiagrams of T_{D} upon switching columns $n-1, n$ (see [13] or [3]). In turn to each subdiagram we can associate a lattice path of length $2 n$, starting from the origin and never going under the x-axis, with step vectors $(1,1),(1,-1)$ (see $[10])$. The correspondence between subdiagrams and paths is best explained with an example at hand. Let $n=9$ and consider, for type B_{n} or C_{n}, the shifted partition $(16,13,11,8,7,5,3)$, see Figure 1 (here, as in Figure 3, the origin coincides with the left upper corner of the diagram, and the y-axis points downwards).

Fig. 1
Connect the point $(2 n, 0)$ to the border of the subdiagram with an horizontal segment, and consider the zig-zag line formed by the horizontal segment and the right border of the subdiagram. Rotate the figure by 45° in the positive direction and then flip it across a vertical line. After rescaling (in the obvious way) we obtain the desired lattice path. See Figure 2 for the path corresponding to the partition of Figure 1. (To make a comparison easy, the steps which correspond to thick segments in Figure 1 are also made thick in Figure 2.) So we have associated to any subdiagram of $T_{B_{n}}$ (or $T_{C_{n}}$) a lattice path of length $2 n$. In a similar way we can associate to any subdiagram of $T_{D_{n}}$ a lattice path of length $2 n-1$.

Fig. 2
Slight modifications are needed to define a correspondence in type A_{n}. Start from the point $(n+1,0)$, reach and follow the right border of the diagram. End in the point $(0, n+1)$: see Figures 3,4 for the case of the partition $(5,3,1,1,1,0,0)$, relative to A_{7}.

Fig. 3
In type A_{n} this correspondence turns out to be a bijection between $\mathcal{I}\left(A_{n}\right)$ and the set of Dyck paths of length $2 n+2$, whereas in types B_{n}, C_{n} one gets a bijection with the set of paths of length $2 n$ not necessarily ending on the x-axis.

Remark that in cases B_{n}, C_{n} our statistics P_{X} translates into the one which counts the number of returns of the paths, i.e. the number of contact points of the path with the x-axis minus one. In type A_{n} the statistics P_{X} counts the number of returns minus one (so the statistics has value 0 for the path of Figure 4).

Fig. 4

Denote by $\mathcal{B}_{n, h, j}$ the set of paths of the previous type having length n, ending in the point (n, h) and having exactly j returns. The enumeration of such objects has been known since a long time (see $8, \S 2$ for historical details and generalizations). As usual we set

$$
\binom{n}{m}=0 \quad \text { if } m<0
$$

Proposition 2.1.[6, 13, Cor. 3.2] Assume $n \equiv h, \bmod 2$. Then

$$
\begin{equation*}
\left|\mathcal{B}_{n, h, j}\right|=\binom{n-(j+1)}{\frac{n+h}{2}-1}-\binom{n-(j+1)}{\frac{n+h}{2}} \tag{2.1}
\end{equation*}
$$

Note that if a path has length n and ends at height j, then $n+j$ is even. In particular, if $n+h$ is odd then $\mathcal{B}_{n, h, j}=\emptyset$ for any j. We have immediately

$$
\begin{aligned}
& P_{A_{n}}(j)=\left|\mathcal{B}_{2 n+2,0, j+1}\right|=\frac{j+1}{n+1}\binom{2 n-j}{n} \\
& P_{B_{n}}(j)=P_{C_{n}}(j)=\sum_{h=0}^{2 n}\left|\mathcal{B}_{2 n, h, j}\right|=\binom{2 n-j-1}{n-1}
\end{aligned}
$$

which are the desired formulas in cases A_{n}, B_{n}, C_{n}. For type D we argue as follows. First observe that, in the diagramatic encoding, ideals can be counted as

$$
\begin{equation*}
2\left|\mathcal{S}_{D_{n}}\right|-\left|\mathcal{D}_{n}\right| \tag{2.2}
\end{equation*}
$$

\mathcal{D}_{n} being the set of subdiagrams of $T_{D_{n}}$ having columns $n-1, n$ of equal length. So we have to understand our statistics on $\mathcal{S}_{D_{n}}$ and on \mathcal{D}_{n}. Ideals corresponding to subdiagrams in $\mathcal{S}_{D_{n}}$ give rise to paths starting from the origin and having length $2 n-1$. The number of simple roots belonging to $\Phi_{\mathfrak{i}}$ for such an ideal \mathfrak{i} is exactly the number of returns of the corresponding path precisely when the ideal does not contain α_{n}. In this latter case to get the number of simple roots one has to add 1 to the number of returns. On the other hand the ideals containing α_{n} are exactly the ones giving rise to paths ending at height 1 . Therefore the piece in degree j of our statistics coming from $\mathcal{S}_{D_{n}}$ is

$$
\begin{aligned}
& \sum_{h=3}^{2 n-1}\left|\mathcal{B}_{2 n-1, h, j}\right|+\left|\mathcal{B}_{2 n-1,1, j-1}\right| \\
& \quad=\binom{2 n-j-2}{n}+\binom{2 n-j-1}{n-1}-\binom{2 n-j-1}{n} \\
& \quad=\binom{2 n-j-2}{n-2 .}
\end{aligned}
$$

We have used relation (2.1) to evaluate the left hand side of the previous expression. Now remark that the contribution to the piece of degree j of our statistics coming from \mathcal{D}_{n} is

$$
P_{B_{n-1}}(j)-P_{A_{n-2}}(j-1)+P_{A_{n-2}}(j-2) .
$$

Note in fact that to any diagram in \mathcal{D}_{n} we can associate a diagram in $T_{B_{n-1}}$ by deleting the n-th column. In so doing our statistics counts:
a) all paths for type B_{n-1} having j returns and end point not lying on the x-axis;
(b) all paths for type B_{n-1} having $j-1$ returns and end point on the x-axis.

It is clear that paths for B_{n-1} having k returns and end point on the x-axis are the same as paths for A_{n-2} with $k-1$ returns. Hence contribution (a) is $P_{B_{n-1}}(j)-P_{A_{n-2}}(j-1)$, and contribution (b) is $P_{A_{n-2}}(j-2)$. Relation (3) and some elementary calculations yield the last formula in the Theorem.

REmark 2.1. It is worth recalling that the value $P_{X}(0)$ has a special geometric meaning. Indeed, ad-nilpotent ideals correspond to connected components in the dominant chamber of $\mathfrak{h}_{\mathbb{R}}(\mathfrak{h}$ being a Cartan subalgebra of $\mathfrak{g})$ determined by the hyperplanes $(\alpha, x)=0,(\alpha, x)=1, \alpha \in \Delta^{+}$. More precisely, the open region associated to the ideal \mathfrak{i} is determined by the inequalities $0<(\alpha, x)<1$ if $\mathfrak{g}_{\alpha} \not \subset \mathfrak{i}$, and $(\alpha, x)>1$ if $\mathfrak{g}_{\alpha} \subset \mathfrak{i}$. Panyushev proved that an ideal in \mathcal{I} does not contain a simple root space if and only if the corresponding region is bounded (see [12, Proposition 3.7]). He also found the following remarkable formula (see [12, Proposition 3.10]):

$$
P_{X}(0)=\frac{1}{|W|} \prod_{i=1}^{n}\left(h+e_{i}-1\right)
$$

Here W is the Weyl group, h the Coxeter number and e_{1}, \ldots, e_{n} the exponents of $\mathfrak{g} . P_{X}(0)$ is also the number of positive clusters.

3 - Proof of Theorem 1.2

Lemma 3.1. An abelian ideal $\mathfrak{i} \in \mathcal{I}^{a b}$ may contain at most one simple root space.

Proof. Let $\alpha, \alpha^{\prime} \in \Pi$ such that $\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha^{\prime}} \subset \mathfrak{i}$. Consider a minimal length path from α to α^{\prime} in the Dynkin diagram of \mathfrak{g}. By Corollaire 3 in [1, VI, 1.7] the sum γ of the simple roots in the path belongs to Δ^{+}as well as $\gamma-\alpha$. Moreover $\gamma>\alpha, \gamma-\alpha>\alpha^{\prime}$. Therefore $\mathfrak{g}_{\gamma} \subset \mathfrak{i}, \mathfrak{g}_{\gamma-\alpha} \subset \mathfrak{i}$. But $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\gamma-\alpha}\right]=\mathfrak{g}_{\gamma}$, hence \mathfrak{i} is not abelian.

Recall that an $a d$-nilpotent ideal is nilpotent, i.e. its descending central series

$$
\mathfrak{i} \supset[i, i] \supset[[i, i], i] \supset[[[i, i], i] i] \supset \cdots \cdots
$$

has a finite number $n(\mathfrak{i})$ of non zero terms. In particular, \mathfrak{i} is an abelian ideal if and only if $n(\mathfrak{i}) \leq 1$. Also recall that $a d$-nilpotent ideals are in canonical bijection with antichains (i.e., subset formed by mutually non-comparable elements) in the root poset. The correspondence is given by mapping an ideal to its minimal roots w.r.t $<$, and the inverse map associates to an antichain A the ideal $\underset{\beta \in A}{\bigoplus} \bigoplus_{\alpha>\beta} \mathfrak{g}_{\alpha}$. If $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, denote by $\theta=\sum_{i=1}^{n} a_{i} \alpha_{i}$ the highest root of Δ.

Lemma 3.2. Let $\mathfrak{i}_{j}=\underset{\beta \geq \alpha_{j}}{\bigoplus} \mathfrak{g}_{\alpha}, 1 \leq j \leq n$. Then

$$
n\left(\mathfrak{i}_{j}\right)=a_{j} .
$$

Proof. We use the following result of Chari, Dolbin and Ridenour [5, Theorem 1]. Let \mathfrak{i} an ad-nilpotent ideal corresponding to the antichain $A=$ $\left\{\beta_{1}, \ldots, \beta_{k}\right\}$. Then $n(\mathfrak{i})=s$ if and only if s is the minimal non-negative integer such that $\beta_{i_{1}}+\ldots+\beta_{i_{s+1}} \not \leq \theta$ (repetitions in the β are allowed). The claim follows immediately, because the antichain attached to \mathfrak{i}_{j} consists only of α_{j}, and $\theta-a_{j} \alpha_{j}=\sum_{i=1}^{j-1} a_{i} \alpha_{i}+\sum_{i=j+1}^{n} a_{i} \alpha_{i}$ belongs to the positive root lattice, whereas

$$
\theta-\left(a_{j}+1\right) \alpha_{j}=\sum_{i=1}^{j-1} a_{i} \alpha_{i}-\alpha_{j}+\sum_{i=j+1}^{n} a_{i} \alpha_{i}
$$

does not.
We are ready to prove Theorem 1.2. The result follows combining (1.1) and Lemma 3.1 if we prove that $P_{X}^{a b}(1)=z(\mathfrak{g})-1$. On the other hand Lemma 3.2 implies that $P_{X}^{a b}(1)$ equals the number of indices i such that $a_{i}=1$. The latter number is known to coincide with $z(\mathfrak{g})-1$ (see [1, VI, §2.3]).

Acknowledgements

The authors wish to thank Christian Krattenthaler for a useful remark on the paper.

REFERENCES

[1] N. Bourbaki: Groupes et algebres de Lie, Chapitres 4-6, Hermann, Paris (1968).
[2] P. Cellini, V. G. Kac, P. Mseneder Frajria and P. Papi: Decomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of \mathbb{Z}_{2}-graded Lie algebras, Adv. Math. 207 (2006), 156-204.
[3] P. Cellini and P. Papi: ad-nilpotent ideals of a Borel subalgebra, J. Algebra 225 (2000), 130-141.
[4] P. Cellini and P. Papi: ad-nilpotent ideals of a Borel subalgebra II, J. Algebra 258 (2002), 112-121.
[5] V. Chari, R. J. Dolbin and T. Ridenour: Ideals in Parabolic Subalgebras of Simple Lie Algebras, arXiv:0809.0245 (2008).
[6] O. Engelberg: On some problems concerning a restricted random walk, J. Appl. Probab. 2 (1965), 396-404.
[7] S.V. Fomin, A.V. Zelevinsky: Y-system and generalized associahedra, Ann. Math. 158 (2003), 977-1018.
[8] C. Krattenthaler: Watermelon configurations with wall interaction: exact and asymptotic results, J. Physics Conf. Series 42 (2006), 179-212.
[9] B. Kostant: The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Internat. Math. Res. Notices (1998), n. 5, 225-252.
[10] C. Krattenthaler, L. Orsina, P. Papi: Enumeration of ad-nilpotent \mathfrak{b}-ideals for simple Lie algebras, Adv. Appl. Math. 28 (2002), 478-522.
[11] S. Kumar: On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras, J. Amer. Math. Soc. 21 (2008), n. 3, 797-808.
[12] D. Panyushev: ad-nilpotent ideals: generators and duality, J. Algebra 274 (2004), 822-846.
[13] J. Shi: The number of \oplus-sign types, Quart. J. Math. Oxford 48 (1997), 93-105.
Lavoro pervenuto alla redazione il 20 maggio 2009 ed accettato per la pubblicazione il 15 giugno 2009. Bozze licenziate il 01 ottobre 2009

INDIRIZZO DEGLI AUTORI:

Paola Cellini - Dipartimento di Scienze - Università di Chieti-Pescara - Viale Pindaro 42, 65127 Pescara
E-mail: cellini@sci.unich.it
Pierluigi Mösender Frajria - Politecnico di Milano - Polo regionale di Como - Via Valleggio 11, 22100 Como
E-mail: pierluigi.moseneder@polimi.it
Paolo Papi - Dipartimento di Matematica - Sapienza Università di Roma - P.le A. Moro 2, 00185, Roma, Italy
E-mail: papi@mat.uniroma1.it

