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On the geometry of four-dimensional Walker manifolds

WAFA BATAT – GIOVANNI CALVARUSO – BARBARA DE LEO

Abstract: We study the curvature properties of a large class of four-dimensional
Walker metrics. Several interesting examples are found, in particular as regards lo-
cal symmetry, conformal flatness and Einstein-like metrics. Studiamo le proprietà di
curvatura di un’ampia classe di metriche di Walker di dimensione quattro. Vengono
messi in evidenza diversi comportamenti interessanti, in particolare per quanto riguarda
esempi localmente simmetrici, conformemente piatti e muniti di metriche “Einstein-
like”.

1 – Introduction

The study of the curvature properties of a given class of pseudo-Riemannian
manifolds is necessary to our knowledge of these spaces. In particular, this study
makes possible a comparison between Riemannian results and their pseudo-
Riemannian analogues, which develops our understanding of which properties
are more strictly related to the signature of the metric tensor and which ones
are more general.

While extensive studies have been made about the curvature of Riemannian
manifolds, the corresponding study in pseudo-Riemannian settings is relatively
recent, and several interesting cases have still to be investigated. Some examples
in this direction may be found in [1], [2], [3], [4], [5], [6], [8] and references therein.

In this context, the study of manifolds endowed with Walker structures (that
is, admitting parallel degenerate plane fields) is particularly relevant. In fact,
several results suggest that Walker structures are responsible of many of the
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basic differences between the Riemannian geometry and the pseudo-Riemannian
one.
We recall that a four-dimensional pseudo-Riemannian manifold M of signature
(2.2) is said to be a Walker manifold if it admits a parallel totally isotropic 2-
plane field. Such a manifold is locally isometric to (U, gf ), where U is an open
subset of R4[x1, x2, x3, x4] and the metric is given, with respect to the coordinate
vector fields ∂i := ∂

∂xi
, by

g(∂1, ∂3) = g(∂2, ∂4) = 1, g(∂i, ∂j) = gij(x1, x2, x3, x4) for i, j = 3, 4.

Curvature properties of four-dimensional Walker metrics satisfying g34 = 0 were
investigated in [6], while examples with commuting curvature operators were
classified in [2] assuming g33 = g44 = 0. The aim of this paper is to characterize
several geometric properties of Walker metrics of the latter type as determined
by their curvature. So, we shall consider Walker metrics of the form

(1.1) gf =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 f
0 1 f 0

⎞
⎟⎠ ,

for an arbitrary smooth function f = f(x1, x2, x3, x4), defined on an open subset
U of R4.

We shall characterize Walker metrics (1.1) which are Ricci-parallel or Ein-
stein-like, conformally flat, locally symmetric. In this way, we determine some
wide classes of four-dimensional pseudo-Riemannian manifolds, satisfying some
required geometrical properties. These examples have not a Riemannian coun-
terpart, because the same properties turn out to be much more restrictive in the
Riemannian case.

The paper is organized in the following way. In Section 2, we shall describe
the curvature of Walker metrics. In Section 3 and 4, Einstein-like and locally
symmetric Walker metrics (1.1) will be respectively classified.

2 – Curvature of Walker metrics (1.1)

We denote by ∇ the Levi Civita connection of a pseudo-Riemannian metric
g and by R its curvature tensor, taken with the sign convention

(2.1) R(X, Y ) = ∇[X,Y ] − [∇X ,∇Y ].

In the sequel, following the same notation used in [2], we put f/i := ∂i(f), f/ij :=
∂i∂j(f) and f/ijk := ∂i∂j∂k(f), for all indices i, j, k. Standard calculations give
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that the only possible non-vanishing Christoffel symbols Γk
ij , are the following

ones:
⎧
⎪⎨
⎪⎩

Γ2
13 = Γ1

14 = −Γ3
34 = 1

2f/1, Γ2
23 = Γ1

24 = −Γ4
34 = 1

2f/2,

Γ2
33 = f/3, Γ1

44 = f/4,

Γ1
34 = 1

2ff/2, Γ2
34 = 1

2ff/1.

Correspondingly, the possibly non-vanishing covariant derivatives of coordinates
vector fields are given by

(2.2)

∇∂1∂3 =
f/1

2
∂2, ∇∂1∂4 =

f/1

2
∂1,

∇∂2∂3 =
f/2

2
∂2, ∇∂2∂4 =

f/2

2
∂1,

∇∂3
∂3 = f/3 ∂2, ∇∂4

∂4 = f/4 ∂1,

∇∂3
∂4 =

ff/2

2
∂1 +

ff/1

2
∂2 −

f/1

2
∂3 −

f/2

2
∂4.

Using (2.2) into (2.1), we can completely determine the curvature tensor of
gf by calculating R(∂i, ∂j)∂k for all indices i, j, k. Then, taking into account
(1.1), we can determine all curvature components of the (0, 4)-curvature tensor
R(X, Y, Z, W ) = gf (R(X, Y )Z, W ) with respect to {∂i}. Via long but routine
calculations, we obtain that the possibly non-vanishing components are given by

(2.3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1334 = 1
4

(
f/1f/2 − 2f/13

)
, R1314 = − 1

2f/11,

R1434 = 1
4

(
−f2

/1 + 2f/14

)
, R1324 = − 1

2f/12,

R2334 = 1
4

(
f2

/2 − 2f/23

)
, R1423 = − 1

2f/12,

R2434 = 1
4

(
−f/1f/2 + 2f/24

)
, R2324 = − 1

2f/22,

R3434 = 1
2

(
−ff/1f/2 + 2f/34

)
.

Next, we can calculate the components �ij = �(∂i, ∂j) with respect to {∂i} of
the Ricci tensor � of M, defined as the contraction of the curvature tensor. We
obtain
(2.4)

�=

⎛
⎜⎜⎜⎝

0 0 1
2
f/12

1
2
f/11

0 0 1
2
f/22

1
2
f/12

1
2
f/12

1
2
f/22 f23 − 1

2
f2

/2
1
2

(
f/1f/2 − f/13 − f/24

)
+ ff/12

1
2
f/11

1
2
f/12

1
2

(
f/1f/2 − f/13 − f/24

)
+ ff/12 f/14 − 1

2
f2

/1

⎞
⎟⎟⎟⎠

Now, formulas (1.1) and (2.4) also determine the components of the Ricci op-
erator Q given by gf (Q(X), Y ) = �(X, Y ) with respect to ∂i. Explicitly, we
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obtain:

(2.5) Q =

⎛
⎜⎜⎝

�13 �23 �33 − f�23 �34 − f�13

�14 �13 �34 − f�13 �44 − f�14

0 0 �13 �14

0 0 �23 �13

⎞
⎟⎟⎠

From (2.5) it easily follows that the Ricci eigenvalues of gf are the solutions of

[(�13 − λ)2 − �23�14]
2 = 0.

If �23�14 < 0 (equivalently, f11f22 < 0 by (2.4)), then Q has complex conjugates
eigenvalues and so, is not diagonalizable.

If �23�14 = 0 (that is, f11f22 = 0), then λ = �13 = 1
2f12 is the only

Ricci eigenvalue. In this case, by (2.5) it easily follows that the corresponding
eigenspace is not four-dimensional (and so, Q is not diagonalizable), unless �14 =
�23 = �33 = �44 = �34 − f�13 = 0, that is, by (2.4), if f satisfies

(2.6)
f/11 = f/22 = 2f/23 − (f/2)

2 = 2f/14 − (f/1)
2

= f/1f/2 − f/13 − f/24 + ff/12 = 0.

If �23�14 > 0 (equivalently, f11f22 > 0 by (2.4)), then Q admits the eigenvalues
λ = ρ13 + ε

√
�23�14, where ε = ±1, each of multiplicity 2. In this case, it is

easily seen by (2.5) that Q is not diagonalizable, unless

�14 (�33 − f�23) + 2ε
√

�23�14 (�34 − f�13) + �23 (�44 − f�14) = 0, ε = ±1,

that is,

�34 − f�13 = �14(�33 − f�23) + �23 (�44 − f�14) = 0.

By (2.4), equations above are equivalent to requiring that the defining function
f satisfies

(2.7)
f/1f/2 − f/13 − f/24 + ff/12 = f/11(2f/23 − (f/2)

2)

+ f/22(2f/14 − (f/1)
2) − 2ff/11f/22 = 0.

Note that (2.6) implies (2.7). Hence, we can state the following

Proposition 2.1. A Walker metric (1.1) has a diagonalizable Ricci oper-
ator only if its defining function f satisfies (2.7).
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We can now calculate the covariant derivative ∇� of the metric (1.1). By
using (2.2) and (2.4), we prove the following

Proposition 2.2. The nonvanishing components ∇i�jk = (∇∂i
�) (∂j , ∂k)

of the covariant derivative ∇� of a Walker metric (1.1), are given by

∇1�13 = ∇1�24 = ∇2�14 =
f/112

2
, ∇1�23 = ∇2�13 = ∇2�24 =

f/122

2
,

∇1�14 =
f/111

2
, ∇2�23 =

f/222

2
,

∇1�33 = f/123 − f/2f/12 −
f/1f/22

2
, ∇1�44 = f/144 −

3

2
f/1f/11,

∇2�33 = f/223 −
3

2
f/2f/22, ∇2�44 = f/124 − f/1f/12 −

f/2f/11

2
,

∇3�13 =
1

4

(
2f/123 − f/1f/22

)
, ∇3�14 =

1

4

(
2f/113 + f/2f/11

)
,

∇3�23 =
1

4

(
2f/223 − f/2f/22

)
, ∇3�24 =

1

4

(
2f/123 + f/1f/22

)
,

∇3�33 = f/233 − f/2f/23 − f/3f/22, ∇4�44 = f/144 − f/1f/14 − f/4f/11,

∇4�13 =
1

4

(
2f/124 + f/2f/11

)
, ∇4�14 =

1

4

(
2f/114 − f/1f/11

)
,

∇4�23 =
1

4

(
2f/224 + f/1f/22

)
, ∇4�24 =

1

4

(
2f/124 − f/2f/11

)
,

∇1�34 =
1

2

(
f/2f/11 − f/113 − f/124

)
+ f/1f/12 + ff/112,

∇2�34 =
1

2

(
f/1f/22 − f/123 − f/224

)
+ f/2f/12 + ff/122,

∇3�34 =
1

4

(
f/2f/13+ff/2f/12−ff/1f/22−f/2f/24

)
+

1

2

(
f/3f/12−f/133−f/234

)

+ ff/123 + f/1f/23,

∇3�44 =
1

2

(
−3f/1f/13 + ff/1f/12 − ff/2f/11 − f/1f/24

)
+ f/134 + f/2f/14,

∇4�33 =
1

2

(
−3f/2f/24 + ff/2f/12 − ff/1f/22 − f/2f/13

)
+ f/234 + f/1f/23,

∇4�34 =
1

4

(
f/1f/24+ff/1f/12−ff/2f/11−f/1f/13

)
+

1

2

(
f/4f/12−f/134−f/244

)

+ ff/124 + f/2f/14.
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3 – Einstein-like and conformally flat Walker metrics gf

Einstein-like metrics were introduced and first studied by A. Gray [7] in
the Riemannian framework as natural generalizations of Einstein metrics. Since
they are defined through conditions on the Ricci tensor, their definition extends
at once to the pseudo-Riemannian case. A pseudo-Riemannian manifold (M, g)

(i) belongs to class P if and only if its Ricci tensor � is parallel, that is,

(3.1) (∇X�)(Y, Z) = 0,

for all vector fields X, Y, Z tangent to M .

ii) belongs to class A if and only if its Ricci tensor � is cyclic-parallel, that is,

(3.2) (∇X�)(Y, Z) + (∇Y �)(Z, X) + (∇Z�)(X, Y ) = 0,

for all vector fields X, Y, Z tangent to M . (3.2) is equivalent to requiring
that � is a Killing tensor, that is,

(3.3) (∇X�)(X, X) = 0.

iii) belongs to class B if and only if its Ricci tensor is a Codazzi tensor, that is,

(3.4) (∇X�)(Y, Z) = (∇Y �)(X, Z).

Let us denote by E and by C the class of Einstein manifolds and manifolds
with constant scalar curvature, respectively; besides, let P denote the class
of manifolds with parallel Ricci tensor. Then we have E ⊂ P = A ∩ B ⊂
A ∪ B ⊂ C.

Recently, Einstein-like pseudo-Riemannian metrics have been studied by
several authors. Some examples can be found in [1],[3],[4],[5].

Let gf be a Walker metric described by (1.1). Several curvature properties
which we shall study in this section and in the next one, force the defining
function f to be of the following special form:

(3.5) f(x1, x2, x3, x4) = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4),

where p, q, s are C∞ real valued functions. More precisely, as concerns Einstein-
like Walker metrics (1.1), the following result is easily obtained by applying (3.1),
(3.3) and (3.4) respectively to the components of ∇� described in Proposition 2.2:
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Theorem 3.1. A Walker metric gf described by (1.1)
i) is Ricci-parallel if and only if f is of the form (3.5), where p and q are C∞

real valued functions satisfying

p2 = 2p/4 + l(x3), q2 = 2q/3 + h(x4),

qp/3−qq/4−2(p/33+q/34)+4pq/3 = 0, pq/4−pp/3−2(p/34+q/44)+4qp/4 = 0,

3pp/3 + pq/4 − 2p/34 − 2qp/4 = 0, 3qq/4 + qp/3 − 2q/34 − 2pq/3 = 0,

(3.6)

for two arbitrary smooth functions h and l.
ii) belongs to class A if and only if

(3.7) f/233 − f/2f/23 − f/3f/22 = 0, f/144 − f/1f/14 − f/4f/11 = 0.

iii) belongs to class B if and only if f is of the form (3.5), where p and q satisfy

(3.8) 3qp/3+5qq/4−2p/33−6q/34 = 0, 3pq/4+5pp/3−2q/44−6p/34 = 0.

The classification of Einstein Walker metrics (1.1) was given in [2], were the
following result was proved:

Theorem 3.2. A Walker metric gf described by (1.1) is Einstein if and only
if f is of the form (3.5), where p and q are C∞ real valued functions satisfying

(3.9) p2 = 2p/4, q2 = 2q/3, pq = p/3 + q/4.

In this case, gf is Ricci-flat.

A comparison between (3.6) and (3.9) shows at once that Ricci-parallel
Walker metrics (1.1) which are not Einstein form a quite large class, depending
on two arbitrary non-vanishing one-variable functions h and l. Note that an
irreducible Ricci-parallel Riemannian manifold is necessarily Einstein [7].

Next, as it is well known, a pseudo-Riemannian manifold (M, g), of dimen-
sion n ≥ 4, is conformally flat if and only if its Weyl curvature tensor vanishes,
that is,

(3.10)

R(X, Y, Z, W ) =
1

n − 2
(g(X, Z)�(Y, W ) + �(X, Z)g(Y, W )

− g(X, W )�(Y, Z) − g(Y, Z)�(X, W ))

− τ

(n − 1)(n − 2)
(g(X, Z)g(Y, W ) − g(X, W )g(Y, Z)) ,
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for all vector fields X, Y, Z, W tangent to M, where τ denotes the scalar curva-
ture.

In our case, applying (3.10) to the curvature and Ricci components described
by (2.3) and (2.4) respectively, a direct calculation leads to prove the following

Theorem 3.3. A Walker metric gf given by (1.1) is conformally flat if and
only if its defining function f is of the special form (3.5), where p, q, s satisfy

(3.11) p34 = pp3, q34 = qp3, s34 = sp3, p3 = q4.

4 – Locally symmetric Walker metrics (1.1)

A symmetric space is a connected pseudo-Riemannian manifold whose geo-
desic symmetries are isometries. A manifold is said to be locally symmetric if it
is isometric to a symmetric space. A well-known characterization states that a
pseudo-Riemannian manifold (M, g) is locally symmetric if and only if ∇R = 0.
In particular, a locally symmetric space is Ricci-parallel.

Consider now a Walker metric gf given by (1.1). When gf is Ricci-parallel,
we know by Theorem 3.1 that its defining function f is of special form (3.5) and
satisfies (3.6). Long but routine calculations show that for such a metric gf ,
the possibly non-vanishing components ∇kRijlm = (∇∂k

R) (∂i, ∂j , ∂l, ∂m) of the
covariant derivative of R, are given by

∇1R3434 = −∇4R1334 = −∇4R2434 =
1

2
[2p/34 − pp/3 − pq/4],

∇2R3434 = ∇3R2434 = ∇3R1334 =
1

2
[2q/34 − qp/3 − qq/4],

∇3R3434 = x1[p/334 − p(pq/3 + qp/3) + qp/34 − p/3q/4]

+ x2[q/334 − q(pq/3 + qp/3) + qq/34 − q/4q/3]

+ s/334 − s(pq/3 + qp/3) + qs/34 − q/4s/3,

∇4R3434 = x1[p/344 − p(pq/4 + qp/4) + pp/34 − p/3p/4]

+ x2[q/344 − q(pq/4 + qp/4) + pq/34 − p/3q/4]

+ s/344 − s(pq/4 + qp/4) + ps/34 − p/3s/4

and the ones obtained by them using the symmetries of ∇R. Again taking
into account the fact that gf is Ricci -parallel, we then have that gf is locally
symmetric if and only if f satisfies (3.5), (3.6) and

(4.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2p/34 − pp/3 − pq/4 = 0,

2q/34 − qp/3 − qq/4 = 0,

p/334 − p(pq/3 + qp/3) + qp/34 − q/4p/3 = 0,

q/344 − q(pq/4 + qp/4) + pq/34 − q/4p/3 = 0,

s/334 − s(pq/3 + qp/3) + qs/34 − q/4s/3 = 0,

s/344 − s(pq/4 + qp/4) + ps/34 − p/3s/4 = 0.
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Using both (3.6) and (4.1), by standard calculations we obtain the following

Theorem 4.1. A Walker metric gf described in (1.1) is locally symmetric
if and only if f is of the special form (3.5), where p, q and s are C∞ real valued
functions satisfying one of the following sets of conditions

i) q=ap and

p/3 =
a

2
p2 + k, p/4 =

1

2
p2 +

k

a
,

s334 + aps/34 − p/3s/3 − 2app/3s = 0, s/344 + ps/34 − p/3s/4 − 2pp/3s = 0,

for two real constants a �= 0 and k.

ii) q = 0, p = p(x4), s/34 = G(x4) and

p′ =
1

2
p2 + α, G′ + pG = 0,

for a real constant α.

iii) p = 0, q = q(x3), s/34 = H(x3) and

q′ =
1

2
q2 + β, H ′ + qH = 0,

for a real constant β.

iv) p = q = 0 and s/34 = γ is a real constant.

It is now easy to compare conditions listed in Theorem 4.1 with the ones
characterizing Einstein and conformally flat Walker metrics (1.1), listed in The-
orems 3.2 and 3.3, respectively. In this way, we prove the following

Theorem 4.2. A Walker metric gf described by (1.1) is Einstein locally
symmetric if and only if f is of the special form (3.5), where p, q and s are C∞

real valued functions satisfying one of the following sets of conditions:

i) p = −2(a0 + ax3 +x4)
−1, q = ap and s/334 + aps/34 − p/3s/3 − 2app/3s = 0,

s/344 + ps/34 − p/3s/4 − 2pp/3s = 0, for two real constants a �= 0 and k.

ii) p = −2(x4 + a0)
−1, q = 0 and s/34 = a1(x4 + a0)

2, with a1 a real constant.

iii) p = 0, q = −2(x3 + a0)
−1and s/34 = a1(x3 + a0)

2, with a1 a real constant.

iv) p = q = 0 and s/34 = γ is a real constant.
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Theorem 4.3. A Walker metric gf described in (1.1) is conformally flat
locally symmetric if and only if f is of the special form (3.5), where p, q and s
are C∞ real valued functions satisfying one of the following sets of conditions:

i) q = ap and

p/3 =
a

2
p2 + k, p/4 =

1

2
p2 +

k

a
, s/34 = sp/3,

for two real constants a �= 0 and k.
ii) q = 0, s/34 = 0 and p = p(x4) satisfies p′ = 1

2p2 + α, for a real constant α.

iii) p = 0, s/34 = 0 and q = q(x3) satisfies q′ = 1
2q2 + β, for a real constant β.

iv) p = q = s/34 = 0.

Remark 2.1. Using Proposition 2.1, it is easily seen that among locally
symmetric Walker metrics gf described in Theorem 4.1, the ones of case iv) have
a diagonalizable Ricci operator, while in cases i), ii) and iii), the Ricci operator
is diagonalizable only in the special cases k = 0, α = 0 and β = 0, respectively.
In particular, most of the conformally flat Lorentzian Walker metrics listed in
Theorem 4.3 do not have diagonalizable Ricci operator and so, do not have any
correspondance with the known Riemannian examples.
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