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Can the integral curves of ODEs be accepted

as orbits of an autonomous force field?

GEORGE BOZIS – FRANCESCO BORGHERO

Abstract: It is shown that the two-parametric set of all solutions of any linear
ordinary differential equation (ODE) of the second order y′′ + a(x)y′ + b(x)y = f(x)
(solvable by quadratures or not) can become a set of orbits traced by a material point
of unit mass, in the presence of at least one autonomous force field (conservative or
not) F〈X(x, y), Y (x, y)〉, for adequate initial conditions. The field F (except for a mul-
tiplicative constant F0) is determined by quadratures on the grounds of the coefficients
a(x), b(x), f(x) which specify the given ODE. We give some appropriate examples.

1 – Introduction

The following version of the inverse problem of Dynamics has been studied
in the past: A monoparametric family of planar curves is given in the ”solved
for the parameter c” form

(1) ϕ(x, y) = c

To find all autonomous force fields

(2) X = X(x, y), Y = Y (x, y)

in the presence of which a material point of unit-mass can trace all the curves (1)
in the Cartesian plane Oxy as orbits, for adequate initial conditions, of course.

Key Words and Phrases: Linear ODEs of second order – Orbits – Autonomous force
fields – Inverse Problems of Mechanics
A.M.S. Classification: 34Axx, 70F17.



194 GEORGE BOZIS – FRANCESCO BORGHERO [2]

As reported by Whittaker [1], the force F〈X, Y 〉 (which may or may not be
conservative) was first given by Dainelli [2] (1880). We know that there exist
infinitely many such force fields and that infinitely many out of these are also
conservative. Each conservative field is associated with a different distribution
of the total energy along the various members of the family. Szebehely’s PDE [3]
(1974) relating potentials and families of orbits, traced with a preassigned energy-
dependence function E = E(ϕ(x, y)), renewed interest in this old problem.

The “slope function”

(3) γ(x, y) =
ϕy

ϕx

comes to an one-to-one correspondence with the given family (1). Actually, it
is the function γ(x, y) (and not the function ϕ(x, y) in (1)) which enters into
the basic formulae of this inverse problem (see Bozis [4]). For monoparametric
families (1) this means that the “mother differential equation” of the first order,
in the solved form

(4) y′ = − 1
γ(x,y)

(solvable or not by quadratures, depending on the given γ(x, y)) can replace the
given family (1).

The picture changes altogether if the preassigned geometrical information
regarding the orbits is increased [5]. The problem not only ceases to have in-
finitely many solutions but it may no longer possess even a single solution. This
is what happens e.g. if we seek a force field which can create a two-parametric
set of planar curves ϕ(x, y, c∗) = c, given in advance. In general, no solution
exists, unless the pertinent slope function γ(x, y, c∗), corresponding to the fam-
ily ϕ(x, y, c∗) = c , satisfies certain conditions. These conditions were found
by Bozis [4] for families of planar orbits in the Cartesian plane and recently by
Kotoulas [6] for two-parametric families of orbits lying on a surface with given
metric. So or otherwise, inverse problems of this type are put with the equations
of the orbits (or, at least, with adequate slope functions γ(x, y, c∗)) given in
advance.

In the present study, we shall consider an inverse problem of different char-
acter: Neither the equation ϕ(x, y, c∗) = c of the two-parametric family will be
given in advance nor its pertinent slope function γ = γ(x, y, c∗). Instead, it
will be assumed that its “mother differential equation” is given, i.e. a second
order ordinary differential equation (ODE) whose solutions are the orbits. The
essential difference lies in that the orbits themselves may not even be known, as
the mother differential equation may not be analytically solvable.

We examine in detail the case of a linear second order ODE, given in the
solved for y′′ form. The procedure however may be extended to nonlinear, solved
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for y′′, second order ordinary differential equations, provided that we have some
information regarding the dependence of y′′ on the first order derivative y′.

2 – Basic facts for planar autonomous force fields

The velocity components at any point (x, y) of any orbit (1) are given by

(5) ẋ = g(x, y)ϕy, ẏ = −g(x, y)ϕx

where g(x, y) is an arbitrary function. A second derivation in time of the equa-
tions (5) provides the pertinent force components X, Y in terms of the functions
ϕ, g and first order derivatives of these (see [7]). In place of ϕ and g , we can
introduce the slope function γ [4], [8] and the kinetic energy T and obtain the
two equations

(6) 2T =
(1 + γ2)

Γ
(X + γY )

and

(7) Yy − Xx +
1

γ
Xy − γYx = λX + μY

The positional functions λ and μ in (7) are given by

(8) λ =
Γy − γΓx

γΓ
and μ = λγ +

3Γ

γ

where

(9) Γ = γγx − γy

Equation (7) is a necessary and sufficient condition for the autonomous force
F〈X, Y 〉. to be compatible with the family (1) traced with velocity (5). For any
admissible pair 〈X, Y 〉, equation (6) serves not only to determine the kinetic
energy of the moving point but also to establish the region of the xy plane

(10)
X + γY

Γ
≥ 0

where real motion is allowed to take place [9]. If, for a given family γ(x, y), the
pair 〈X, Y 〉 satisfyies (7), so does the pair 〈k0X, k0Y 〉. All these pairs will be
considered as one solution. The sign of the real constant k0 decides whether the
orbits of the family will be lying in the interior or the exterior of the region (10).

If the family (1) depended on two parameters, then the second parameter,
say c∗, would appear in the function ϕ and, consequently, in γ, λ and μ. It
is then easily seen that, in general, there would not exist pairs of functions (2)
satisfying the PDE (7), because the force components must be independent of
the parameters c and c∗ and, in particular, of the additional parameter c∗, first
inserted in the left hand side of (1).
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3 – Analysis for second order linear ODEs

Consider the linear, second order, ordinary differential equation (ODE)

(11) y′′ + a(x)y′ + b(x)y = f(x).

The equation is then identified by the three sufficiently smooth functions a(x),
b(x), f(x). The totality of its solutions

(12) y = y(x, c1, c2).

constitutes a set of planar curves depending on two parameters.
We put the following question: Is there a planar autonomous force field (2)

which can produce as real orbits, traced by a unit-mass material point, all the
members of the two-parameter set (12)? We shall show that, contrary to what is
generally expected, the answer in this case is always affirmative. In fact, given
the ODE (11),no matter if we can or we cannot obtain its general solution , we
can determine at least one force field (2) which can produce as real orbits all
the set of curves (12).

We proceed as follows: Differentiating in x both members of (4), we obtain,
in view of (9),

(13) y′′ =
Γ

γ3

Now, in view of (4) and (13), we can write the given differential equation (11) as

(14) Γ = γ3

(
a

γ
− by + f

)

In so doing, we managed to express Γ in terms of x, y and γ. Taking into
account that the positional function Γ depends on x and on y explicitly and
through γ(x, y), we calculate derivatives of Γ in x and y and we proceed to the
calculation of the coefficients λ and μ appearing in our basic equation (7). There
results:

(15) λ = 3(yb − f)γ − 2a +
(yb′ − f ′)γ − (b + a′)

(f − yb)γ + a

and

(16) μ =
(yb′ − f ′)γ2 − (b + a′)γ

(f − yb)γ + a
+ aγ

where primes denote derivatives in x. Inserting (15) and (16) into (7), we obtain
the cubic in γ algebraic equation

(17) s3γ
3 + s2γ

2 + s1γ + s0 = 0
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where the coefficients sj(j = 0, 1, 2, 3) are given by

s3 = 3(f − yb)2X − [a(f − yb) − (f ′ − yb′)]Y − (f − yb)Yx

s2 = [5a(f − yb) + (f ′ − yb′)]X + (b + a′ − a2)Y +

− (f − yb)Xx − aYx + (f − yb)Yy

s1 = (2a2 + a′ + b)X − aXx + (f − yb)Xy + aYy

(18) s0 = aXy.

The slope function γ in (17) depends on one of the two integration constants
c1, c2 , introduced by the general solution (12) of the given ODE (11), as this
general solution will be brought to the “solved for one constant” form (1). On
the other hand, the above coefficients sj(j = 0, 1, 2, 3) must be independent of
the integration constants. In fact, they are expressed in (18) in terms of the
coefficients a, b, f of the given ODE (11) and the force components X, Y which
depend only on the position coordinates x, y. Consequently, for (17) to hold true
for all solutions of (11), we must have

(19) s3 = s2 = s1 = s0 = 0.

Our problem then is to find if, given the ODE (11), the four PDEs (19) in the
two unknown functions X(x, y), Y (x, y) are compatible. To this end we start
with the last equation s0 = aXy = 0 of the system (18), which happens to be
the simplest one. We distinguish two cases: A (with a �= 0) and B (with a = 0),
to be studied separately.

3.1 – The case a �= 0

For this case, we find it convenient to introduce the following notation:

(20) I = exp

(∫
b

a
dx

)
, J = exp

(∫
adx

)
, Θ =

∫
I2J−3dx.

The functions I and J are determined up to a multiplicative constant ( I0

and J0 , respectively) and the integral Θ up to an additive constant Θ0. It
will appear that these constants are usually superfluous as they are absorbed by
other integration constants entering into the calculations.

Since a �= 0 and s0 = 0, the X−component of the required force field
depends merely on x, i.e. X = X(x) and, because of that, as seen from the
third expression (18), so does the term Yy in s1 = 0. From s1 = 0 there results

(21) Y (x, y) = y

[
X ′ −

(
2a +

a′ + b

a

)
X

]
+ ε(x)
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where ε(x) is arbitrary and X ′ = dX
dx . So, in this case, the last two equations

(19) served to inform us that X is independent of y and that Y is linear in
y. We are left to deal with the first two equations of the system (19), having
in addition at our disposal the arbitrary function ε(x). Using (21), we write the
two equations s3 = 0 and s2 = 0 respectively as

(22) s30 + ys31 + y2s32 = 0 and s20 + ys21 = 0.

The functions s30, s31, s32, s20, s21 (computed by MATHEMATICA but not
recorded here) depend only on x. In fact they are expressed in terms of X, X ′, X ′′

and in terms of a, b, f, ε and first order derivatives of these. Apparently, it must
be

(23) s30 = s31 = s32 = 0 and s20 = s21 = 0.

In particular, for f �= 0, from s30 = 0 we determine the component

(24) X =
(aε + ε′)f − εf ′

3f2
.

The result (24) obliges us to distinguish two subcases (A1 : f �= 0 and A2 : f =
0), corresponding to nonhomogeneous and homogeneous ODEs (11), respectively.

3.1.1 – Subcase A1: a �= 0, f �= 0.

Using X, as given by (24), we come to see that the rest of the equations (23)
are all satisfied if we select

(25) ε = ε0fJ2.

Then, in accordance with (24) and (21), we obtain the unique (except for the
multiplicative constant ε0) solution

(26) X = ε0aJ2 and Y = ε0(f − yb)J2.

Thus: For a �= 0 , f �= 0, all solutions of (11) (either known or not) are orbits of
a material point moving in the force field (26).

3.1.2 – Subcase A2: a �= 0, f = 0.

The coefficient s30 = 0 , X cannot be determined from (24) and we turn
attention to s20. The calculations lead to s20 = −a

[
aε′ + (a2 − a′ − b)ε

]
= 0

(which is of course satisfied for ε = 0). Since a �= 0, with ε �= 0, we must select

(27) ε = ε̃0aIJ−1, (ε̃0 �= 0, constant).
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So, we examine two subsubcases (A2a and A2b below).

A2a: a �= 0, f = 0, ε = 0.

Then, not only s30 = s20 = 0 but also s31 = 0 whereas, in order to make
s21 = 0 and s32 = 0 it is required that the X-component satisfies the two
equations

(28)
X ′

X
= 2a +

a′

a
and

X ′′

X
= 4a2 + 6a′ +

a′′

a
.

It can be checked that the equations (28) are compatible and that they lead to

(29) X = X0aJ2, (X0 = const.)

From (21) we find

(30) Y (x, y) = −yX0bJ
2.

Remark 1. We notice that the result (29) coincides with the first of the
equations (26) and that (30) can be taken from the second formula (26), if we
allow this formula (in spite of the way it was derived) to be applicable for f = 0
also. Up to this point then, it is all summarized in the following:

Proposition 1. For a �= 0 , all solutions of the ODE y′′ + ay′ + by = f
can become orbits of a material point moving in the presence of the force field
given by the equations (26).

A2b: a �= 0, f = 0, ε �= 0.

With formulae (21) and (27) giving respectively Y (x, y) and ε(x), besides
s20 = 0, it is also s30 = 0. The equation s21 = 0 leads to a linear in X, second
order, ODE to be satisfied by X(x). This equation reads

(31) X ′′ + s1X
′ + s0X = 0

where

(32) s1 = −
(

a +
2(a′ + b)

a

)
and s0 =

2a′

a2
(a′ + b)− a′′

a
+4b−2a2−a′

For any solution X(x) of (31), the corresponding Y (x, y)−component is then
found with the aid of (21). There remain the two equations s31 = 0 and
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s32 = 0 . The equation s31 = 0 requires that the coefficients a and b of the
given equation (11) satisfy the relation

(33)

(
b

a

)′
=

(
b

a

)2

Working with (33), we see that s32 = 0 is also valid if X(x) is taken to satisfy
the same ODE (31). Obviously it is highly desirable to solve (31). To this end,
inspired by the result (29), we observe that X1 = aJ2 is a particular solution
of the linear homogeneous equation (31). On this basis, we transform (31) from
second to first order ODE and we readily find a second, linearly independent,
solution. As can directly be verified, it is X2 = aJ2Θ, with Θ given in (20). So,
the general solution of (31) is

(34) X(x) = aJ2(c1 + c2Θ)

where c1, c2 are constants. Working with (34) and using (27), we find the com-
ponent Y (x, y) from (21). It is

(35) Y (x, y) = y
[
−(c1 + c2Θ)bJ2 + c2aI2J−1

]
+ ε̃0aIJ−1

Remark 2. The force field given by (34) and (35) is not unique but depends
on three constants: c1 + c2Θ0, c2 and ε̃0. If (in spite of the assumption ε �= 0
which we made to derive them) we allow these formulae to be applicable for
ε = 0, we cover also the previous case A2a. Indeed, for c1 = X0, c2 = 0,
ε̃0 = 0, the formulae (34) and (35) reduce to (29) and (30). However, not to be
disregarded is the fact that, for ε̃0 �= 0, (34) and (35) are valid only when the
coefficients a and b are related by (33).

On the other hand, the equation (33) implies that either b = a
(x0−x) , x0 =

const. , or b = 0 (a =arbitrary), So we can state the following:

Proposition 2. For a �= 0 and any constant x0, all solutions of the homo-
geneous ODE y′′ + ay′ + a

x0−xy = 0 are orbits in any of the fields given by the

formulae (34) and (35), applied for b = a
(x0−x) , implying I = I0

x0−x .

In particular for b = 0, we deal with the equation y′′ + ay′ = 0 whose
general solution is

(36) y = c̃1 + c̃2

∫
J−1dx.

Then formulae (34) and (35) must be applied for b = 0, I = I0, J = exp(
∫

adx),
Θ = I2

0

∫
J−3dx. We conclude that
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Proposition 3. For any function a = a(x), all orbits (36) are created by
any member of the two-parametric set of force fields

(37) X(x) = aJ2(c1 + k1

∫
J−3dx), Y = aJ−1(k1y + k2)

where the parameters are: k1 = c2I
2
0 , k2 = ε̃0I0.

Comment: A general conclusion from the study of the Case A (a �= 0) is
the following: No distinction should be made between homogeneous and nonho-
mogeneous ODEs (11). The Proposition 1 covers both cases. Only if b = 0 or
if b

a = 1
x0−x , such a distinction is necessary. Then, to the homogeneous (f = 0)

ODEs (11) there corresponds a broader set of force fields given by the formulae
(34) and (35), in the sense that these formulae, applied (formally) for c1 = ε0,
c2 = 0, ε̃0 = 0, lead to the formulae (26), with f = 0 of course.

3.2 – The case a = 0

The given equation (11) reduces to

(38) y′′ + b(x)y = f(x)

and, as seen from (18), the last equation (19) is satisfied identically. The
X−component is now allowed to depend both on x and y. Two subcases have
to be distinguished: (B1: at least one of the coefficients b, f is not zero and B2:
both b and f are zero)

3.2.1 – Subcase B1: a = 0, b2 + f2 �= 0

Since a = 0 , it is also a′ = 0 and, in view of the third expression (18), the
equation s1 = 0 is satisfied for

(39) X(x, y) = (f − yb)K(x)

where K(x) is at the moment arbitrary. Inserting (39) into the other two equa-
tions (19) s2 = 0, s3 = 0, we obtain two expressions (E1), (E2) (not recorded
here) giving respectively Yx and Yy in terms of Y . It can be checked that these
expressions are compatible, provided that

(40) K ′′ + 3bK = 0.

Now from (E1) we obtain

(41) Y (x, y) = (f − yb) [L(x) + yK ′(x)]

where L(x) is a new arbitrary function of x. Inserting (41) into (E2) , we find

(42) L′ = 3fK.

In conclusion we have:

Proposition 4. The set of all force fields defined by the equations (39) and
(41) can create all orbits-solutions of the ODE y′′ + by = f , provided that the
one-variable functions K and Lsatisfy the equations (40) and (42).
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Notice that two integration constants enter into the field through K and
one through L.

3.2.2 – Subcase B2: a = 0, b2 + f2 = 0

Equation (11) now becomes

(43) y′′ = 0

and its general solution

(44) y = c1x + c2

is a two-parameter family of straight lines with “slope” γ(x, y) = − 1
c1

to which,
according to (9), there corresponds Γ = 0. So, the coefficients λ and μ of our
basic equation (7) become indeterminate and the system (19) is meaningless. In
fact, all its four equations are satisfied identically.

Yet, it is understood that not any autonomous force field (2) can produce
as orbits all the straight lines (44) but only those whose direction coincides with
the direction of these lines, meaning that

(45) γ(x, y) = −X(x, y)

Y (x, y)
.

Inserting (44) into Γ = 0, we obtain

(46) X2Yx − Y 2Xy = XY (Xx − Yy)

Proposition 5. All the straight lines (44) can be traced by any of the force
fields 〈X, Y 〉 , satisfying the condition (46).

4 – Conservativeness and Examples

Case A: In all cases A, examined in section 3, we had X = X(x), therefore
the force field would be conservative if

(47) Yx = 0.

A1: For the force field (26), the condition (47) leads to

(48) f = f0J
−2, b = b0J

−2

(f0, b0 constants). This allows us to conclude that:
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For any a(x), all solutions of an ODE of the form

(49) y′′ + ay′ + b0J
−2y = f0J

−2

are orbits generated by the potential

(50) V (x, y) = −ε0

[
f0y − 1

2
b0y

2 +

∫
aJ2dx

]

Case A2a: For (30), the condition (47) gives b = b0J
−2 . According to the

Remark 1 (preceding the Proposition 1 in subsection 3.1.2), the formula (50)
can be applied for f0 = 0 also. Thus, all solutions of the homogeneous equation

(51) y′′ + ay′ + b0J
−2y = 0

are orbits in the potential (50) for f0 = 0.

Case A2b: For Y (x, y), as given by (35), to satisfy (47) we must have

(52)
[
−(c1 + c2Θ)bJ2 + c2aI2J−1

]
x

= 0 and (aIJ−1)x = 0.

The above equations lead respectively to

(53) b′ + 2ab = 0 and b = a2 − a′.

Besides (53), the two coefficients a and b must satisfy also (33). It can be shown
that this occurs only if a = − 1

x+x0
, b = 0. To ease the algebra, we shall restrict

ourselves to the selection x0 = 0 of the additive to x constant in the expression
for a. So, we shall deal with the specific ODE

(54) y′′ − 1

x
y′ = 0

for which a = − 1
x , b = f = 0. From (20) we obtain

(55) I = I0, J =
J0

x
, Θ =

I2
0

4J3
0

x4 + Θ0

and, from (34) and (35), we obtain X and Y. Finally, we find the set of (separable
in x, y) potentials

(56) V (x, y) =
k1

x2
+ k2x

2 + 4k2y
2 + k3y
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where the constants k1, k2, k3 are related to I0, J0,Θ0 and to the integration
constants c1, c2 inherited from the ODE (31) and to ε̃0 of (27) as follows:

(57) k1 = −1

2
J2

0 (c1 + c2Θ0), k2 =
c2I

2
0

8J0
, k3 =

ε̃0I0

J0
.

As we happen to know the general solution

(58) y = c∗1x
2 + c∗2

of the ODE (54), we solve (58) either for c∗1 or for c∗2 and, with the aid of (3)
and (9), we express γ and Γ in terms of x, y and c∗2 or c∗1 respectively. Then,
from Szebehely’s (1974) equation

(59) E = V − (1 + γ2)(Vx + γVy)

2Γ

as modified by Bozis (1995), we find the total energy

(60) E = c∗2(4c∗2k2 + k3) − 4c∗21 k1 −
(8c∗2k2 + k3)

4c∗1

of the moving material point.
In conclusion: Any potential of the form (56) can create the two-parametric

family (58) with energy dependence function given by (60) along each orbit
〈c∗1, c∗2〉 of the family.

Case B1: The force field 〈X, Y 〉 is given by the equations (39) and (41) with
the aid of K(x) and L(x) which satisfy (40) and (42). For the field to be
conservative we must have Xy = Yx and this leads to a quadratic expression in
y which must be identically equal to zero i.e. to three additional restrictions for
K and L. In all we must have

(61)
bK ′ = k1, bL = fK ′ + k2, (fL)′ + bK = 0,

K ′′ + 3bK = 0, L′ = 3fK

(k1, k2 constants). One solution of the four equations (61) which we found is

(62) K = 0, L = L0 = constant

associated with b = b2
0 = const., f = f0 = const. and k1 = 0 , k2 = b2

0L0. In
view of (39),(41) and (62) there results the (one-dimensional) potential

(63) V (x, y) = −L0

(
f0y − 1

2
b2
0y

2

)
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which admits as orbits the two-parametric family

(64) y =
f0

b2
0

+ c1 cos(b0x) + c2 sin(b0x)

of the ODE y′′ + b2
0y = f0(f0, b0 constants). The family (64) is traced with total

energy

(65) E =
L0

{
b2
0 + b4

0(c
2
1 + c2

2) − f2
0

}

2b2
0

and, for L0 > 0, all its members are lying in the entire plane Oxy.

Case B2: For conservative force fields, equation (46) becomes

(66) (Vyy − Vxx)VxVy = (V 2
y − V 2

x )Vxy.

All potentials V (x, y) satisfying (66) create the families of straight lines (44)
(see [10]).

Example 1. For x > 0 let us consider the ODE

(67) y′′ − 1

x
y′ +

1

x2
y =

4

x3

From our viewpoint, the equation (67) is of the type A1, with a = − 1
x , b = 1

x2 ,

f = 4
x3 , I = 1

x , J = 1
x , Θ = x2

2 . According to the formulae (26), the force field

X = ε0
x3 , Y = ε0(xy−4)

x5 , for adequate initial conditions, produces as orbits
all the solutions of (67). In fact, we can check directly that this pair 〈X, Y 〉 is
compatible (in the sense that the equation (7) is satisfied identically) with the
general solution y = 1

x + c1x + c2x lnx of (67), which we happen to know.

Example 2. For x > 0 the solutions of

(68) y′′ +
1

x
y′ = 0

are again known and are given by y = c1 + c2 lnx. Yet, we shall not use this fact
but only in case we want to verify our results. We shall only use the equation
(68) itself, which is homogeneous. So, the case is classified as A2, with a = 1

x ,
b = 0. The condition (33) is satisfied and the case is A2b. It is I = I0 = const.,

J = x, Θ = − I2
0

2x2 and from (34) and (35) we find: X(x) = c1x− c2I2
0

2x , Y (x, y) =
I2
0c2y+ε0I0

x2 .
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Example 3. The ODE

(69) y′′ − 4

x2
= x

is of the type B1, with b = − 4
x2 , f = x. So, equation (40) reads K ′′ − 12

x2 K = 0

and its general solution is K = k1x
4+ k2

x3 . Equation (42) gives L = L0+
k1x6

2 − 3k2

x .
From equations (39) and (41) we obtain

(70)
X(x, y) =

(x3 + 4y)

x5
(k1x

7 + k2),

Y (x, y) =
(x3 + 4y)

2x6

[(
k1x

7 + 2L0x − 6k2

)
x3 + 2y

(
4k1x

7 − 3k2

)]
.

As the general solution

(71) y = c1x
ρ1 + c2x

ρ2 +
1

2
x3,

(
ρ1, ρ2 =

1 ±
√

17

2

)

of (69) is known, we can verify the compatibility of (70) and (71).

5 – Concluding Comments

The backbone of the present study is the cubic equation (17). It resulted
from the basic equation (7) combined with information regarding the dependence
of y′′ on y′ (or on γ, as given by the equation (13)). This helped to interrelate
the family to the coefficients a, b, f of the given ODE (11) by the expression (14).
From equation (17) then there stemmed the system of the four partial differential
equations (19) in the two unknown functions X(x, y), Y (x, y). The compatibility
of these equations was studied in detail.

Our study was limited to linear ODEs, i.e. to a case in which y′′ is expressed
linearly in terms of y′ in the form indicated by equation (11). However, even if
the linear dependence of y′′ on y′ was of the more general form

(72) y′′ = A(x, y)y′ + B(x, y),

the pertinent equation (17) would be again cubic in γ. The analysis, of course,
would not be facilitated, as it did in our case, by the fact that the function A
depends merely on x and that the function B is linear in y. The result also would
be qualitatively different. In general, we would not expect the two-parametric
set of solutions of (72) to be consistent with an autonomous force field. In fact,
for the existence of such a field, the functions A(x, y) and B(x, y) would have
to satisfy certain differential conditions. The question is open to detailed study.
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For nonlinear second order ODEs more general than (72) (e.g. algebraic
with y′ of higher degree) the corresponding equation (17) would be algebraic of
degree higher than three. The number of equations in the pertinent system (19)
would be greater than four.

The basic result of the paper is that autonomous force fields, in the frame-
work of the inverse problem of Dynamics, may be determined not necessarily on
the grounds of given two-parametric families but from their “mother equations”
which may not even be solvable by quadratures. In other words, we face and we
solve this version of the inverse problem of Dynamics (not only having but also)
not having at our disposal the equation

(73) ϕ(x, y, c∗) = c

of the two-parametric family, not even the corresponding slope function

(74) γ = γ(x, y, c∗).

In fact our results may be interpreted also as follows: the force field (found
according to the case to which the given ODE is classified) may be used as a
“mechanical device” to construct the solutions of the equation (11).

The ODE (11), of course, can always be solved numerically. All solutions
of (11) starting from a definite point (x0, y0) of the Cartesian plane with a
definite direction y′

0 = − 1
γ(x0,y0)

and various velocity magnitudes constitute a

monoparametric family (1), associated with a definite value of c∗ in (73). The
family becomes two-parametric if, starting at the same point (x0, y0), we allow
the direction y′

0 to vary. The slope function (74) becomes numerically known if
we record γ(x, y, c∗) at all points (x, y) , as the material point travels on each
orbit.

In the three examples of section 4 we managed to present solvable ODEs so
that we can check our findings on the grounds of the basic equation (7), as we did
already. There exist of course many second order linear ODEs (some of them
“famous”, as e.g. Bessel’s, Legendre’s, Chebychev’s etc) for which this direct
verification cannot be effectuated. In spite of this, we pretend that there exist
always appropriate autonomous force fields which can produce as orbits their
solutions. We cannot, of course, ensure that an appropriate potential V (x, y)
also exists always. Thus, e.g. , for Bessel’s equation

(75) y′′ +
1

x
y′ +

(
1 − k2

0

x2

)
y = 0

we find, in view of (29) and (30), the unique force field X = X0x, Y =
X0(k

2
0 − x2)y , which, however, is not conservative.
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