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– Introduction

In this thesis we discuss the connection between the mean-field limit and
the semiclassical approximation for a system of N identical quantum particles.
More precisely, we look at a system of N identical particles (of mass m = 1)
interacting by means of the mean-field potential:

(I.1) U (XN ) =
1

2N

N∑

l �=j

φ(xl − xj), φ : R3 → R

(where XN = {x1, . . . , xN}, xj ∈ R3, j = 1, . . . , N) in the limit N → ∞. It is
well known that the effective (limiting) dynamics of such a system is ruled by
the following nonlinear one-particle Schrödinger equation:

(I.2) i�∂tψt = −�2

2
Δψt +

(
φ ∗ |ψt|2

)
ψt,

where

(I.3)
(
φ ∗ |ψt|2

)
(x) =

∫

R3

dy φ(x − y)|ψt(y)|2

is the effective self-consistent interaction. Equation (I.2) is known as the Hartree
equation. The rigorous derivation of (I.2) from the many-body evolution can
be formulated in terms of convergence of j-particle Reduced Density Matrices
(RDM). In fact, by considering the N -particle wave function ΨN,t = ΨN,t (XN )
solution of the Schrödinger equation:

(I.4) i�∂tΨN,t = −�2

2

N∑

i=1

Δxi
ΨN,t + UΨN,t,
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with U given by (I.1) and completely factorized initial datum given by:

(I.5) ΨN,0(XN ) =

N∏

j=1

ψ0(xj),

it can be proven that, for fixed j (with 1 ≤ j ≤ N) the j-particle reduced density
matrix, defined as the trace class operator with kernel

(I.6) ρ
(j)
N,t (Xj , Yj) =

∫

R3(N−j)

dXN−jΨN,t (Xj , XN−j) ΨN,t (Yj , XN−j) ,

converges, in the limit N → ∞, to the factorized state:

(I.7) ρ
(j)
t (Xj , Yj ; t) =

j∏

k=1

ψt (xk)ψt (yk) ,

where ψt(x) solves the one-particle Hartree equation (I.2) with initial datum ψ0.
This feature is usually called “propagation of chaos”.

The previous result was originally obtained for sufficiently smooth potentials
(see [2], [6], [7]); then it has been generalized to include Coulomb interactions (see
[16], [17], [18]). Furthermore, some results concerning the speed of convergence
of the mean-field evolution to the Hartree dynamics (for all fixed times), have
been proven more recently (see [20], [21]).

The limit N → ∞ for a classical system interacting by means of the same
mean-field interaction (I.1), can be considered as well (see [4], [5], [9], [10] for
the case of smooth potential, and [22] for more singular interactions). In fact,
considering as initial state of the system a completely factorized probability
distribution FN,0 = FN,0 (XN , VN ) dXNdVN in the N -particle phase space R3N×
R3N , namely:

(I.8) FN,0 (XN , VN ) =

N∏

j=1

f0 (xj , vj) , for some one-particle density f0,

it is known that its evolution FN (XN , VN ; t) at time t > 0, is obtained by solving
the Liouville equation:

(I.9) (∂t + VN · ∇XN
)FN (t) = ∇XN

U · ∇VN
FN (t),

with U given by (I.1). Then, the j-particle marginal at time t > 0, defined as

(I.10) F
(j)
N (Xj , Vj ; t)=

∫

R3(N−j)×R3(N−j)

dXN−jdVN−jFN(Xj , XN−j ,Vj ,VN−j ; t) ,
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converges, as N → ∞, to the product state:

(I.11) F (j) (Xj , Vj ; t) =

j∏

k=1

f (xk, vk; t) ,

where f(x, v; t) is the solution of the Vlasov equation:

(I.12) (∂t + v · ∇x) f(t) = (∇xφ ∗ f(t)) · ∇vf(t),

(the convolution above is with respect to both the variables x and v) with initial
datum f0. Equation (1.1.8) is the classical analogue of the Hartree equation (I.2).

Although the mean-field limit N → ∞ is well understood for both classical
and quantum systems, there is a question which is still open, namely, does that
limit hold for quantum systems uniformly in �, at least for systems having a
reasonable classical analogue?
The proofs which are available up to now exhibit an error vanishing when N → ∞
but diverging as � → 0, although in [8], [24], [26], [27] some efforts in the direction
of a better control of the error term have been done.

If one wants to deal with the classical and quantum case simultaneously, it
is natural to work in the classical phase space by using the Wigner formalism.

The one-particle Wigner function associated with the wave function ψt(x)
is given by:

(I.13) f� (x, v; t) = (2π)−3

∫

R3

dy eiy·vψt

(
x +

�y

2

)
ψt

(
x − �y

2

)
,

and, similarly, the N -particle Wigner function associated with the wave function
ΨN,t(XN ) is defined as:

(I.14)

W �
N (XN , VN ; t) =

= (2π)−3N

∫

R3N

dYN eiYN ·VN ΨN,t

(
XN +

�YN

2

)
ΨN,t

(
XN − �YN

2

)
.

Then, by using that ψt(x) and ΨN,t(XN ) solve equations (I.2) and (I.4) respec-
tively, we find the equations:

(I.15) (∂t + v · ∇x) f�(t) = T �f�(t)

and

(I.16) (∂t + VN · ∇XN
)W �

N (t) = T �
NW �

N (t),

where T � and T �
N are suitable pseudodifferential operators.
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The initial data for equations (I.15) and (I.16) are

(I.17) f�
0 (x, v) = (2π)−3

∫

R3

dy eiy·vψ0

(
x +

�y

2

)
ψ0

(
x − �y

2

)
,

and

(I.18)

W �
N,0 (XN , VN ) =

= (2π)−3N

∫

R3N

dYNeiYN ·VN ΨN,0

(
XN +

�YN

2

)
ΨN,0

(
XN − �YN

2

)
=

=
N∏

j=1

f�
0 (xj , vj) ,

respectively.
One can easily rephrase the result of [7] by showing that the j-particle

Wigner function

(I.19) W �
N,j(Xj , Vj ; t)=

∫

R3(N−j)×R3(N−j)

dXN−jdVN−jW
�
N (Xj , XN−j , Vj , VN−j ; t)

converges, in a suitable sense, to

(I.20) f�
j (Xj , Vj ; t) =

j∏

k=1

f� (xk, vk; t) for any t > 0.

However, the error in approximating the N -particle dynamics by the limiting
one is diverging when � → 0 (for example, for sufficiently small times t < t0 it

is of the form
Cj

N e
c
� ). The reason is that the operator T �

N appearing in (I.16) is
bounded on the space in which we can prove the convergence of (I.19), but its
norm diverges as c

� when � → 0. On the other hand, the classical counterpart of
this problem has been solved, so that it seems natural to look for an asymptotic
expansion for the j-particle “marginals” W �

N,j , namely:

(I.21) W �
N,j (t) = W

(0)
N,j (t) + �W

(1)
N,j (t) + �2W

(2)
N,j (t) + . . . ,

and for an analogous expansion for the j-fold product of solutions of the equation
(I.15), namely:

(I.22) f�
j (t) =

(
f�)⊗j

(t) = f
(0)
j (t) + �f

(1)
j (t) + �2f

(2)
j (t) + . . .

The zeroth order term in (I.21) is expected to correspond to what we previously

denoted by F
(j)
N,t, namely, the j-particle marginals associated to the Liouville
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equation (I.9), while the function f
(0)
j (t) appearing in (I.22) is expected to be

the j-fold product of solutions of the Vlasov equation (I.12). Therefore, if at
order zero in � we obtain the classical quantities, the classical mean-field theory

ensures that the convergence of W
(0)
N,j(t) to f

(0)
j (t) is well established for all t and

j. Then, it looks natural trying to show the convergence

(I.23) W
(k)
N,j (t) → f

(k)
j (t) , as N → ∞, for any k > 0.

This is the main goal of the present research.
A complete proof of the uniformity in � of the limit N → ∞ would require

a control of the remainder of the expansion (I.21), but we are not able to pro-
vide it. However, in proving (I.23) we characterize the quantum corrections to
the classical mean-field limit and we prove that they are expressed in terms of
classical quantities only.

The plan of the thesis is the following.
In Sections 1 and 2 we discuss the mean-field model both in the classical

framework and in the quantum context. First we introduce notation and techni-
cal tools that are needed to formulate the mean-field results to which we referred
previously. Then, we give an outlook of the known results by discussing briefly
the main approaches in facing the problem both for smooth and singular inter-
actions. Thus, we focus on the case of sufficiently regular potential by showing
in detail the proof of the validity of “propagation of chaos” both in the clas-
sical and in the quantum case, accenting the main differences in the methods
and, primarily, the inadequacy of the “BBGKY hierarchy method” in facing the
classical mean-field limit although in the quantum framework it plays a crucial
role. Furthermore, we highlight the non uniformity with respect to � of the error
in the quantum mean-field approximation and we analyze in detail which is the
estimate that, providing a bound which diverges as � → 0, is responsible for
that.

In Section 3 we introduce the Wigner formalism. We accent first of all why it
is appropriate in looking at the semiclassical behavior of quantum systems. Also,
we point out the main difficulties of this formalism with respect to the wave func-
tion (Schrödinger) and the density matrix (Heisenberg) formulations introduced
in Section 2. Moreover, we rephrase the quantum mean-field result in the Wigner
formalism and we note that the error in the mean-field approximation is still not
uniform with respect to � and diverging when � → 0. This “bad” behavior is due
to the failure of the same estimate we detected in Section 3, suitably rephrased
in the Wigner framework. Finally, we discuss some known results concerning the
connection between mean-field limit and semiclassical approximation.

In Section 4 we prove our main result, namely, the convergence (I.23). More
precisely, we do the semiclassical expansion both for the N -particle mean-field
system (see (I.21)) and for the Hartree dynamics (I.22) deriving explicitly what
are the equations solved by the coefficients at each order in �. Then, we intro-
duce the initial datum as a suitable mixtures of coherent states. This choice
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guarantees that the zeroth order coefficient of the N -particle expansion is a fac-
torized probability distribution. Finally, we identify the higher order N -particle
terms to be the expectation of certain derivatives of the empirical measure. Such
an expectation is with respect to the probability distribution that we previously
obtained from the N -particle zeroth order coefficient. By virtue of that, we
obtain the limit N → ∞ by using the classical mean-field results presented in
Section 1 and appropriate properties of the derivatives of the classical trajectories
associated with the mean-field interaction.

In the last Section we present possible applications of our result (presented
in Section 4) in considering suitable mixtures of WKB states (instead of coherent
ones) and in dealing with other (related) problems.

I wish to thank my advisor, Prof. Mario Pulvirenti, for suggesting me a
problem which I considered challenging from the very first moment, for offering
me his precious experience and considering me not only as a student but indeed
as a co-worker.

1 – Classical Mean-Field limit

In this Section we analyze the mean-field limit for a many-body classical
system. More precisely, we are looking at a system constituted by N identical
particles interacting by the potential

(1.1) U cl(XN ) =
1

2N

N∑

k �=l

φ(xk − xl),

where we used the notation XN = (x1, . . . , xN ) ∈ R3N for the positions of
the N particles (here and henceforth we put the superscripts “cl” and “Q”
to distinguish between classical and quantum quantities denoted by the same
symbol). We note that U cl is given by a sum over all interactions among pair
of particles; the two-body interactions are governed by the potential φ which we
assume to be spherically symmetric (as it is in all reasonable physical situations),
namely φ(x) = φ(|x|) ∀ x ∈ R3. We set the dimension to be equal to 3 but the
results we are going to discuss hold in any dimension. Sometimes we will refer
to the system under consideration as “mean-field system”.

We want to characterize the dynamics when the number of particles N is
very big. In this sense we speak about “macroscopic” or “effective” dynamics
and from a mathematical point of view that purpose is realized by taking the
limit N → ∞.

As a second step, it is also important to describe the dynamics of the fluc-
tuations of the N -particle evolution around the limiting one, but here we do not
discuss in detail this topic which is analyzed, for example, in [4].
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1.1 – Setting of the problem: general features and known results

A mean-field system is described by an N -body Hamiltonian of the form

(1.1.1) Hcl,V
N (XN , VN ) =

N∑

k=1

(
v2

k

2
+ V cl(xk)

)
+ U cl(XN ),

where we used the notation VN = (v1, . . . , vN ) ∈ R3N to indicate the velocities
of the N particles and, for the sake simplicity, the mass of the (identical) parti-
cles is chosen equal to one. The first part of the Hamiltonian is simply the sum
of the one-body Hamiltonians associated with the motion of each particle (the
function V cl describes an external potential which acts in the same way on all
N particles), while the remaining term involving U cl describes the interaction
among the particles. For the sake of simplicity we assume that the force ex-
perienced by each particle is only that arising from the many-body interaction,
namely, the one-particle potential V cl is assumed to be equal to zero. We can
do that without loss of generality because the results we are going to discuss can
be generalized easily to the case V cl 	= 0.
Thus the Hamiltonian we consider is

(1.1.2) Hcl
N (XN , VN ) =

N∑

k=1

v2
k

2
+ U cl(XN ),

and we note that Hcl
N is symmetric with respect to any permutation of the

labeling.
The factor 1/N in the potential U cl (see (1.1)) forces the energy per particle

to remain finite in the limit N → ∞ and this is the crucial feature in order to
obtain a well-defined but non-trivial limiting dynamics. Moreover we observe
that U cl is such that the interaction among the particles is quite weak when N
is very big (the strength of the pair interaction is of the order 1/N) but it is
long range (because the pair interaction potential φ is unscaled, thus its support
remains of order one in the limit N → ∞). Therefore when N becomes large
(for example, in the applications related to the gas dynamics we have N ≈ 1023)
the mutual interaction turns to be weaker and weaker but the total effect of such
an interaction is not negligible (the force experienced by a fixed particle because
of the presence of all the others is proportional to (N − 1)/N ≈ O(1)) . We will
see that these two features are responsible for the validity of “propagation of
chaos” and of the nonlinearity of the macroscopic equation we find in the limit
(see Sections 1.3 and 1.4).

The dynamics of an N -particle system associated with the Hamiltonian
(1.1.2) is governed by the Newton equations

(1.1.3)

⎧
⎪⎪⎨
⎪⎪⎩

ẋi = vi,

v̇i = − 1

N

N∑

k �=i

∇xiφ(xi − xk), i = 1, . . . , N
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Thus we know that given an initial configuration ZN := (XN , VN ) ∈ R3N ×R3N

in the N -particle phase-space, the time-evolved configuration ZN (t) up to some
t > 0 is obtained solving (1.1.3) with initial datum ZN .

As we have already noticed, in many interesting physical situations the
number N is very big thus it is not possible (and even not particularly relevant
for the applications) to know which are the positions and the velocities of all
particles at a certain time. In other words, it is quite difficult to determine a
unique initial N -particle configuration for the time-evolution defined by (1.1.3)
and, even if one was able to provide that, it would be impossible to solve such
a huge number of equations, even by using numerical methods. Nevertheless,
one can provide collective and more useful informations such as the probability
to find N1 particles (N1 ≤ N) in a region Λ1 ⊂ R3N , the probability that
N2 particles (N2 ≤ N) have velocities belonging to some Λ2 ⊂ R3N or the
probability to find N3 particles (N3 ≤ N) with positions belonging to some
Λx

3 ⊂ R3N and velocities belonging to some Λv
3 ⊂ R3N . In other words, one

can give the N -particle probability distribution in the phase-space R3N × R3N .
Therefore, denoting by FN,0(ZN )dZN such a distribution, we have that FN,0 is
symmetric with respect to any permutation of the variables, FN,0 ≥ 0 and:

(1.1.4)

∫
dZNFN,0(ZN ) = 1.

Moreover, by computing the marginals of FN,0(ZN ) with respect to the velocities
VN and to the positions XN one obtains respectively the spatial and the velocity
probability density.

The time-evolved probability density FN (t) := FN (ZN ; t) is obtained by
solving the Liouville equation

(1.1.5) (∂t + VN · ∇XN
)FN (t) = ∇XN

U · ∇VN
FN (t),

with initial condition FN,0, where U is the potential defined in (1.1). By denoting
as Φt(XN , VN ) the Hamiltonian flow associated with equations (1.1.3), it is easy
to verify that the solution of equation (1.1.5) is obtained by propagating the
initial datum FN,0 through the characteristic curves of Φt(XN , VN ), namely

(1.1.6) FN (t) = FN,0

(
Φ−t (XN , VN )

)
.

Thus we are guaranteed that starting from an N -particle probability density at
time t = 0, we have a probability density for each time t > 0 and the evolu-
tion preserves also the symmetry with respect to permutations of the variables
(because the Hamiltonian Hcl

N is symmetric with respect to permutations).

In the classical framework observables of the N -particle system are repre-
sented by real functions defined on the phase-space R3N × R3N . Then, if we
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know that the configuration of the system at a certain time τ is ZN (τ), the
value of the observable associated with a certain function uN at time τ , is given
by uN (ZN (τ)). On the other side, if what we have is the N -particle probability
distribution at a certain time τ1, namely FN (τ1), we are able to give probabilistic
predictions about the value of the observables at time τ1. More precisely, the
expectation of the observable associated with a certain function uN at time τ1,
is given by

(1.1.7) 〈uN 〉FN (τ1)
:=

∫
dZNuN (ZN )FN (ZN ; τ1).

By (1.1.3) it is clear that to guarantee existence and uniqueness of the flow
Φt(XN , VN ) for each t we need to assume φ ∈ C2

b (R3)(1). Therefore the first
rigorous results concerning the analysis of the limit N → ∞ for the N -particles
mean-field system have been proven under suitable smoothness assumption on
the pair interaction potential φ (see for example [4] and [10]). Nevertheless,
several systems of physical interest are described by more singular potential.
For example, a system of gravitating particles can be described by the potential
(1.1) where φ is the Coulomb interaction among the particles and, in that case,
the factor of 1/N in front of the potential energy can be justified by the smallness
of the gravitational constant.

Mean-Field systems with singular interactions are clearly hard to face be-
cause one has to deal with a system of ODE (namely, (1.1.3)) with non regular
fields. Quite recently some progress have been done in [22] where the mean-field
limit is realized by only assuming ∇xφ ≈ 1/|x|α, α < 1 for the pair interaction
φ. On the other side, the assumptions on the initial datum are very strong and
they are quite good for numerical purposes but not satisfying from a statistical
physics point of view (for example, “chaotic” initial data are not admissible,
namely it is not possible to consider initially factorized N -particle distribution).
The problem involving the Coulomb potential is still open.

Here we will not discuss the “singular case” because for our purposes we
need to deal with a smooth interaction potential and with a classical mean-field
result involving “chaotic” initial data (see Section 3 and 4), thus from now on
we will focus on the mean-field limit in the “smooth case”.

In [4] and [10] it is proved that the effective single particle dynamics of a
mean-field system with smooth interaction potential (φ ∈ C2

b (R3) ) in the limit
N → ∞ is governed by the Vlasov equation:

(1.1.8) (∂t + v · ∇x)f(t) = (∇xφ ∗ f(t)) · ∇vf(t),

where f(t) = f(x, v; t) for each time t ≥ 0 is a one-particle probability density
and here and in the rest of the section we denote by ∗ the convolution with

(1)Here and henceforth we denote by Ck
b (Rd) the space of functions on Rd with contin-

uous and uniformly bounded derivatives up to the order k
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respect to both position and velocity. By computing the marginals of f(x, v; t)
with respect to the velocity v and the position x one finds respectively the spatial
and the velocity probability density.

It is remarkable that the results proven in [4] describe both the continuum
limit of the point particle dynamics associated with the mean-field interaction,
as we specified previously, and the so called “propagation of chaos” for the many-
body mean-field system. Moreover, in [4] it has been proven that the fluctuations
of a certain class of observables (called “intensive observables”) converge to a
gaussian stochastic process. We will not discuss this last feature, on the contrary
we will show in detail the emergence of the Vlasov dynamics as the limit of the
N -particle evolution and the proof of propagation of chaos.

1.2 – The Vlasov equation

Let us consider a one-particle density f0 ∈ C1(R6) and let us look at the
solution f(t) of the Vlasov equation (1.1.8) with initial datum f0. Denoting by
Φt

V (x, v) the flow associated with the system:

(1.2.1)

{
ẋ = v,

v̇ = −∇xφ ∗ f(t),

one can easily verify that f(t) is obtained by propagating f0(x, v) through the
characteristic curves of the flow Φt

V (x, v), namely

(1.2.2) f(t) = f(x, v; t) = f0

(
Φ−t

V (x, v)
)
.

Therefore in proving existence and uniqueness of the solution of (1.1.8) one has
to deal with a system of ODE with a self-consistent field (see (1.2.1)) and the
smoothness of the potential φ is not sufficient to make a standard fixed point
argument to be successful. One needs a more involved analysis and it has been
done by R.L. Dobrushin in [5]. It is remarkable that the Vlasov equation (1.1.8)
makes sense even for a generic probability measure ν because ∇φ ∗ ν is suf-
ficiently smooth (thanks to the regularity of φ) then the proof presented in [5]
ensures existence and uniqueness of the solution in this framework. In partic-
ular, if the initial datum is an absolutely continuous measure with respect to
the Lebesgue measure in R3 × R3 with a smooth density f0 (which is the case
we discussed previously), the solution f(t) is a strong solution whose regularity
depends on that of f0 and φ ( f0 ∈ C1(R6) and φ ∈ C2

b (R3), at least). Fur-
thermore, introducing the Wasserstein distance W, in [5] it has been proven the
following stability result for solutions of the Vlasov equation:

(1.2.3) W(νt
1, ν

t
2) ≤ eCtW(ν0

1 , ν0
2)
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where ν0
1 and ν0

2 are two probability measures and νt
1 and νt

2 are the weak
solutions of the Vlasov equation with initial data given by ν0

1 and ν0
2 respectively.

The metric induced by W on the space of probability measures on R3 × R3 is
equivalent to the weak topology of probability measures, namely we have to look
at measures tested versus functions in C0

b (R3 ×R3) (the space of continuous and
uniformly bounded functions). Thus by (1.2.3) it follows that

(1.2.4)

∫
u(x, v)ν0

n(dxdv) →
∫

u(x, v)ν0(dxdv) as n → ∞, ∀ u ∈ C0
b (R3 ×R3)

implies

(1.2.5)

∫
u(x, v)νt

n(dxdv) →
∫

u(x, v)νt(dxdv) as n → ∞, ∀ u ∈ C0
b (R3×R3),

where {ν0
n}n≥0 is a sequence of probability measures converging to some ν0 when

the parameter n goes to infinity and νt
n and νt are the weak solutions of the

Vlasov equation with initial data given by ν0
n and ν0 respectively. In the sequel

we will denote the weak convergence of probability measures by the symbol
M→.

1.3 – The Vlasov dynamics as the continuum limit of the N-particle Mean-
Field dynamics

Let us introduce the empirical measure associated with an N -particle con-
figuration Z ′

N

(1.3.1) μN (z|Z ′
N ) =

1

N

N∑

i=1

δ (z − z′i) ,

where z := (x, v) is the generic point in the one-particle phase-space R3 × R3

and Z ′
N = (z′1, . . . , z

′
N ) ∈ R3N × R3N . By definition μN is a measure on the

one-particle phase-space but, as it is clear by (1.3.1), it depends on all the con-
figuration Z ′

N . Then let us consider an initial N -particle configuration ZN for
equations (1.1.3) distributed according to a factorized (smooth) N -particle mea-
sure FN,0dZN , namely

(1.3.2) FN,0(ZN ) =

N∏

i=1

f0(zi) = f⊗N
0 , f0 ∈ C1(R6).

We denote by μ0
N the empirical measure associated with ZN and by considering

the empirical measure μN (t) = μN (z|ZN (t)) associated with the time-evolved
configuration ZN (t) (solution of equations (1.1.3) with initial datum ZN ), it is
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easy to verify that μN (t) is the unique (weak) solution of the Vlasov equation
(1.1.8) with initial datum μ0

N . In fact, by integrating versus μN (t) versus a
smooth test function u = u(x, v), we find:

(1.3.3) (u, μN (t))=

∫
dz μN (z|ZN (t))=

1

N

N∑

i=1

u(zi(t)) =
1

N

N∑

i=1

u(xi(t), vi(t)).

Then, we obtain

(1.3.4)

d

dt
(u, μN (t)) =

1

N

N∑

i=1

d

dt
u(xi(t), vi(t)) =

=
1

N

N∑

i=1

[∇xu(xi(t), vi(t))ẋi(t) + ∇vu(xi(t), vi(t))v̇i(t)],

that, by virtue of (1.1.3), implies

(1.3.5)

d

dt
(u, μN (t)) =

1

N

N∑

i=1

∇xu(xi(t), vi(t))vi(t)−

− 1

N

N∑

i=1

∇vu(xi(t), vi(t))

⎛
⎝ 1

N

N∑

k �=i

∇xi
φ(xi − xk)

⎞
⎠ .

Following (1.3.3), the equation (1.3.5) becomes

(1.3.6)
d

dt
(u, μN (t)) = (v · ∇xu, μN (t)) − ((∇φ ∗ μN (t)) · ∇vu, μN (t)),

where

(1.3.7)

(∇φ∗μN (t))(x)=

∫
dydw∇xφ(x−y)

(
1

N

N∑

k=1

δ(y−xk(t))δ(w−vk(t))

)
=

=
1

N

N∑

k=1

∫
dy∇xφ(x − y)δ(y − xk(t)) =

=
1

N

N∑

k=1

∇xφ(x − xk(t)).

Therefore, μN (t) verifies (1.3.6) for any function u sufficiently smooth and

(1.3.8) (u, μN (t))|t=0 = (u, μ0
N ) =

1

N

N∑

i=1

u(xi, vi).
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In other words, μN (t) satisfies the following weak equation

(1.3.9) ∂tμN (t) + v · ∇xμN (t) = (∇xφ ∗ μN (t)) · ∇vμN (t),

with initial datum μ0
N , and we note that (1.3.9) is precisely the Vlasov equa-

tion (1.1.8).

By the Strong Law of Large Numbers (SLLN) we know that

(1.3.10) μ0
N

M→ f0 as N → ∞, a.e with respect to the product measure f⊗∞
0 ,

therefore, by (1.3.10), by knowing that μN (t) solves the Vlasov (weak) equa-
tion (1.3.9) and by (1.2.3), it follows that

(1.3.11) μN (t)
M→ f(t) as N→∞, a.e with respect to the product measuref⊗∞

0 ,

where f(t) is the (strong) solution of the Vlasov equation (1.1.8) with initial
datum f0.

From now on, we will say that a configuration ZN is “typical” with respect
to the measure f0 if the empirical measure μ0

N associated with ZN verifies

(1.3.12) μ0
N

M→ f0 as N → ∞.

1.4 – Hierarchies and Propagation of Chaos

In the previous paragraph we proved that the Vlasov equation arises from
the continuum limit of a system of N particles interacting by the mean-field
potential (1.1). This is precisely what convergence (1.3.11) tells us and it can
be seen as a one-particle effect, namely (1.3.11) provides the equation governing
the single-particle dynamics in the limit.

Now we want to show how (1.3.11) works in order to characterize the effec-
tive dynamics of a subsystem made by a fixed number j of particles. This is a
natural approach in looking at the macroscopic behavior of many-body systems
because we want to look at the limit N → ∞ and we need to deal with quantities
depending on a number of variables which remains finite in the limit.

In this perspective, for any j = 1, . . . , N we introduce the “j-particle mar-
ginal density” (or simply “j-particle marginal” ) associated with an N -particle
density FN (XN , VN ) as

(1.4.1) F
(j)
N (Xj , Vj) =

∫

R3(N−j)×R3(N−j)

dXN−jdVN−jFN (XN , VN ),
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where we used the notation Xj = (x1, . . . , xj), Vj = (v1, . . . , vj) ∈ R3j and
XN−j = (xj+1, . . . , xN ), VN−j = (vj+1, . . . , vN ) ∈ R3(N−j). Indeed, the margi-

nal F
(j)
N is obtained by integrating FN with respect to the “last” N − j variables

thus it is a j-particle probability density (we remind that all quantities under
consideration are symmetric with respect to permutations of the variables then,
without loss of generality, in order to refer to any subsystem made by N − j

particles we can consider the last N − j). Clearly if j = N we have F
(N)
N = FN .

For fixed j < N , the j-particle marginal does not contain the full information
about the N -particle configuration described by FN . Knowledge of the j-particle

marginal F
(j)
N , however, is sufficient to compute the expected value of every j-

particle observable in the configuration described by the probability distribution
FNdZN . In fact, if uj denotes an arbitrary continuous and uniformly bounded
function on R3j , and if uj⊗1N−j denotes the function on R3N which is associated
with the N -particle observable corresponding to uj for the first j particles and
to 1N−j for the last (N − j) particles, we have

(1.4.2)

〈uj ⊗ 1N−j〉FN
=

∫
dZNuj(Zj)FN (ZN ) =

=

∫
dZjuj(Zj)F

(j)
N (Zj) = 〈uj〉F (j)

N

,

where we denoted by 〈uj ⊗ 1N−j〉FN
the expected value of the N -particle ob-

servable corresponding to uj⊗1N−j with respect to the distribution FNdZN and
with 〈uj〉F (j)

N

the expected value of the j-particle observable corresponding to uj

with respect to F
(j)
N dZj . Thus, F

(j)
N is sufficient to compute the expectation of

arbitrary observables which depend non-trivially on at most j particles (because
of the permutation symmetry, it is not important on which particles it acts, just
that it acts at most on j particles).

We are interested in characterizing the time-evolution of the marginals

F
(j)
N (t) := F

(j)
N (Zj ; t) associated with the solution FN (t) of the Liouville equa-

tion (1.1.5). By integrating the Liouville equation versus the variables ZN−j =
(XN−j , VN−j) we find the following family of equations (one for each j =1,. . . ,N)

(1.4.3) (∂t + Vj · ∇Xj
)F

(j)
N (t) = T cl

N,jF
(j)
N (t) +

N − j

N
Ccl

j,j+1F
(j+1)
N (t),

where T cl
N,j is precisely the j-particle Liouville operator, namely T cl

N,j∇Xj
U cl(Xj)·

∇Vj , while the operator Ccl
j,j+1 maps j + 1-particle densities in j-particle ones

(if j = N we find Ccl
N,N+1 ≡ 0). The family of equations (1.4.3) is known as

BBGKY hierarchy (in honor of the authors who independently derived it: Born,
Bogoliubov, Green, Kirkwood, Yvon) and it is called “hierarchy” because we
can see that the equation for the j-particle marginal is linked to the subsequent
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one by the term Ccl
j,j+1F

(j+1)
N (t). The physical meaning is clear: the variation in

time of F
(j+1)
N (t) is due to the free motion of the j particles, which is encoded

in the free-transport term Vj · ∇Xj F
(j)
N (t), to the interaction among themselves,

which is modeled by the term T cl
N,jF

(j)
N (t), and to the interaction among the

j-particle subsystem and the remaining N − j particles, which is encoded in the

term N−j
N Ccl

j,j+1F
(j+1)
N (t) (the factor 1/N is precisely the factor appearing in

the potential U cl (see (1.1)) while the interaction with the last N − j particles
can be modeled by N − j times the interaction with the j + 1-th because of the
symmetry with respect to permutations of the labeling (which follows from the
fact that we are dealing with N identical par ticles).

Writing explicitly the action of the operators T cl
N,j and Ccl

j,j+1, we find:

(1.4.4)
(
T cl

N,jF
(j)
N

)
(Xj , Vj) =

1

N

j∑

k �=l

∇xk
φ(xk − xl) · ∇vk

F
(j)
N (Xj , Vj),

and

(1.4.5)

(
Ccl

j,j+1F
(j+1)
N

)
(Xj , Vj) =

=

j∑

k=1

∫

R3×R3

dxj+1dvj+1∇xk
φ(xk − xj+1)·∇vk

F
(j+1)
N (Xj , xj+1,Vj , vj+1).

By these expressions we can argue that the operator T cl
N,j gives a vanishing

contribution in the limit because it is of size j2/N , while the operator Ccl
j,j+1 is

of order one in the limit and the factor (N − j)/N appearing in (1.4.3) is also

of order one. Therefore denoting by F (j)(t) the expected limit of F
(j)
N (t) when

N → ∞, the formal limit of the BBGKY hierarchy (1.4.3) is

(1.4.6) (∂t + Vj · ∇Xj )F
(j)(t) = Ccl

j,j+1F
(j+1)(t),

which in the case j = 1 is equal to:

(1.4.7) (∂t+v1·∇x1
)F (1)(t) =

∫
dx2dv2∇x1

φ(x1−x2)·∇v1
F (2)(x1, x2, v1, v2; t).

We observe that the Vlasov equation (1.1.8) can be rewritten as

(1.4.8) (∂t + v · ∇x)f t =

∫
dx2dv2∇xφ(x − x2) · ∇vf t(x, v)f t(x2, v2).

Replacing (x, v) by (x1, v1), f t by F (1)(t) and the product f t f t by F (2) we realize
that (1.4.8) is precisely the same of (1.4.7). Thus the equation of the hierarchy
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(1.4.6) corresponding to j = 1 is properly the Vlasov equation, provided that
the the two-particle distribution F (2)(t) is factorized, and for this reason (1.4.6)
(which is an infinite hierarchy because j can be equal to any positive number )
is usually called “Vlasov hierarchy”. More precisely, by considering (1.4.6) and
by assuming the marginals {F (j)(t)}j≥1 to be factorized, namely

(1.4.9) F (j)(t) = f(t)⊗j ∀ j,

it is easy to verify that f(t) has to solve the Vlasov equation. Conversely, if we
consider a time dependent one-particle density f(t) solving the Vlasov equation
and we take the j-particle densities F (j)(t) = f(t)⊗j , for j = 1, 2 . . . , we find
that the sequence {F (j)(t)}j≥1 solves the hierarchy (1.4.6).

An interesting problem is that of the uniqueness of the solution of the Vlasov
hierarchy which plays an important role in facing the mean field limit when a
generic (namely, non factorized) initial datum is considered for the many-body
dynamics (such a case is also studied in [4]). This topic has been discussed in [8],
under strong smoothness assumptions on the interaction potential, and in [9] by
assuming φ ∈ C2

b (R3). Here we will not enter into details because we are going to
show that in the present context there is no need to prove the uniqueness of the
solution of the Vlasov hierarchy in order to establish the validity of propagation
of chaos. (In the next section we will see that the situation in the quantum case
can be very different).

First of all let us explain what we mean by “propagation of chaos”.
As we have already specified, we consider as initial datum for the Liouville

equation (1.1.5) the factorized N -particle probability density (1.3.2). This choice
means that we are assuming that the particles are identically and independently
distributed at time t = 0, or equivalently, the particles are initially uncorrelated.
This is quite reasonable from the physical point of view and this is what is usually
called “hypotheses of molecular chaos”. Because of the interaction among the
particles, the factorization (1.3.2) is not preserved by the time evolution because
some correlations are introduced by the dynamics; in other words, the evolved
N -particle density FN (t) is not given by the product of one-particle densities, if
t 	= 0. However, due to the mean-field character of the interaction each particle
interacts very weakly (we remind that the strength of the interaction is of the
order 1/N) with all other (N − 1) particles. For this reason, we may expect
that, in the limit of large N , the total interaction force experienced by a typical
particle in the system can be effectively replaced by an averaged, mean-field,
force, and therefore that factorization is approximately, and in an appropriate
sense, preserved by the time evolution. In other words, we may expect that, in
a sense to be made precise,

(1.4.10) FN (t) ≈ f(t)⊗N as N → ∞



240 FEDERICA PEZZOTTI [18]

for an evolved one-particle density f(t) = f(x, v; t). This asymptotic factor-
ization is precisely what is called “propagation of chaos”. Assuming (1.4.10),
it is simple to derive a self-consistent equation for the time-evolution of the
one-particle density f(t). In fact, (1.4.10) states that, for every fixed time t,
the N particles are independently distributed in space according to the density
ρ(x; t) =

∫
dvf(x, v; t). If this is true, the total force experienced, for example,

by the first particle can be approximated by

(1.4.11)

1

N

∑

k≥2

∇x1φ(x1 − xk) ≈ 1

N

∑

k≥2

∫
dy∇x1φ(x1 − y)ρ(y; t) =

=
N − 1

N

∫
dydw∇x1φ(x1 − y)f(y, w; t) =

=
N − 1

N
(∇x1

φ ∗ f(t)) ≈ (∇x1
φ ∗ f(t)),

as N → ∞. It follows that, if (1.4.10) holds true, the one-particle density f(t)
must satisfy the self-consistent equation

(1.4.12) (∂t + v · ∇x)f(t) = (∇xφ ∗ f(t)) · ∇vf(t)

with initial data f(t)|t=0 = f0 given by (1.3.2). Equation (1.4.12) is precisely the
Vlasov equation and we have just presented an heuristic argument to explain how
it is related to the propagation of chaos. We observe that the Vlasov equation
is a nonlinear Liouville equation on R3 × R3. Therefore starting from the linear
Liouville equation (1.1.5) on R3N×R3N , we obtain, for the evolution of factorized
densities, a nonlinear Liouville equation on R3×R3; the nonlinearity in the Vlasov
equation is a consequence of the many-body effects in the linear dynamics.

The validity of propagation of chaos (namely, the precise statement concern-
ing the asymptotic factorization (1.4.10)) is expressed in terms of convergence
of the j-particle marginal densities associated with the solution of the Liouville
equation (1.1.5) to the j-fold product of solutions of the Vlasov equation when
N → ∞. We are going to show that it is a straightforward consequence of the
convergence (1.3.11) (e.g. [4]).

Let us consider the j-particle marginal F
(j)
N (t) associated with the solu-

tion FN (t) of the Liouville equation with factorized initial datum FN,0 given by
(1.3.2).

We want to look at the behavior of F
(j)
N (t) when N → ∞. Denoting by

EN the expectation with respect to the initial N -particle distribution FN,0(ZN ),
after straightforward computations, we obtain:

(1.4.13)

EN

[
μN (z′1|ZN (t)) . . . μN (z′j |ZN (t))

]
=

=
N(N − 1) . . . (N − j + 1)

N j
F

(j)
N (Z ′

j ; t) + O

(
1

N

)
,
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where F
(j)
N (Z ′

j ; t) = F
(j)
N (Φ−t(Z ′

j) = F
(j)
N (Z ′

j(−t)) (see (1.1.6)). Consider now a
typical sequence ZN with respect to f0, namely such that (1.3.12) holds. By the
Strong Law of Large Numbers (1.3.10) we know that (1.3.12) holds a.e. with
respect to the product measure f⊗∞

0 . Then, by (1.3.11) and (1.4.13) we have:

(1.4.14)

lim
N→∞

EN

[
μN (z′1|ZN (t)) . . . μN (z′j |ZN (t))

]
=

= lim
N→∞

F
(j)
N (Z ′

j ; t) =

j∏

k=1

f(z′k; t),

in the weak topology of probability measures, where f(z′k; t) = f(t) solves the
Vlasov equation with initial datum f0. Thus propagation of chaos holds. In
the end, we found that starting from an initial uncorrelated state (1.3.2) for the
N -particle system, for times t > 0 we loose the factorization, but it is recovered
in the limit because the correlations created by the dynamics are smaller and
smaller when N → ∞. On the other side, the effect of the many-body interaction
is “translated” into the self-consistent force appearing in the Vlasov equation.

The convergence (1.4.14) of F
(j)
N (t) to f(t)⊗j implies that:

(1.14.15) 〈uj ⊗ 1N−j〉FN (t) = 〈uj〉F (j)

N
(t)

→ 〈uj〉f(t)⊗j as N → ∞,

for each uj ∈ C0
b (R3j ×R3j). In other words, we are able to compute the “macro-

scopic” expected value of j-particle observables.

A remarkable fact is that the validity of propagation of chaos has been
proven without using the hierarchies and this is really a big advantage because
to deal with the hierarchies (1.4.3), (1.4.6) seems to be quite difficult. A priori,

one could think to prove the convergence (1.14.15) of the marginals F
(j)
N (t) to the

products f(t)⊗j , by using that the first ones solve the BBGKY hierarchy (1.4.3)
and the second ones solve the Vlasov hierarchy (1.4.6). Thus, if one would be able
to prove the convergence of solutions of the N -dependent hierarchy to the Vlasov
one, by knowing that the limiting hierarchy has factorized solutions arising from
the Vlasov equation (as we previously discussed), the final step for proving the
propagation of chaos would be to show the uniqueness of the solution of the
Vlasov hierarchy over the class in which one is able to prove convergence. As
regard to the “convergence problem” the difficulty is that the BBGKY hierarchy
involve s operators which are unbounded, at least in reasonable spaces, thus
it does not seem possible to apply any compactness argument to ensure the
convergence of the solution. On the other side, concerning the “uniqueness
problem” for the limiting hierarchy (1.4.6), the crucial point is the connection
between the space in which one could show convergence and those in which it
would be possible to prove uniqueness. Therefore, the problem of realizing the
classical mean-field limit by dealing with the hierarchies is quite hard. On the
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other side, we have just seen that it can be faced more naturally by using two
crucial tools: the Law of Large Numbers (1.3.10) and the continuity of solutions
of the Vlasov equations with respect to the weak convergence of measures (1.2.3).

In the next section we will see that in the quantum case to deal with hier-
archies is not so difficult and a possible approach to realize the limit (indeed the
one that has been used more in the last years) is properly the one we have just
described (convergence + uniqueness), particularly to deal with singular pair
interaction potentials.

2 – Quantum Mean-Field limit

This section is devoted to the analysis of the macroscopic properties of the
dynamics of a quantum system constituted by N identical particles interacting
by a mean-field potential in the limit N → ∞. As in the previous section, we
set the dimension of the system equal to 3 but the main results we are going to
discuss hold in any dimension.

The mean-field interaction potential is represented by the (right hand side)
multiplication operator

(2.1) UQ(XN ) =
1

2N

N∑

k �=l

φ(xk − xl),

where, as in the previous section, we denote by XN = (x1, . . . , xN ) ∈ R3N the
positions of the N particles and we assume φ to be spherically symmetric. We
want to characterize the effective dynamics of such a system for large N .

The problem of investigating the error in the approximation of the many-
body evolution with the limiting macroscopic dynamics, which we do not discuss
here, has been studied in [20] and [21].

2.1 – Setting of the problem: general features and known results

The state of an N -particle quantum mechanical system in R3 can be de-
scribed by a complex valued wave function ΨN ∈ L2(R3N ). Physically the
absolute value squared of ΨN (x1, . . . , xN ) is interpreted as the probability den-
sity for finding particle one at x1, particle two at x2, and so on. Moreover the
absolute value squared of the Fourier transform Ψ̂N (v1, . . . , vN ) is interpreted as
the probability density for having particle one with velocity v1, particle two with
velocity v2, and so on (for the sake simplicity we always consider identical par-
ticles with mass m = 1 thus velocities are always equal to momenta). Because
of this probabilistic interpretation, we will always consider wave functions ΨN

with L2-norm equal to one.
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In nature there exist two different types of particles; bosons and fermions.
Bosonic systems are described by wave functions which are symmetric with re-
spect to permutations, in the sense that

(2.1.1) ΨN (xπ(1), . . . , xπ(N)) = ΨN (x1, . . . , xN ),

for every permutation π acting on 1, . . . , N . Fermionic systems, on the other
hand, are described by antisymmetric wave functions satisfying

(2.1.2) ΨN (xπ(1), . . . , xπ(N)) = (−1)σ(π)ΨN (x1, . . . , xN ),

for every permutation π acting on 1, . . . , N where σ(π) = 0 if π is even (in the
sense that it can be written as the composition of an even number of transpo-
sitions) and σ(π) = 1 if it is odd. In the sequel we will denote by L2

s(R3N ) the
space of bosonic wave functions (namely the subspace of L2(R3N ) consisting of
all functions satisfying (2.1.1)).

Equations (2.1.1) and (2.1.2) are responsible for substantial differences be-
tween an N -particle bosonic system and a fermionic one. Actually these features
determine a different way to look at the limit N → ∞ in the mean-field context,
the use of different techniques leading to (a bit) different effective dynamics (see
paragraph “Joint limit N → ∞ and ε → 0” in Section 3.4). Furthermore, the
different nature of bosons and fermions is crucial in the perspective of looking at
the connection between mean-field limit and semiclassical approximation ( as we
will observe in Section 3.4) and, at least from this point of view, bosonic systems
seem to be more difficult to treat.

Anyway, here and henceforth we consider undistinguishable quantum par-
ticles by neglecting the statistics. In particular, in some cases the states we
consider are indeed admissible for bosons.

We know that the observables of an N -particle system are represented by
self adjoint operators A on L2(R3N ), then the expectation

(2.1.3) 〈A〉ΨN
=< ΨN , AΨN >=

∫
Ψ̄N (XN )(AΨN )(XN )dXN

gives the value of the observable represented by A in the state described by ΨN .

The Hamiltonian of an N -particle system interacting by (2.1), assuming the
mass of the particles to be equal to one, is the standard quantization of (1.1.1),
namely

(2.1.4) HQ,V
N = −

N∑

k=1

(
ε2Δk

2
+ V Q(xk)

)
+ UQ(XN ),

where we denoted by Δk the Laplace operator acting on the variable xk, k =
1, 2, . . . , N and here and henceforth we denote the Planck constant by ε. The
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potentials V Q and φ (appearing in (2.1) are such that the Hamiltonian HQ,V
N

is guaranteed to be a self-adjoint operator acting on the Hilbert space L2(R3N )
and it is invariant with respect to any permutation of the labeling (namely, the
Hamiltonian is symmetric in the exchange of particle names). The first part of

HQ,V
N is a sum of one-body operators (operators acting on one particle only); the

sum of the Laplacians is the kinetic part of the Hamiltonian. The function V Q

describes an external potential which acts in the same way on all N particles. The
second part of the Hamiltonian describes the interaction among the particles.

As in the classical case, we can assume without loss of generality that the
potential experienced by each particle is only that arising from the many-body
interaction, namely, the one-particle potential V Q is assumed to be equal to zero.
Thus the Hamiltonian we consider is

(2.1.5) HQ
N = −

N∑

k=1

ε2Δk

2
+ UQ(XN ).

The Hamiltonian (2.1.5) is the observable associated with the energy of the N -
particle system interacting by the mean-field potential (2.1), thus the expectation

(2.1.6)
〈
HQ

N

〉
ΨN

=< ΨN , HQ
NΨN >=

∫
dXN Ψ̄N (XN )

(
HQ

NΨN

)
(XN )

gives the energy of the system in the state described by the wave function ΨN .

The considerations we did in the previous section as regard to the scaling
of the potential hold also in the quantum context. Therefore we are guaranteed
that the energy per particle is of order one for large N , as it is crucial in looking
for a non-trivial and well-defined limiting dynamics, and we realize that the
basic features of the model are that the mutual interaction among the particles
is weak (again of size 1/N) and of long range type (unscaled support of φ).
Again, as a consequence of such two effects we will have propagation of chaos
and nonlinearity of the equation governing the limiting one-particle dynamics
respectively (see Section 2.2).

The time evolution of a wave function ΨN ∈ L2(R3N ) associated with
the N -particle system whose Hamiltonian is (2.1.5) is governed by the linear
Schrödinger equation

(2.1.7) iε∂tΨN,t = HQ
NΨN,t,

and, since HQ
N is a self-adjoint operator, the time-evolution associated with the

equation (2.1.7) preserves the L2-norm of the wave function.
The solution to (2.1.7), with initial condition ΨN,t|t=0 = ΨN,0 ∈ L2(R3N ),

can be written by means of the unitary group generated by HQ
N as

(2.1.8) ΨN,t = e−i t
ε HQ

N ΨN,0 for all t ∈ R.
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The global well-posedness of (2.1.7) is not an issue here. The study of (2.1.7) is
focused, therefore, on other questions concerning the qualitative and quantita-
tive behavior of the solution ΨN,t. Despite the linearity of the equation, these
questions are usually quite hard to answer, because in physically interesting situ-
ation the number of particles N is very large; for example, in applications related
to the study of boson stars we have N ≈ 1030. For such huge values of N , it is
of course impossible to compute the solution (2.1.7) explicitly; numerical meth-
ods are completely useless as well (unless the interaction among the particles is
switched off).

Fortunately, also from the point of view of physics, it is not so important
to know the precise solution to (2.1.7); it is much more important, for physicists
performing experiments, to have information about the macroscopic properties
of the system, which describe the typical behavior of the particles, and result
from averaging over a large number of particles. Restricting the attention to
macroscopic quantities simplifies the study of the solution ΨN,t, but it still does
not make it accessible to mathematical analysis. To further simplify matters,
we are going to let the number of particles N tend to infinity. The macroscopic
properties of the system, computed in the limiting regime N → ∞, are then
expected to be a good approximation for the macroscopic properties observed in
experiments, where the number of particles N is very large, but finite (explicit
bounds on the difference between the limiting behavior as N → ∞ and the
behavior for large but finite N are obtained in [20] and [21]).

2.1.1 – The density matrix formalism

To consider the limit of large N , we are going to make use of the Reduced (or
Marginal) Density Matrices (RDM) associated with an N -particle wave function
ΨN ∈ L2(R3N ). First of all, we define the density matrix ρ̂N = |ΨN >< ΨN |
associated with ΨN as the orthogonal projection onto ΨN ; we use here and
henceforth the notation |ψ >< ψ| to indicate the orthogonal projection onto
ψ (Dirac bracket notation). Therefore ρ̂N is a non-negative integral operator
acting from L2(R3N ) to L2(R3N ) with kernel given by

(2.1.9) ρN (XN ; YN ) = Ψ̄N (XN )ΨN (YN ),

where YN = (y1, . . . , yN ) ∈ R3N . Note that, by virtue of the L2- normalization
of ΨN , we have

(2.1.10)
Trρ̂N =

∫
dXNρN (XN ;XN ) =

∫
dXN Ψ̄N (XN )ΨN (XN ) =

= ‖ΨN‖2
L2(R3N ) = 1.
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Thus ρ̂N ∈ L1(L2(R3N )), where L1(L2(R3N )) is the Banach space (with re-
spect to the norm ‖·‖L1(L2(R3N )) = Tr |·|) of the trace class operators acting on

L2(R3N ). Moreover, the positivity of ρ̂N implies ‖ρ̂N‖L1(L2(R3N )) = Trρ̂N = 1.

It turns out that the state of a quantum mechanical system can be equiva-
lently represented in the wave function (Schrödinger) picture and in the density
matrix (Heisenberg) formalism and the expectation 〈A〉ΨN

=< ΨN , AΨN > of
an observable A in the state described by ΨN , expressed through the density
matrix ρ̂N , can be written as TrAρ̂N . For example, the energy of the mean-field
system in the state described by ρ̂N is

(2.1.11)
〈
HQ

N

〉
ΨN

=< ΨN , HQ
NΨN >= TrHQ

N ρ̂N ,

HQ
N defined in (2.1.5).

The time evolution of a density matrix describing the state of the N -particle
mean-field system is governed by the linear equation

(2.1.12) iε∂tρ̂N,t =
[
HQ

N , ρ̂N,t

]
,

where
[
HQ

N , ρ̂N,t

]
denotes the commutator between HQ

N and ρ̂N,t, namely
[
HQ

N , ρ̂N,t

]
= HQ

N ρ̂N,t − ρ̂N,tH
Q
N . Equation (2.1.12) is usually called Heisenberg

equation and, by knowing that ρ̂N,t = |ΨN,t >< ΨN,t|, it can be derived easily
by the Schrödinger equation (2.1.7) solved by ΨN,t. The self-adjointness of the

Hamiltonian HQ
N , responsible for conservation of the L2-norm of the wave func-

tion, implies that positivity and trace of the density matrix are also preserved
in time.

We remind that we are looking at systems constituted by undistinguish-
able particles. Then we consider density matrices ρ̂N such that their kernel
ρN (x1, . . . , xN ; y1 . . . , yN ) is symmetric in the exchange of particle names, na-
mely

(2.1.13) ρN (xπ(1), . . . , xπ(N); yπ(1), . . . , yπ(N)) = ρN (x1, . . . , xN ; y1, . . . , yN ),

for every permutation π acting on 1, . . . , N . By the definition of the time-
evolution (2.1.12) it is easy to verify that this property is preserved in time.

The solution to (2.1.12), with initial condition ρ̂N,t|t=0 = ρ̂N,0, can be writ-

ten by means of the unitary group generated by HQ
N as

(2.1.14) ρ̂N,t = e−i t
ε HQ

N ρ̂N,0e
i t

ε HQ
N for all t ∈ R.

The main advantage in describing the state and the dynamics of an N -particle
system by using the density matrix formalism is that it gives the possibility to
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investigate the properties of subsystems made by a fixed number of variables.
The way to do that is to introduce the Reduced Density Matrices (RDM). For

j = 1, . . . , N , we define the j-particle marginal density ρ̂
(j)
N associated with ρ̂N

as the partial trace of ρ̂N over the degrees of freedom of the last (N−j) particles:

(2.1.15) ρ̂
(j)
N = Trj+1ρ̂N

where Trj+1 denotes the partial trace over the particles j + 1, j + 2, . . . , N . In

other words, ρ̂
(j)
N is defined as the non-negative trace class operator on L2(R3j)

with kernel given by

(2.1.16) ρ
(j)
N (Xj ;Yj) =

∫
dXN−jρN (Xj , XN−j ;Yj , XN−j).

The last equation can be considered as the definition of partial trace. As in the
previous section, we used the notation Xj = (x1, . . . , xj), Yj = (y1, . . . , yj) ∈ R3j

and XN−j = (xj+1, . . . , xN ) ∈ R3(N−j). By definition, Trρ̂
(j)
N = 1 for all N and

for all j = 1, . . . , N (clearly, if j = N we find ρ̂
(N)
N = ρ̂N ) thus ρ̂

(j)
N ∈ L1(L2(R3j))

for all N and for all j.

Remark 2.1.1. Note that, in the physics literature, one normally uses a dif-
ferent normalization for the reduced density matrices. If the statistics are taken
into account, the reduced density matrices are defined as expectation of bosonic
and fermionic fields in the framework of the “second quantization formalism”.

For fixed j < N , the j-particle density matrix does not contain the full informa-

tion about the state described by ρ̂N . Knowledge of the j-particle marginal ρ̂
(j)
N ,

however, is sufficient to compute the expectation of every j-particle observable
in the state described by the density matrix ρ̂N . In fact, if A(j) denotes an ar-
bitrary bounded operator on L2(R3j), and if A(j) ⊗ 1(N−j) denotes the operator
on L2(R3N ) which acts as A(j) on the first j particles, and as the identity on the
last (N − j) particles, we have

(2.1.17) Tr(A(j) ⊗ 1(N−j))ρ̂N = TrA(j)ρ̂
(j)
N .

Thus, ρ̂
(j)
N is sufficient to compute the expectation of arbitrary observables which

depend non-trivially on at most j particles (because of the permutation symme-
try, it is not important on which particles it acts, just that it acts at most on j
particles).

Marginal densities play an important role in the analysis of the N → ∞
limit because, in contrast to the wave function ΨN and to the density matrix

ρ̂N , the j-particle marginal ρ̂
(j)
N can have, for every fixed j ∈ N, a well-defined

limit as N → ∞ (because, if we fix j ∈ N, {ρ̂(j)
N }N defines a sequence of operators
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all acting on the same space L2(R3j)). In other words, ρ̂
(j)
N is a function of a

fixed number of variables (which remains finite in the limit N → ∞), while ΨN

and ρ̂N are functions of N variables thus in the limit we would have to deal with
functions of an infinite number of variables and clearly it prevents the possibility
to find a well-defined limit for them.

– Mixed states

In the previous analysis we have always considered systems whose state is
described by a density matrix ρ̂ ∈ L1(L2(R3d)) which is the orthogonal projec-
tion onto a wave function Ψ ∈ L2(R3d) with Trρ̂ = ‖Ψ‖L2(R3d) = 1 (we had

d = N). Such kind of states are called “pure” states. Indeed, we say that a
system is in a pure state whenever we know that it is described by a uniquely
determined wave function with probability equal to one. As a consequence, the
density matrix describing a “pure” state is a rank-one projection on L2(R3d),
namely |Ψ >< Ψ|. Nevertheless, in some cases it is not possible to know precisely
(namely, with probability equal to one) which is the wave function describing
the state of a system but one only has probabilistic predictions about that. For
example, one can have a certain number (possibly infinite) k of known wave
functions Ψ1, . . . ,Ψk ∈ L2(R3d), with

∥∥Ψ1
∥∥

L2(R3d)
= · · · =

∥∥Ψk
∥∥

L2(R3d)
= 1,

and a sequence of non-negative numbers λ1, . . . , λk such that it is known that
the state can be described by Ψ1 with probability equal to λ1, by Ψ2 with prob-
ability equal to λ2 and so on. . . , where λs ≤ 1 for s = 1, . . . , k and

∑
s λs = 1.

These kind of states are called “mixed” states (or equivalently, one can say that
the state “associated with” the sequence Ψ1, . . . ,Ψk is a “mixture” of the pure
states Ψ1, . . . ,Ψk).

It turns out that one of the advantages of the density matrix formalism is
that it encodes both the case of pure states and the case of mixtures. In fact,
denoting by ρ̂s the orthogonal projection onto Ψs, for s = 1, . . . , k, the density
matrix ρ̂mix associated with the system under consideration is given by

(2.1.18) ρ̂mix =

k∑

s=1

λsρ̂s =

k∑

s=1

λs |Ψs >< Ψs| .

Then, since ‖Ψs‖L2(R3d) = 1 for any s, we have

(2.1.19) Trρ̂mix =

k∑

s=1

λsTrρ̂s =

k∑

s=1

λs ‖Ψs‖L2(R3d) =

k∑

s=1

λs = 1,

namely, ρ̂mix ∈ L1(L2(R3d)) and ‖ρ̂mix‖L1(L2(R3d)) = 1.
Clearly, a mixed state reduces to a pure state if λs̄ = 1 for some s̄ and

λs = 0 for s 	= s̄.



[27] Semiclassical analysis for the quantum M-F limit 249

By virtue of (2.1.19), it turns out that the analysis done previously by
starting from a pure state can be generalized straightforward to the case of
mixtures.

Furthermore, there are also states that are made by a “continuum” mixture
of pure states. Indeed, let us take the parameter s in (2.1.18) as a continuum
variable varying in a certain set Λ ⊂ Rn, for some n (for example, in the initial
state considered in Section 4.5 we have s = (x0, v0) ∈ Λ = R6), and let us
consider a function g = g(s) such that gds is a probability distribution on Λ. If
we have a family of L2-normalized wave functions {Ψs}s∈Λ on Rd (for example, in
Section 4.5 we considered the family of coherent states “centered” in (x0, v0)), we
can costruct a mixed state which is the “continuum” mixture of the pure states
{Ψs}s∈Λ through the probability distribution gds. It turns out that the kernel
ρmix of the density matrix ρ̂mix describing the mixed state under consideration
is

(2.1.20) ρmix(X;Y ) =

∫

Λ

ds g(s)ρs(X;Y ) =

∫

Λ

ds g(s)Ψ
s
(X)Ψs(Y ),

where X ∈ Rd, Y ∈ Rd. Clearly, all considerations we did for “discrete” mixtures
hold also in that case.

2.1.2 – The limit N → ∞
We will discuss several known results about the study of the limiting dynam-

ics when N → ∞ for a mean-field system and we will see that what has been
established, by using different techniques and various formalisms, is that the
effective single-particle dynamics is governed by a cubic nonlinear Schrödinger
equation

(2.1.21) iε∂tψt = −ε2

2
Δψt + (φ ∗ |ψt|2)ψt

which is known as Hartree equation. Clearly, in that case the symbol “∗” denotes
the convolution with respect to the spatial variable, namely

(2.1.22)
(
φ ∗ |ψt|2

)
(x) =

∫
dy φ(x − y)|ψt(y)|2.

The first rigorous results establishing a relation between the many body Schrö-
dinger evolution and the nonlinear Hartree dynamics were obtained by K. Hepp
in [2] (for smooth interaction potentials) and then generalized by J. Ginibre and
G. Velo to singular potentials in [6]. These works were inspired by techniques
used in quantum field theory. We will not discuss this method because we want to
focus on other techniques which are more related to the topic we are going to face
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in the next sections (the connection between mean-field limit and semiclassical
approximation).

The first proof of the emergence of the Hartree dynamics by using the RDM
formalism (“RDM-convergence”) was obtained by H. Spohn in [7], for bounded
potentials (see Theorem 2.3.1 in Section 2.3). The method introduced by Spohn
was then extended to singular potentials: in [17], L. Erdös and H. T. Yau faced
the RDM- convergence for a Coulomb potential φ(x) = ±1/|x|; partial results for
this kind of interaction were also obtained by C. Bardos, F. Golse and N. Mauser
in [16] (note that recently a new proof in the case of a Coulomb interaction has
been proposed by J. Fröhlich, A. Knowles, and S. Schwarz in [28]).

A different approach to the proof of the rigorous derivation of the Hartree
equation from a mean-field bosonic system has been proposed by Fröhlich, Sch-
warz and Graffi in [26]. By using the Wigner formalism (see Section 3) they
can consider the mean-field limit uniformly in the Planck constant ε (up to an
exponential error depending on time); this allows them to combine the semi-
classical limit and the mean field limit by assuming restrictive assumptions on
the pair interaction potential (we will come back on this result in Section 3). It
is also interesting to remark that the mean-field limit can be interpreted as a
Egorov-type theorem; this was observed in [27] for sufficiently smooth potentials
and in [28] for the Coulomb interaction.

2.2 – Quantum BBGKY hierarchy and its formal limit as N → ∞
We have already remarked that, for any j = 1, . . . , N , the marginal densities

ρ̂
(j)
N,t associated with the solution ρ̂N,t of the equation (2.1.12), are crucial tools

in studying the mean-field limit because they can have, for every fixed j, a well-
defined limit as N → ∞. Thus, we are interested in their time-evolution as
N → ∞.

By taking the partial trace over the degrees of freedom of the last N − j
particles in the Heisenberg equation (2.1.12) we find the following family of
equations (one for each j = 1, . . . , N)

(2.2.1) iε∂tρ̂
(j)
N,t =

j∑

k=1

[
−ε2

2
Δk, ρ̂

(j)
N,t

]
+ TQ

N,j ρ̂
(j)
N,t +

N − j

N
CQ

j,j+1ρ̂
(j)
N,t,

where the operator TQ
N,j acts on L1(L2

s(R3j)) while the operator CQ
j,j+1 maps

j + 1-particle densities in j-particle ones (if j = N we find CQ
N,N+1 ≡ 0). The

family of equations (2.2.1) is called BBGKY hierarchy in analogy to the classical
case and, again, it is called “hierarchy” because we can see that the equation
for the j-particle marginal density is linked to the subsequent one by the term

CQ
j,j+1ρ̂

(j)
N,t. The physical meaning is the same we discussed in the classical case:
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the variation in time of ρ̂
(j)
N,t is due to the free motion of the j particles, to

their interaction among themselves and to the interaction among the j-particle
subsystem and the remaining N − j particles. The first effect is modeled by
the l.h.s and by the first term in the r.h.s of (2.2.1), the second one is encoded

in TQ
N,j ρ̂

(j)
N,t), while the interaction between the j-particle subsystem and the

remaining N − j particles is modeled by N−j
N CQ

j,j+1ρ̂
(j)
N,t. The factor 1/N in

front of CQ
j,j+1ρ̂

(j)
N,t arises from the scaling of the p otential UQ (see (2.1) while

the factor N − j is due to the symmetry with respect to permutations of the
labeling (we remind that we are dealing with N identical particles): indeed, the
interaction of the j particles under consideration with the last N − j can be
modeled by N − j times the interaction with the j + 1-th particle.

Writing explicitly the action of the operators TQ
N,j and CQ

j,j+1, we find:

(2.2.2) TQ
N,j ρ̂

(j)
N,t =

1

2N

j∑

k �=l

[
φ(xk − xl), ρ̂

(j)
N,t

]
,

and

(2.2.3) CQ
j,j+1ρ̂

(j)
N,t =

j∑

k=1

Trj+1

{[
φ(xk − xj+1), ρ̂

(j+1)
N,t

]}
.

By (2.2.2) we can argue that the operator TQ
N,j gives a vanishing contribution

in the limit because it is of size j2/N , while the operator CQ
j,j+1 is of order one

in the limit and the factor (N − j)/N appearing in (2.2.1) is also of order one.

Therefore denoting by ρ̂
(j)
t the expected limit of ρ̂

(j)
N,t when N → ∞, the formal

limit of the BBGKY hierarchy (2.2.1) is

(2.2.4) iε∂tρ̂
(j)
t =

j∑

k=1

[
−ε2

2
Δk, ρ̂

(j)
t

]
+ CQ

j,j+1ρ̂
(j+1)
t ,

which in the case j = 1 is equal to:

(2.2.5) iε∂tρ̂
(1)
t =

[
−ε2

2
Δ1, ρ̂

(1)
t

]
+ Tr2

{[
φ(x1 − x2), ρ̂

(2)
t

]}
.

We observe that the Hartree equation (2.1.21) in the density matrix formalism
(“Heisenberg form”) is

(2.2.6) iε∂tρ̂t =

[
−ε2

2
Δ, ρ̂t

]
+ Tr2 {[φ(x − x2), ρ̂t ⊗ ρ̂t]} .
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Replacing x by x1, ρ̂t by ρ̂
(1)
t and the product ρ̂t ⊗ ρ̂t by ρ̂

(2)
t we realize that

(2.2.6) is precisely the same of (2.2.5). Thus the equation of the hierarchy (2.2.4)
corresponding to j = 1 is properly the Hartree equation, provided that the the

two-particle density ρ̂
(2)
t is factorized, and for this reason (2.2.4) is usually called

“Hartree hierarchy”. More precisely, by considering (2.2.4) and by assuming the

reduced density matrices ρ̂
(j)
t , j = 1, 2, . . . , to be factorized, namely

(2.2.7) ρ̂
(j)
t = ρ̂⊗j

t ∀ j,

it is easy to verify that ρ̂t has to solve the Hartree equation. Conversely, if we
consider a time dependent one-particle density ρ̂t solving the Hartree equation

(2.2.6) and we take the j-particles densities ρ̂
(j)
t = ρ̂⊗j

t , j = 1, 2 . . . , we find that

the sequence {ρ̂(j)
t }j≥1 solves the hierarchy (2.2.4).

An interesting problem is that of the uniqueness of the solution of the
Hartree hierarchy. The situation in the quantum case is quite different from
that of the classical one. In fact, as we will see in the next section, the Hartree
hierarchy is much more controllable than the Vlasov one because the operators
involved are bounded with respect to the norms appropriate to study the conver-
gence of the sequence of reduced density matrices to the solution of the limiting
hierarchy. Thus, it is possible to follow the approach we described briefly at the
end of the previous section (convergence + uniqueness) in order to prove “prop-
agation of chaos” in the quantum context, namely, asymptotic factorization of
the dynamics (in the sense specified in the forthcoming paragraph). Nonetheless,
the proof of uniqueness of the solution of the quantum limiting hierarchy is very
far to be a trivial stuff. Indeed, in the case of bounded interaction the problem is
quite easy to face and, in par ticular, by following the strategy of [7] (originally
introduced by O. Lanford for the derivation (for short times) of the Boltzmann
equation from the hard-sphere dynamics (see [3])) it is possible to prove “at the
same time” convergence and uniqueness (see Theorem 2.3.1). On the contrary, in
case of more singular interactions (as the Coulomb one), the proof of propagation
of chaos consists really of two steps: proving the convergence of solutions of the
BBGKY hierarchy to the Hartree hierarchy and showing the uniqueness of the
solution of such a hierarchy (which implies factorization of the limiting j-particle
density matrices because, as we have already remarked, the Hartree hierarchy
admits factorized solutions as (2.2.7)). In the Coulomb case, the “uniqueness”
problem is quite hard to deal with because of the singularity of the interaction
(see [17]).

Anyway, we will come back later on the rigorous proof of propagation of
chaos, analyzing in detail the case of bounded potentials. Moreover we will
discuss briefly the Coulomb case, accenting which are the main new tools with
respect to the bounded case, why there is need of them and in which way they
make the proof harder requiring a more refined analysis of the limiting hierarchy.
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Now let us clarify what we mean by “propagation of chaos” in the quantum
framework.

Let us consider as initial datum for the Schrödinger equation (2.1.7) a fac-
torized N -particle wave function

(2.2.8) ΨN,0 = ψ⊗N
0 , for some ψ0 ∈ L2(R3).

This assumption, rephrased in the density matrix formalism, leads to consider
the following factorized N -particle density matrix

(2.2.9) ρ̂N,0 = |ΨN,0 >< ΨN,0| = ρ̂⊗N
0 , with ρ̂0 = |ψ0 >< ψ0|,

as initial datum for the Heisenberg equation (2.1.12). As in the classical context,
(2.2.8) (or equivalently (2.2.9)) is called “hypotheses of molecular chaos” because
we are assuming that the particles are initially uncorrelated. Furthermore, they
are all in the same (one-particle) state at time t = 0 and clearly ΨN,0 ∈ L2

s(R3N ).
Thus, (2.2.8) is an admissible state for bosons (while for fermions it is prevented
by the Pauli exclusion principle). The physical motivation for studying the evo-
lution of factorized wave functions is that states close to the ground state of
HQ

N (the eigenvector associated with the lowest eigenvalue), which are the most
accessible and thus the most interesting states, can be approximately described
by wave functions like (2.2.8) (some of the results which we are going to dis-
cuss in the following sections do not require strict factorization as in (2.2.8);
instead asymptotic factorization of the initial wave function in the sense of L1-
convergence of the RDM to the j-fold product of one-particle densities would be
sufficient (see Theorem 2.3.1 and the discussion below)).

Because of the interaction among the particles, the factorization (2.2.8)
(or equivalently (2.2.9)) is not preserved by the time evolution; in other words,
the evolved N -particle wave function ΨN,t is not given by the product of one-
particle wave functions, if t 	= 0. All considerations done in the classical case
concerning the mean-field (weak) character of the interaction hold, then we may
expect that, in the limit of large N , the total interaction potential experienced
by a typical particle in the system can be effectively replaced by an averaged,
mean-field, potential, and therefore that factorization is approximately, and in
an appropriate sense, preserved by the time evolution. In other words, we may
expect that, in a sense to be made precise,

(2.2.10) ΨN,t ≈ ψ⊗N
t as N → ∞

or

(2.2.11) ρ̂N,t ≈ ρ̂⊗N
t as N → ∞, with ρ̂N,t = |ΨN,t >< ΨN,t|, ρ̂t = |ψt >< ψt|

for an evolved one-particle wave function ψt. This asymptotic factorization is
precisely what is called “propagation of chaos”. Assuming (2.2.10), it is simple to
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derive a self-consistent equation for the time-evolution of the wave function ψt. In
fact, (2.2.10) states that, for every fixed time t, the N bosons are independently
distributed in space according to the density |ψt(x)|2. If this is true, the total
potential experienced, for example, by the first particle can be approximated by

(2.2.12)

1

N

∑

k≥2

φ(x1 − xk) ≈ 1

N

∑

k≥2

∫
dyφ(x1 − y)|ψt(y)|2 =

=
N − 1

N
(φ ∗ |ψt|2) ≈ (φ ∗ |ψt|2),

as N → ∞. It follows that, if (2.2.10) holds true, the one-particle wave function
ψt must satisfy the self-consistent equation

(2.2.13) iε∂tψt = −ε2

2
Δψt +

(
φ ∗ |ψt|2

)
ψt

with initial datum ψ0 given by (2.2.8). Equation (2.2.13) is precisely the Hartree
equation and we have just presented an heuristic argument to explain how it is
related to the propagation of chaos. We observe that the Hartree equation is a
nonlinear Schrödinger equation on R3 × R3. Therefore starting from the linear
Schrödinger equation (2.1.7) on R3N × R3N , we obtain, for the evolution of fac-
torized densities, a nonlinear Schrödinger equation on R3 ×R3; the nonlinearity
in the Hartree equation is a consequence of the many-body effects in the linear
dynamics.

The validity of propagation of chaos (namely, the precise statement con-
cerning the asymptotic factorization (2.2.10) or (2.2.11)) is expressed in terms
convergence in L1(L2(R3j)) of the j-particle marginal densities associated with
the solution of the Heisenberg equation (2.1.12) to the j-fold product of solutions
of the Hartree equation when N → ∞, namely

(2.2.14)
∥∥∥ρ̂

(j)
N,t − ρ̂⊗j

t

∥∥∥
L1(L2(R3j))

→ 0, as N → ∞,

ρ̂t ∈ L1(L2(R3)) solving the Hartree equation (in the “Heisenberg form”) (2.2.6)
with initial datum ρ̂0 given by (2.2.11). Clearly, ρ̂t = |ψt >< ψt|, ψt solving the
Hartree equation (2.2.13) with initial datum ψ0 given by (2.2.10).

We have already remarked that, for fixed j < N , the j-particle RDM ρ̂
(j)
N,t

does not contain the full information about the N -particle system described by

ρ̂N,t. Nonetheless, ρ̂
(j)
N,t is sufficient to compute the expectation of arbitrary

observables of the form Aj ⊗ 1N−j which depend non-trivially on at most j
particles (because of the permutation symmetry, it is not important on which
particles it acts, just that it acts at most on j particles).
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Therefore the convergence (2.2.14) implies that:

(2.2.15)
〈Aj ⊗ 1N−j〉ΨN,t

= Tr(Aj ⊗ 1N−j)ρ̂N,t = TrAj ρ̂
(j)
N,t → TrAj ρ̂

⊗j
t =

= 〈Aj〉ψ⊗j
t

as N → ∞,

for each bounded operator Aj acting on L2(R3j). In other words, (2.2.14) allows
to know the “macroscopic” expected value of j-particle observables for an N -
particle system interacting by a men-field potential.

2.3 – Mean-Field limit for bounded potentials

We consider, in this section, the dynamics generated by the mean field
Hamiltonian (2.1.5) under the assumption that the interaction potential is a
bounded operator. We will assume, in other words, that φ ∈ L∞(R3) (recall
that the operator norm of the multiplication operator φ(xk − xl) is given by the
L∞-norm of the function φ).

In the sequel we will use the notation φkl := φ(xk − xl).

Theorem 2.3.1 [Spohn 1980]. Let the pair interaction potential φ be in
L∞(R3) and the initial state of the system be described by a factorized N -particle
wave function ΨN,0 ∈ L2

s(R3N ), namely

(2.3.1) ΨN,0 = ψ⊗N
0 , for some ψ0 ∈ L2(R3) : ‖ψ0‖L2(R3) = 1.

This implies that the initial N -particle density matrix ρ̂N,0 ∈ L1(L2(R3N )) is
given by

(2.3.2) ρ̂N,0 = |ΨN,0 >< ΨN,0| = ρ̂⊗N
0 , ρ̂0 = |ψ0 >< ψ0|.

Then, for any fixed j,

(2.3.3)
∥∥∥ρ̂

(j)
N,t − ρ̂⊗j

t

∥∥∥
L1(L2(R3j))

−→ 0, as N → ∞,

where ρ̂
(j)
N,t solves the BBGKY hierarchy (2.2.1) with initial datum ρ̂⊗j

0 and ρ̂t ∈
L1(L2(R3)) is the solution of the Hartree equation (in the “Heisenberg form”)

(2.3.4) iε∂tρ̂t =

[
−ε2

2
Δ, ρ̂t

]
+ Tr2{[φ(x − x2), ρ̂t ⊗ ρ̂t]},

with initial datum ρ̂0. In terms of wave functions, we find that ρ̂t = |ψt >< ψt|,
ψt solving the Hartree equation (2.1.21) with initial datum ψ0.
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Proof. Let ρ̂(N) ∈ L1(L2(R3N )) be a trace class operator with kernel ρ(N)

invariant under permutations of the labeling. For fixed j, let ρ̂
(N)
j ∈ L1(L2(R3j))

be

(2.3.5) ρ̂
(N)
j = Trj+1ρ̂

(N).

Then, by considering the time-evolution ρ̂(N)(t) = e−
i
ε HQ

N
tρ̂(N)e

i
ε HQ

N
t, HQ

N de-
fined in (2.1.5), it is also invariant under permutations of the labeling and the

j-particle trace class operator ρ̂
(N)
j (t) = Trj+1ρ̂

(N)(t) satisfies the differential
equation

(2.3.6)

iε∂tρ̂
(N)
j (t) =

⎡
⎣

j∑

k=1

(
−ε2

2
Δk

)
+

1

2N

j∑

k �=l

φkl, ρ̂
(N)
j (t)

⎤
⎦+

+

(
N − j

N

) j∑

k=1

Trj+1

{[
φkj+1, ρ̂

(N)
j+1(t)

]}
.

This is what we previously called BBGKY hierarchy (see (2.2.1)) as it can be
seen by using the “compact” notation

(2.3.7)

∂tρ̂
(N)
j (t) = − i

ε

[
j∑

k=1

(
−ε2

2
Δk

)
, ρ̂

(N)
j (t)

]
− i

ε
TQ

N,j ρ̂
(N)
j (t)−

− i

ε

(
N − j

N

)
CQ

j,j+1ρ̂
(N)
j+1(t),

TQ
N,j and CQ

j,j+1 as in (2.2.2) and (2.2.3) respectively.

Let S
(N)
j (t) is the flow associated with the equation:

(2.3.8) ∂tρ̂
(N)
j (t) = − i

ε

[
HQ

N,j , ρ̂
(N)
j (t)

]
,

with

(2.3.9) HQ
N,j :=

j∑

k=1

(
−ε2

2
Δk

)
+ TQ

N,j .

Thus, S
(N)
j (t)ρ̂j = e−

i
ε HQ

N,j
tρ̂je

i
ε HQ

N,j
t, for any ρ̂j ∈ L1(L2(R3j)). By the Duha-

mel formula, the solution of (2.3.7) can be written as

(2.3.10)

ρ̂
(N)
j (t) = S

(N)
j (t)ρ̂

(N)
j +

+

(
N − j

N

) (
− i

ε

) ∫ t

0

dt1 S
(N)
j (t − t1)C

Q
j,j+1ρ̂

(N)
j+1(t1).
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Iterating the integral equation (2.3.10), we obtain the series

(2.3.11)

ρ̂
(N)
j (t)=S

(N)
j (t)ρ̂

(N)
j + +

N−j∑

n=1

∫

0≤tn≤···≤t1≤t

dtn . . .dt1S
(N)
j (t − t1)×

×
(

N − j

N

) (
− i

ε

)
CQ

j,j+1 . . .

(
N − j − n + 1

N

)

×
(
− i

ε

)
CQ

j+n−1,j+nS
(N)
j+n(tn)ρ̂

(N)
j+n.

Let ‖·‖j denote the trace norm in L1(L2(R3j)). Since S
(N)
j (t) preserves the ‖·‖j

norm (because HQ
N,j is a self-adjoint operator on L2(R3j)), by the expression

(2.2.3) for CQ
j,j+1, it is easy to verify that the n-th term of the series (2.3.11) is

bounded by

(2.3.12)
tn

n!
j(j + 1) . . . (j + n − 1)

(
2 ‖φ‖L∞

ε

)n ∥∥∥ρ̂
(N)
j+n

∥∥∥
j+n

.

If one assumes

(2.3.13) P1)
∥∥∥ρ̂

(N)
j

∥∥∥
j
≤ aj for any j,

then the series (2.3.11) converges in trace norm for |t| ≤ t0 with t0 < ε
4‖φ‖L∞a .

For any ρ̂j ∈ L1(L2(R3j)), let Sj(t)ρ̂j = e−
i
ε Hjtρ̂je

i
ε Hjt, where Hj =

∑j
k=1

(
− ε2

2 Δk

)
is the j-particle free Hamiltonian. We note that

(2.3.14)
∥∥∥TQ

N,j ρ̂
(N)
j

∥∥∥ ≤ j(j − 1)

2N
‖[φ, ρ̂

(N)
j ]‖j ≤ j(j − 1)

N
‖φ‖L∞

∥∥∥ρ̂
(N)
j

∥∥∥
j
,

then by Property P1) we find

(2.3.15)
∥∥∥TQ

N,j

∥∥∥ ≤ j(j − 1)

N
‖φ‖L∞ aj → 0 as N → ∞,

where ‖·‖ is the operator norm on L1(L2(R3j)).
We note that, for any ρ̂j ∈ L1(L2(R3j)),

(2.3.16)

∥∥∥S
(N)
j (t)ρ̂j − Sj(t)ρ̂j

∥∥∥
j
≤ 1

ε

∫ t

0

dτ
∥∥∥Sj(t − τ)TQ

N,j ρ̂j(τ)
∥∥∥

j
≤

≤ 1

ε

∫ t

0

dτ
∥∥∥TQ

N,j ρ̂j(τ)
∥∥∥

j
,
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where we use that Sj(t) preserves the trace norm. Then, from (2.3.15), it follows
that

(2.3.17) lim
N→∞

∥∥∥S
(N)
j (t) − Sj(t)

∥∥∥ = 0.

If one assumes

(2.3.18) P2) lim
N→∞

∥∥∥ρ̂
(N)
j − ρ̂j

∥∥∥
j

= 0,

for some ρ̂j ∈ L1(L2(R3j)), then by (2.3.11) and (2.3.17), it follows that ρ̂
(N)
j (t)

converges as N → ∞ in trace norm to

(2.3.19)

ρ̂j(t) =

+∞∑

n=0

∫

0≤tn≤···≤t1≤t

dtn . . .dt1 Sj(t − t1)×

×
(
− i

ε

)
CQ

j,j+1 . . .

(
− i

ε

)
CQ

j+n−1,j+n Sj+n(tn)ρ̂j+n,

for |t| ≤ t0. We note that the n-th term of the above series in bounded in
trace norm by (2.3.12), then for short times |t| ≤ t0 we are ensures that (2.3.19)
converges in trace norm.

Let ρ̂(N) be a density matrix. Then
∥∥∥ρ̂

(N)
j (t)

∥∥∥
j

=
∥∥∥ρ̂

(N)
j

∥∥∥
j

by preservation of

positivity and trace. Therefore, if for the initial state the bound P1) is satisfied,
it remains valid for all times, and the argument just given can be iterated to

prove convergence of ρ̂
(N)
j (t) to ρ̂j(t) as N → ∞ for all times. Furthermore,

ρ̂j(t) is uniquely determined for all times because by iteration we prove that
(2.3.19) converges in trace norm for all times.

One checks that for the particular initial state ρ̂N,0 in (2.3.2) the conditions

P1) and P2) are satisfied with a = 1 and ρ̂j = ρ̂⊗j
0 . Therefore, we can claim

that the solution ρ
(j)
N,t of the BBGKY hierarchy (2.3.7) with initial datum ρ̂⊗j

0

converges in trace norm to the unique j-particle density matrix ρ̂j(t) identified

by the series (2.3.19) with ρ̂j+n = ρ̂⊗j+n
0 ∀ n. Differentiating (2.3.19) with

respect to t, one obtains the limiting hierarchy of equations

(2.3.20) iε∂tρ̂j(t) =

[
j∑

k=1

(
−ε2

2
Δk

)
, ρ̂j(t)

]
+ CQ

j,j+1 ρ̂j+1(t),

whose unique trace class solution is ρ̂j(t) with initial datum ρ̂⊗j
0 . Moreover,

(2.3.20) preserves the factorization property for all t according to the Hartree
equation (in the Heisenberg form) (2.3.4). This ensures the validity of propaga-
tion of chaos, namely ρ̂j(t) = ρ̂⊗j

t , ρ̂t solving the nonlinear Heisenberg equation
(2.3.4) with initial datum ρ̂0 = |ψ0 >< ψ0|. Then, ρ̂t = |ψt >< ψt|, ψt solving
the Hartree equation (2.1.21) with initial datum ψ0.
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Remark 2.3.1. By looking at the the proof above it is clear that in order
to let Theorem 2.3.1 to hold there is no need of strict factorization of the initial
datum as in (2.3.2). Instead asymptotic factorization in the sense of

(2.3.21) lim
N→∞

∥∥∥ρ̂
(j)
N,0 − ρ̂⊗j

0

∥∥∥
j

= 0

would be sufficient. We remind that (2.3.21) is a reasonable “physical” condition

because states close to the ground state of HQ
N , which are the most accessible and

thus the most interesting states, can be approximately described by factorized
wave functions, and then, by factorized density matrices.

Remark 2.3.2. In proving the convergence of the series (2.3.11) to (2.3.19)

the crucial tools have been the boundedness of the operator TQ
N,j : L1(L2(R3j)) →

L1(L2(R3j)) (see (2.3.14)) and property P1) for the RDM. In particular, the

bound (2.3.15) on the operator norm of TQ
N,j provides the rate of convergence to

the Hartree dynamics by means of (2.3.16).

Then, by observing that the estimate obtained in (2.3.16) is not uniform with
respect to ε and it fails when ε → 0, it follows that the error in approximating
the N -particle dynamics with the limiting one is diverging when ε → 0 (for short

times it is of the form
Cj

N eCt/ε).

In the next sections we will discuss some other results concerning the mean-
field limit starting from factorized initial datum as in (2.3.1), both for bounded
interactions and for the Coulomb potential and we will see that considerations
done in Remark 2.3.2 still hold. This means that all results concerning the
mean-field limit exhibit an error in approximating the N -particle dynamics by
the limiting one which is not uniform with respect to ε and diverging when ε → 0.
This is a quite surprising feature because it seems that, roughly speaking, the
accuracy of the approximation depends on “how much” the system can be consid-
ered quantum or not and, except for fermionic systems, there are no reasonable
motivations for that. In fact, we will see in Section 3 that in the fermionic case it
is quite natural to look at a joint limit: N → ∞ and ε → 0 as in [8] and [19]. On
the contrary, in looking at systems of undistiguishable particles or even bosonic
systems the fact that the mean-field limit and the semiclassical approximation
seems to be so strictly connected is an open problem (except for specific scalings
of the potential as in [24]). Furthermore, in the classical case (see Section 1)
everything works, so it is quite natural to ask if, at least for quantum systems
having a reasonable classical analogue, it is possible to realize the limit N → ∞
uniformly with respect to ε. This is the main motivation of our research and in
the next section we will focus on that topic, discussing some known results and
presenting what we did in this perspective.
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2.3.1 – An alternative approach

From the proof of Theorem 2.3.1 presented above, we notice that the ex-
pansion of the BBGKY hierarchy in (2.3.11) is much more involved than the
corresponding expansion (2.3.19) of the infinite hierarchy (2.3.19). It turns out
that it is possible to avoid the expansion of the BBGKY hierarchy making use of
a simple compactness argument; this will be especially important when dealing
with singular potentials. In the following we explain the main steps of this alter-
native proof to Theorem 2.3.1. Then, in the next section, we will illustrate how
to extend it to potentials with a Coulomb singularity. The idea, which was first

presented in [16], [17], [18], consists in characterizing the limit of the RDM ρ̂
(j)
N,t

as the unique solution to the infinite hierarchy of equations (2.3.19); combined
with the compactness, this information provides a proof of Theorem 2.3.1.

More precisely, the proof is divided into three main steps:

i) First of all, one shows the compactness of the sequence {ρ̂(j)
N,t}N

j=1 with
respect to an appropriate weak topology.

ii) Then, one proves that an arbitrary limit point {ρ̂(j)
∞,t}j≥1 of the sequence

{ρ̂(j)
N,t}N

j=1 is a solution to the infinite hierarchy (2.3.19) (one proves, in other
words, the convergence to the infinite hierarchy).

iii) Finally, one shows the uniqueness of the solution to the infinite hierarchy
(2.3.19).

We have already observed that the factorized family {ρ̂⊗j
t }j≥1 is a solution of the

infinite hierarchy with factorized initial datum ρ̂⊗j
0 . In particular, if ρ̂0 = |ψ0 ><

ψ0|, as in the present case, we find that ρ̂t = |ψt >< ψt|, ψt solving the Hartree
equation (2.1.21). Then, by proving that the solution of the infinite hierarchy is
unique, we are guaranteed that it is factorized according to the solution of the
Hartree equation.

Therefore, by ii), it follows immediately that ρ̂
(j)
N,t → ρ̂⊗j

t = (|ψt >< ψt|)⊗j

as N → ∞ (at first only in the weak topology with respect to which we have
compactness; since the limit is an orthogonal rank one projection, it is however
simple to check that weak convergence implies strong convergence, in the sense
(2.3.3)). Next, we discuss these three main steps (compactness, convergence,
and uniqueness) in some more details in order to show that, even following this
approach, the estimates that ensure the convergence are not uniform with respect
to ε and they fail if ε → 0.

Compactness: By knowing that, for any j and N ,
∥∥∥ρ̂

(j)
N,t

∥∥∥
L1

= 1 for fixed

t, thanks to standard abstract and compactness results of functional analysis

we prove that the sequence ΓN,t = {ρ̂(j)
N,t}N

j=1 is compact with respect to a
suitable topology. More precisely, for an arbitrary fixed T > 0, we denote
by C

(
[0, T ],L1(L2(R3j))

)
the space of functions of t ∈ [0, T ] with values in

L1(L2(R3j)) which are continuous in time with respect to a suitable metric ηj
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on L1(L2(R3j)) (it can be constructed explicitly in such a way that the topol-
ogy generated by ηj is equivalent to the weak*-topology of L1(L2(R3j))). By
ηj we can easily define a metric η̂j on C([0, T ],L1(L2(R3j))) and we consider
the topology τprod on

⊕
j≥1 C([0, T ],L1(L2(R3j))) given by the product of the

topologies generated by the metrics η̂j on C([0, T ],L1(L2(R3j))). The topology
τprod is precisely the topology with respect to which we prove compactness of
the sequence {ΓN,t}N∈N and this is equivalent to the following

Proposition 2.3.1. Fix an arbitrary time T > 0. For every sequence
{Mm}m∈N there exists a subsequence {Nm}m∈N ⊂ {Mm}m∈N and a limit point

Γ∞,t = {ρ̂(j)
∞,t}j≥1 for ΓNm,t = {ρ̂(j)

N,t}Nm
j=1 such that

(2.3.22) ρ̂
(j)
∞,t ≥ 0, Trρ̂

(j)
∞,t ≤ 1, ∀ j ≥ 1,

ρ̂
(j)
∞,t (for any j) is symmetric with respect to permutations of the labeling.

Let Kj ≡ K(L2(R3j)) be the space of compact operators on L2(R3j), equipped
with the operator norm. The claim of Proposition 2.3.1 is equivalent to the
affirm that, passing to a subsequence,

For every fixed j ≥ 1 and for every fixed compact operator J (j) ∈ Kj,

(2.3.23) Tr J (j)(ρ̂
(j)
N,t − ρ̂

(j)
∞,t) → 0 as N → ∞

uniformly in t for t ∈ [0, T ].

Convergence: The second main step consists in characterizing the limit

points of the (compact) sequence ΓN,t = {ρ̂(j)
N,t}N

j=1 as solutions to the infinite

hierarchy of equations (2.3.19) with initial datum ρ̂⊗j
0 , ρ̂0 = |ψ0 >< ψ0|.

Proposition 2.3.2. Suppose that φ ∈ L∞(R3) such that φ(x) → 0 as |x| →
∞. Assume moreover that Γ∞,t = {ρ̂(j)

∞,t}j≥1 ∈ ⊕
j≥1 C([0, T ],L1(L2(R3j))) is a

limit point of the sequence ΓN,t = {ρ̂(j)
N,t}N

j=1 in the sense (2.3.23). Then

(2.3.24) ρ̂
(j)
∞,t = Sj(t)ρ̂

(j)
∞,0 +

(
− i

ε

) ∫ t

0

dt1 Sj(t − t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1 .

for all j ≥ 1, with ρ̂
(j)
∞,0 = ρ̂

(j)
N,0 = ρ̂⊗j

0 . Here Sj(t) is the flow associated with the

j-particle free dynamics and CQ
j,j+1 is defined as in (2.2.3). Therefore equation

(2.3.24) evaluated for all j ≥ 1 gives rise precisely to a solution of the Hartree
hierarchy (2.3.19) with factorized initial datum.
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Note that in Proposition 2.3.2 we assume the potential to vanish at infinity.
This condition, which was not required in Theorem 2.3.1, is not essential but it
simplifies the proof and it is also satisfied by the Coulomb interaction for which
the derivation of the Hartree equation has been proven (e.g. [17]) by following
the present strategy (together with crucial technical tools that are necessary to
deal with the singularity of the potential).

Proof. Passing to a subsequence we can assume that ΓN,t → Γ∞,t as

N → ∞, in the sense (2.3.23); this implies immediately that ρ̂
(j)
∞,0 = ρ̂

(j)
N,0 = ρ̂⊗j

0 .
To prove (2.3.24), on the other hand, it is enough to show that for every fixed
j ≥ 1, and for every fixed J (j) from a dense subset of Kj ,

(2.3.25)

TrJ (j)ρ̂
(j)
∞,t = TrJ (j)Sj(t)ρ̂

(j)
∞,0+

+

(
− i

ε

) ∫ t

0

dt1 TrJ (j)Sj(t − t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1 .

To demonstrate (2.3.25), we start from the BBGKY hierarchy (2.3.7) which leads
to

(2.3.26)

TrJ (j)ρ̂
(j)
N,t =TrJ (j)Sj(t)ρ̂

(j)
N,0 + − i

ε

∫ t

0

dt1 TrJ (j)Sj(t − t1)T
Q
N,j ρ̂

(j)
N,t1

×

×
(
− i

ε

)
(N − j)

N

∫ t

0

dt1 TrJ (j)Sj(t − t1)C
Q
j,j+1 ρ̂

(j+1)
N,t1

.

Since, by assumption, the l.h.s. and the first term on the r.h.s. of the last
equation converge, as N → ∞, to the l.h.s. and, respectively, to the first term
on the r.h.s. of (2.3.25) (for every compact operator J (j)), (2.3.24) follows if we
can prove that

(2.3.27) − i

ε

∫ t

0

dt1TrJ
(j)Sj(t − t1)T

Q
N,j ρ̂

(j)
N,t1

→ 0

and that

(2.3.28)

(
− i

ε

)
(N − j)

N

∫ t

0

dt1 TrJ (j)Sj(t − t1)C
Q
j,j+1 ρ̂

(j+1)
N,t1

→

→
(
− i

ε

) ∫ t

0

dt1 TrJ (j)Sj(t − t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1

as N → ∞. Eq. (2.2.27) follows because, by the expression (2.2.2) of TQ
N,j , we

have

(2.3.29)

∣∣∣∣
i

ε
TrJ (j)Sj(t − t1)T

Q
N,j ρ̂

(j)
N,t1

∣∣∣∣ ≤

≤ 1

ε2N

j∑

k �=l

∣∣∣TrJ (j)Sj(t − t1)
[
φ(xk − xl), ρ̂

(j)
N,t1

]∣∣∣ ≤

≤ j2

εN

∥∥∥J (j)
∥∥∥ ‖φ‖ Tr

∣∣∣ρ̂(j)
N,t1

∣∣∣ =
j2

εN

∥∥∥J (j)
∥∥∥ ‖φ‖ → 0
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because the product
∥∥J (j)

∥∥ ‖φ‖ is finite and uniformly bounded with respect to

N (
∥∥J (j)

∥∥ and ‖φ‖ being the operator norms of J (j) and of the multiplication
operator φ). To prove (2.3.28) one can use a similar argument, combined with

the observation that, by the expression (2.2.3) of CQ
j,j+1,

(2.3.30)

i

ε
TrJ (j)Sj(t − t1)C

Q
j,j+1

(
ρ̂
(j+1)
N,t1

− ρ̂
(j+1)
∞,t1

)
=

=
i

ε

∑

1≤k≤j

Tr
[
(J (j)Sj(t − t1)), φ(xk − xj+1)

] (
ρ̂
(j+1)
N,t1

− ρ̂
(j+1)
∞,t1

)
→ 0,

as N → ∞. This does not follow directly from the assumption that ΓN,t → Γ∞,t

in the sense (2.3.23) because the operator
[
(J (j)Sj(t − t1)), φ(xk − xj+1)

]
is not

compact on L2(R3(j+1)). Instead it is necessary to apply an approximation
argument which is made simpler by the assumption that φ(x) → 0 as |x| → ∞
(that is the reason for which we did it). The details of this approximation
argument can be found, for example, in [23].

Uniqueness: to conclude the proof of Theorem 2.3.1, we still have to prove
the uniqueness of the solution to the infinite (Hartree) hierarchy (2.3.24).

Proposition 2.3.3. Fix Γ∞,0 = {ρ̂(j)
∞,0}j≥1 ∈ ⊕

j≥1 L1(L2(R3)). Then

there exists at most one solution Γ∞,t = {ρ̂(j)
∞,t}j≥1 ∈ ⊕

j≥1 C([0, T ],L1(L2(R3)))

to the infinite (Hartree) hierarchy (2.3.24) such that ρ̂
(j)
∞,t |t=0 = ρ̂

(j)
∞,0 and

Tr
∣∣∣ρ̂(j)

∞,t

∣∣∣ ≤ 1 for all j ≥ 1 and all t ∈ [0, T ].

Proof. The proof is exactly the same we did in proving Theorem 2.3.1.
Indeed, we write the solution of the Hartree hierarchy by iterating the Duhamel
formula (2.3.24) and we observe that the series we obtain is uniformly bounded in
trace norm by a geometric series converging for short times t < t0 (see (2.3.19)).
This proves uniqueness locally in time. Then, by noting that t0 does not depend
on the initial condition (except for the trace norm of ρ̂∞,0 which is clearly pre-
served in time) but only on the L∞-norm of the interaction potential φ, we can
iterate the same argument, obtaining uniqueness for all times.

We realize that the estimate ensuring the convergence is (2.3.29) and, as in
the proof of Theorem 2.3.1 presented in the previous paragraph, we note that
it is due to the boundness of the operator TQ

N,j : L1(L2(R3j)) → L1(L2(R3j)).
Indeed, its norm is bounded by C/N , thus vanishing when N → ∞. Nevertheless,

by looking at (2.3.29) we see that there is a factor 1/ε in front of TQ
N,j , thus we

obtain a bound of order 1/ε which is diverging if ε → 0. Therefore, even by
using this approach, it is clear that considerations done previously as regard to
the uniformity of the mean-field approximation with respect to ε, still hold.
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We conclude this paragraph by observing that in estimating the operator

norm of TQ
N,j on L1(L2(R3j)) we have to deal with 1

εTr
[
φ, ρ̂

(j)
N,t

]
and we find

a uniform bound with respect to N , but diverging in ε, by using that in any
Hilbert space H:

(2.3.31) Tr[A, B] ≤ 2 ‖A‖ Tr |B| , ∀ A ∈ L∞ (H) , B ∈ L1 (H) ,

where L∞ (H) is the space of bounded operators on H (‖·‖ being the operator
norm in L∞ (H)) and L1 (H) is the space of trace class operators on H equipped
with the norm Tr |·|. Essentially the crucial question in looking for an estimate
of the error in the mean-field approximation (for bounded or even smooth poten-
tials) which is uniform (or at least “better diverging”) with respect to ε is: can
we improve (2.3.31) by taking into account further properties of the operators A
and B we have to deal with, possibly considering suitable “semiclassical” initial
data?

2.3.2 – Mean-Field limit for the Coulomb potential

The result presented in [17] concerning the mean-field limit in the case of
Coulomb interaction, φ = 1/|x|, is formulated as in Theorem 2.3.1, except for
the fact that the initial one particle wave function ψ0 is assumed to be in H1(R3)
(the Sobolev space W 1,2(R3) of functions il L2(R3) whose derivatives are also
in L2(R3)) and that the theorem holds for dimensions d ≥ 2. Even the general
strategy of the proof is the same we outlined in the previous paragraph. First

one proves the compactness of the sequence of marginal ΓN,t = {ρ̂(j)
N,t}N

j=1 with
respect to an appropriate weak topology (the product topology τprod previously

introduced), then one shows that an arbitrary limit point Γ∞,t = {ρ̂(j)
∞,t}j≥1 of

the sequence ΓN,t = {ρ̂(j)
N,t}N

j=1 is a solution to the infinite hierarchy of equations

(2.3.32) ρ̂
(j)
∞,t = Sj(t)ρ̂

j
0 +

(
− i

ε

) ∫ t

0

dt1 Sj(t − t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1 .

where Sj is the free evolution defined in Section 2.3, and the collision map CQ
j,j+1

is now given by

(2.3.33) CQ
j,j+1ρ̂

(j)
N,t = λ

j∑

k=1

Trj+1

{[
1

|xk − xj+1|
, ρ̂

(j+1)
N,t

]}
,

where λ is a coupling constant that can be positive (as in the most interesting
physical case: the attractive Coulomb interaction) or not (repulsive case). Fi-
nally, one proves the uniqueness of the solution to (2.3.32). Although the proof
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of the compactness and of the convergence also require several changes with re-
spect to what we discussed in the previous paragraph, the main difficulty one
has to face when the bounded potential is replaced by the Coulomb interaction is
the proof of the uniqueness of the solution to the infinite hierarchy. The key idea
introduced by ErdIHos and Yau in [17] was to restrict the class of densities for
which uniqueness must be proven. In Theorem 2.3.1, uniqueness is proven in the

class of densities with Tr|ρ̂(j)
t | ≤ 1 for all j ≥ 1, and all t ∈ [0, T ] (but the same

argument works under the weaker assumption Tr|ρ̂(j)
t | ≤ Cj , for some constant

C < +∞). In [17], in the case of a Coulomb potential the uniqueness of (2.3.32)

has been proven in the (smaller) class of densities Γt = {ρ̂(j)
t }j≥1 satisfying the

a-priori bound

(2.3.34) Tr
∣∣∣(1 − Δ1)

1/2
. . . (1 − Δj)

1/2
ρ̂
(j)
t (1 − Δj)

1/2
. . . (1 − Δ1)

1/2
∣∣∣ ≤ Cj

for all j ≥ 1 and for all t ∈ [0, T ].
There is, of course, a price to pay in order to restrict the proof of the

uniqueness to this class of densities. In fact, to apply this uniqueness result
to prove the convergence of the RDM to the j-fold product of solutions of the

Hartree equation, one has to show that an arbitrary limit point Γ∞,t = {ρ̂(j)
∞,t}j≥1

of the sequence of densities ΓN,t = {ρ̂(j)
N,t}N

j=1 associated with ρ̂N,t satisfies the
a-priori bound (2.3.34). Due to the Coulomb singularity, this is actually not so
simple and requires an additional approximation argument and suitable energy
estimates.

Anyway, even if in the Coulomb case strong technical tools are needed in
proving the mean-field result (much more with respect to the bounded interaction
case), it is not difficult to realize that the estimates ensuring the convergence are
not uniform with respect to ε and they fail if ε → 0. To see this, for concreteness
in the case d = 3, we observe that the Coulomb potential is controlled in three
dimensions by the Laplacian (by virtue of an operator inequality of Hardy type).
This is the reason for considering the class of density matrices such that (2.3.34)
holds. Roughly speaking, by (2.3.34) it follows that, considering the operator

1
|xi−xk| ρ̂

(j)
N,t (appearing both in the BBGKY and in the Hartree hierarchy) mul-

tiplied in a suitable way by some operators (C −Δk)1/2 (C > 1) and taking the
trace, one obtains estimates which are uniform with respect to N . Such estimates
are crucial in proving the uniqueness of the solution of the Hartree hierarchy and
even the convergence of the BBGKY hierarchy to the limiting one. In particular,
they provide the rate of convergence to the Hartree dynamics in terms of the
number of particles N and indipendently of ε. Nevertheless, by looking at the
explicit computations, we find a factor 1/ε in front of the interaction potential,
thus we have again diverging estimates when ε → 0.

From now on, we will focus on the case of smooth pair interaction potential,
primarily, because in this case both the quantum and the classical mean-field
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limit have been rigorously established, therefore it is quite reasonable to look
at that situation in investigating the connection between mean-field limit and
semiclassical approximation (which we are going to discuss in Section 3 and 4).
On the other side, we will see that for our purposes we need to deal with a
smooth potential (see Section 4).

3 – Mean-Field limit VS Semiclassical approximation

In this section we discuss the problem of “connecting” mean-field limit and
semiclassical approximation which, as we saw previously, emerges quite naturally
from the analysis of the quantum mean-field limit results. If one wants to deal
with the classical and quantum case simultaneously, it is natural to work in the
classical phase space by using the so called “Wigner formalism”.

3.1 – The Wigner formulation

By the Heisenberg uncertainty principle, it follows that it is not possible to
determine simultaneously the position and the momentum of a quantum particle,
thus the concept of classical phase space density does not generalize directly to
quantum mechanics. Nevertheless one can define a substitute for it, namely the
Wigner transform. For any wave function ψ ∈ L2(Rd) we define the Wigner
transform of ψ as

(3.1.1) fε
ψ (x, v) = (2π)−d

∫

Rd

dy eiy·vψ
(
x +

εy

2

)
ψ

(
x − εy

2

)
,

and we still interpret it as “quantum phase space density” (see [1]). It is easy
to check that fε

ψ is always real but in general is not positive (thus it cannot be
the density of a positive measure - in coincidence with the Heisenberg principle).
However, its marginals reconstruct the position and momentum space densities,
as the following formulas can be easily checked:

(3.1.2)

∫
fε

ψ(x, v)dv = |ψ(x)|2,
∫

fε
ψ(x, v)dx = |ψ̂(v)|2

ψ̂(v) being the Fourier transform of ψ, namely, by integrating versus the velocity
variable we obtain the quantum spatial probability density and by integrating
with respect to the position variable we find the velocity (or momentum) prob-
ability density. In particular

(3.1.3)

∫
fε

ψ(x, v)dvdx = 1
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for normalized wave functions. More generally, if J(x, v) is a classical phase
space observable, the scalar product

(3.1.4)
〈
J, fε

ψ

〉
=

∫
J(x, v)fε

ψ(x, v)dvdx

can be interpreted as the expected value of J in state described by ψ. Recall
that “honest” quantum mechanical observables are self-adjoint operators O on
L2(Rd) and their expected value is given by

(3.1.5) 〈O〉ψ =

∫
ψ̄(x)(Oψ)(x)dx

For a large class of observables there is a natural relation between observables
O and their phase space representations (called symbols) that are functions on
the phase space like J(x, v). For example, if J depends only on x or only on v,
then the corresponding operator is just the standard quantization, i.e.

(3.1.6)

∫
J(x)fε

ψ(x, v)dxdv = 〈ψ, Jψ〉

where J is a multiplication operator on the right hand side,

(3.1.7)

∫
J(v)fε

ψ(x, v)dxdv = 〈ψ, J(−iε∇)ψ〉

and similar relations hold for the Weyl quantization of any symbol J(x, v). We
also remark that the map ψ → fε

ψ is invertible, i.e. one can fully reconstruct
the wave function from its Wigner transform. On the other hand, not every real
function of two variables (x, v) is the Wigner transform of some wave function.

The correspondence between wave functions and their Wigner transform
can be easily rephrased for density matrices. Indeed, if ρ̂ = |ψ >< ψ| for some
ψ ∈ L2(Rd), then formula (3.1.1) can be rewritten as

(3.1.8) fε
ρ (x, v) = (2π)−d

∫

R3

dy eiy·vρ
(
x +

εy

2
, x − εy

2

)
,

where ρ(x, y) = ψ̄(x)ψ(y) is the integral kernel of ρ̂. Furthermore, formula
(3.1.8) holds for any density matrix ρ̂ ∈ L1(L2(Rd)), even for those which are
associated with mixed states and (3.1.3) holds because of positivity and trace
norm normalization of the density matrix. Vice versa, starting from a quantum
system whose state is described by a Wigner function fε (x, v), it is possible to
compute the corresponding density matrix (actually, its integral kernel) by the
Weyl quantization rule

(3.1.9) ρfε (x, y) = (2π)−d

∫

Rd

dv ei v
ε ·(x−y)fε

(
x + y

2
, v

)
.
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Therefore the Wigner transform and the Weyl quantization rule provide an in-
vertible map ρ̂ ↔ fε

ρ between density matrices and Wigner functions and it is
simple to check that

(3.1.10) ‖ρ‖L2(Rd×Rd) =
∥∥fε

ρ

∥∥
L2(Rd×Rd)

.

This is particularly meaningful because for any density matrix ρ̂ we have

(3.1.11) ρ̂ ≥ 0, ρ̂ ∈ L1(L2(Rd)), with ‖ρ̂‖L1(L2(Rd)) = 1 ⇒ ‖ρ̂‖L2(L2(Rd)) ≤ 1,

where L2(L2(Rd)) is the Hilbert space of Hilbert-Schmidt operators on L2(Rd)
and for any operator Γ ∈ L2(L2(Rd)) with kernel γ = γ(x, y) we find

(3.1.12) ‖Γ‖L2(L2(Rd)) = ‖γ‖L2(Rd×Rd) .

Therefore by (3.1.11), (3.1.12) and by (3.1.10) it follows that

(3.1.13)
‖ρ‖L2(Rd×Rd) ≤ 1 ∀ density matrix

ρ̂ ⇒ ‖fε‖L2(Rd×Rd) ≤ 1 ∀ Wigner function f

Remark 3.1.1. By (3.1.9) it follows that one can fully reconstruct a den-
sity matrix from its Wigner transform but, in general, by knowing the Wigner
function associated with the state of a quantum system it is not possible to re-
construct such a state in the wave function picture. More precisely, if we know
that the system is in a pure state and we know that it is described by a certain
Wigner function fε, we can reconstruct the density matrix ρ̂ which will be given
by ρ̂ = |ψ >< ψ| for some L2-function ψ. On the contrary, if the system is in a
mixed state, by knowing the Wigner function we can only reconstruct the density
matrix but there is no way to know which are the wave functions “composing” it.

Remark 3.1.2. The correspondence between density matrices and Wigner
functions is quite useful but one has to be careful in using that. In fact, by
considering a density matrix ρ̂ one can compute its Wigner transform fε

ρ and it
will be for sure a real function on the classical phase space with the properties
specified above. On the contrary, a real function on the classical phase space
does not correspond necessarily to an admissible quantum state, namely, it is
not necessarily the Wigner transform of a density matrix.

Let us consider a density matrix ρ̂0 ∈ L1(L2(Rd)) representing the initial state
of a system whose Hamiltonian H is

(3.1.14) H = −ε2

2
Δx + U(x)
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and the potential U is such that H is a self-adjoint operator on L2(Rd). We
know that the time evolution for the density matrix ρ̂0 is determined by

(3.1.15) iε∂tρ̂
t = [H, ρ̂t],

and it is easy to check that it preserves the Hilbert-Schmidt norm of ρ̂0, namely
the L2-norm of the kernel ρ0. Thus, by looking at the initial Wigner function
fε

ρ0(x, v) (x, v ∈ Rd) and at the time-evolved fε
t (x, v) = fε

ρt(x, v), the L2-norm

has to be also preserved in time (by (3.1.10). We can verify this property by
looking at the equation solved by fε

t . By applying the Wigner transform defined
in (3.1.1) to (3.1.15), we find the equation

(3.1.16) (∂t + v · ∇x) fε
t = T εfε

t ,

where

(3.1.17) (T εfε
t )(x, v) = i

∫ 1/2

−1/2

dλ

∫
dkÛ(k)ei k·x(k · ∇v)fε

t (x, v + ελk),

and we denoted by Û the Fourier transforms of U , namely:

(3.1.18) Û(k) =

∫

Rd

dx e−i k·xU(x).

By noting that both v · ∇x and T ε are skewsymmetric operators and reminding
that fε

t (x, v) ∈ R for any t, we find

(3.1.19)
1

2

d

dt
‖fε

t ‖2
L2(Rd×Rd) = (fε

t , ∂tf
ε
t ) = (fε

t ,−v · ∇xfε
t ) + (fε

t , T εfε
t ) = 0,

namely the L2-norm is conserved. It can be also proved that Hs-estimates hold
for (3.1.16) (Hs(R3N × R3N ) being the Sobolev space W s,2(R3N × R3N )) by
assuming the potential φ to be sufficiently smooth (see for example [25]) in the
sense that the Hs-norm of the time evolved Wigner function is controlled by the
Hs-norm of the initial datum, up to a constant depending on time (but finite for
any time interval) and of a suitable norm of the potential.

Equation (3.1.16) looks like a classical kinetic equation but the crucial facts
are that fε

t is not a probability density in the phase space Rd ×Rd and we have
to deal with a pseudodifferential operator instead of a differential one as it is
usual in kinetic theory. It is immediate to check that

(3.1.20)

∫
dx

∫
dv fε

t (x, v) =

∫
dxρε

t (x) = 1 ∀ t > 0,
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with

(3.1.21)
ρε

t (x) =

∫
dv fε

t (x, v), ρε
t ≥ 0 ∀ t,

ρε
t (x)dx : = spatial probability distribution,

and (3.1.20) follows from conservation of “mass” and from the fact that, because
of the trace norm normalization of ρ̂0, we have

∫
dx

∫
dv fε

ρ0(x, v) = Trρ̂0 = 1.

3.2 – The Mean-Field system in the Wigner formalism

The Wigner formalism introduced in the previous section is an alternative
way of describing the state and the dynamics of a quantum system and it is pre-
cisely equivalent to the density matrix (or Heisenberg) description, and, for pure
states, to the wave function (or Schrödinger) picture. As we have observed, the
advantage in using the Wigner formalism in looking at semiclassical approxima-
tion of quantum systems is that Wigner functions “live” on the classical phase
space and for suitable “semiclassical” quantum states the Wigner functions can
have a well defined limit when ε → 0 (see for example [13]).

Thus, in the perspective of looking at the semiclassical limit, we rephrase
the quantum mean-field model discussed in Section 2 by using the Wigner for-
mulation.

By applying the Wigner transform (3.1.8) to the Heisenberg equation(2.1.12)
we find

(3.2.1) (∂t + VN · ∇XN
)W ε

N (t) = T ε
NW ε

N (t),

where W ε
N (t) := W ε

N (XN , VN ; t) is the Wigner function describing the state of
the system (namely, the Wigner transform of the density matrix ρ̂N,t),

XN = (x1, . . . , xN ) ∈ R3N , VN = (v1, . . . , vN ) ∈ R3N ,

and the pair ZN := (XN , VN ) denotes the generic point in the classical N -particle
phase space. Moreover,

(3.2.2)
(T ε

NW ε
N ) (ZN ) =

i

(2π)3N

∫ 1/2

−1/2

dλ

∫
dKN ÛQ(KN )eiKN ·VN×

× (KN · ∇VN
) W ε

N (XN , VN + λεKN ),

where KN = (k1, . . . , kN ) ∈ R3N , UQ is the (mean-field) interaction potential
(2.1), and ÛQ is the Fourier transform of UQ, namely:

(3.2.3) ÛQ(k) =

∫

R3N

dXN e−i KN ·XN UQ(XN ).
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We note that (3.2.1) is the analogue of the classical Liouville equation (1.1.5)
and, roughly speaking, by setting “ε = 0” in (3.2.2) we obtain precisely the
Liouville operator appearing in (1.1.5). From now on, we will refer to (3.2.1) as
“N -particle Wigner-Liouville equation”.

We remind that we are dealing with undistinguishable particles, then we
consider N -particle Wigner functions WN which are invariant in the exchange
of particle names, namely

(3.2.4) WN (xπ(1), . . . , xπ(N), vπ(1), . . . , vπ(N)) = WN (x1, . . . , xN , v1, . . . , vN ),

for every permutation π acting on 1, . . . , N . It is easy to verify that this property
is preserved by the evolution (3.2.1).

3.2.1 – The Wigner BBGKY hierarchy

For any fixed j we introduce the j-particle “marginals”:

(3.2.5)

W ε
N,j(t) : = W ε

N,j(Xj , Vj ; t) =

=

∫

R3(N−j)×R3(N−j)

dXN−jdVN−jW
ε
N (Xj , XN−j , Vj , VN−j ; t).

It is easy to check that {W ε
N,j(t)}N

j=1 are precisely the Wigner transforms of

the RDM {ρ̂(j)
N,t}N

j=1. Furthermore, by integrating the Wigner-Liouville equation
(3.2.1) with respect to the last N − j variables we find the following sequence of
equations:

(3.2.6)

(
∂t + Vj · ∇Xj

)
W ε

N,j(t) = T ε
N,jW

ε
N,j(t) +

(
N − j

N

)
Cε

j,j+1W
ε
N,j+1(t),

j = 1, 2, . . . , N,

with W ε
N,N (t) = W ε

N (t) and Cε
N,N+1 ≡ 0,

which is precisely the BBGKY hierarchy (2.2.1) rephrased in the Wigner for-
malism and it can be seen as the quantum analogue of the classical BBGKY
hierarchy (1.4.3).

The operator T ε
j (for a fixed j), describing the interaction of the first j

particles, is given by

(3.2.7)

(
T ε

N,jW
ε
N,j

)
(Xj ,Vj)=

i(2π)−3N

N

j∑

l �=r

∫ 1/2

−1/2

dλ

∫

R3

dkφ̂(k)eik·(xl−xr)(k ·∇vl
)×

× W ε
N,j(Xj , Vl−1, vl + λεk, Vj−l),
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while the collision operator Cε
j,j+1 is

(3.2.8)

(
Cε

j,j+1W
ε
N,j+1

)
(Xj , Vj) =

= i(2π)−3N

j∑

l=1

∫ 1/2

−1/2

dλ

∫

R3

dkφ̂(k)

∫

R3×R3

dxj+1dvj+1 eik·(xl−xj+1)×

× (k · ∇vl
)W ε

N,j+1(Xj , xj+1, Vl−1, vl + λεk, Vj−l, vj+1),

and in (3.2.7) and (3.2.8) we denoted by φ̂ the Fourier transform of the pair
interaction potential φ, namely:

(3.2.9) φ̂(k) =

∫

R3

dx e−i k·xφ(x).

By using (iteratively) the Duhamel formula, the solution W ε
N,j(t) of the equations

(3.2.6) with initial datum W ε
N,j(0) can be written as

(3.2.10)

W ε
N,j(t)=Φ

(N)
j (t)W ε

N,j(0)+

+

N−j∑

n=1

∫

0≤tn≤···≤t1≤t

dtn . . .dt1 Φ
(N)
j (t − t1)

(
N − j

N

)
×

×Cε
j,j+1 . . .

(
N − j − n + 1

N

)
Cε

j+n−1,j+nΦ
(N)
j+n(tn)W ε

N,j+n(0).

where Φ
(N)
j is the flow associated with the j-particle operator −Vj · ∇Xj

+ T ε
N,j .

3.3 – The Hartree dynamics in the Wigner formalism

This section is devoted to the description of the Hartree dynamics discussed
in Section 2 in terms of the Wigner formalism.

By applying the Wigner transform (3.1.8) to the Hartree equation (in the
Heisenberg form) (2.2.6) we find

(3.3.1) (∂t + v · ∇x) fε(t) = T ε
fεfε(t),

where fε(t) := fε(x, v; t) is the Wigner function describing the state of the sys-
tem (namely, the Wigner transform of the density matrix ρ̂t solving the Hartree
equation (2.2.6)).

For any fixed g, the operator T ε
g acts as follows:

(3.3.2) T ε
g fε(x, v)=(2π)−3i

∫ 1/2

−1/2

dλ

∫

R3

dkφ̂(k)ρ̂g(k)ei k·x(k·∇v)fε(x, v+ελk),
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where

(3.3.3) ρg(x) =

∫

R3

dv g(x, v),

and ρ̂g is the Fourier transform of ρg, namely:

(3.3.4) ρ̂g(k) =

∫

R3

dx e−i k·xρg(x).

We observe that equation (3.3.1) is nonlinear (as we can see by (3.3.2) replacing
g with fε ) because it arises from a nonlinear Heisenberg equation. Thus in
the following we will refer to (3.3.1) as “(Hartree) nonlinear Wigner-Liouville
equation”. Furthermore, we note that (3.3.1) is the analogue of the classical
Vlasov equation (1.1.8) and, roughly speaking, by setting “ε = 0” in (3.3.2) we
obtain precisely the Vlasov operator appearing in (1.1.8).

By the analysis we did in the previous section, we know that the linear equa-
tion (3.1.16) preserves the L2-norm (see (3.1.19)). The same holds for the non-
linear equation (3.3.1) and, by assuming the potential to be sufficiently smooth,
it can be proved that the Hs-norm is controlled for any s > 0. Indeed we have
the following

Proposition 3.3.1. Let fε(t) be the solution of the nonlinear Wigner-
Liouville equation (3.3.1) whit initial datum fε

0 ∈ Hs(R3 × R3) with s ∈ N.
Assuming the potential φ to satisfy

(3.3.5)

∫
dk φ̂(k)|k|n < +∞ ∀ n = 1, 2, . . . , s

we find that

(3.3.6) ‖fε(t)‖Hs(R3×R3) ≤ eCt ‖fε
0‖Hs(R3×R3) ,

where C is a positive constant depending on s and on φ but not on ε. For s = 0
we have C = 0 and (3.3) becomes an equality (conservation of the L2-norm).

Proof. For any multi index α = {α1, α2, α3}, we use the standard notation

(3.3.7) Dα
x =

∂|α|

∂α1x1∂α2x2∂α3x3
,

where |α| = α1 + α2 + α3. Analogously we set

(3.3.8) Dα
v =

∂|α|

∂α1v1∂α2v2∂α3v3
.
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It is well known that Hs(R3 × R3) equipped with the scalar product

(3.3.9) (f, g)s =
∑

α,β∈N:
|α|+|β|≤s

(
Dα

v Dβ
xf, Dα

v Dβ
xg

)
L2(R3×R3)

is an Hilbert space and the corresponding norm is ‖g‖s := ‖g‖Hs(R3×R3) =√
(g, g)s. In order to estimate ‖fε(t)‖s, we compute the time derivative ∂tD

α
v

Dβ
xfε(t) with |α| + |β| ≤ s. By (3.3.1) we find:

(3.3.10)

∂tD
α
v Dβ

xfε(t) = Dα
v Dβ

x(−v · ∇x + T ε
fε)fε(t) =

= (−v · ∇x + T ε
fε)Dα

v Dβ
xfε(t)+

+
∑

α′<α:
|α′|=1

Cα,α′Dα′
v v · ∇xDα−α′

v Dβ
xfε(t)+

+
∑

β′<β:
|β′|≥1

i Cβ,β′

(2π)3

∫ 1/2

−1/2

dλ

∫
dk φ̂(k)ρ̂ε(k; t)Dβ′

x ei k·x×

× (k · ∇v)Dα
v Dβ−β′

x fε(x, v + ελk; t)

where Cα,α′ , Cβ,β′ are suitable combinatorial coefficients, α′ < α, β′ < β mean
α′

j < αj , β′
j < βj (for j = 1, 2, 3) respectively and finally α−α′ = {αj −α′

j}3
j=1,

β − β′ = {βj − β′
j}3

j=1.
We observe now that, by virtue of the antisymmetry of the operators v · ∇x

and T ε
g (for any function g), we have

(3.3.11) (h, v · ∇xh)L2(R3×R3) = (h, T ε
g h)L2(R3×R3) = 0,

for any g and for each h smooth enough. Moreover, reminding that fε(t) ∈ R
for all t, if s > 0, for any α, β : 0 < |α| + |β| ≤ s, we find:

(3.3.12)

1

2

d

dt

(
Dα

v Dβ
xfε(t), Dα

v Dβ
xfε(t)

)
L2(R3×R3)

=

=
(
Dα

v Dβ
xfε(t), ∂tD

α
v Dβ

xfε(t)
)
L2(R3×R3)

,

which for s = 0 (namely |α| = |β| = 0) becomes:

(3.3.13)
1

2

d

dt
(fε(t), fε(t))L2(R3×R3) = (fε(t), ∂tf

ε(t))L2(R3×R3) .

Inserting (3.3.10) in the right hand side of (3.3.13), by virtue of (3.3.11) we find:

(3.3.14)
1

2

d

dt
(fε(t), fε(t))L2(R3×R3) =

d

dt
‖fε(t)‖L2(R3×R3) = 0,

namely, the L2-norm is conserved.
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On the contrary, for s > 0, we insert (3.3.10) in the right hand side of
(3.3.12). We find the term involving Dα

v Dβ
xfε(t) does not give any contribution

by virtue of (3.3.11). Thus, by using the shorthand notation (·, ·)L2(R3×R3) =
(·, ·)L2 , we obtain

(3.3.15)

1

2

d

dt

(
Dα

v Dβ
xfε(t), Dα

v Dβ
xfε(t)

)
L2 =

∑

α′<α:
|α′|=1

×

× Cα,α′

(
Dα

v Dβ
xfε(t), Dα′

v v · ∇xDα−α′
v Dβ

xfε(t)
)

L2
+

+
∑

β′<β:
|β′|≥1

i Cβ,β′

(2π)3

∫ 1/2

−1/2

dλ

∫
dk φ̂(k)ρ̂ε(k; t)×

×
(
Dα

v Dβ
xfε(t), Dβ′

x ei k·x(k · ∇v)Dα
v Dβ−β′

x fε(x, v + ελk; t)
)

L2
.

We note that the first term on the right hand side of (3.3.15) is absent when
|α| = 0. On the contrary, if |α| ≥ 1, by using the Schwartz inequality we obtain:

(3.3.16)
(
Dα

v Dβ
xfε(t), Dα′

v v · ∇xDα−α′
v Dβ

xfε(t)
)

L2
≤ C ‖fε(t)‖2

s

because |α| − |α′|+ |β|+ 1 = |α|+ |β| ≤ s. Analogously, we find that the second
term in the right hand side of (3.3.15) is estimated by

(3.3.17)

∫
dk φ̂(k)ρ̂ε(k; t)|k|β′+1

∥∥Dα
v Dβ

xfε(t)
∥∥

L2

∥∥∥∇vDα
v Dβ−β′

x fε(t)
∥∥∥

L2
≤

≤
∫

dk φ̂(k)ρ̂ε(k; t)|k|β′+1 ‖fε(t)‖2
s ,

where we used that |α| + 1 + |β| − |β′| ≤ s. Now we remind that ρε(x; t) is the
spatial density associated with the Wigner function fε(t), namely ρε(x; t) ≥ 0
for all x and t,

(3.3.18) ρε(x; t) =

∫
dvfε(x, v; t),

then the L1-norm of ρε(t)|t=0 is preserved by the evolution and it is equal to
one. Thus, the Fourier transform ρ̂ε(t) is in L∞(R3 × R3) for all t and we find:

(3.3.19)

∫
dkφ̂(k)ρ̂ε(k; t)|k|β′+1 ≤ ‖ρ̂ε(t)‖L∞(R3×R3)

∫
dkφ̂(k)|k|β′+1 < +∞,
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by virtue of the assumption (3.3.5) on the pair interaction potential φ (we remind
that 1 ≤ |β′| < |β| ≤ s). Finally, by (3.3.15), (3.3.16), (3.3.17) and (3.3.19) , it
follows that:

(3.3.20)

1

2

d

dt

∑

α,β:
|α|+|β|≤s

(Dα
v Dβ

xfε(t), Dα
v Dβ

xfε(t))L2=
1

2

d

dt
‖fε(t)‖2

s≤C ‖fε(t)‖2
s , ∀ t

C depending on φ and s but not on ε. We conclude straightforward by observing
that inequality (3.3.20) is equivalent to (3.3.6).

3.3.1 – The Wigner infinite hierarchy

Let us consider the sequence {fε
j (t)}j≥1, where fε

j (t) = fε
j (Xj , Vj ; t) is given

by:

(3.3.21) fε
j (Xj , Vj ; t) =

j∏

k=1

fε(xk, vk; t) = (fε)⊗j(Xj , Vj ; t)

and fε(t) is the solution of the nonlinear Wigner-Liouville equation (3.3.1). By
differentiating in time (3.3.21) we easily deduce the following (infinite) hierarchy
of equations:

(3.3.22)
(
∂t + Vj · ∇Xj

)
fε

j (t) = Cε
j,j+1f

ε
j+1(t),

where the operator Cε
j,j+1 is the same of (3.2.8). This is precisely the Hartree

hierarchy (2.2.4) rephrased in the Wigner formalism and it can be seen as the
quantum analogue of the Vlasov hierarchy (1.4.6). Here we derived the Hartree
hierarchy by considering the j-particle Wigner function (3.3.21) which is a prod-
uct of solution of the nonlinear Wigner-Liouville equation (3.3.1). Conversely,
as we observed in Section 2 for the Heisenberg formalism, by starting from the
hierarchy (3.3.22) and assuming the solution to be factorized according to a one-
particle time dependent Wigner function fε(t), it turns out that fε(t) has to
solve equation (3.3.1).

By using (iteratively) the Duhamel formula, the solution fε
j (t) of the equa-

tions (3.3.22) with initial datum fε
j (0) can be written as

(3.3.23)

fε
j (t) = Φj(t)f

ε
j (0)+

+

N−j∑

n=1

∫

0≤tn≤···≤t1≤t

dtn . . .dt1Φj(t − t1)×

× Cε
j,j+1 . . . Cε

j+n−1,j+n Φj+n(tn)fε
j+n(0).
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where Φj is the flow associated with the j-particle operator −Vj · ∇Xj , namely
it is the free j-particle flow

(3.3.24) Φj(t)f
ε
j (Xj , Vj) = fε

j (Xj − Vjt, Vj).

3.4 – The Limit N → ∞
By the analysis done in the previous section, it is quite natural to rephrase

the mean-field result discussed in Section 2 in the Wigner formalism. This will
be the subject of this section and, here and in the sequel, we will always assume
the interaction potential to be sufficiently smooth.

Thanks to Theorem 2.3.1, we know that, for bounded potentials, the se-

quence ρ̂
(j)
N,t of the RDM associated with the N -particle mean-field dynamics is

converging in trace norm, as N → ∞, to the j-fold product ρ̂⊗j
t of solutions of

the Hartree equation. By reminding that the space L1(L2(R3j)) of trace class
operators on L2(R3j) is a subspace of the space L2(L2(R3j)) of Hilbert-Schmidt
operators on L2(R3j), it follows that:

(3.4.1)
∥∥∥ρ̂

(j)
N,t − ρ̂⊗j

t

∥∥∥
L2(L2(R3j))

≤
∥∥∥ρ̂

(j)
N,t − ρ̂⊗j

t

∥∥∥
L1(L2(R3j))

→ 0, as N → ∞.

Therefore, by virtue of the equality (3.1.12) concerning the Hilbert-Schmidt norm
and thanks to the property (3.1.10) of the Wigner function, we can conclude that

(3.4.2)

∥∥∥W ε
N,j(t) − (fε(t))

⊗j
∥∥∥

L2(R3j×R3j)
≤

≤
∥∥∥ρ̂

(j)
N,t − ρ̂⊗j

t

∥∥∥
L1(L2(R3j))

→ 0, as N → ∞,

where W ε
N,j(t) are the time evolved Wigner marginals defined in (3.2.5) and fε(t)

is the solution of the (Hartree) nonlinear Wigner equation (3.3.1).
Therefore, the mean-field theorem ensuring the convergence in trace norm

of the RDM, guarantees also the L2-strong convergence of the corresponding
Wigner marginals. Nevertheless, by looking at (3.4.2), it is clear that the error
in the approximation for large N is precisely the same we saw previously, and
then, it is depending on ε and diverging as ε → 0.

It turns out that, in the perspective of obtaining estimates on the error in
the mean-field approximation which are uniform with respect to ε or, at least,
which exhibit a less singular dependence on ε, a quite natural approach is to
rephrase the whole mean-field result discussed in Section 2 (by assuming the
interaction to be sufficiently smooth) in the Wigner formalism.

By looking at the Wigner BBGKY hierarchy (3.2.6) we observe that the

operator T ε
N,j is of size O

(
j2

N

)
while the operator Cε

j,j+1 is O(1) with respect



278 FEDERICA PEZZOTTI [56]

to N and it is properly the same appearing in the infinite hierarchy (3.3.22).
Therefore, in analogy to what we did in proving Theorem 2.3.1 one expects that

the flow Φ
(N)
j (t) appearing in (3.2.10) converges in a suitable sense to the free

flow Φj(t) as N → ∞ so that, this time by using the BBGKY hierarchy, one can
prove that

(3.4.3) W ε
N,j(t) → fε

j (t), as N → ∞,

in a sense to be made precise.
In Sections 1 and 2, to show the validity of propagation of chaos, we con-

sidered as initial datum for the N -particle dynamics the (bosonic) factorized
state (2.2.8), or equivalently, (2.2.9). We observe that the Wigner transform fε

ρ

defined in (3.1.8) is linear with respect to the density matrix (kernel) ρ, thus we
find that the Wigner transform of the factorized state ρ̂N,0 = ρ̂⊗N

0 considered in
Theorem 2.3.1 is also factorized, namely

(3.4.4) W ε
N (XN , VN ) =

N∏

i=1

fε
0 (xi, vi),

where fε
0 is the Wigner transform of ρ̂0. Moreover, being ρ̂0 = |ψ0 >< ψ0|, we

find

(3.4.5) fε
0 = fε

ρ0
↔ ρ̂0 = |ψ0 >< ψ0|

and

(3.4.6) ‖fε
0‖L2(R3×R3) = ‖ρ0‖L2(R3×R3) = ‖ψ0‖2

L2(R3) = 1.

By taking the j-particle marginal associated with W ε
N (XN , VN ) we straightfor-

ward obtain

(3.4.7) W ε
N,j(Xj , Vj) =

j∏

i=1

fε
0 (xi, vi) = (fε

0 )
⊗j

(Xj , Vj),

then, by (3.2.10), the solution of the equations (3.2.6) with initial datum (3.4.7)
is given by

W ε
N,j(t)= Φ

(N)
j (t)(fε

0 )⊗j+

+

N−j∑

n=1

∫

0≤tn≤···≤t1≤t

dtn . . .dt1 Φ
(N)
j (t − t1)

(
N − j

N

)
×(3.4.8)

× Cε
j,j+1 . . .

(
N − j − n + 1

N

)
Cε

j+n−1,j+n Φ
(N)
j+n(tn)(fε

0 )⊗j+n,
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while the hierarchy (3.3.23) with initial datum (fε
0 )⊗j is

(3.4.9)

fε
j (t) = Φj(t)(f

ε
0 )⊗j+

+

N−j∑

n=1

∫

0≤tn≤···≤t1≤t

dtn . . .dt1 Φj(t − t1)×

× Cε
j,j+1 . . . Cε

j+n−1,j+n Φj+n(tn)(fε
0 )⊗j+n.

Following the line of the proof of Theorem 2.3.1, to prove the convergence of the
series (3.4.8) to (3.4.9) we must find a norm |·|j for the marginals W ε

N,j(t) which

plays the role of the trace norm on L2(R3j) in Theorem 2.3.1. First of all, it has

to be controlled by the flows Φ
(N)
j and Φj in the sense that for any T > 0 and

for fixed j

(3.4.10)
∣∣∣Φ(N)

j (t)W ε
N,j

∣∣∣
j
≤ Ct,j

∣∣W ε
N,j

∣∣
j
, Ct,j > 0 : sup

t∈[0,T ]

Ct,j < +∞,

and

(3.4.11)
∣∣Φj(t)W

ε
N,j

∣∣
j
≤ C ′

t,j

∣∣W ε
N,j

∣∣
j
, C ′

t,j > 0 : sup
t∈[0,T ]

C ′
t,j < +∞,

(note that for the flows S
(N)
j and Sj involved Theorem 2.3.1 we had properly con-

servation of the trace norm, actually estimates of the form (3.4.10) and (3.4.11)
would have been sufficient). Thus, by (3.4.10) we could have the following bound
for the n-th term of the (formal) series (3.4.8)

(3.4.12)

tn

n!
j(j + 1) . . . (j + n − 1)(Ct)

n
∣∣(fε

0 )⊗j+n
∣∣
j+n

,

Ct = Ct(φ, j) > 0 : ∀T > 0 sup
t∈[0,T ]

Ct < +∞

provided that the operator Cε
j,j+1 satisfies

(3.4.13)
∣∣Cε

j,j+1W
ε
N,j+1

∣∣
j
≤ j C

∣∣W ε
N,j+1

∣∣
j+1

, C = C(φ) > 0.

Clearly (3.4.12) and (3.4.13) would hold even for the n-th term of the series
(3.4.9) by virtue of (3.4.11).

By (3.4.12), it would follow that |·|j has to be such that

(3.4.14)
∣∣(fε

0 )⊗j
∣∣
j

= (|fε
0 |1)

j ≤ aj for any j,
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where a is some positive constant. Then we could conclude that the n-th term
of the (formal) series (3.4.8) and the n-th term of (3.4.9) are bounded by:

(3.4.15)

tn

n!
j(j + 1) . . . (j + n − 1) (Ct)

naj+n < tn(Cj aj) (2aCt)
n,

C = C(φ) > 0

and then we would have convergence for short times |t| < t0 (t0 depending on
φ and a) of (3.4.8) and (3.4.9) with respect to the norm |·|j . This would imply

that the solution of the infinite hierarchy (3.3.23) with initial datum (fε
0 )⊗j is

uniquely determined up to time t0, thus, by the analysis done in the previous
section, we would know that it is given by (fε(t))⊗j , fε(t) solving the nonlinear
Wigner-Liouville equation (3.3.1). Moreover, by (3.4.5) it would follow that

(3.4.16) fε(t) = fε
ρt

↔ ρ̂t = |ψt >< ψt|,

ψt solving the Hartree equation (2.1.21) with initial datum ψ0.
To prove convergence of (3.4.8) to (3.4.9), the norm |·|j has to be such that

(3.4.17)
∥∥T ε

N,j

∥∥ → 0 as N → ∞,

where ‖·‖ is the operator norm on the space of j-particle functions with finite
norm |·|j . In fact, we observe that

(3.4.18)
∣∣∣Φ(N)

j (t) fj − Φj(t) fj

∣∣∣
j
≤

∫ t

0

dτ
∣∣Φj(t − τ)T ε

N,j fj(τ)
∣∣
j
,

for any j-particle Wigner function fj . Thus, by virtue of (3.4.11) and (3.4.17)
we would obtain

(3.4.19) lim
N→∞

∥∥∥Φ
(N)
j (t) − Φj(t)

∥∥∥ = 0,

implying convergence of (3.4.8) to (3.3.23) with respect to the norm |·|j , namely,
propagation of chaos, for short times |t| < t0 in the sense that, for any fixed j,

(3.4.20)
∣∣W ε

N,j(t) − (fε(t))⊗j
∣∣
j
→ 0, as N → ∞ ∀ t < t0.

Finally, the argument just given could be iterated to prove propagation of chaos
for t ∈ [t0 − δ, t0 + δ] (for any δ > 0) if we could prove that

(3.4.21)
∣∣fε

j (t0 − δ)
∣∣
j

= (|fε(t0 − δ)|1)
j ≤ Caj . For any fixed j.

In fact, the bound (3.4.21), together with the convergence proved previously up
to time t0, would imply estimate (3.4.14) to hold for W ε

N,j(t) where t = t0 − δ.
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Then, by iteration we could conclude that propagation of chaos in the sense of
(3.4.20) holds for all t.

By looking at the scheme we have just presented it turns out that the ac-
curacy of the mean-field approximation would be provided by the speed of con-
vergence of the operator norm of T ε

N,j to zero as N → ∞ (see (3.4.17)). Then,

if one was able to provide an estimate uniform in ε for
∥∥T ε

N,j

∥∥, the convergence
(3.4.20) would be also uniform with respect to ε and then, by iteration, we would
have uniformity in ε for all times.

– Choice of the norm |·|
Since by (3.4.2) we already know that the j-particle Wigner marginals are

converging strongly in L2 to the j-fold product of solutions of the (Hartree)
nonlinear Wigner-Liouville equation, it would be reasonable to choose the L2-
norm as |·| to check if it is possible to improve the “bad” dependence of the
error (in the limit N → ∞) with respect to ε. Moreover, on the basis of (3.4.6)
one could think to choose the L2-norm because (3.4.14) would be satisfied (with
a = 1) and this would hold for each t because the Hartree dynamics preserves

the L2-norm (see (3.3.14)). Furthermore, the flows Φ
(N)
j (t) and Φj(t) not only

control the L2-norm in the sense of (3.4.10) and (3.4.11) but even preserve it.
Nevertheless, it turns out that the operator Cε

j,j+1 is unbounded from L2

(R3(j+1) × R3(j+1)) to L2(R3j × R3j) (it can be verified easily by looking at
(3.2.8)), thus property (3.4.13) fails.

Actually, one can verify that, by assuming Hs regularity at time t = 0, it is

propagated by the flow Φ
(N)
j (t) (see [25]), by the free flow Φj(t) and also by the

nonlinear Wigner-Liouville equation (3.3.1) (according to Proposition 3.3.1). So,
this choice could be appropriate for the preservation in time of property (3.4.14)
but, as for the L2-norm, the boundness of Cε

j,j+1 fails.
By taking into account the (formal) analogy between the N -particle Wigner-

Liouville equation (3.2.1) and the Liouville equation (1.1.5) one could think to
use the L1-norm. Indeed it is easy to check that the operators T ε

N,j and Cε
j,j+1 are

bounded in L1 and it can be also verified that the flow Φ
(N)
j (t) controls the L1-

norm in the sense of (3.4.10). The free flow Φj(t) clearly preserves the L1-norm.
Furthermore, by assuming property (3.4.14) to hold , namely fε

0 ∈ L1(R3 ×R3),
it is easy to check that it is verified for all t because the L1-norm is controlled
by the Hartree dynamics. In other words, property (3.4.21) would be satisfied
and we could iterate the procedure presented above to prove convergence for all
times. Therefore the L1-norm could seem a good choice but the point is that
Wigner functions are, in general, not in L1. More precisely, by only knowing that
fε
0 is the Wigner transform of a wave function ψ0 ∈ L2(R3) (as in the present

situation), we are not guaranteed that fε
0 ∈ L1(R3 ×R3). Indeed, in general the
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L1-norm of Wigner functions is not related to any norm of the wave functions
from which they arise. We will come back on this topic in Remark 3.4.1.

It turns out that a fruitful approach is to use a norm which, from on side, is

“good” for estimating Cε
j,j+1, it is controlled by Φ

(N)
j (t), Φj(t) and even by the

Hartree dynamics, and, on the other side, it somehow “relates” Wigner functions
to the wave functions from which they arise.

Let us to consider the Fourier transform Fx of the N -particle Wigner func-
tion with respect to position variables, namely

(3.4.22) (FxW ε
N )(PN , VN ) := W̃ ε

N (PN , VN ) =

∫
dXN e−i PN ·XN W ε

N (XN , VN ),

with PN = (p1, . . . , pN ) ∈ R3N and let us define the L̃1-norm as

(3.4.23)

‖W ε
N‖L̃1(R3N×R3N ) : =

∥∥∥W̃ ε
N

∥∥∥
L1(R3N×R3N )

=

=

∫
dPN

∫
dVN |W̃ ε

N (PN , VN )|.

We can verify that the operator T ε
N,j : L̃1(R3j×R3j) → L̃1(R3j×R3j) is bounded

under the assumption
∥∥∥φ̂

∥∥∥
L1(R3)

< +∞. Indeed, by computing

(3.4.24) Fx(T ε
N,jW

ε
N,j)(Pj , Vj) =

∫
dPj e−i Pj ·Xj T ε

N,jW
ε
N,j(Xj , Vj),

by manipulating (3.2.7) we find

(3.4.25)

Fx(T ε
N,jW

ε
N,j)(Pj , Vj) := (T̃ ε

N,jW̃
ε
N,j)(Pj , Vj) =

=
i(2π)−3N

εN

j∑

l �=r

∑

σ=±1

σ

∫
dk φ̂(k)W̃ ε

N,j

(
p1, . . . , pl+

− k, . . . , pj , v1, . . . , vl +
σεk

2
, . . . , vj

)
,

then

(3.4.26)

∥∥T ε
N,jW

ε
N,j

∥∥
L̃1(R3j×R3j)

=
∥∥∥T̃ ε

N,jW̃
ε
N,j

∥∥∥
L1(R3j×R3j)

≤

≤ 1

(2π)3N

2j2

εN

∥∥∥φ̂
∥∥∥

L1(R3)

∥∥W ε
N,j

∥∥
L̃1(R3j×R3j)

.

In a similar way, we verify that the operator Cε
j,j+1 : L̃1(R3(j+1) × R3(j+1)) →

L̃1(R3j × R3j) is bounded under the assumption
∥∥∥φ̂

∥∥∥
L∞(R3)

< +∞. In fact we

compute

(3.4.27) Fx(Cε
j,j+1W

ε
N,j+1)(Pj , Vj) =

∫
dPj e−i Pj ·Xj (Cε

j,j+1W
ε
N,j+1)(Xj , Vj),
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obtaining by (3.2.8) that

(3.4.28)

Fx(C
ε
j,j+1W

ε
N,j+1)(Pj , Vj) := (C̃ε

j,j+1W̃
ε
N,j+1)(Pj , Vj) =

=
i(2π)−3N

ε

(
N − j

N

) j∑

l=1

∑

σ=±1

σ×

×
∫

dvj+1

∫
dkφ̂(k)W̃ ε

N,j+1

(
p1, . . . , pl+

− k, . . . , pj , k, v1, . . . , vl +
σεk

2
, . . . , vj+1

)
,

then

(3.4.29)

∥∥Cε
j,j+1W

ε
N,j+1

∥∥
L̃1(R3j×R3j)

=
∥∥∥C̃ε

j,j+1W̃
ε
N,j+1

∥∥∥
L1(R3j×R3j)

≤

≤ (2π)−3N (2j)

ε

(
N − j

N

) ∥∥∥φ̂
∥∥∥

L∞(R3)

∥∥W ε
N,j+1

∥∥
L̃1(R3(j+1)×R3(j+1))

.

Furthermore, concerning the initial datum (fε
0 )⊗j , by (3.4.5) we have

(3.4.30)

∥∥(fε
0 )⊗j

∥∥
L̃1(R3j×R3j)

=
(
‖fε

0‖L̃1(R3×R3)

)j

≤

≤ C

(∥∥∥ψ̂0

∥∥∥
L1(R3)

)2j

≤ C
(
‖ψ0‖Hs(R3)

)2j

, s > 3/2

where the last inequalities are simply obtained by explicit computations. For
any t > 0, by (3.4.16) we have

(3.4.31) ‖fε(t)‖L̃1(R3×R3) ≤ C
∥∥∥ψ̂t

∥∥∥
2

L1(R3)
≤ C ‖ψt‖2

Hs(R3) , s > 3/2,

and by using standard energy methods it is easy to check that, under suitable
smoothness assumption on the potential φ, the Hs-norm of ψt is controlled by
the Hs-norm of ψ0 for any s. Furthermore, even by looking at the (Hartree)
nonlinear Wigner-Liouville equation (3.3.1), it is easy to check that the L̃1-norm
of fε(t) is controlled by the L̃1-norm of fε

0 .
Finally, by virtue of (3.4.26), (3.4.29), (3.4.30) and (3.4.31), it follows that

by setting

(3.4.32) |·|j := ‖·‖L̃1(R3j×R3j) ,

and by assuming ψ0 ∈ Hs(R3) with s > 3/2 and the potential φ to be sufficiently
smooth (in order to make all constants appearing in the estimates finite), we have

(3.4.33)
∣∣W ε

N,j(t) − (fε(t))⊗j
∣∣
j
→ 0, as N → ∞ ∀ t.
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Therefore, for smooth potentials, we can show propagation of chaos in the Wigner
formulation by following the same strategy of Theorem 2.3.1. Nonetheless, we
note that the error in the approximation (3.4.33) is still not uniform with respect
to ε and diverging when ε → 0 because from (3.4.26) we see that the operator
norm of T ε

N,j is of order 1/ε (as in Theorem 2.3.1).

We conclude the present analysis by observing that (3.4.33) implies straight-
forward that

(3.4.34)

∫

R3j

dVj sup
Xj

∣∣W ε
N,j(Xj , Vj ; t) − (fε(t))⊗j(Xj , Vj)

∣∣ → 0, as N → ∞ ∀ t,

namely

(3.4.35)
∥∥W ε

N,j(t) − (fε(t))⊗j
∥∥

L∞(R3j
Xj

)∩L1(R3j
Vj

)
→ 0, as N → ∞ ∀ t.

Despite the fact that (3.4.34) is a quite “strong” convergence, it is not related
to any convergence for the reduced density matrices and it does not imply any
convergence for the expected value of j-particle observables (namely, it does not
provide informations about macroscopic values of physically interesting quanti-
ties).

Nevertheless, one can verifies that the convergence (3.4.33) and the uniform
bounds

(3.4.36)
∥∥W ε

N,j(t)
∥∥

L2(R3j×R3j)
≤ 1, ‖fε(t)‖L2(R3×R3) ≤ 1,

imply

(3.4.37) W ε
N,j(t) → (fε(t))⊗j , as N → ∞ ∀t, L2 − weakly.

By virtue of property (3.1.4), (3.4.37) ensures the convergence of expected values
of suitable observables. More precisely, (3.4.37) allows to compute “macroscopic”
(or “effective”) expected value of j-particle observables Oj whose phase space
representations (symbols) are in L2(R3j × R3j) (see also [11]). Indeed, for any
j-particle observable Oj with symbol Oj(Xj , Vj), we have the following estimate

(3.4.38) (Oj , W
ε
N,j(t))L2 ≈ (Oj , (f

ε(t))⊗j)L2 +
Cj(ε)

N
, ∀t, as N → ∞,

where Cj(ε) → ∞ as ε → 0.

Remark 3.4.1. We observe that all estimates we did by using the L̃1-norm
would be also valid for the L1-norm. Thus, by assuming fε

0 ∈ L1(R3 × R3) and
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following exactly the same strategy leading to the L̃1-convergence (3.4.33), we
can prove that

(3.4.39)
∥∥W ε

N,j(t) − (fε(t))⊗j
∥∥

L1(R3j×R3j)
→ 0, as N → ∞ ∀ t,

and, as for the L̃1-convergence, it can be verified that (3.4.39) together with
the uniform bounds (3.4.36) leads to the L2-weak convergence (3.4.37) and, in
particular, to the estimate (3.4.38). Then, apparently, there is no reason for
considering the L̃1-norm instead of the L1-norm. In fact, in both cases we can
realize the limit N → ∞ in the L2-weak sense and in both cases we find that the
error in the mean-field approximation is not uniform with respect to ε, indeed
diverging as ε → 0 (by looking at the constant Cj(ε) in (3.4.38)). Nevertheless,
as we have already noticed, the crucial point is: which assumptions one has to do
on the wave function ψ0 to ensure that its Wigner transform fε

0 is in L1(R3×R3)?
We remind that

(3.4.40)

∫
dx

∫
dvfε

0 (x, v)=

∫
dx|ψ0(x)|2 = Trρ̂0 = 1 with ρ̂0 = |.ψ0 >< ψ0|

We know that the integral on the phase space of fε
0 (x, v) does not correspond

to its L1-norm being fε
0 not positive in general. But, by considering a wave

function ψ0 such that fε
0 (x, v) ≥ 0 for any x, v we could identify the L2-norm of

ψ0 (which is taken equal to one) with the L1-norm of fε
0 and we are guaranteed

that property (3.4.14) is verified (with a = 1). The only way for having a positive

Wigner function is to choose ψ0 ≈ e−x2

(see for example [11]), in particular we

can consider coherent states of the form ψ(x) = Nεe
− (x−x0)2

ε ei
v0x

ε , for some
x0, v0 ∈ R3.

In the end, we found that propagation of chaos in the mean-field limit by
using the Wigner formalism can be proven, for smooth potentials, in the L2-
norm, directly by the mean-field result for the RDM (the use of the BBGKY
hierarchy is prevented by the unboundedness of the operators involved). On the
other side, by treating the Wigner BBGKY hierarchy, it can be proven in the
L1-norm by choosing initial gaussian states, and, in the L̃1-norm, by choosing
initial wave functions in Hs, s > 3/2 (if the dimension of the system is assumed
to be equal to 3; in general, in any dimension d, we have s > d/2). In each of the
three cases we obtain convergence of expected values of j-particle observables Oj

with symbol in L2(R3j × R3j). Furthermore, in each of these cases the error in
the mean-field approximation is not uniform with respect to ε and it is diverging
as ε → 0.
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3.5 – Alternative approaches

The validity of propagation of chaos in the mean-field limit has been estab-
lished also in [26] by using the “second-quantization formalism”. For fixed ε, the
authors provide an alternative proof of the emergence of the Hartree dynamics
for bounded potential φ and, even if obtained by using a different formalism, the
general strategy of the proof is analogous to that of [7] and the result can be
formulated in terms of convergence of reduced density matrices to products of
solutions of the Hartree equation. Then, by passing to the Wigner formalism, for
a restricted class of two-body interactions the following (distributional) estimate
in S ′(R3j × R3j) is proven

(3.5.1) W ε
N,j(t) ≈ (fε(t))⊗j +

Cj

N
+ O

(
e−1/

√
‖φ‖∞t

)
, ∀ t, as N → ∞,

where ‖φ‖∞ := ‖φ‖L∞(R3), Cj is a positive constant only depending on j and

W ε
N,j(t) and fε(t) are defined as in (3.4.38). It turns out that the error in

approximating the N -particle evolution with the Hartree dynamics is indeed
uniform with respect to ε but the exponential remainder appearing in (3.5.1)
is small only if ‖φ‖∞ t << 1, namely, by looking at very short times or by
considering an interaction potential having very small L∞-norm.

– Joint limit N → ∞ and ε → 0

In looking at the connection between mean-field limit and semiclassical ap-
proximation, a joint limit N → ∞ and ε → 0 can be considered. Indeed, there
are systems in which this kind of limit arises quite naturally by the scaling prop-
erties of the Hamiltonian.

A remarkable example is provided by the model considered in [19] and, pre-
viously, in [8] (with a somewhat different interpretation). The model considered
in [19] is a system of N fermions interacting by the mean-field potential (2.1)
with initial data localized in a cube of size of order one and at energy comparable
with the ground state energy of the system. The Hamiltonian of the system is
given by (2.1.5), thus all the potential energy arises from the interaction term
(2.1) and it follows straightforward that the potential energy per particle is of
order one. As regard to the kinetic energy, it can be verified that the kinetic
energy per particle of N fermions, i.e., − 1

2ε2Δxk
(k = 1, . . . , N), in a cube of size

one scales like ε2N2/3 in the ground state. Therefore, in order to look at the
limit N → ∞ keeping the kinetic energy per particle of order one, one has to
multiply the kinetic energy in (2.1.5) by N−2/3. Then, by defining the “effective
Planck constant” εeff such that εeff = εN−1/3, the Hamiltonian of the systems
becomes

(3.5.2) HQ
N,eff = −

N∑

k=1

ε2
effΔk

2
+ UQ(XN ), εeff ≈ N−1/3 → 0 as N → ∞.
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Therefore the kinetic and the potential energy per particle in the Hamiltonian
HQ

N,eff are comparable and, as we already observed in introducing the mean-
field model, this is the basic physical criterion to obtain a non trivial limiting
dynamics (as N → ∞) that captures the nonlinear effect of the interaction.

Clearly, the limit N → ∞ for the system whose Hamiltonian is HQ
N,eff entails

the limit εeff → 0 which is a semiclassical limit for (2.1.5). Thus, one expects
to find a limiting dynamics which is ruled by a classical equation. On the other
side, it is known (and it is validated by numerous applications) that the equation
governing the macroscopic (physically observable) dynamics of a Fermi gas in
states close to the ground state is the Hartree-Fock equation:

(3.5.3)

iε∂tρ̂t =

[
−ε2

2
Δ, ρ̂t

]
+ Tr2 {[φ(x − x2), ρ̂t ⊗ ρ̂t]}+

−
∫

dz [φ(x − z) − φ(y − z)] ρt(x, z)ρt(z, y).

Equation (3.5.3) differs from the Hartree equation (2.2.6) because of the presence
of the so called “exchange term” which is the main effect of the correlations
induced by the Fermi-Dirac statistics (see (2.1.2)). In [19] it has been proven
that there exists a fixed time T > 0 such that the difference, in a suitable weak
sense, between the j-particle marginal associated with the N -particle Wigner
function of this system and the solution of the (Hartree) nonlinear Wigner-
Liouville equation (3.3.1) is of order N−1 ≈ ε3 for any time t ≤ T , provided that
the potential φ is real analytic. In other words, all ε2 corrections come from the
difference between the Vlasov equation (1.1.8) and the Hartree equation (2.2.6);
hence they are related to the accuracy of the semiclassical approximation in the
one-body theory. In particular it is proven that all correlation effects (the main
of them is precisely the exchange term) are of order at most O(ε3).

We observe that the case of undistinguishable particles (in the sense specified
by (2.1.13) and (6.2.4)) and even the bosonic case are crucially different from
the fermionic case discussed above. Indeed in these situations the kinetic energy
per particle , i.e., − 1

2ε2Δxk
(k = 1, . . . , N), in a cube of size one scales like ε2

in the ground state. Thus the Hamiltonian of an N -particle system interacting
by the potential (2.1) is precisely (2.1.5) because no further scaling is needed.
Therefore, there is no reason for considering a joint limit and the problem of
realizing the (mean-field) limit N → ∞ uniformly in ε arises quite naturally.

On the other side, even for undistinguishable particles there are models in
which the scaling of the potential somewhat leads to define a rescaled Hamilto-
nian which exhibits an effective Planck constant going to 0 as N → ∞ (as in
the fermionic case). These kind of systems are taken into account in [24] (and
previously in [8] with the specific scaling ε ≈ N−1/3) and an example is provided
by systems interacting by Kac potentials defined below.
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Example: the Kac potential. Consider a system of N identical bosons
of mass m = 1 interacting through the (Kac) potential

(3.5.4) φλ(x) =
1

λ
φ
(x

λ

)
,

where λ is a large parameter of the same order of N and φ is a given smooth
potential. The Hamiltonian is:

(3.5.5) HN = −ε2

2

N∑

k=1

Δxk
+

∑

1≤k<l≤N

φλ(xk − xl).

After the rescaling x = λq the Hamiltonian becomes:

(3.5.6) HN = −1

2

( ε

λ

)2 N∑

k=1

Δqk
+

1

λ

∑

1≤k<l≤N

φ(qk − ql).

Setting λ = N , and εsc = ε
λ = ε

N we finally get:

(3.5.7) Hsc
N = −ε2

sc

2

N∑

k=1

Δqk
+

1

N

∑

1≤k<l≤N

φ(qk − ql),

where εsc ≈ 1/N → 0 as N → ∞.

In [24] it has been proven that in all situations in which N → ∞ entails ε → 0
(as the case of the Kac potential), which, roughly speaking, are “asymptotically
classical”, the Vlasov equation is indeed recovered in the limit N → ∞ even
when ε → 0 according to an arbitrary law. For WKB states of the form ψ(x) =
a(x)eiS(x)/ε the result, formulated in terms of weak convergence of j-particles
Wigner marginals, is local in time (as one expects from WKB analysis), while by
considering suitable mixtures of WKB states, the result holds globally in time.
The potential is assumed to be in C2

b (R3) and the explicit rate of convergence is
computed by means of a constructive method.

In [8] the same result had been proven for the specific scaling ε ≈ N−1/3 by
considering more general initial data but assuming the potential to be analytic.
In [8] it was also proven that the solution of the (Hartree) nonlinear Wigner-
Liouville equation (3.3.1) converges in S ′(R3 ×R3) to the solution of the Vlasov
equation (1.1.8) as ε → 0.
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4 – Mean-Field limit and Semiclassical Expansion

In this section we describe a different approach in investigating the ε de-
pendence of the error in the mean-field approximation, by using the Wigner
formalism. It consists in looking at the semiclassical expansion of the N -particle
system and proving that each term of the expansion agrees, in the limit N → ∞,
with the corresponding one associated with the Hartree equation (see [29]).

This idea is motivated by the following argument.

In Section 1 we recalled what is established by classical mean-field theory,
namely, under suitable assumption on the potential, for any fixed j we have

(4.1) F
(j)
N (t) → (f(t))⊗j , as N → ∞,

in the weak topology of probability measures, where F
(j)
N (t) are the j-particle

marginals associated with the solution FN (t) of the Liouville equation (1.1.5)
with a factorized initial datum f⊗N

0 and f(t) is the solution of the Vlasov equa-
tion (1.1.8) with initial datum f0. Thus, (4.1) means that propagation of chaos
holds for the classical mean-field model. On the other side, in Section 3 we proved
that, under suitable assumptions on the potential and on the initial datum, the
following quantum mean-field limit result holds

(4.2) W ε
N,j(t) → (fε(t))⊗j , as N → ∞, L2 − weakly,

where W ε
N,j(t) are the j-particle Wigner marginals associated with the solu-

tion W ε
N (t) of the N -particle Wigner-Liouville equation (3.2.1) with a factorized

initial datum (fε
0 )⊗N and fε(t) is the solution of the (Hartree) nonlinear Wigner-

Liouville equation (3.3.1) with initial datum fε
0 . Furthermore, we found that the

error in approximating W ε
N,j(t) with (fε(t))⊗j is not uniform with respect to ε

and diverging when ε → 0.
As regard to the semiclassical limit ε → 0, it is known that the N -particle

quantum (mean-field) dynamics for sufficiently smooth potentials converges (for
fixed N) in a suitable sense to the the N -particle classical (mean-field) evolu-
tion (see for example [12], [25]). Moreover, it has also been proven that the
Hartree dynamics with smooth interaction, rephrased in the Wigner formalism,
is approximated in a suitable sense by the classical Vlasov evolution (see for
example [8], [14]).

So that, it seems natural to consider the solution W ε
N (t) of the N -particle

Wigner-Liouville equation (3.2.1) with a suitable factorized initial datum (fε
0 )⊗N

and to look for an asymptotic expansion as

(4.3) fε
0 = f

(0)
0 + εf

(1)
0 + ε2f

(2)
0 + . . .

implying, for the initial j-particle marginals,

(4.4) W ε
N,j (0) = (fε

0 )⊗j = (f
(0)
0 )⊗j + εW

(1)
N,j (0) + ε2W

(2)
N,j (0) + . . .
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Then, for the time evolved marginals we expect to find an analogous expansion
as

(4.5) W ε
N,j (t) = W

(0)
N,j (t) + εW

(1)
N,j (t) + ε2W

(2)
N,j (t) + . . .

where the zero order term W
(0)
N,j (t) is expected to be equal to the (classical)

marginals associated with the solution of the Liouville equation with initial da-

tum (f
(0)
0 )⊗N determined by (4.3).

In a similar way, we consider the j-fold product (fε(t))⊗j of solutions of the
(Hartree) nonlinear Wigner-Liouville equation (3.3.1) with initial datum fε

0 and
we look for an expansion as

(4.6) (fε(t))
⊗j

= f
(0)
j (t) + εf

(1)
j (t) + ε2f

(2)
j (t) + . . .

where the zero order term f
(0)
j is expected to be equal to the j-fold product

(f (0)(t))⊗j , where f (0)(t) solves the Vlasov equation with initial datum f
(0)
0

given by (4.3).

Therefore, by recognizing that at zero order in ε we find the classical quanti-

ties, by (4.1) we know that W
(0)
N,j(t) converges to f

(0)
j (t) = (f (0)(t))⊗j in the weak

topology of probability measures. Then, it looks natural to ask if the following
convergence holds

(4.7) W
(k)
N,j (t) → f

(k)
j (t) , as N → ∞, for any k > 0

in a suitable sense. This is what we are going to show in the present section and
it is contained in our recent paper [29].

Note that the term by term convergence (4.7) does not provide the uni-
formity in ε of the limit N → ∞ because this would require a control of the
remainder of the expansion (4.5), and for the moment we are not able to do
it. On the other side, in proving (4.7), we provide quantum corrections to the
classical mean-field limit result and, by characterizing explicitly both coefficients

W
(k)
N,j (t) and f

(k)
j (t), we prove that those corrections are given in terms of the

classical Liouville flow and, in particular, of suitable derivatives of the classical
trajectories.

We note that to prove (4.7) we make use of coherent states (see Section 4.5)
and in that framework it is somewhat expected to find that quantum corrections
to the classical dynamics can be expressed in terms of derivatives of the classical
trajectories (see for example [2], [15]).
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4.1 – Semiclassical expansion for the Hartree dynamics

We want to determine an expansion in power series of ε of the solution
fε(x, v; t) of the (Hartree) nonlinear Wigner-Liouville equation (3.3.1) for a given
initial datum fε

0 (x, v), namely:

(4.1.1) fε(t) = f (0)(t) + εf (1)(t) + ε2f (2)(t) + . . .

by knowing that the initial datum fε
0 is expanded as follows

(4.1.2) fε
0 (x, v) = f

(0)
0 (x, v) + εf

(1)
0 (x, v) + ε2f

(2)
0 (x, v) + . . .

Indeed an expansion like (4.1.2) holds for general quantum states. For example,
in [25] the semiclassical expansion for various kinds of states is presented, both
gently varying with respect to ε (such as pure states whose wave function is not
depending on ε) and singularly behaving as ε → 0 (such as states of semiclassical
type: WKB and coherent states). In the first situation we find an expansion of

the form (4.1.2) where the coefficients f
(k)
0 are smooth, on the contrary, for WKB

and coherent states we find distributional coefficients (precisely Dirac δ-functions
and suitable derivatives of it) which apparently are more difficult to treat (with
respect to the smooth case). Nevertheless, by manipulating them in a suitable
way, such kinds of “singular” expansions can be very useful to deal with problems
of semiclassical approximation (see Section 4.5 and Section 5).

Following [25], for a fixed g, the operator T ε
g appearing in equation (3.3.1)

can be expanded as

(4.1.3) T ε
g = T (0)

g + εT (1)
g + ε2T (2)

g + . . .

where

(4.1.4) T (n)
g = cn(2π)−3i

∫

R3

dkφ̂(k)ρ̂g(k)ei k·x(k · ∇v)n+1,

(4.1.5) cn =
1

2n(n + 1)!
,

for n even and

(4.1.6) T (n)
g = 0,

for n odd. The operator T
(n)
g , for n even, can be also written as

(4.1.7) T (n)
g = (−1)n/2cn

(
Dn+1

x φ ∗ g
)
· Dn+1

v ,
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where, as in (1.1.8), ∗ denotes the convolution with respect to both x and v and
we used the notation:

(4.1.8)

Dn
xν · Dn

v ζ =
∑

n1,n2,n3∈N:∑
j

nj=n

∂nν

∂n1x1∂n2x2∂n3x3

∂nζ

∂n1v1∂n2v2∂n3v3
,

withx = (x1, x2, x3) ∈ R3 and v = (v1, v2, v3) ∈ R3

for the one-particle functions ν and ζ.
Inserting (4.1.1) in (4.1.3) and setting:

(4.1.9) T
(n)
k = T

(n)

f(k)(t)
,

we readily arrive to the following sequence of problems for the coefficients f (k)(t)
of the expansion (4.1.1):

(4.1.10)

⎧
⎨
⎩

(∂t + v · ∇x) f (0)(t) = T
(0)
0 f (0)(t),

f (0)(x, v; t)
∣∣∣
t=0

= f
(0)
0 (x, v),

and

(4.1.11)

⎧
⎨
⎩

(∂t + v · ∇x) f (k)(t) = L(f (0)(t))f (k)(t) + Θ(k)(t),

f (k)(x, v; t)
∣∣∣
t=0

= f
(k)
0 (x, v),

for k ≥ 1, where

(4.1.12) L(h)f = T
(0)
h f + T

(0)
f h = (∇xφ ∗ h) · ∇vf + (∇xφ ∗ f) · ∇vh,

and

(4.1.13) Θ(k)(t) =
∑

l,p,r:
l+p+r=k
l<k,r<k

T (p)
r f (l)(t).

Note that, as we expected, equation (4.1.10) we found at zeroth order in ε is
precisely the classical Vlasov equation (1.1.8)) associated with the interaction
φ. Thus we need to assume φ ∈ C2

b (R3) to guarantee that the Vlasov flow is
well-defined and, as we recalled in Section 1, the Vlasov equation can be solved
by means of characteristics and fixed point. Moreover, the problems (4.1.11) are
linear and can be solved by a recursive argument by observing that the source
terms Θ(k)(t) involve only those coefficients f (n)(t) with n < k, so that they are
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known by the previous steps. Clearly we shall state suitable smoothness assump-

tions on φ because the operators T
(p)
r appearing in Θ(k)(t) involve derivatives of

φ of order possibly higher than 2, depending on k.

Hypotheses H: Here and henceforth we will assume that is spherically
symmetric (φ(x) = φ(|x|),∀x ∈ R3) and φ ∈ C∞

b (R3)(1)

Actually, in some of the results we are going to show less regularity is needed
on φ, but for the sake of simplicity we state here “maximal” hypotheses under
which we can deal both with semiclassical expansions and with the term by
term convergence of the N -particle expansion (see Section 4.2 and 4.6 below).
Furthermore, under the same hypotheses on φ, by taking the initial datum as
specified in Section 4.5, we are ensured about the validity of the result proven in
Section 3.4 concerning the mean-field limit for Wigner functions.

In order to simplify the notation, from now on we will denote the time
evolved coefficients f (k)(t) = f (k)(x, v; t) solving (4.1.11) by f (k) and the source
terms Θ(k)(x, v; t) = Θ(k)(t) by Θ(k). Moreover, we will denote the initial coef-

ficients f
(k)
0 (x, v) by f

(k)
0 . We will specify the dependence on time and on the

phase space variables just in case it is not clear from the context.

The crucial tool we shall use to give a sense to the solutions f (k), for k ≥ 1,
of problems (4.1.11) is the following proposition whose proof will be given in
Appendix A (see also [29]).

Proposition 4.1.1. Consider the initial value problem:

(4.1.14)

{
(∂t + v · ∇x) γ = L(h)γ + Θ,

γ(x, v; t)|t=0 = γ0(x, v),

where γ0 ∈ L1(R3×R3), h = h(x, v; t) is such that |∇vh| ∈ C0(L1(R3×R3), R+),
Θ = Θ(x, v; t) is such that Θ ∈ C0(L1(R3 × R3), R+).

Then there exists a unique solution γ = γ(x, v; t) of (4.1.14), such that
γ ∈ C0(L1(R3 × R3), R+), given by an explicit series expansion.

Furthermore, denoting by Σh the flow generated by L(h), we have that
Σh(t, 0)γ0 ∈ Cd(R3×R3) provided that ∇vh ∈ Cd(R3×R3) and γ0 ∈ Cd(R3×R3).

By looking at the problems (4.1.11), we realize that the coefficients f (k),
for k ≥ 1, play the role of γ(x, v; t) in Proposition 4.1.1, while the time evolved
zero-order coefficient f (0) and the source term Θ(k) play the role of the functions
h(x, v; t) and Θ(x, v; t) respectively. Clearly the initial datum γ0(x, v) in this

case is given by f
(k)
0 (x, v), k ≥ 1.

(1)Here and henceforth we denote by C∞
b (Rd) the space of infinitely differentiable func-

tions on Rd with uniformly bounded derivatives.
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Therefore, by applying Proposition 4.1.1 to identify the coefficients f (k),
k ≥ 1, as the unique solutions of (4.1.11) in C0(L1(R3 × R3), R+), we have to

consider an initial Wigner function fε
0 (x, v) such that f

(k)
0 ∈ L1(R3×R3) for k ≥

1 and f
(0)
0 is sufficiently smooth to ensure f (0), |∇vf (0)| ∈ C0(L1(R3 × R3), R+).

Concerning the source terms {Θ(k)}k≥1, we have to prove that, with our choice
of the initial datum, Θ(k) ∈ C0(L1(R3 × R3), R+) for k ≥ 1.

We take the initial Wigner function fε
0 (x, v) in such a way that

(4.1.15) f
(k)
0 ∈ S(R3 × R3) for any k ≥ 0,

in particular f
(k)
0 ∈ L1(R3×R3) for any k. In Section 4.5 and in Section 5 we will

give explicit examples of Wigner functions verifying this property (see also [29]).
Then, by (4.1.15) we find

(4.1.16) f (0) ∈ C0
(
S(R3 × R3), R+

)

(because of the smoothness of the Vlasov flow as discussed in Section 1.2) and,
in particular

(4.1.17) |∇vf (0)| ∈ C0
(
C∞ ∩ L1(R3 × R3), R+

)
.

As a consequence, from Proposition 4.1.1 we find

(4.1.18)
Σf(0)(t, s) : C0

(
C∞ ∩ L1(R3 × R3), R+

)
→

→ C0
(
C∞ ∩ L1(R3 × R3), R+

)
∀ s ∈ [0, t].

Moreover, by looking at the series expansion associated with the solution of the
homogeneous version of problem (4.1.14) (see Appendix B below and [29]), we
realize that

(4.1.19) Σf(0)(t, s) : C0(S(R3 × R3), R+) → C0(S(R3 × R3), R+) ∀ s ∈ [0, t],

provided that f (0)(t) ∈ S(R3 × R3) for each t and that suitable smoothness as-
sumptions on the potential φ are satisfied. In particular, under our assumptions,
we are guaranteed that (4.1.19) holds.

As regard to the source terms, from (4.1.13) it is easy to check that Θ(1) = 0

then f (1)(t) = Σf(0)(t, 0)f
(1)
0 ∈ L1(R3 × R3) for each t by virtue of the fact that

f
(1)
0 ∈ S(R3 × R3) ⊂ L1(R3 × R3) and thanks to Proposition 4.1.1. Moreover,

by (4.1.19) we have also

(4.1.20) f (1) ∈ C0(S(R3 × R3), R+).
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On the contrary, for k ≥ 2 we have Θ(k) 	= 0 and by (4.1.13), (4.1.5) and (4.1.7)
we find that the norm of Θ(k) (k ≥ 2) in C0(L1(R3 × R3), R+) (C0(L1)-norm in
the sequel) is bounded by

(4.1.21)

sup
τ∈[0,t]

∥∥∥Θ(k)(τ)
∥∥∥

L1(R3×R3)
= sup

τ∈[0,t]

∑

l,p,r:
l+p+r=k
l<k,r<k

∥∥∥T (p)
r f (l)(τ)

∥∥∥
L1(R3×R3)

≤

≤
∑

r,p,l:
l+p+r=k
l<k,r<k

cp sup
τ∈[0,t]

×

×
{∥∥∥Dp+1

x φ ∗ f (r)(τ)
∥∥∥

L∞(R3×R3)

∥∥∥Dp+1
v f (l)(τ)

∥∥∥
L1(R3×R3)

}
≤

≤
∑

l,p,r:
l+p+r=k
r<k,l<k

cp

∥∥Dp+1
x φ

∥∥
L∞(R3×R3)

sup
τ∈[0,t]

×

×
{∥∥∥f (r)(τ)

∥∥∥
L1(R3×R3)

∥∥∥Dp+1
v f (l)(τ)

∥∥∥
L1(R3×R3)

}
.

Let us check if it is possible to use a recursive argument to prove that Θ(k) ∈
C0(L1(R3 × R3), R+) (for k ≥ 2). By (4.1.21) it follows that if we knew that

(4.1.22) sup
τ∈[0,t]

{∥∥∥f (r)(τ)
∥∥∥

L1(R3×R3)

∥∥∥Dp+1
v f (l)(τ)

∥∥∥
L1(R3×R3)

}
< +∞

for each l, p, r : l+p+r = k and l < k, r < k, being the potential as in Hypotheses
H, we would find that the C0(L1)-norm of Θ(k) is finite and we could conclude
that for each T > 0:

(4.1.23) sup
t∈[0,T ]

∥∥∥f (k)(t)
∥∥∥

L1(R3×R3)
< +∞ ∀ k ≥ 2.

Thus, we note that a recursive argument is not “well-posed” because it is not
possible to provide a uniform bound for the C0(L1)-norm of f (k), by assuming
the same to hold for f (n) with n < k. Indeed, by (4.1.22), we see that we would
need to assume even that the L1-norm of any derivative of f (n) with n < k is
bounded uniformly in time.

On the contrary, we realize that we can use an induction procedure in
C0(S(R3 × R3), R+). Indeed, by the expression of Θ(k) and by the regularity of
φ we know that Θ(k) ∈ C0(S(R3×R3), R+) if all coefficients f (n) up to n = k−1
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are in C0(S(R3 × R3), R+). Then, by (4.1.19), we obtain

(4.1.24)

f (n) ∈ C0(S(R3 × R3), R+) for all n < k

⇓
Θ(k) ∈ C0(S(R3 × R3), R+)

⇓
f (k) ∈ C0(S(R3 × R3), R+),

and thanks to (4.1.16) and (4.1.20) the induction procedure is “closed”. There-
fore, we have well-posedeness of problems (4.1.11) in L1(R3 × R3) and, in par-
ticular, the coefficients f (k)(t) are also in S(R3 × R3) for all t. Actually, we
could relax our assumption on the initial datum fε

0 obtaining less smooth coeffi-
cients, but in the present context this not an issue because we want to focus on
the structure of the expansion and not on minimal regularity properties of the
solutions.

4.2 – Semiclassical expansion for the N-particle dynamics

In this section we determine an expansion in power series of ε of the solution
W ε

N (t) = W ε
N (XN , VN ; t) of the N -particle Wigner-Liouville equation equation

(3.2.1) for the factorized initial datum

(4.2.1) W ε
N,0(XN , VN ) =

N∏

j=1

fε
0 (xj , vj),

where fε
0 is the same one-particle Wigner function we chose as initial datum

for the nonlinear Wigner-Liouville equation (3.3.1). Thus, we know that fε
0 is

expanded as in (4.1.2) and it turns out that, for the N -fold product (fε
0 )⊗N , we

find

(4.2.2) (fε
0 )⊗N = W

(0)
N,0 + εW

(1)
N,0 + ε2W

(2)
N,0 + . . .

with

W
(0)
N,0(XN , VN ) =

N∏

j=1

f
(0)
0 (xj , vj),(4.2.3)

W
(k)
N,0(XN , VN ) =

∑

s1...sN
0≤sj≤k∑

j
sj=k

N∏

j=1

f
(sj)
0 (xj , vj) for k ≥ 1.(4.2.4)
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Note that W
(k)
N,0 is factorized only for k = 0.

For the sake of simplicity, here and henceforth we will make explicit the
dependence on time and on the phase space variables only if not clear from the
context.

Following [25], the operator T ε
N appearing in (3.2.1) can be expanded as

(4.2.5) T ε
N = T

(0)
N + εT

(1)
N + ε2T

(2)
N + . . .

where, for n even we have

(4.2.6) T
(n)
N = i(2π)−3NCn

∫

R3N

dKN Û(KN )eiKN ·XN (KN · ∇VN
)
n+1

,

Cn being constants depending on n, and Û being the Fourier transform of the
potential in (2.1) (to simplify the notations we omit the superscript “Q”). For
n odd, we find

(4.2.7) T
(n)
N = 0.

Looking for a semiclassical expansion

(4.2.8) W ε
N (t) = W

(0)
N (t) + εW

(1)
N (t) + ε2W

(2)
N (t) + . . . ,

by (4.2.2), (4.2.6) and (4.2.7) we arrive to the sequence of problems:

(4.2.9)

⎧
⎨
⎩

(∂t + VN · ∇XN
) W

(0)
N (t) = T

(0)
N W

(0)
N (t),

W
(0)
N (XN , VN ; t)

∣∣∣
t=0

= W
(0)
N,0(XN , VN ),

and

(4.2.10)

⎧
⎨
⎩

(∂t + VN · ∇XN
) W

(k)
N (t) = T

(0)
N W

(k)
N (t) + Θ

(k)
N (t),

W
(k)
N (XN , VN ; t)

∣∣∣
t=0

= W
(k)
N,0(XN , VN ),

for k ≥ 1, where

(4.2.11) Θ
(k)
N (t) =

∑

0≤l<k

T
(k−l)
N W

(l)
N (t).

Note that T
(0)
N = ∇XN

UN · ∇VN
= 1

N

∑N
i �=j ∇xiφ(xi − xj) · ∇vi is the classical

Liouville operator, while the source terms Θ
(k)
N (t), at each order k, are known by

the previous steps. As we recalled in Section 1, under smoothness assumptions
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on the interaction potential φ, equation (4.2.9) can be solved by considering
the Hamiltonian flow Φt(XN , VN ) associated with the Newton equations (1.1.3).
Thus we find

(4.1.12) W
(0)
N (XN , VN ; t) = SN (t)W

(0)
N,0(XN , VN ) = W

(0)
N,0

(
Φ−t (XN , VN )

)
,

where, from now on, we denote by SN the flow generated by the Liouville op-

erator T
(0)
N . On the other side, equations (4.2.10) can be solved by recurrence

thanks to the Duhamel formula:

(4.2.13) W
(k)
N (t) = SN (t)W

(k)
N,0 +

∫ t

0

dt1 SN (t − t1)Θ
(k)
N (t1).

We conclude this section by expressing the operators T
(n)
N (n even) in terms of

the variables XN , VN . From (4.2.6), we find that:

(4.2.14) T
(n)
N = T̂

(n)
N + R

(n)
N ,

where

(4.2.15) T̂
(n)
N = cn

(−1)n/2

N

N∑

l �=j

Dn+1
x φ(xl − xj) · Dn+1

vl
,

where cn is the same of (4.1.5), and

(4.2.16) R
(n)
N =

1

N

N∑

l �=j

∑

k1,k2∈N3

|k1|+|k2|=n+1

Ck1,k2

∂n+1

∂
|k1|
xl ∂

|k2|
xj

φ(xl − xj) ·
∂n+1

∂
|k1|
vl ∂

|k2|
vj

,

where, for i = 1, 2, ki = (ki,1, ki,2, ki,3), |ki| = ki,1 + ki,2 + ki,3 , and

(4.2.17)

∂n+1

∂
|k1|
xl ∂

|k2|
xj

=
∂|k1|

∂k1,1x1
l ∂

k1,2x2
l ∂

k1,3x3
l

∂|k2|

∂k2,1x1
j∂

k2,2x2
j∂

k2,3x3
j

,

with xj = (x1
j , x

2
j , x

3
j ), xl = (x1

l , x
2
l , x

3
l ),

while Ck1,k2 are suitable coefficients. The same holds for the derivatives with
respect to the velocities.

We observe that, by the expression (4.2.16), we mean that the derivative
of order |k1| is distributed over the three components of xl in the same way in
which it is distributed over the three components of vl, and the same holds for
the derivative of order |k2|.
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4.3 – Structure of the j-particles limiting marginals

Let us consider the sequence {fε
j (t)}j≥1, where fε

j (t) = fε
j (Xj , Vj ; t) is

given by

(4.3.1) fε
j (t) = (fε(t))⊗j

and fε(t) is the solution of the nonlinear Wigner-Liouville equation (3.3.1) with
initial datum fε

0 chosen as in Section 4.1. By the one-particle expansion (4.1.1),
it turns out that

(4.3.2) fε
j (t) = (fε(t))⊗j = f

(0)
j (t) + εf

(1)
j (t) + ε2f

(2)
j (t) + . . . ,

with

(4.3.3) f
(0)
j (Xj , Vj ; t) =

j∏

i=1

f (0)(xi, vi; t)

(4.3.4) f
(k)
j (Xj , Vj ; t) =

∑

s1...sj :
0≤sr≤k∑

r
sr=k

j∏

r=1

f (sr)(xr, vr; t) for k ≥ 1,

where the one-particle functions f (sr)(xr, vr; t) solve equation (4.1.10), if sr = 0,

and (4.1.11), for sr > 0. Note that f
(k)
j (t) is factorized only for k = 0.

Thus by (4.3.3) we find that, as expected, the zero order term of the ex-
pansion of (fε(t))⊗j is given by the j-fold product (f (0)(t))⊗j of solutions of the
Vlasov initial value problem (4.1.10).

By the analysis done in Section 3, we know that {fε
j (t)}j≥1 solves the infinite

(Hartree) hierarchy (3.3.22) with factorized initial datum {(fε
0 )⊗j}j≥1. On the

other hand, the sequence of j-particle marginals {W ε
N,j(t)}N

j=1 associated with
the solution of the N -particle Wigner-Liouville equation (3.2.1) with factorized
initial datum (fε

0 )⊗N , solves the Wigner BBGKY hierarchy (3.2.6) with initial
datum {(fε

0 )⊗j}N
j=1. Moreover, in Section 3 we proved also that, for any j,

W ε
N,j(t) → (fε(t))⊗j L2-weakly as N → ∞ and the error in approximating

the N -particle dynamics with the limiting one is not uniform with respect to
ε and diverging as ε → 0. We recall that the reason for that arises from the
fact that the operator T ε

N,j involved in the BBGKY hierarchy (3.2.6) is bounded

in the norm appropriate to study the convergence (namely L̃1(R3j × R3j) or
L1(R3j × R3j)), but its norm is diverging when ε goes to zero (in particular it
is O(1/ε)). This suggests to consider the semiclassical equations described in
Sections 4.1 and 4.2. In this way, considering equations at each order in ε and
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analyzing the hierarchies associated with each of those equation, we have to deal

with operators which are clearly independent of ε (e.g. T
(n)
N ), , and we have to

investigate only the limit N → ∞ without any dependence on ε. The price we
have to pay is that now those operators are unbounded, as it comes out for the
classical mean-field limit we faced in Section 1.

Thus, if we want to prove that the coefficient of order εk of the expansion
of the j-particle marginals W ε

N,j(t), namely:

(4.3.5) W
(k)
N,j(Xj , Vj ; t) =

∫

R3(N−j)×R3(N−j)

dXN−jdVN−jW
(k)
N (Xj , XN−j , Vj , VN−j ; t),

converges to the corresponding object f
(k)
j (t) arising from the Hartree dynamics

(i.e (4.3.4)), the use of the hierarchy solved by W
(k)
N,j(t) does not seem a good

idea. In fact, even at level zero, when we have to deal with the classical mean-
field limit, the hierarchy is very difficult to handle with (see Section 1.4) because
it involves derivation operators which are clearly unbounded, unless to make
them act on analytic functions (see (1.4.3)-(1.4.5)). The obstacle which occurs
in facing the higher order terms is precisely the same.

However, as we saw in Section 1, in the classical case we can treat the
convergence in a more natural way, avoiding to use the hierarchy. Indeed we can
control the j-particle marginals associated with the Liouville equation (1.1.5) in
terms of the expectation of the j-fold product of empirical measures with respect
to the initial N -particle probability distribution (see Section 1.4). Then, to use

this strategy to establish the convergence of W
(0)
N,j(t) to (f (0)(t))⊗j , we have to

choose the one-particle initial Wigner function fε
0 in such a way that the zeroth

order coefficient f
(0)
0 is a one-particle probability distribution. As a consequence,

the (factorized) zeroth order coefficient W
(0)
N,0 (4.2.3) of the N -particle expansion

is also a probability distribution (we will discuss this choice in Section 4.5). Then,
we will follow a similar strategy in dealing with the convergence of the higher

order terms of the expansion. More precisely, we will express W
(k)
N,j(t) in terms of

the expectation, with respect to W
(0)
N,0, of suitable (derivation) operators acting

on empirical measures. The control of these objects will be obtained thanks to
some estimates of the derivatives of the classical flow with respect to the initial
data (see Proposition 4.4.1).

4.4 – Idea of the proof

As we already noticed in the previous section, the convergence of the j-
particle marginal at zeroth order in ε is ensured by our assumption on the initial
datum (to be specified in Section 4.5) and by the classical mean-field theory.
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Thus, the first non-trivial term is that of order one in ε. By looking at
(4.1.11) for k = 1, we realize that the first correction to the Vlasov equation in
the Hartree dynamics satisfies

(4.4.1)

⎧
⎨
⎩

(∂t + v · ∇x) f (1) = L(f (0))f (1),

f (1)(x, v; t)
∣∣∣
t=0

= f
(1)
0 (x, v),

(looking at the expression (4.1.13) for the source terms Θ(k), we straightforward
verify that Θ(1) ≡ 0). As we shall see in detail in the following section, our choice
for the initial one-particle datum is a mixture of coherent states such that each
coefficient of the expansion is given by suitable derivatives of the zeroth order
term which, as we already observed, is a probability distribution. In particular,

the explicit form for f
(1)
0 is:

(4.4.2) f
(1)
0 (x, v) = D2

Gf
(0)
0 (x, v),

where D2
G is a suitable second order derivation operator (see formula (4.5.8)

below in the case k = 2) with respect to the variable z ∈ R6 (we recall the
notation z = (x, v) ∈ R3 × R3 introduced in Section 1).

As regard to the N -particle dynamics, looking at (4.2.4) in the case k = 1,
we know that the initial datum for the coefficient of order one in ε is:

(4.4.3) W
(1)
N,0(ZN ) =

N∑

j=1

f
(1)
0 (zj)

N∏

l �=j

f
(0)
0 (zl) = D2W

(0)
N,0(ZN ),

where

(4.4.4) D2 =

N∑

j=1

D2
G,j ,

and D2
G,j is the operator D2

G acting on the variable zj ∈ R6 . Let us consider
the time evolved empirical measure μN (t) (see Section 1.3) associated with the
flow generated by the Newton equations (1.1.3) and let us define D2μN (t) as the
distribution acting on a test function u in the following way:

(4.4.5) (u,D2μN (t)) = D2

(
1

N

N∑

l=1

u(zl(t))

)
=

1

N

N∑

l,j=1

D2
G,ju(zl(t)).

We know that the operators D2
G,j involve derivatives with respect to the initial

variables zj , j = 1, . . . , N , thus, if at time t = 0 we have μN → f
(0)
0 when

N → ∞ in the weak sense of probability measures, it follows that:

(4.4.6)

(
u,D2μN

)
= D2 1

N

N∑

l=1

u(zl) =
1

N

N∑

l,j=1

D2
G,ju(zl) =

1

N

N∑

j=1

D2
G,ju(zj) =

= (D2
Gu, μN ) → (D2

Gu, f
(0)
0 ) = (u, D2

Gf
(0)
0 ) = (u, f

(1)
0 )

as N → ∞.
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By the Strong Law of Large Numbers (1.3.10) we know that the convergence

(4.4.6) holds a.e with respect to the product measure (f
(0)
0 )⊗∞, then, by (4.4.3)

and (4.4.6), we can conclude that:

(4.4.7) (u, W
(1)
N,1(t)|t=0) =

(
u, EN

[
D2μN

])
→ (u, f

(1)
0 )as N → ∞,

where EN [cdot] denotes the expectation with respect to the N -particle probabil-

ity distribution W
(0)
N,0 = (f

(0)
0 )⊗N (see (4.2.3)).

In the sequel, as in Section 1, we will say that a configuration ZN is “typi-

cal” with respect to the probability measure f
(0)
0 , if the corresponding empirical

measure μN (z|ZN ) converges to f
(0)
0 in the weak topology of probability mea-

sures.

By equation (4.2.10) for k = 1, we have:

(4.4.8)
(∂t + VN · ∇XN

)W
(1)
N = ∇XN

U · ∇VN
W

(1)
N ,

W
(1)
N (ZN ; t)|t=0 = W

(1)
N,0(ZN ),

namely, the classical Liouville equation (1.1.5), where, to simplify the notation,
we omitted the superscript “cl”. Therefore:

(4.4.9) W
(1)
N (ZN ; t) = SN (t)W

(1)
N,0(ZN ).

Finally, by virtue of (4.4.9) and (4.4.3), we obtain

(4.4.10)

(u, W
(1)
N,1(t)) =

∫

R3N×R3N

dZNSN (t)W
(1)
N,0(ZN )(u, μN ) =

=

∫

R3N×R3N

dZNW
(1)
N,0(ZN )(u, μN (t)) =

=

∫

R3N×R3N

dZND2W
(0)
N,0(ZN )(u, μN (t)) =

=

∫

R3N×R3N

dZNW
(0)
N,0(ZN )(u,D2μN (t)) =

=
(
u, EN

[
D2μN (t)

])
.

Therefore, the behavior of W
(1)
N,1(t) is determined by that of D2μN (t) for any

initial configuration ZN which is typical with respect to f
(0)
0 . Finally, since

μN (t) solves the Vlasov equation in the weak form (see Section 1):

(4.4.11)

{
(∂t + v · ∇x) μN (t) = (∇φ ∗ μN (t)) · ∇vμN (t)

μN (t)|t=0 = μN ,
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applying D2, we get:

(4.4.12)

{
(∂t + v · ∇x)D2μN (t) = L (μN (t))D2μN (t) + RN ,

D2μN (t)
∣∣
t=0

= D2μN ,

where RN is a term involving objects of the form
∑

j(DG,jμN (t))(DG,jμN (t))
which, as we shall see later, are of order 1/N when tested versus smooth func-
tions. The equation (4.4.12) is similar to (4.4.1), except for the presence of the
term RN and for the fact that we have L (μN (t)) instead of L

(
f (0)

)
. Therefore,

the proof of the convergence of W
(1)
N,1(t) to f (1)(t) reduces to that of a stabil-

ity property for the solution of (4.4.1) with respect to suitable weak topologies.
Proposition 4.5.1 in the forthcoming Section 4.5 will provide us such property.

The general case k > 1 is only technically more complicated because of the
presence of source terms, but the main ideas are those presented here.

Remark 4.4.1. By looking at the strategy of the proof for k = 1 we
realize that the basic idea is to apply the classical mean-field theory at suitable
derivatives of the empirical measure. Therefore, if in the classical framework we
have to deal with convergence with respect to the weak topology of probability
measures, namely, with continuous and uniformly bounded test functions, now
we need to deal with test functions whose derivatives are also continuous and
uniformly bounded (e.g (4.4.6)). Therefore we can argue that we will establish
the term by term convergence in a suitable distributional sense.

We conclude by establishing a Proposition controlling the size of the deriva-
tives of the Hamilton flow associated with (1.1.3) with respect to the initial
data.

From now on we shall denote by C a positive constant, independent of N ,
possibly changing from line to line.

Proposition 4.4.1. Let zi(t) = (xi(t), vi(t)) , i = 1, . . . , N be the solution

of equations (1.1.3) with initial datum zi = (xi, vi) , i = 1, . . . , N . Let zβ
i ∀ β =

1, . . . , 6 be the β-th component of zi ∈ R6. If the pair interaction potential φ is
assumed to satisfy Hypotheses H, then, for each k ∈ N:

(4.4.13)

∣∣∣∣∣
∂kzβ

i (t)

∂zα1
j1

. . . ∂zαk
jk

∣∣∣∣∣ ≤
C

Nd
(i)

k

,

where I := (j1, . . . , jk) is any sequence of possibly repeated indices and d
(i)
k is the

number of different indices in I which are also different from i.
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The physical significance of (4.4.13) is obvious. In the mean-field context,
the quantity zi(t) depends weakly on zj if j 	= i for each t > 0. Actually
∂zβ

i
(t)

∂zα
j

= O
(

1
N

)
while

∂zβ
i
(t)

∂zα
i

= O(1) and these two estimates give rise to (4.4.13)

in the case k = 1. Estimate (4.4.13) says that for each derivative of any order
with respect to some zj of zi(t) , we gain a factor 1/N . We have also the following
corollary whose straightforward proof will be omitted.

Corollary 4.1.1. Let U = U(ZN (t)) be a function of the time evolved
configuration ZN (t) of the form:

U(ZN (t)) =
1

N

N∑

i=1

u(zi(t)),

where u ∈ C∞
b (R3 × R3). Then, if the pair interaction potential φ satisfies

Hypotheses H, the following estimate holds:

(4.4.14)

∣∣∣∣∣
∂kU(ZN (t))

∂zα1
j1

. . . ∂zαk
jk

∣∣∣∣∣ ≤
C

Ndk
,

where dk is the number of different indices in the sequence I = (j1, . . . , jk).

The proof of Proposition 4.4.1 will be given in Appendix A.

4.5 – Results and technical preliminaries

We choose, as initial condition for the one-particle Wigner function, a mix-
ture of coherent states. The Wigner function associated with a pure coherent
state centered at the point (x0, v0) is given by:

(4.5.1) w(x, v|x0, v0) =
1

(πε)3
e−

(x−x0)2

ε e−
(v−v0)2

ε .

Let now g = g(x, v) be a smooth probability density on the one-particle phase
space independent of ε (see Hypotheses H1 below). Then we define:

(4.5.2) fε
0 (x, v) =

∫

R3×R3

dx0dv0 w(x, v|x0, v0)g(x0, v0).

Using the standard notation z = (x, v) and z0 = (x0, v0), (4.5.2) is equivalent to:

(4.5.3) fε
0 (z) =

1

(πε)3

∫

R6

dz0 e−
(z−z0)2

ε g(z0) =
1

(π)3

∫

R6

dζe−ζ2

g(z −√
εζ).
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Expanding

(4.5.4)

g(z −√
εζ) = g(z)−(ζ · ∇z) g(z)

√
ε+(ζ ·∇z)

2
g(z)

(
√

ε)2

2
+

+ · · · − (ζ · ∇z)
2n−1

g(z)
(
√

ε)2n−1

(2n − 1)!
+ (ζ · ∇z)

2n
g(z)

(
√

ε)2n

(2n)!
+ . . . ,

and performing the gaussian integrations (which cancels the terms with the odd
powers of

√
ε), we readily arrive to the following expansion for the Wigner func-

tion fε
0 :

(4.5.5) fε
0 = f

(0)
0 + εf

(1)
0 + · · · + εnf

(n)
0 + . . . ,

where

(4.5.6) f
(0)
0 = g,

(4.5.7) f
(n)
0 = D2n

G f
(0)
0 for n ≥ 1,

and Dk
G (G stands for “Gaussian”), for each k > 0, is the following derivation

operator with respect to the variable z = (x, v):

(4.5.8) Dk
G =

∑

α1...αk:
αj=1,...,6

CG(α1 . . . αk)
∂k

∂zα1 . . . ∂zαk
,

where

(4.5.9) CG(α1 . . . αk) =
1

k!

∫

R6

dζ e−ζ2
k∏

j=1

ζαj .

Therefore, CG(α1 . . . αk) is equal to zero for each sequence α1 . . . αk in which at
least one index appears an odd number of times.

Hypotheses H1:

We assume that g = f
(0)
0 ∈ S(R3 × R3), thus (4.5.7) make sense for any

n ≥ 1 and, in particular, f
(n)
0 ∈ S(R3 × R3) for any n. By the analysis done in

Section 4.1, this allows to identify the time-evolved coefficients f (n)(t), n ≥ 1,
as the unique solutions of the initial value problems (4.1.11).

Remark 4.5.1. Here we consider a completely factorized N -particle initial
state (see (4.2.1)), then property (3.2.4) is satisfied. Furthermore the one-particle
state is a mixture and this automatically excludes the Bose statistics.
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Remark 4.5.2. We made the choice to expand fully the initial state fε
0

according to equation (4.5.5). Another possibility is to assume the (ε dependent)
state fε

0 (which is a probability measure in the present case) as initial condition

for the Vlasov problem and, consequently, f
(k)
0 = 0 for the problems (4.1.11).

Now the coefficients f (k)(t) are ε dependent but this does not change deeply our
analysis because fε

0 is smooth, uniformly in ε.

As we explained at the beginning of the present Section, our goal is to
compare the j-particle semiclassical expansion associated with the N -particle

flow, namely W
(k)
N,j(t), k = 0, 1, 2, . . . , with the corresponding coefficients f

(k)
j (t)

of the expansion:

(4.5.10) fε
j (t) = f

(0)
j (t) + εf

(1)
j (t) + · · · + εkf

(k)
j (t) + . . . ,

where f
(k)
j (t) is given by (4.3.4). The main result is the following.

Theorem 4.5.1. Let us consider the (Hartree) nonlinear Wigner-Liouville
equation (3.3.1) as in (4.5.2) where the probability distribution g satisfies Hy-
potheses H1. Moreover, let us consider the N -particle Wigner-Liouville equation
(3.2.1) with factorized initial datum as in (4.2.1). If the pair interaction poten-
tial φ is assumed to verify Hypotheses H, for all t > 0, for any integers k and j,
the following limit holds in S ′(R3j × R3j):

(4.5.11) W
(k)
N,j(t) → f

(k)
j (t).

as N → ∞.

Remark 4.5.3. As we shall see in the sequel, the convergence (4.5.11) is
slightly stronger than the convergence in S ′(R3j × R3j). Indeed, the sequence

W
(k)
N,j(t) converges also when it is tested on functions in C∞

b (R3j×R3j). Such kind
of convergence, which is natural in the present context, will be called C∞

b -weak
convergence.

A crucial tool in proving Theorem 4.5.1 is provided by the following

Proposition 4.5.1. Let γN (x, v; t) be a sequence in S ′(R3 × R3) (for each
t) satisfying:

(4.5.12)

{
(∂t + v · ∇x) γN = L(hN )γN + ΘN ,

γN (x, v; t)|t=0 = γN,0(x, v),

where γN,0, ΘN are sequences in S ′(R3 × R3).



[85] Semiclassical analysis for the quantum M-F limit 307

We assume that:

i) hN (x, v; t) is a sequence of probability measures converging, as N → ∞,
to a measure h(t)dxdv with a density h(t) ∈ C∞

b (R3 × R3) and such that
|∇vh| ∈ C0(L1(R3 × R3), R+).

ii) for all u1, u2 in C∞
b (R3 × R3) , there exists a constant C = C(u1, u2) > 0,

not depending on N , such that:

(4.5.13) ‖u1 ∗ (u2γN )‖L∞(R3×R3) < C < +∞ for any t.

iii) γN,0 → γ0, as N → ∞, C∞
b -weakly , γ0 = γ0(x, v) is a function belong-

ing to L1(R3 × R3).
iv) ΘN → Θ , as N → ∞, C∞

b -weakly , Θ = Θ(x, v; t) is a function belong-
ing to C0(L1(R3 × R3), R+).

Then:

(4.5.14) γN → γ, as N → ∞ C∞
b -weakly,

where γ is the unique solution of the problem (4.1.14) in C0(L1(R3 × R3), R+).

For the proof, see Appendix B.

4.6 – Convergence

This section is devoted to the proof of Theorem 4.5.1.
By (4.2.13) and (4.2.11), for k ≥ 0 we have:

(4.6.1)

W
(k)
N (ZN ; t) =

∑

n≥0

k∑

r=0

∑

r1...rn:
rj>0∑
rj=k−r

∫ t

0

dt1

∫ t1

0

dt2· · ·
∫ tn−1

0

dtn×

× SN (t − t1)T
(r1)
N SN (t1 − t2) . . . T

(rn)
N SN (tn)W

(r)
N,0(ZN ).

It is useful to remind that, the only non-vanishing terms in (4.6.1) are those for
which all r1, . . . , rn are even (because the odd terms in the expansion for the
operator T ε

N appearing in (3.2.1) are vanishing (see (4.2.7)).
According to (4.2.4) and (4.5.7),

(4.6.2) W
(r)
N,0(ZN ) =

∑

s1...sN
0≤sj≤r∑

j
sj=r

N∏

j=1

(
D

2sj

G,jf
(0)
0 (zj)

)
,
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where Dk
G,j is defined in (4.5.8) and the extra symbol j means that this operator

acts on the variable zj . Defining the operator D2r as:

(4.6.3)

D0 = 1,

D2r =
∑

s1...sN :
0≤sj≤r∑

j
sj=r

N∏

j=1

D
2sj

G,j , r ≥ 1,

we have:

(4.6.4) W
(r)
N,0(ZN ) = D2rW

(0)
N,0(ZN ) ∀ r ≥ 0.

In order to investigate the behavior of the j-particle functions W
(k)
N,j(Zj ; t) when

N → ∞, we consider the following object, for a given configuration Z ′
j =

(z′1 . . . z′j):

(4.6.5) ω
(k)
N,j(Z

′
j ; t) =

∫

R6N

dZN W
(k)
N (ZN ; t)μN (z′1|ZN ) . . . μN (z′j |ZN ).

In the end of the section, we will show that (4.6.5) is asymptotically equivalent

to W
(k)
N,j(Z

′
j ; t).

From (4.6.1), (4.6.4) and (4.6.5), it follows that:

(4.6.6)

ω
(k)
N,j(Z

′
j ; t) =

∑

n≥0

k∑

r=0

∑

r1...rn:
rj>0∑
rj=k−r

∫ t

0

dt1

∫ t1

0

dt2· · ·
∫ tn−1

0

dtn×

×
∫

R6N

dZNμN,j(Z
′
j |ZN )SN (t − t1)T

(r1)
N SN (t1 − t2) . . .

. . . T
(rn)
N SN (tn)D2rW

(0)
N,0(ZN ),

where

(4.6.7) μN,j(Z
′
j |ZN ) = μN (z′1|ZN ) . . . μN (z′j |ZN ).

Integrating by parts, reminding that each rj is even and that each T
(rj)
N involves

derivatives of order rj + 1, we have:

(4.6.8)

ω
(k)
N,j(Z

′
j ; t) =

∑

n≥0

(−1)n
k∑

r=0

∑

rn: rj>0

|rn|=k−r

∫ t

ord

dtn×

× EN

[
D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)μN,j(Z

′
j |ZN (t))

]
,
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where rn is the sequence of positive integers r1, . . . , rn, |rn| =
∑n

j=1 rj and
ZN (t) is the Hamiltonian flow associated with (1.1.3). Moreover tn = t1 . . . tn
and

∫ t

ord
dtn denotes the integral over he simplex 0 < tn < tn−1 < · · · < t1 < t.

Finally, EN stands for the expectation with respect to the N -particle density

W
(0)
N,0 and

(4.6.9) T
(r)
N (t) = SN (−t)T

(r)
N SN (t).

Therefore, the objects we have to investigate in the limit N → ∞ are:

(4.6.10) ν
(k)
j (Z ′

j ; t) =
∑

n≥0

(−1)n
k∑

r=0

∑

rn:rj>0

|rn
|=k−r

∫ t

ord

dtnηj(Z
′
j ; t, r, rn, tn, ZN ),

(for any configuration ZN , typical with respect to f
(0)
0 ), where ηj is given by:

(4.6.11)
ηj(Z

′
j ; t, r, rn, tn, ZN ) = D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . .

. . . T
(r1)
N (t1)μN,j(Z

′
j |ZN (t)).

Note that:

(4.6.12) ν
(0)
j (Z ′

j ; t) = μN,j(Z
′
j |ZN (t)).

We start by analyzing the behavior of ν
(k)
j in the cases j = 1, 2, thus we are lead

to consider:

(4.6.13)
η1(z

′
1; t, r, rn, tn, ZN ) = D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . .

. . . T
(r1)
N (t1)μN (z′1|ZN (t)),

and

(4.6.14)
η2(z

′
1, z

′
2; t, r, rn, tn, ZN ) = D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . .

. . . T
(r1)
N (t1)μN,2(Z

′
2|ZN (t)).

It is useful to stress that the operators T
(rj)
N (tj) (j = 1, . . . , n) and D2r act as

suitable distributional derivatives with respect to the variables ZN . To evaluate

η1, let us first analyze the action of T
(r)
N (τ). By (4.6.9) and (4.2.14), for any

function G = G(ZN ), we have:

(4.6.15)

(
T

(r)
N (τ)G

)
(ZN ) = SN (−τ)(T̂

(r)
N + R

(r)
N )(SN (τ)G)(ZN ) =

= (−1)r/2 cr

N

∑

j,l

SN (−τ)Dr+1
x φ(xj − xl) · Dr+1

vj
(SN (τ)G)(ZN )+

+
1

N

N∑

l,j=1

∑

k1,k2∈N3

|k1|+|k2|=r+1

Ck1,k2
SN (−τ)×

× ∂r+1

∂
|k1|
xl ∂

|k2|
xj

φ(xl − xj) ·
∂r+1

∂
|k1|
vl ∂

|k2|
vj

(SN (τ)G)(ZN ).
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Note that the derivatives involved here are done with respect to the variables at
time t = 0.

Denoting by Dr
zj

any derivative of order r with respect to a variable zj at
time t = 0, we observe that:

(4.6.16) SN (−t)Dr
zj

G(ZN ) = (Dr
zj

G)(ZN (t)) = Dr
zj

(t)(SN (−t)G)(ZN ),

where, by Dr
zj

(t), we denote the same derivative of order r with respect to the
variable zj(t). Then, by (4.6.16) and (4.6.15):

(4.6.17)

(
T

(r)
N (τ)G

)
(ZN ) = SN (−τ)(T̂

(r)
N + R

(r)
N )SN (τ)G(ZN ) =

= (−1)r/2 cr

N

∑

j,l

(Dr+1
x φ)(xj(τ) − xl(τ)) · Dr+1

vj
(τ)G(ZN )+

+
1

N

N∑

l,j=1

∑

k1,k2∈N3

|k1|+|k2|=r+1

Ck1,k2
×

×
(

∂r+1

∂
|k1|
xl ∂

|k2|
xj

φ

)
(xl(τ) − xj(τ)) · ∂r+1

∂
|k1|
vl ∂

|k2|
vj

(τ)G(ZN ).

Therefore, in computing the action of T
(r)
N (τ), we have to consider derivatives

with respect to the variables at time τ . As a consequence, we have to deal with
a complicated function of the configuration ZN which, however, we do not need
to make explicit, as we shall see in a moment.

On the basis of the previous considerations, we compute the time derivative

of η1 by applying the operators D2rT
(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1) to the

Vlasov equation:

(4.6.18)
(
∂t + v′1 · ∇x′

1

)
μN (t) = (∇x′

1
φ ∗ μN (t)) · ∇v′

1
μN (t).

In doing this we have to compute

(4.6.19) D2rT
(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)μN (z′1|ZN (t))μN (z′2|ZN (t)).

Now we select the contribution in which each T
(r�)
N (t�) and D2r apply either

on μN (z′1|ZN (t)) or to μN (z′2|ZN (t)). The other contribution involves terms in
which are present products of derivatives with respect to the same variable. By
Proposition 4.4.1 and Corollary 4.4.1 we expect those terms to be negligible (in
the C∞

b -weak sense) in the limit N → ∞. Therefore we obtain the following
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equation:

(4.6.20)

(
∂t + v′1 · ∇x′

1

)
η1(z

′
1, t, r, rn, tn, ZN ) =

= L(μN (t))η1(z
′
1, t, r, rn, tn, ZN )+

+
∑

0≤�≤r

∑

0≤m≤n

∑

I⊂In:
|I|=m,

0<|r
I |+�<k

(∇x′
1
φ ∗ η1(·, t, �, rI , tI , ZN ))·

· ∇v′
1
η1(z

′
1, t, r − �, rIn\I , tIn\I , ZN ) + E1

N ,

where E1
N is an error term which will be proven to be negligible in the limit

N → ∞ in Appendix C. In (4.6.20) we used the notations:

(4.6.21) In = {1, 2, . . . , n}, I is any subset of In, rI = {rj}j∈I , tI = {tj}j∈I .

Next, we compute the time derivative of ν
(k)
1 . We have:

(4.6.22)

(
∂t + v′1 · ∇x′

1

)
ν

(k)
1 =

∑

n≥0

(−1)n
k∑

r=0

∑

|rn|:
rj>0

|r
n|=k−r

×

×
∫ t

0

dt2

∫ t2

0

dt3· · ·
∫ tn−1

0

dtnη1(z
′
1; t, r, rn, tn, ZN )|t1=t+

+
∑

n≥0

(−1)n
k∑

r=0

∑

|r
n
|:

rj>0
|r

n
|=k−r

∫ t

ord

dtn×

×
(
∂t + v′1 · ∇x′

1

)
η1(z

′
1; t, r, rn, tn, ZN ).

In evaluating the first term on the right hand side of (4.6.22), we are lead to
consider η1 evaluated in t = t1. Thus, according to the expression of η1 (see
(4.6.13)), we have to deal with:

(4.6.23) T
(r1)
N (t)μN (z′1|ZN (t)) = SN (−t)T

(r1)
N μN (z′1|ZN ).

Therefore:

(4.6.24)

T
(r1)
N (t)μN (z′1|ZN (t)) =

= (−1)r1/2cr1
×

(
Dr1+1

x′
1

φ ∗ μN (t)
)

(x′
1) · Dr1+1

v′
1

μN (z′1|ZN (t)) =

= (−1)r1/2cr1

∫
dx′

2 dv′2 Dr1+1
x′
1

φ(x′
1 − x′

2)·

· Dr1+1
v′
1

μN (x′
1, v

′
1|ZN (t))μN (x′

2, v
′
2|ZN (t)),
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where the term involving off-diagonal derivatives, namely R
(r1)
N (see (4.2.16)),

disappears because both the derivatives and the empirical distribution are eval-
uated at time t. Hence we compute η1 in t = t1 and, inserting it in the first term
of the right hand side of (4.6.22), we obtain:

(4.6.25)

∑

n≥0

(−1)n
k∑

r=0

∑

r
n
: rj>0

|rn|=k−r

∫ t

0

dt2

∫ t2

0

dt3dt3· · ·
∫ tn−1

0

×

× dtnη1(z
′
1; t, r, rn, tn, ZN )|t1=t =

=
∑

0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′

2 dv′2 Dr1+1
x′
1

φ(x′
1 − x′

2)·

· Dr1+1
v′
1

ν
(k−r1)
2 (x′

1, v
′
1, x

′
2, v

′
2; t).

Let us come back now to equation (4.6.22). It is useful to observe that:

(4.6.26)

∫ t

ord

dtn

∑

I⊂In:
|I|=m

=

∫ t

ord

dtI

∫ t

ord

dtIn\I .

Then, putting together (4.6.22), (4.6.25), (4.6.20) and (4.6.26), we obtain the

following equation for ν
(k)
1 :

(4.6.27)

(
∂t + v′1 · ∇x′

1

)
ν

(k)
1 (x′

1, v
′
1; t) = L(μN (t))ν

(k)
1 (x′

1, v
′
1; t)

+
∑

0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′

2 dv′2 Dr1+1
x′
1

φ(x′
1 − x′

2)·

· Dr1+1
v′
1

ν
(k−r1)
2 (x′

1, v
′
1, x

′
2, v

′
2; t)+

+
∑

0<�<k

(∇x′
1
φ ∗ ν

(�)
1 (t)) · ∇v′

1
ν

(k−�)
1 (t) + E2

N ,

with initial datum given by:

(4.6.28) ν
(k)
1 (x′

1, v
′
1; t)|t=0 = η1((z

′
1; 0, k, r0, t0, ZN ) = D2kμN (z′1|ZN ).

Here E2
N arises from E1

N (see (4.6.20)). Now, we want to prove that:

(4.6.29) ν
(k)
1 (t) → f (k)(t), as N → ∞, C∞

b − weakly,
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and

(4.6.30) ν
(k)
2 (t) → f

(k)
2 (t), as N → ∞, C∞

b − weakly,

for any configuration ZN such that μN → f
(0)
0 in the weak sense of probability

measure (namely, for any ZN typical with respect to f
(0)
0 (see Section 4.4)). As a

consequence, reminding that ν
(k)
1 (t) and ν

(k)
2 (t) are equal to ω

(k)
N,1(t) and ω

(k)
N,2(t)

respectively, a.e. with respect to W
(0)
N,0, (4.6.29) and (4.6.30) are equivalent to:

(4.6.31) ω
(k)
N,1(t) → f (k)(t), as N → ∞, C∞

b − weakly,

and

(4.6.32) ω
(k)
N,2(t) → f

(k)
2 (t), as N → ∞, C∞

b − weakly.

As we already remarked, the C∞
b -weak convergence implies the convergence in

S ′, therefore, (4.6.31) and (4.6.32) imply the convergence of ω
(k)
N,1(t) to f (k)(t) in

S ′(R3 × R3) and of ω
(k)
N,2(t) to f

(k)
2 (t) in S ′(R6 × R6).

4.6.1 – One and two-particle convergence

In evaluating the behavior of νk
1 (t) when N → ∞, we note that it solves the

initial value problem (4.6.27)-(4.6.28) for which we want to use Proposition 4.5.1.
First, however, we have to verify the assumptions. The first one, namely i), is

verified as follows by our choice of the initial datum which ensures f
(0)
0 to be

a smooth probability measure (see Section 4.5) and by the classical mean-field
theory recalled in Section 1.

Now, we have to check that assumption ii) is satisfied, namely, we have to
prove that

(4.6.33)

∀u1, u2 in C∞
b (R3 × R3),

there exists a constantC = C(u1, u2) > 0,

independent of N , such that:

∥∥∥u1 ∗ (u2 ν
(k)
1 (t))

∥∥∥
L∞(R3×R3)

< C for any t.
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We have:

(4.6.34)

∥∥∥u1 ∗ (u2 ν
(k)
1 (t))

∥∥∥
L∞(R3×R3)

=

= sup
x′
1,v′

1

∣∣∣∣
∫

dydw u1(x
′
1 − y, v′1 − w)u2(y, w)ν

(k)
1 (y, w; t)

∣∣∣∣ ≤

≤
∑

n≥0

k∑

r=0

∑

r
n
: rj>0

|rn
|=k−r

∫ t

ord

dtn

sup
x′
1,v′

1

∣∣∣∣
∫

dydw u1(x
′
1 − y, v′1 − w)u2(y, w)η1(y, w; t; r, rn, tn, ZN )

∣∣∣∣ =

=
∑

n≥0

k∑

r=0

∑

r
n
: rj>0

|rn|=k−r

∫ t

ord

dtn

sup
x′
1,v′

1

∣∣∣∣∣

∫
dydw (u1(x

′
1 − y, v′1 − w)u2(y, w))D2rT

(rn)
N (tn) . . .

. . . T
(r1)
N (t1)μN (y, w|ZN (t))

∣∣∣∣∣ =
∑

n≥0

k∑

r=0

∑

r
n
: rj>0

|rn|=k−r

∫ t

ord

dtn

sup
x′
1,v′

1

∣∣∣∣∣

∫
dydw g(x′

1,v
′
1,y,w)D2rT

(rn)
N (tn) . . . T

(r1)
N (t1)μN (y, w|ZN (t))

∣∣∣∣∣,

where we used the notation g(x′
1, v

′
1, y, w) := u1(x

′
1 − y, v′1 − w)u2(y, w) and,

clearly, we have g(x′
1, v

′
1, ·, ·) ∈ C∞

b (R3 ×R3) for any x′
1 and v′1 and g(·, ·, y, w) ∈

C∞
b (R3 × R3) for any y and w. By some estimates which will be proven in

Appendix C (see Lemma C.2), we are guaranteed that, applying the operator

D2rT
(rn)
N (tn) . . . T

(r1)
N (t1) on the empirical measure μN (t) and integrating versus

a function in C∞
b (R3 × R3) we obtain a quantity uniformly bounded in N . This

feature, by virtue of the good properties of the function g ensures that (4.6.34)
is finite.

Let us now look at the initial datum for ν
(k)
1 (t), in order to verify assump-

tion iii).

From (4.6.28) we know that ν
(k)
1 (0) = D2kμN ∈ S ′(R3 × R3). As regard to

its limiting behavior, we find that:

(4.6.35) ν
(k)
1 (t)

∣∣∣
t=0

= D2kμN =

N∑

n=1

∑

I⊂IN

|I|=n

∑

sj :j∈I
1≤sj≤k∑

j
sj=k

∏

j∈I

D
2sj

G,jμN ,

where IN = {1, . . . , N}.
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For our convenience, we have written the action of the operator D2k in a
equivalent and slightly different way from that we used in (4.6.3).

We realize that the only surviving term in the sum (4.6.35) is that with
n = 1. Hence:

(4.6.36) νk
1 (t)

∣∣
t=0

=

N∑

j=1

D2k
G,jμN =

1

N

N∑

j=1

D2k
G,jδ(z

′
1 − zj) = D2k

G μN .

Therefore we can conclude, by using the mean-field limit:

(4.6.37)

(
u, ν

(k)
1 (t)|t=0

)
=

(
u, D2k

G μN

)
=

=
(
D2k

G u, μN

)
→

(
D2k

G u, f
(0)
0

)
=

=
(
u, D2k

G f
(0)
0

)
=

(
u, f

(k)
0

)
, as N → ∞,

∀u in C∞
b

(
R3 × R3

)
.

Thus, f
(k)
0 plays the role of γ0 in Proposition 4.5.1 and it is in L1(R3 × R3)

because f
(0)
0 ∈ S(R3 × R3).

We conclude the convergence proof (for the one and two-particle functions)
by induction. For k = 0 we know that, for any configuration ZN which is typical

with respect to f
(0)
0 , we have:

(4.6.38) ν
(0)
1 (t) = μN (t) → f (0)(t), as N → ∞

in the weak sense of probability measures (see (1.3.10) and (1.3.11)) and, as a
consequence, the convergence holds C∞

b − weakly. Moreover

(4.6.39) ν
(0)
2 (t) = μN (t) ⊗ μN (t) → f

(0)
2 (t) = f (0)(t) ⊗ f (0)(t), as N → ∞,

in the weak sense of probability measures and, as previously, the convergence
holds C∞

b − weakly.
We make the following inductive assumptions for all h < k:

(4.6.40) ν
(h)
1 (t) → f (h)(t), as N → ∞, C∞

b − weakly,

for any configuration ZN which is typical with respect to f
(0)
0 , and

(4.6.41) ν
(h)
2 (t) → f

(h)
2 (t) =

∑

0≤q≤h

f (q)(t)f (h−q)(t), as N → ∞, C∞
b −weakly,

for any configuration ZN which is typical with respect to f
(0)
0 .
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Now we want to prove that (4.6.40) and (4.6.41) hold also for h = k.
Thanks to (4.6.40), we can affirm that:

(4.6.42)

∑

0<�<k

(
∇x′

1
φ ∗ ν

(�)
1

)
· ∇v′

1
ν

(k−�)
1 →

∑

0<�<k

(
∇x′

1
φ ∗ f (�)

)
· ∇v′

1
f (k−�) =

=
∑

0<�<k

T
(0)
� f (k−�), C∞

b − weakly,

and, thanks to (4.6.41), have:

(4.6.43)

∑

0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′

2dv′2D
r1+1
x′
1

φ(x′
1 − x′

2)·

· Dr1+1
v′
1

ν
(k−r1)
2 (x′

1, v
′
1, x

′
2, v

′
2; t)

↓ C∞
b − weakly

∑

0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′

2dv′2D
r1+1
x′
1

φ(x′
1 − x′

2)·

· Dr1+1
v′
1

f
(k−r1)
2 (x′

1, v
′
1, x

′
2, v

′
2; t) =

=
∑

0<r1≤k
r1even

∑

0≤q≤k−r1

(−1)r1/2cr1

∫
dx′

2dv′2D
r1+1
x′
1

×

× φ(x′
1 − x′

2)f
(k−r1)(x′

2, v
′
2; t) · Dr1+1

v′
1

f (q)(x′
1, v

′
1; t) =

=
∑

0<r1≤k
r1 even

∑

0≤q≤k−r1

T (r1)
q f (k−r1−q)(t).

At the end, putting together (4.6.42) and (4.6.43), we find that the sum of the
source terms in equation (4.6.27) converges C∞

b -weakly to:

(4.6.44)
∑

0<�<k

T
(0)
� f (k−�) +

∑

0<r1≤k
0≤q≤k−r1

T (r1)
q f (k−r1−q),

which plays the role of Θ in Proposition 4.5.1 and it is easy to verify that it
is in C0(L1(R3 × R3), R+). Therefore, we can apply Proposition 4.5.1 claiming

that, for any typical configuration ZN with respect to f
(0)
0 , ν

(k)
1 (t) converges C∞

b -
weakly to the solution of the problem (4.1.14). Looking at (4.1.11) and (4.1.13),
we realize that we obtained the equation satisfied by f (k)(t).

In order to “close” the recurrence procedure, it remains to show the two-
particle convergence at order k. It follows from the one-particle analysis and
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from the following computation (see (4.6.14)):

(4.6.45)

η2(z
′
1, z

′
2; t, r, rn, tn, ZN ) =

=
∑

0≤�≤k

∑

0≤m≤n

∑

I:I⊆In

|I|=m

×

× η1(z
′
1; t, �, rI , tI , ZN )η1(z

′
2; t, k − �, rIn\I , tIn\I , ZN ) + R2

N ,

where R2
N is a remainder arising from the action of the operator D2rT

(rn)
N (tn) . . .

T
(r1)
N (t1) on a product of two empirical measures μN (t). In Appendix C we will

see that it is vanishing in the limit. As a consequence, ν
(k)
2 (see (4.6.10) for

j = 2) is such that:

(4.6.46) ν
(k)
2 (t) =

∑

0≤q≤k

ν
(q)
1 (t)ν

(k−q)
1 (t) + o(1),

in the limit N → ∞. Therefore, from the inductive assumption (4.6.40) and
from the one-particle convergence at order k, we conclude that:

(4.6.47) ν
(k)
2 (t) →

∑

0≤q≤k

f (q)(t)f (k−q)(t) = f
(k)
2 (t), as N → ∞, C∞

b − weakly,

for any configuration ZN which is typical with respect to f
(0)
0 . Thus, we have

just proven the convergence of ω
(k)
N,j in the cases j = 1, j = 2.

4.6.2 – j-particle convergence

As for j = 2, the j-particle convergence can be reduced by the one-particle
control. Indeed by (4.6.10) and (4.6.11) we have:

(4.6.48)

ν
(k)
j (t) =

∑

s1...sj

0≤sm≤k∑
m

sm=k

j∏

m=1

ν
(sm)
1 (t) + Rj

N ,

with Rj
N → 0 when N → ∞.

Again the error term Rj
N arises from the presence of products of derivatives with

respect to the same variable. In conclusion, the result we proved for ν
(k)
1 (t),

together with the estimates proven in Appendix C, is sufficient to guarantee the

C∞
b -weak convergence of ν

(k)
j (t) to f

(k)
j (t) for any j (for any typical configuration
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ZN with respect to f
(0)
0 ), and, as a consequence, the C∞

b -weak convergence of

ω
(k)
N,j(t) is f

(k)
j (t), for any j.

The final step is to realize that this convergence does imply that for the

coefficients W
(k)
N,j(t), namely what is established by Theorem 4.5.1.

First of all, we observe that, for any test function u we have:

(4.6.49)

(u, W
(k)
N,1(t) =

∫

R6

dz1W
(k)
N,1(z1; t)u(z1) =

=

∫

R3N×R3N

dZNW
(k)
N (ZN ; t)u(z1) =

=

∫

R3N×R3N

dZNW
(k)
N (ZN ; t)

1

N

N∑

l=1

u(zl) =

=

∫

R3N×R3N

dZNW
(k)
N (ZN ; t)(u, μN ) = (u, ω

(k)
N,1(t)),

where we made use of the symmetry of the coefficient W
(k)
N (ZN ; t) with respect

to any permutation of the variables (the computation is the same we did in

Section 4.4 for W
(1)
N,1(t)). From (4.6.49), we can see that W

(k)
N,1(t) and ω

(k)
N,1(t) are

equal as distributions in S ′(R3 ×R3) (in particular, we can choose test functions

belonging to C∞
b (R3×R3)), then the convergence of W

(k)
N,1(t) is proven. Moreover,

for j ≥ 2, a straightforward computation shows that, by fixing an index j, we
have

(4.6.50) (uj , ω
(k)

N,j
(t)) =

N(N − 1) . . . (N − j + 1)

N j

(
uj , W

(k)

N,j
(t)

)
+

Cj<j

N
,

where Cj<j < ∞ provided that (uj , W
(k)
N,j(t)) is uniformly bounded for each

j < j. Then, to conclude the proof of Theorem 4.5.1, it is enough to use a
recurrence argument.

5 – Outlooks and Perspectives

In this section we give an overview of possible developments of our research,
both in the perspective of generalizing our result, and from the point of view of
applications in other (somewhat related) fields.

First we observe that the we can apply Theorem 4.5.1 even by considering
as one-particle initial datum a suitable mixtures of WKB states. Indeed, let us
consider the one-particle WKB state described by the wave function ψWKB ∈
L2(R3) given by:

(5.1) ψWKB(x|v0) = a(x)ei
v0·x

ε , a ∈ S(R3), a(x) ∈ R ∀ x, v0 fixed in R3,



[97] Semiclassical analysis for the quantum M-F limit 319

where the amplitude a is assumed to verify

(5.2)

∫
dx a2(x) = 1,

namely, a2(x) can be interpreted as a one-particle probability density in the
position phase space R3. The Wigner function associated with (5.1), given by

(5.3)

fε
WKB(x, v|v0) = (2π)−3

∫

R3

dyei v·y×

× ψWKB

(
x +

εy

2
|v0

)
ψWKB

(
x − εy

2
|v0

)
=

= (2π)−3

∫

R3

dyei y·va
(
x +

εy

2

)
e−i

v0·(x+
εy
2 )

ε ×

× a
(
x − εy

2

)
ei

v0·(x− εy
2 )

ε =

= (2π)−3

∫

R3

dyei y·(v−v0)a
(
x +

εy

2

)
a

(
x − εy

2

)
,

can be expanded as follows

(5.4) fε
WKB(x, v|v0) = f

(0)
WKB(x, v|v0)+εf

(1)
WKB(x, v|v0)+ε2f

(2)
WKB(x, v|v0)+. . .

where

(5.5) f
(0)
WKB(x, v|v0) = a2(x)δ(v − v0),

(5.6) f
(2n+1)
WKB (x, v|v0) = 0 ∀ n = 0, 1, 2, . . . ,

(5.7)
f

(2n)
WKB(x, v|v0) = − 1

(2)2n

2n∑

l=0

1

l!

1

(2n−l)!
×

× (−1)lDla(x)D2n−la(x)D2n
v δ(v − v0), ∀ n = 1, 2, . . .

and Dm
v δ(v − v0), for any m > 0, is the distribution acting as

(u, Dm
v δ(v − v0)) =

∫
dv u(v)Dm

v δ(v − v0) =(5.8)

= (−1)m

∫
dv Dm

v u(v)δ(v − v0) = (−1)mDm
v u(v0),(5.9)
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for any smooth test function u.
Then, we consider the Wigner function

(5.10) fε
W (x, v) =

∫
dv0 gW (v0)f

ε
WKB(x, v|v0), gW ∈ S(R3)

associated with the (continuum) mixed state (see paragraph “Mixed states” in
Section 2.1) described by the density matrix (kernel)

(5.11) ρW (x, v) =

∫
dv0gW (v0)ψWKB(x|v0)ψWKB(y|v0)

and we assume gW to be a probability density with respect to the velocity vari-
able, gW not depending on ε (states similar to (5.9) have been considered in [24]).
By (5.4), (5.5), (5.6) and (5.7) we obtain that (5.9) is expanded as:

(5.12) fε
W (x, v) = f

(0)
W (x, v) + εf

(1)
W (x, v) + ε2f

(2)
W (x, v) + . . .

where

f
(0)
W (x, v) = a2(x)gW (v),(5.13)

f
(2n+1)
W (x, v) = 0 ∀ n = 0, 1, 2, . . . ,(5.14)

f
(2n)
W (x, v) = − 1

(2)2n

2n∑

l=0

1

l!

1

(2n − l)!
(−1)lDla(x)D2n−la(x)D2n

v gW (v).(5.15)

∀ n = 0, 1, 2, . . .

By virtue of our assumptions on a and gW we find that f
(0)
W defined by (5.13) is

a one-particle probability density and f
(0)
W ∈ S(R3). Furthermore, we choose a

in such a way that

(5.16) Dma(x) = α(m)(x)a(x), ∀ m ≥ 1 with α(m)(x) ∈ C0(R3),

C0(R3) being the space of continuous functions. Therefore, by (5.15) we find

(5.17)

f
(2n)
W (x, v) = − 1

(2)2n

2n∑

l=0

1

l!

1

(2n − l)!
(−1)lDla(x)D2n−la(x)D2n

v gW (v) =

= β(2n)(x)a2(x)D2n
v gW (v) =

= β(2n)(x)D2n
v f

(0)
W (x, v) ∀ n = 0, 1, 2, . . .
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where β(2n)(x) = − 1
(2)2n

∑2n
l=0

1
l!

1
(2n−l)! (−1)lα(l)(x)α(2n−l)(x) for any n ≥ 1 and

in the last equality of (5.17) we used (5.13). By the smoothness of α (see (5.16)) it
follows that β(2n)(x) ∈ C0(R3) for all n, thus (2.17) together with the smoothness

of f
(0)
W implies that f

(2n)
W ∈ S(R3 × R3) for all n ≥ 1.

Therefore, we have

f
(0)
W ∈ S(R3 × R3)(5.18)

f
(2n+1)
W (x, v) = 0 ∀ n = 0, 1, 2, . . . ,(5.19)

f
(2n)
W ∈ S(R3 × R3) ∀ n = 1, 2, . . .(5.20)

and, by applying Proposition 4.1.1 as in Section 4.1, we can identify the time-

evolved coefficients f
(k)
W (t), for each k ≥ 0, as the unique solutions of problems

(4.1.10) and (4.1.11) in L1(R3 × R3). Clearly, by (5.19) we find

(5.21) f
(2n+1)
W (x, v; t) ≡ 0, for each n ≥ 0 and ∀ t,

while f
(2n)
W (t) ∈ S(R3 × R3) for any n ≥ 0. In particular, f

(0)
W (t) is the unique

solution of the Vlasov equation (1.1.8) with initial datum f
(0)
W , thus we are

guaranteed that f
(0)
W (t) is a one-particle probability density for all times.

Let us consider the following factorized initial datum for the N -particle
Wigner-Liouville equation (3.2.1)

(5.22) W ε
N,W (XN , VN ) = (fε

W )⊗N (XN , VN ).

Then we find

(5.23)
W ε

N,W (XN , VN ) = W
(0)
N,W (XN , VN ) + εW

(1)
N,W (XN , VN )+

+ ε2W
(2)
N,W (XN , VN ) + . . . ,

where, by (5.12),

W
(0)
N,W (XN , VN ) = (f

(0)
W )⊗N (XN , VN )(5.24)

W
(n)
N,W (XN , VN ) =

∑

s1...sN
0≤sj≤n∑

j
sj=n

N∏

j=1

f
(sj)
W (xj , vj) for n ≥ 1,(5.25)

and we note that, as in the case we considered in Section 4, factorization holds
only for the zero order coefficient which, furthermore, turns to be an N -particle
probability density.
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By (5.25), thanks to (5.14) and (2.17), we find

W
(0)
N,W (XN , VN ) = (f

(0)
W )⊗N (XN , VN )(5.26)

W
(n)
N,W (XN , VN ) =

∑

s1...sNeven
0≤sj≤n∑

j
sj=n

N∏

j=1

β(sj)×(5.27)

× (xj)D
sj
vj

W
(0)
N,W (Xj , Vj) for n ≥ 1.

Defining the operator D̂r, for any r even, as:

(5.28)

D̂0 = 1,

D̂r =
∑

s1...sNeven:
0≤sj≤k∑

j
sj=r

N∏

j=1

β(sj)(xj)D
sj
vj

, r ≥ 2,

we have:

W
(2n+1)
N,W (XN , VN ) = 0, forn = 0, 1, 2, . . .(5.29)

W
(2n)
N,W (XN , VN ) = D̂2nW

(0)
N,W (XN , VN ) forn = 0, 1, 2, . . . .(5.30)

Now, let us consider the factorized j-particle Wigner function (fε
W (t))⊗j , where

fε
W (t) is the solution of the (Hartree) nonlinear Wigner-Liouville equation (3.3.1)

with initial datum fε
W given by (5.9). The product (fε

W (t))⊗j can be expanded
as

(5.31) (fε
W (t))⊗j = f

(0)
j,W (t) + εf

(1)
j,W (t) + ε2f

(2)
j,W (t) + . . . ,

where, by the analysis done in Section 4.3 and thanks to (5.14), we have

f
(0)
j,W (t) = (f

(0)
W (t))⊗j(5.32)

f
(2n+1)
j,W (t) = 0, ∀ n ≥ 0(5.33)

f
(2n)
j,W (t) =

∑

s1...sjeven
0≤sm≤2n∑

m
sm=2n

j∏

m=1

f
(sm)
W (t), ∀ n ≥ 1,(5.34)

f
(0)
W (t) solving the Vlasov equation (1.1.8) with initial datum f

(0)
W and f

(sm)
W (t),

with 1 ≤ sm ≤ 2n, obtained by (4.1.11).
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By the analysis done in Section 4.2, we find that the N -particle zero order

coefficient W
(0)
N,W (t) solves

(5.35)

⎧
⎨
⎩

(∂t + VN · ∇XN
)W

(0)
N,W (t) = T

(0)
N W

(0)
N,W (t),

W
(0)
N,W (XN , VN ; t)

∣∣∣
t=0

= (f
(0)
W )⊗N (XN , VN )

the odd coefficients W
(2n+1)
N,W (t) are determined by

(5.36)

⎧
⎨
⎩

(∂t + VN · ∇XN
) W

(2n+1)
N,W (t) = T

(0)
N W

(2n+1)
N,W (t),

W
(2n+1)
N,W (XN , VN ; t)

∣∣∣
t=0

= 0, k = 0, 1, 2, . . .

and the even terms W
(2n)
N,W (t) solve

(5.37)

⎧
⎨
⎩

(∂t + VN · ∇XN
)W

(2n)
N,W (t) = T

(0)
N W

(2n)
N,W (t) + Θ

(2n)
N,W (t),

W
(2n)
N,W (XN , VN ; t)

∣∣∣
t=0

= D̂2nW
(0)
N,W (XN , VN ), n = 1, 2, . . .

where

(5.38) Θ
(2n)
N,W (t) =0≤l<2n T

(2n−l)
N W

(l)
N,W (t).

We observe that the odd coefficients W
(2n+1)
N,W (t) solve homogeneous Liouville

equations with zero initial data, then W
(2n+1)
N,W (t) ≡ 0 for all n ≥ 0. On the

contrary, the zero order term W
(0)
N,W (t) solve the Liouville problem (5.35), thus,

denoting by {W (0)
j,W (t)}N

j=1 the corresponding j-particle marginals, by the classi-
cal mean-field theory we obtain

(5.39) W
(0)
j,W (t) → (f

(0)
W (t))⊗j , as N → ∞, for any fixed j

in the weak topology of probability measures and, in particular, in S ′(R3j×R3j),

where (f
(0)
W (t))⊗j is given by (5.32).

As regard to the higher order terms, we can apply exactly the same strat-
egy presented in Section 4, replacing the operator Dk

G defined in (4.5.8) with

β(k)(x)Dk
v (see (5.17) ) and the operator Dr (see Section 4.6) with D̂r (see

(5.28)). In the end we prove that, for k ≥ 1

(5.40) W
(k)
j,W (t) → f

(k)
W,j(t), as N → ∞, for any fixed j

in S ′(R3j × R3j).
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Clearly, (5.40) is trivially verified for k = 2n + 1, because we have already
noticed that

(5.41) W
(2n+1)
j,W (t) ≡ f

(2n+1)
j,W (t) ≡ 0, ∀ n ≥ 0.

As we observed in Remark 4.5.1, the assumption on the initial N -particle Wigner
function to be a product of mixed states prevents the possibility of considering
bosonic states. Indeed, factorized states could be compatible with the bosonic
statistics if pure states were considered.

It is easy to check that the classical limit is equivalent to the limit of heavy
particles. In fact, if we set ε = 1 in the N -particle Hamiltonian (2.1.5) but we let
the particle mass m (previously chosen equal to 1) become large, by imposing the
condition that the kinetic energy per particle is independent of m, we find exactly
the mean-field hamiltonian (2.1.5) where ε is replaced by the “effective Planck
constant” εm = 1/

√
m going to zero as m → ∞. Then a possible application of

our result would be that of studying the approximations of dynamics of this type,
in which one looks at a particular scaling which corresponds to the semiclassical
one, even if interpreted in a different sense.

– Appendix A

Proof of Proposition 4.4.1

To avoid inessential notational complications, we deal with the one-dimen-
sional case. By the Newton equations, we have:

∂xi(t)

∂vr
=δirt+

∫ t

0

ds(t−s)
1

N

N∑

j �=i

∂xF (xi(s)−xj(s))

(
∂xi(s)

∂vr
− ∂xj(s)

∂vr

)
,(A.1)

∂vi(t)

∂vr
= δir +

∫ t

0

ds
1

N

N∑

j �=i

∂xF (xi(s) − xj(s))

(
∂xi(s)

∂vr
− ∂xj(s)

∂vr

)
,(A.2)

where:

(A.3) F = −∇xφ,

is the force associated with the potential φ.
Let us analyze in detail the derivative of xi(t). From (A.1), we get:

(A.4) max
i,r

t≤T

∣∣∣∣
∂xi(t)

∂vr

∣∣∣∣ ≤ C.
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Inserting this estimate again in (A.1), we realize that we can obtain a better

bound for ∂vi(t)
∂vr

in the case r 	= i (see [24]), namely:

∣∣∣∣
∂xi(t)

∂vr

∣∣∣∣ ≤ C

∫ t

0

ds(t − s)

∣∣∣∣
∂xi(s)

∂vr

∣∣∣∣ +(A.5)

+ C

∫ t

0

ds(t − s)
1

N

∣∣∣∣
∂xr(s)

∂vr

∣∣∣∣ +

+ C

∫ t

0

ds(t − s)
1

N

N∑

j �=i
j �=r

∂xF (xi(s) − xj(s))

∣∣∣∣
∂xj(s)

∂vr

∣∣∣∣ .(A.6)

Hence, by virtue of the Gronwall lemma, we find:

(A.7) max
i �=r
t≤T

∣∣∣∣
∂xi(t)

∂vr

∣∣∣∣ ≤
C

N
.

By (A.2), we find that the same estimate holds for the derivative of vi(t) with
respect to vr. Analogous estimates hold for the derivatives with respect to the
initial positions (see also [24]).

Therefore the claim of Proposition 4.4.1 is proven for derivatives of order
one.

Now, let us consider a sequence I := (j1, . . . , jk) of possibly repeated indices.
We show that:

(A.8)
1

N

N∑

i=1

∣∣∣∣
∂kxi(t)

∂vj1 . . . ∂vjk

∣∣∣∣ ≤
C

Ndk
,

where dk is the number of different indices in the sequence j1, . . . , jk. We know
that (A.8) is verified for k = 1 (it follows directly by (A.4) and (A.7)), thus we
prove (A.8) by induction on k. Denoting by:

(A.9) D(I) :=
∂k

∂vj1 . . . ∂vjk

,

estimate (A.8) can be rewritten as:

(A.10)
1

N

N∑

i=1

|D(I)xi(t)| ≤
C

Ndk
.

By (A.1) we derive the following estimate for D(I)xi(t):

(A.11) |D(I)xi(t)| ≤
∫ t

0

ds(t − s)
C

N

N∑

j �=i

|D(I) (xi(s) − xj(s))| + Mi(t),
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where the term Mi(t) can be computed from (A.1) according to the Leibniz
rule. Let Pn := {I1, . . . , In} be a partition of the set I of cardinality n, with
2 ≤ n ≤ k, then we have:

(A.12)

Mi(t)≤
∫ t

0

ds(t − s)
1

N

N∑

j �=i

k∑

n=2

∑

Pn

C(Pn)

∣∣∣∣∣
∏

H∈Pn

[D(H)(xi(s) − xj(s))]

∣∣∣∣∣ ≤

≤
∫ t

0

ds(t − s)

k∑

n=2

∑

Pn

C(Pn)
1

N

N∑

j=1

∣∣∣∣∣
∏

H∈Pn

[D(H)(xi(s) − xj(s))]

∣∣∣∣∣ ,

where D(H) :=
∏

h∈H
∂

∂vh
and C(Pn) are coefficients depending on the partition

Pn and on suitable derivatives of F . By (A.11), it follows that:

(A.13)
1

N

N∑

i=1

|D(I)xi(t)| ≤
∫ t

0

ds(t − s)
C

N

N∑

i=1

|D(I)xi(s)| + M(t),

where M(t) = 1
N

∑N
i=1 Mi(t) and, by (A.12), we have:

(A.14) M(t)≤
∫ t

0

ds(t − s)

k∑

n=2

∑

Pn

C(Pn)
1

N2

N∑

i=1

N∑

j=1

∣∣∣∣∣
∏

H∈Pn

[D(H)(xi(s)−xj(s))]

∣∣∣∣∣ ,

We observe that:

(A.15)

1

N2

N∑

i,j=1

∣∣∣∣∣
∏

H∈Pn

[D(H) (xi(s) − xj(s))]

∣∣∣∣∣ ≤

≤ 1

N

N∑

i=1

∏

H∈Pn

|D(H)xi(s)| +
1

N

N∑

j=1

∏

H∈Pn

|D(H)xj(s)|+

+
∑

Q⊂Pn

C(Q)

⎛
⎝ 1

N

N∑

i=1

∏

Q∈Q
|D(Q)xi(s)|

⎞
⎠
⎛
⎝ 1

N

N∑

j=1

∏

J∈Pn\Q
|D(J)xj(s)|

⎞
⎠ ,

where Q is any subpartition of Pn and C(Q) are coefficients depending on Q.
We assume that the estimate (A.10) holds for any m ≤ k − 1, namely:

(A.16)
1

N

N∑

i=1

|D(M)xi(t)| ≤
C

Ndm
, for any M ⊂ I s.t. |M | = m ≤ k − 1,

where dm is the number of different indices in the sequence M .
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Indeed, if we consider a partition Pn of cardinality n ≥ 2, we are guaranteed
that |M | ≤ k − 1 for each M ∈ Pn. Then, by noting that:

(A.17)
1

N

N∑

i=1

∏

H∈H
|D(H)xi(t)|≤

∏

H∈H

1

N

N∑

i=1

|D(H)xi(t)| , ∀ subpartition H ⊆ Pn,

we can apply the inductive hypotheses (tag A.16) to estimate the derivatives of
xi(s) and xj(s) appearing in (A.15). Thus, we obtain:

(A.18)

1

N

N∑

i=1

∏

H∈Pn

|D(H)xi(s)| ≤
∏

H∈Pn

1

N

N∑

i=1

|D(H)xi(s)| ≤

≤
∏

H∈Pn

C

Ndh
=

C

N
∑

dh

≤ C

Ndk
,

where dh is the number of different indices in the sequence H and we used that∑
H∈Pn

dh ≥ dk.
In a similar way, we find

(A.19)
1

N

N∑

i=1

∏

Q∈Q
|D(Q)xi(s)| ≤

∏

Q∈Q

C

Ndq
,

where dq is the number of different indices in the sequence Q.
Moreover, we have:

(A.20)
1

N

N∑

j=1

∏

H∈Pn

|D(H)xj(s)| ≤
∏

H∈Pn

C

Ndh
=

C

N
∑

dh

≤ C

Ndk
,

and

(A.21)
1

N

N∑

j=1

∏

J∈Pn\Q
|D(J)xj(s)| ≤

∏

J∈Pn\Q

C

Ndj
,

where dj is the number of different indices in the sequence J . Then, putting
together (A.19) and (A.21), we find:

(A.22)

∑

Q⊂Pn

C(Q)

⎛
⎝ 1

N

N∑

i=1

∏

Q∈Q
|D(Q)xi(s)|

⎞
⎠

⎛
⎝ 1

N

N∑

j=1

∏

J∈Pn\Q
|D(J)xj(s)|

⎞
⎠ ≤

≤
∑

Q⊂Pn

C(Q)
∏

Q∈Q

∏

J∈Pn\Q

C

Ndq+dj
≤

∑

Q⊂Pn

C(Q)
∏

Q∈Q

∏

J∈Pn\Q

C

Ndk
≤ C

Ndk
.



328 FEDERICA PEZZOTTI [106]

In the end, we have just proven that each term in (A.15) is bounded by C
Ndk

.
Therefore, by using this estimate in (A.14), we find:

(A.23) M(t) ≤ C

Ndk
.

By (A.23) and (A.13), it follows that:

(A.24)
1

N

N∑

i=1

|D(I)xi(t)| ≤
∫ t

0

ds(t − s)
C

N

N∑

i=1

|D(I)xi(s)| +
C

Ndk
.

Therefore, by using the Gronwall lemma, we find:

(A.25)
1

N

N∑

i=1

|D(I)xi(t)| ≤
C

Ndk
.

As regard to the derivatives of vi(t) with respect to some initial velocities vj1 , . . . ,
vjk

, an analogous estimate holds and the proof works in the same way. Further-
more, this strategy leads to the same estimate for the derivatives of the function
1
N

∑N
i=1 zi(t) with respect to some initial positions xj1 , . . . , xjk

.
Now, thanks to the estimate we have just proven for the derivatives of the

function 1
N

∑N
i=1 zi(t), we are able to prove the claim of Proposition 4.4.1. In

fact, we have:

(A.26)
1

N

N∑

i=1

|D(I)zi(t)| =
1

N

N∑

i=1
i∈D

|D(I)zi(t)| +
1

N

N∑

i=1
i/∈D

|D(I)zi(t)| ≤
C

Ndk
,

where D ⊂ I contains the different indices appearing in the sequence I. Thus,
according to our previous notation, |D| = dk and we denote the elements of D
by j̃1, . . . , j̃dk

. Then by (A.26) we find:

(A.27)

1

N

N∑

i=1

|D(I)zi(t)| =
1

N

∣∣∣D(I)zj̃1
(t)

∣∣∣ + · · · + 1

N

∣∣∣D(I)zj̃dk
(t)

∣∣∣ +

+
1

N

N∑

i=1
i/∈D

|D(I)zi(t)| ≤
C

Ndk
,

which implies

(A.28) |D(I)zi(t)| ≤ C

(∑dk

�=1 δij̃�

Ndk−1
+

1

Ndk

)
,
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or

(A.29) |D(I)zi(t)| ≤
C

Nd
(i)

k

,

where d
(i)
k is the number of different indices in the sequence I which are also

different from i.

– Appendix B

Proof of Proposition 4.1.1

Let Uh(t, s) be the two parameters semigroup solution of the linear problem:

(B.1)

{
(∂t + v · ∇x) Uh(t, s)γ0 = (∇φ ∗ h) ∗ ∇vUh(t, s)γ0,

Uh(s, s)γ0 = γ0.

The solution of (B.1) is obtained by carrying the initial datum γ0 along the
characteristic flow

(B.2)

{
ẋ = v,

v̇ = −∇φ ∗ h.

Next, we consider the problem

(B.3)

{
(∂t + v · ∇x) γ̃ = L(h)γ̃,

γ̃|t=0 = γ0.

which can be reformulated in integral form:

(B.4) γ̃(t) = Uh(t, 0)γ0 +

∫ t

0

ds Uh(t, s) [(∇φ ∗ γ̃(s)) · ∇vh(s)] .

The above formula can be iterated to yield the formal solution

(B.5)

γ̃(x, v; t) = Uh(t, 0)γ0(x, v)+

+
∑

n≥1

∫ t

0

dt1

∫ t1

0

dt2· · ·
∫ tn−1

0

dtn

∫
dx1

∫
dv1· · ·

∫
dxn

∫
dvn

Uh(t, t1) [∇vh(x, v; t1) · ∇xφ(x − x1)]

Uh(t1, t2) [∇v1
h(x1, v1; t2) · ∇x1

φ(x1 − x2)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uh(tn−1, tn)
[
∇vn−1h(xn−1, vn−1; tn) · ∇xn−1φ(xn−1 − xn)

]

Uh(tn, 0)γ0(xn, vn).
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We remark that Uh(tk, tk+1) acts on the variables xk, vk with the convention
that (x0, v0) = (x, v) and, furthermore, Uh is multiplicative and preserves the
Lp(R3 × R3) norms (p = 1, 2, . . . ,∞).

Under the assumptions of Proposition 4.1.1, the above series is bounded in
L1(R3 × R3) by:

(B.6)
∑

n≥0

tn

n!

(
supτ∈[0,t] ‖∇vh(τ)‖L1(R3×R3)

)n

‖∇xφ‖n
L∞(R3) ‖γ0‖L1(R3×R3) ,

which is converging for each t. Now, we denote by Σh(t, s) : L1(R3 × R3) →
L1(R3 ×R3), the two parameters semigroup given by the series (B.5). Then, the
solution γ to the problem (4.1.14) is given by:

(B.7) γ(t) = Σh(t, 0)γ0 +

∫ t

0

ds Σh(t, s)Θ(s),

and, thanks to the assumption we made on Θ and to the fact that the above series
(B.5) is converging for any t, we are guaranteed that γ ∈ C0(L1(R3 × R3), R+).

The Ck regularity of γ̃(t) = Σh(t, 0)γ0 follows by (B.5) and the fact that
Uh(t, t1) propagates the Ck regularity.

Proof of Proposition 4.5.1

The proof consists of two steps.

Step 1):

Let γN be as in Proposition 4.5.1. Then, we show that γN solves the prob-
lem:

(B.8)

{
(∂t + v · ∇x) γN = L(h)γN + Θ′

N ,

γN |t=0 = γN,0,

with

(B.9) Θ′
N = ΘN + RN ,

and RN is such that:

(B.10) RN → 0, C∞
b − weakly.

In proving (B.10), the assumption ii) on γN is crucial.

Step 2):

By virtue of Step 1), the hypotheses we made on ∇vh and Proposition 4.1.1,
we find that:

(B.11) γN (t) = Σh(t, 0)γN,0 +

∫ t

0

ds Σh(t, s)Θ′
N (s).
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Then, reminding that:

• h(t) ∈ C∞
b (R3 × R3) for any t,

• the flow Σh propagates the Ck regularity,
• RN → 0, C∞

b − weakly,

and by virtue of the assumptions on γN,0 and ΘN , we can easily show that:

(B.12) γN → γ, as N → ∞, C∞
b − weakly,

where

(B.13) γ(t) = Σh(t, 0)γ0 +

∫ t

0

ds Σh(t, s)Θ(s).

Therefore, we recognize that γ solves the problem (4.1.14) and, by virtue of
Proposition 4.1.1, it is uniquely determined by (B.13) and hence it is in C0(L1

(R3 × R3), R+).

Proof of Step 1):

We have:

(B.14)

{
(∂t + v · ∇x) γN = L(h)γN + ΘN + L(hN − h)γN

γN (x, v; t)|t=0 = γN,0(x, v),

where

(B.15) RN = RN (x, v; t) := L(hN − h)γN .

We want to show that RN → 0, C∞
b -weakly. According to the definition of the

operator L, we have:

(B.16) RN = (∇xφ ∗ (hN − h))∇vγN + (∇xφ ∗ γN )∇v(hN − h),

thus, we have to show that

(B.17) (u, (∇xφ ∗ (hN − h))∇vγN ) → 0, as N → ∞, ∀ u ∈ C∞
b (R3 × R3),

and

(B.18) (u, (∇xφ ∗ γN )∇v(hN − h)) → 0, as N → ∞, ∀ u ∈ C∞
b (R3 × R3).

We show only (B.18) in detail because (B.17) will follow the same line. We have:

(B.19)

(u, (∇xφ ∗ γN )∇v(hN−h))=

=

∫
dxdv

∫
dydw u(x, v)∇xφ(x−y)γN (y,w; t)∇v(hN (x,v; t)−h(x,v; t)) =

=−
∫

dxdv

∫
dydw∇vu(x,v)∇xφ(x−y)γN (y,w; t)(hN (x,v; t)−h(x,v; t)) =

=

∫
dxdv

∫
dydw ∇vu(x, v)(∇xφ ∗ γN )(x, v; t)(h − hN )(x, v; t).
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Setting

(B.20) ζN (x, v) := ∇vu(x, v)

∫
dydw∇xφ(x − y)γN (y, w; t),

we can write (B.19) as:

(B.21)

(u, (∇xφ ∗ γN )∇v(hN − h)) =

∫
dxdv ζN (x, v)(h(x, v; t)−hN (x, v; t)) =

=

∫
dxdv

∫
dx′dv′ (ζN (x, v) − ζN (x′, v′))PN (x, v;x′, v′; t),

where PN is a coupling of h and hN , namely a probability density in R6 × R6

with marginals given by h and hN . Now we observe that:

(B.22) ∇x,vζN (x, v) :=

∫
dydw∇x,v [∇vu(x, v)∇xφ(x − y)] γN (y, w; t),

and, thanks to the assumption ii) we made on γN , we know that there exists a
constant C = C(u, φ) > 0 such that:

(B.23) sup
x,v

|∇x,vζN (x, v)| = ‖∇ζN‖L∞(R3×R3) < C < +∞.

Therefore, coming back to (B.21), we find:

(B.24)

|(u, (∇xφ ∗ γN )∇v(hN − h))| ≤
∫

dz

∫
dz′ |ζN (z) − ζN (z′)|PN (z; z′; t)

≤
∫

dz

∫
dz′C |z − z′|PN (z; z′; t).

where we used the standard notation z = (x, v) and z′ = (x′, v′). Then, taking
in (B.24) the infimum over all couplings between h and hN , we obtain that:

(B.25) |(u, (∇xφ ∗ γN )∇v(hN − h))| ≤ CW(hN , h),

where, as in Section 1.2, W denotes the Wasserstein distance. But we know that
the right hand side of (B.25) goes to zero because of the assumption i), then we
have just proven that:

(B.26) |(u, (∇xφ ∗ γN )∇v(hN − h))| → 0, ∀ u ∈ C∞
b (R3 × R3).

Analogously, we can prove that

(B.27) |(u, (∇xφ ∗ (hN − h))∇vγN )| → 0, ∀ u ∈ C∞
b (R3 × R3).
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Therefore we have just proven that RN goes to zero in the C∞
b -weak sense and

the proof of Step 1) is done.
Proof of Step 2).

Thanks to Step 1) and to the assumption on ∇vh, we know that γN (t) can
be written as in (B.11). Then, for any function u in C∞

b (R3 ×R3), we have that:

(B.28) (u, γN (t)) = (u, Σh(t, 0)γN,0) +

∫ t

0

ds (u, Σh(t, s)Θ′
N (s)),

namely

(B.29) (u, γN (t)) = ((Σh(t, 0))
∗
u, γN,0) +

∫ t

0

ds
(
(Σh(t, s))

∗
u, Θ′

N (s)
)
,

where Σ∗
h is the adjoint of Σh. We remind that the two-parameters semigroup

Σh(t, s) propagates the Ck regularity, provided that ∇vh ∈ Ck(R3 × R3). In
particular, if Σh acts on a function u which is in C∞

b (R3 × R3) and the function
h(t) is supposed to be in C∞

b (R3 × R3) for any t, as it is in the assumptions of
Proposition 4.5.1, we are clearly guaranteed that ∇vh(t) is in C∞

b (R3×R3) for any
t, and then, u(t) := Σh(t, 0)u(x, v) is also in C∞

b (R3×R3) for any t. Obviously, the
same holds for Σ∗

h. Thus, the functions (Σh(t, 0))
∗
u and (Σh(t, s))∗u appearing

in (B.29) are in C∞
b (R3 × R3) for any t. Therefore, thanks to the assumptions

we made on γN,0 and ΘN , and of what we know about RN , we find that:

(B.30)

((Σh(t, 0))
∗
u, γN,0) +

∫ t

0

ds ((Σh(t, s))∗u, Θ′
N (s))

↓ N → ∞

((Σh(t, 0))
∗
u, γ0) +

∫ t

0

ds ((Σh(t, s))∗u, Θ(s)) =

= (u, Σh(t, 0)γ0) +

∫ t

0

ds (u, Σh(t, s)Θ(s)).

Finally, by Proposition 4.1.1, we know that the expression (B.30) identifies prop-
erly the unique solution of the problem (4.1.14) in C0(L1(R3 × R3), R+) and
Proposition 4.5.1 is proven.

– Appendix C

Lemma C.1. For each time τ > 0, let us define the operator T̂
(n)
N (τ) as

follows:

T̂
(n)
N (τ) := SN (−τ)T̂

(n)
N SN (τ).
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Then, for each m ≥ 0 and for each u ∈ C∞
b (R3 × R3), there exists a constant

C > 0, not depending on N , such that:

(C.1) i)
∣∣∣
(
u, T̂

(rm)
N (tm) . . . T̂

(r1)
N (t1)μN (t)

)∣∣∣ < C.

Moreover, we have:

(C.2)

ii)
∣∣∣
(
u, T

(rm)
N (tm) . . . T

(r1)
N (t1)μN (t)

)∣∣∣ ≤

≤
∣∣∣
(
u, T̂

(rm)
N (tm) . . . T̂

(r1)
N (t1)μN (t)

)∣∣∣ + O

(
1

N

)
.

Proof. We observe that:

(C.3)

(
u, T̂

(rm)
N (tm) . . . T̂

(r1)
N (t1)μN (t)

)
=

= T̂
(rm)
N (tm)T̂

(rm−1)
N (tm−1) . . . T̂

(r1)
N (t1)U(ZN (t)),

where:

(C.4) U(ZN (t)) := (u, μN (t)) =
1

N

N∑

�=1

u(z�(t)).

We assume m > 0 being the case m = 0 obvious.
By using the notations:

(C.5) S(rm, tm) := T
(rm)
N (tm) . . . T

(r1)
N (t1)

and

(C.6) Ŝ(rm, tm) := T̂
(rm)
N (tm) . . . T̂

(r1)
N (t1),

we have (see the first term in the right hand side of (4.6.15)):

(C.7)

Ŝ(rm, tm)U(ZN (t)) =

=
C

Nm

∑

j1...jm

∑

l1...lm

Drm+1
x φ(xjm(tm) − xlm(tm)) · Drm+1

vjm
(tm)

Drm−1+1
x φ(xjm−1(tm−1) − xlm−1(tm−1))D

rm−1+1
vjm−1

(tm−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr1+1
x φ(xj1(t1) − xl1(t1)) · Dr1+1

vj1
(t1)U(ZN (t)),

C depending on rm.
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By setting:

(C.8)
Φjn(ZN (tn)) : =

1

N

N∑

ln=1

Drn+1
x φ(xjn(tn) − xln(tn))

∀ n = 1, 2, . . . , m

(C.7) can be rewritten as

(C.9)

Ŝ(rm, tm)U(ZN (t)) = C
∑

j1...jm

Φjm(ZN (tm)) · Drm+1
vjm

(tm)

× Φjm−1
(ZN (tm−1)) · Drm−1+1

vjm−1
(tm−1) . . .

. . .Φj1(ZN (t1)) · Dr1+1
vj1

(t1)U(ZN (t)).

We observe that, thanks to the smoothness of the potential φ, Φjn
(for each

n) is a uniformly bounded function of the configuration ZN , together with its
derivatives.

Performing the derivatives in (C.9), we realize that Ŝ(rm, tm)U(ZN (t)) is a
linear combination of terms of the following type:

(C.10)

∑

j1...jm

Φjm(ZN (tm)) · Dam,1
vjm

(tm) . . . Da2,1
vj2

(t2)D
a1,1
vj1

(t1)U(ZN (t))

Dam,2
vjm

(tm) . . . Da2,2
vj2

(t2)Φj1(ZN (t1))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dam,m−1
vjm

(tm)Dam−1,m−1
vjm−1

(tm−1)Φjm−2
(ZN (tm−2)

Dam,m
vjm

(tm)Φjm−1
(ZN (tm−1)),

with the constraint

(C.11)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a1,1 = r1 + 1

a2,1 + a2,2 = r2 + 1

. . .

am,1 + am,2 + · · · + am,m = rm + 1.

For a fixed sequence a�,s, we have to compensate the divergence arising from
the sum

∑
j1...jm

, which is O(Nm), by the decay of the derivatives as given by
Proposition 4.4.1 and Corollary 4.4.1. Indeed we have:

(C.12)
∣∣∣Dam,1

vjm
(tm) . . . Da2,1

vj2
(t2)D

a1,1
vj1

(t1)U(ZN (t))
∣∣∣ ≤ C

Nd
,
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where d is the number of different indices in the sequence j1, j2, . . . , jm for which
am,1, . . . , a2,1, a1,1 are strictly positive. Note that the fact that the derivatives
are not computed at time t = 0 but at different times t1, t2, . . . , tm, does not
change the estimate in an essential way.

An analogous estimate holds when we replace U by some Φjs
, namely

(C.13)
∣∣∣Dam,k

vjm
(tm)D

am−1,k
vjm−1

(tm−1) . . . D
ak,k
vjk

(tk)Φjk−1
(ZN (tk−1))

∣∣∣ ≤ C

Ndk−1
,

where dk−1 is the number of different indices in the sequence jk, . . . , jm which
are also different from jk−1 and from which am,k, . . . , ak,k are strictly positive.

As regard to the term in the sum
∑

j1...jm
in which all the indices are

different (which is the only one of size O(Nm)), the constraints (C.11) together
with estimates (C.12) and (C.13) ensure that the product of derivatives on the
right hand side of (C.10) is bounded by 1/Nm. Thus this term is of order one.
Now for each s = 1, . . . , m− 1 consider the m!

s!(m−s)! terms in the sum
∑

j1...jm
in

which s indices are equal. The sum is bounded by Nm−s. On the other hand,
the constraints (C.11) together with (C.12) and (C.13) ensure that the product
of derivatives on the right hand side of (C.10) is bounded by 1/Nm−s. Thus
even these terms are of size one and i) is proven.

To prove ii) we observe that:

(C.14) S(rm, tm)U(ZN (t)) − Ŝ(rm, tm)U(ZN (t))

can be expanded as in (C.7) and (C.10). However now we have an extra deriva-

tive, arising from the definition of R
(n)
N (see (4.2.16)), which yields an additional

1/N . We omit the details of the proof which follows the same line of i).

In the same way we can also prove the following

Lemma C.2. For each m ≥ 0, k > 0 and u ∈ C∞
b (R3 × R3), there exists a

constant C > 0, not depending on N , such that:

∣∣D2kS(rm, tm)U(ZN (t))
∣∣ < C.

where U(ZN (t)) is defined as in (C.4).

Proof. First we look at the case m > 0. Reminding the structure of the op-
erator D2k (see (4.6.3)), we are led to consider the term D

2sj

G,jŜ(rm, tm)U(ZN (t)).

We remind that D
2sj

G,j is a derivation operator with respect to the variable zj

that acts as specified by (4.5.8). By the expansion (C.10) we readily arrive to
the bound:

(C.16)
∣∣∣D2sj

G,jŜ(rm, tm)U(ZN (t))
∣∣∣ ≤ C

N
.
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Indeed by applying D
2sj

G,j to (C.10) either j /∈ (j1 . . . jm) so that we gain 1/N by
the extra derivative, or j ∈ (j1 . . . jm) so that we reduce the sum

∑
j1...jm

by a
factor 1/N . More generally, by the same argument we find:

(C.17)

∣∣∣∣∣∣
∏

j∈I

D
2sj

G,jŜ(rm, tm)U(ZN (t))

∣∣∣∣∣∣
≤ C

Nn
,

where n = |I|.
Finally by writing the action of the operator D2k as in (4.6.35), we obtain

(C.18)

∣∣∣D2kŜ(rm, tm)U(ZN (t))
∣∣∣ ≤

N∑

n=1

N !

n!(N − n)!

∑

s1...sn
1≤sj≤k∑

j
sj=k

C

Nn
≤

≤ Bk
N∑

n=1

N !

n!(N − n)!

Cn

Nn
≤ Bk

(
1 +

C

N

)N

≤ C,

B, C being positive constants not depending on N . Again D2kŜ(rm, tm)U(ZN

(t)) is the leading term of D2kS(rm, tm)U(ZN (t)) for the same reasons we dis-
cussed in Lemma C.1.

If m = 0, the estimates (C.16) and (C.17) follow directly by Proposition
5.2. Thus, even in this case, the proof is concluded by (C.18).

The fact that the error term E1
N (see (4.6.20)) and hence E2

N (see (4.6.27))
are C∞

b -weakly vanishing when N → ∞ is an immediate consequence of the
following

Lemma C.3. Let rJ and tJ be defined as in Section 7, for any J ⊂ In with
In = {1, 2, . . . , n}. For any r ≥ 0 we have:

(C.19)

D2rS(rn, tn)μN (z′1|ZN (t))μN (z′2|ZN (t)) =

=
∑

0≤�≤r

∑

0≤m≤n

∑

I⊂In

|I|=m

(
D2�S(rI , tI)μN (z′1|ZN (t))

)
×

×
(
D2(r−�)S(rIn\I , tIn\I)μN (z′2|ZN (t))

)
+ er,N

where

(C.20) er,N → 0 as N → ∞ C∞
b − weakly.



338 FEDERICA PEZZOTTI [116]

Proof.
It is enough to prove (C.19) and (C.20) replacing each streak S with the

corresponding Ŝ, being the difference S − Ŝ negligible in the limit.
We start by assuming r = 0. In that case, testing the left hand side of (C.19)

against a product of two test functions u1, u2, we are led to consider:

(C.21) Ŝ(rn, tn)U1(ZN (t))U2(ZN (t))

for which we can apply the expansion (C.7).
Proceeding as in the proof of Lemma C.1 (see (C.10)), we have to consider:

(C.22) Dam,1
vjm

(tm) . . . Da2,1
vj2

(t2)D
a1,1
vj1

(t1)U1(ZN (t))U2(ZN (t)),

where a1,1 = r1 + 1 > 0. Now any contribution of the form

(C.23) Dα
vj1

(t1)U1(ZN (t))Dβ
vj1

(t1)U2(ZN (t)),

with α > 0, β > 0, α + β = a1,1 is O
(

1
N2

)
, therefore it is negligible in the limit.

The same argument applies to D
ak,1
vjk

(tk) whenever ak,1 > 0 . This means that

each derivative appearing in Ŝ either applies to μN (z′1|ZN (t)) or to μN (z′2|ZN (t))
up to an error e0,N vanishing in the limit. This is exactly what (C.19) and (C.20)
say for r = 0.

For r > 0 we have to apply D2r to (C.19) (replacing S by Ŝ) with r = 0.
Clearly D2re0,N vanishes in the limit. Moreover:

(C.24)

D
2sj

G,j

[
Ŝ(rI , tI)U1(ZN (t))Ŝ(rIn\I , tIn\I)U2(ZN (t))

]
=

=
(
D

2sj

G,jŜ(rI , tI)U1(ZN (t))
)

Ŝ(rIn\I , tIn\I)U2(ZN (t))+

+ Ŝ(rI , tI)U1(ZN (t))
(
D

2sj

G,jŜ(rIn\I , tIn\I)U2(ZN (t))
)

+ O

(
1

N2

)

By simple algebraic manipulation we finally arrive to (C.19) and (C.20).
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