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Abstract: The dimension of an affine plane π of order n, relative to a subplane
π0 of order m, is specified by dimπ0 π = logm n. The exotic embeddings of a plane in
another plane of the “wrong” characteristic, pioneered by H. Neumann, and system-
atically considered by de Resmini and her associates, yield planes with transcendental
dimensions. On the other hand, infinitely many rational but non-integral dimensional,
or fractional, planes were discovered relatively recently and all known examples of such
planes are among semifield planes. Such semifield planes must have order ≥ p5, p
prime. We show:

Theorem A: Let π be a semifield plane of order p5, that contains no fractional subplanes.
Then for sufficiently large p, every semifield coordinatizing π is right primitive and left
primitive.

Here, a semifield (D, +, ◦) is considered right primitive if every non-zero element
in D is the right principal power of some ωR ∈ D; left primitivity is defined analo-
gously. G. P. Wene Conjectured that all fractional semifields are right primitive. If the
fractional hypothesis on π is dropped, counterexamples to the Conjecture are known to
arise in semifield planes of order 25 and 26, as shown by I. F. Rúa and I. R. Hentzel.
These are the only known orders for which the Wene Conjecture fails. We provide
further support for the Wene Conjecture.

Theorem B: All semifields coordinatizing semifield flock spreads are right primitive.

We also prove the 3-dimensional analogue of this result.

Theorem C: Let π be a semifield spread in PG(5, q) such that π ⊃ R, a regulus of
degree q + 1 such that the shears axis Y ∈ R. Then for all sufficiently large q, every
semifield coordinatizing π is right primitive.

This result extends a Theorem of Rúa who showed that semifields D of order q3 that
are three-dimensional over the center Z, hence, by Menichetti’s Theorem, are Albert
semifields with center GF (q), are right primitive and left primitive. The Theorem above
is not restricted to such Albert systems.
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1 – Introduction

In this paper, we consider two properties of a finite affine plane π that might
be considered as reflecting the extent to which π differs from, or is similar to,
a Desarguesian plane of the same order. One of these properties, related to the
“dimension” that π may have relative to its subplanes, identifies planes that
have subplanes of unexpected orders. The other property, which is algebraic in
nature, is concerned with the loop structure of the “best” planar ternary rings,
that coordinatize any considered π. The basic question here is whether planar
ternary rings that are “closest” to fields, viz., quasifields and semifields, have
multiplicative loops that are “cyclic”, hence share the “primitivity” property of
finite fields.

We begin with a brief survey of the notion of dimension, and how it derives
from Professor de Resmini’s pioneering investigations concerning exotic embed-
dings of one plane in another.

– Fractional-Dimensional Planes

Bearing in mind that the dimension of a finite field F = GF (qn), over a
subfield K = GF (q), is the integer log|K| |F |, one may more generally define
the dimension of an arbitrary finite plane with respect to any subplane. For our
convenience we state the Definition for affine rather than projective planes.

Definition 1.1. Let Π be an affine plane of order n, with an affine subplane
Ψ of order m. Then the dimension of Π relative to Ψ is specified by dimΨ Π =
logm n.

In particular, Π has transcendental dimension, fractional dimension, or in-
teger dimension, relative to Ψ, according to whether logm n is transcendental,
rational (but not an integer), or an integer.

Similarly if D is a planar ternary ring with a subplanar ternary ring E then
dimE D = log|E| |D|; D is transcendental, fractional or integer dimensional,
relative to E, according to whether dimE D is transcendental, rational but not
an integer, or an integer.

In the 1950’s, H. Neumann [19], showed that any projective Hall plane Π of
odd order contains Fano subplanes. It follows that infinitely many affine planes
are transcendental dimensional over suitable subaffine planes.

Proposition 1.2. To each square integer p2n, p an odd prime, corresponds
an affine Hall plane Π that contains an affine Fano subplane Φ. Hence dimΦ Π =
θ, a transcendental number.
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Proof. Let π be a projective Hall plane of order p2n and φ one of its Fano
subplanes, whose existence is guaranteed by Neumann, ibid. Choose an affine
Hall plane Π = π� such that the infinite line � is a secant to a Fano plane φ,
so Φ = φ� is a subaffine plane of Π. Hence dimΦ Π = θ where θ satisfies the
condition 2θ = p2n. But, by the Gelfond-Schneider Theorem, Schneider [22,23],
if 1 < M < N are integers, then the equation Mx = N is satisfied by x > 0 only
if x is rational or transcendental. The result follows since (2, p) = 1.

Following Neumann, Professor de Resmini pioneered what might be con-
sidered the study of planes admitting transcendental dimensions. She and her
coworkers discovered spectacular examples of such phenomena. For instance,
they showed that the Hughes plane of order 25, and also its derivative, the
Ostrom-Rosati plane, admit subplanes of order 2 and 3, de Resmini and Puc-
cio,[20], de Resmini and Leone, [17].

Further examples of transcendental affine planes have been obtained in this
century by generalizing Neumann’s contruction, Proposition 1.2. Thus, by care-
fully deriving Hall planes, so as not to lose at least one of its Fano subplanes,
one obtains a range of translation planes, corresponding to subregular spreads,
that contain Fano subplanes, as demonstrated by Fisher and Johnson, [7]. There
are also other translation planes that are transcendental dimensional relative to
suitable subplanes, Johnson [13].

Thus, transcendental dimensions signal an exotic embedding of one type
of plane in a quite different type plane, one with the “wrong” characteristic.
By way of contrast, if we consider any affine translation plane Π = π�∞ (with
�∞ the translation axis of π) of order pn, then its dimension relative to any
affine subplane Π0, is always a rational number n/m, where pm is the order
of Π0. Recent work, suggested by Theorems such as those indicated above,
has concentrated on the contrasting question: are there planes that are neither
transcendental-dimensional nor (as in the overwhelming majority of the known
cases) integral-dimensional, that is: Is it possible for a plane to be fractional
dimensional?
Until a very few years ago, only one fractional dimensional plane was known(1):
the Knuth semifield plane of order 32. In the last five years or so, Wene discov-
ered other sporadic examples of fractional dimensional semifield planes, again
of characteristic 2. Then Johnson and the second author found infinitely many
fractional-dimensional semifields, [11], again of even order. In recent work, the
authors of the present paper have shown that infinitely many semifield planes of
characteristic 3 are fractional dimensional, Cordero-Jha, [4].

In all these cases, the planes shown to be fractional-dimensional are among
various classes of known planes (due to Knuth, Kantor, Coulter-Matthews, Ding-

(1)And possibly only to one person — R. J. Walker, who had classified the semifields of
order 32, almost 50 years ago, in his independent verification of the Knuth classification
of the semifield planes of order 32, [24].
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Yuan, cf. the survey by Kantor, [15]). Thus, in the study of fractional dimensions,
as for transcendental dimensions, the aim is not so much to find new planes, but
to find subplanes Π0 of possibly “known” planes Π, that have fractional (or
transcendental) dimension, dimΠ0

Π.
Note that all known fractional-dimensional planes Π are semifield planes,

and they are only known to be fractional dimensional relative to some sub-
semifield plane Π0 of order p2. (Thus Π0 is Desarguesian and its projective
closure includes the shears point of Π.) In particular, by the Baer condition, Π
has order ≥ p5.

Actually, this minimality condition concerning the existence of fractional
sub-semifield planes Π0, of a semifield plane Π, may be formulated more gen-
erally for semifield planes Π of order qn that are n-dimensional over a central
subplane(2), coordinatized by GF (q). Thus, by the Baer condition:

Remark 1.3. Let Π be a semifield plane of order qn with center GF (q)
such that Π has fractional dimension relative to a subsemifield plane Π0 that
contains a central subplane of Π. Then the integer n ≥ 5, and, when n = 5, the
fractional subplane Π0 has order q2 (and hence must be Desarguesian).

Corollary 1.4. A semifield plane of order pn, p prime, is fractional
dimensional relative to a subsemifield plane Π0 only if n ≥ 5 and, when n = 5,
Π0 has order p2.

Note. In all cases known to us, any fractional dimensional translation plane
of order p5 satisfies all the hypotheses of Corollary 1.4 above.

One of our main goals is to show that, in a suitable asymptotic sense, semi-
field planes Π of order p5, or more generally in the ‘minimal’ semifield planes
of order q5 considered in Remark 1.3, the absence of fractional subplanes guar-
antees that all the semifields D that coordinatize Π are “primitive”, in a sense
analogous to finite fields, see Corollary A, p.6, (also cf. Theorem 5.6 and Corol-
lary 5.7). Before stating our result explicitly, we define primitivity and a related
Conjecture of Wene, to which our result may be seen as an explicit contribution.

– Primitive Semifields and the Wene Conjecture

An algebraic, measure of how “close” a plane is to being Desarguesian is
to examine the structure of the “best” planar ternary ring that coordinatizes
the plane. We consider this approach when applied to the multiplicative loops
of semifields (finite non-associative fields). Following Wene and others, [25, 26,

(2)The center of a semifield is a plane invariant, thus all semifields coordinatizing a
plane have centers isomorphic to the same GF (q).
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21, 9], we consider whether finite semifields have “cyclic” multiplicative loops,
in a sense analogous to fields but taking into account the non-associative nature
of their multiplicative loops.

Definition 1.5. Let D = (D,+, ◦) be a semifield. Then D is a right
primitive semifield if the multiplicative loop (D∗, ◦) contains an element ω ∈ D
such that every d ∈ D∗ is a right principal power d = ωk), for some k ≥ 1, where
ωi) is defined recursively by

ω1) = ω, ωi+1) = ωi) ◦ ω.

Similarly, D is left primitive if every element of (D∗, ◦) is a left principal power
μ(k, k ≥ 1, where the left principal power μ(i, i ≥ 1 are defined analogously:

μ(1 = μ, μ(i+1 = μ ◦ μ(i, i ≥ 1.

The semifield D is primitive if it is both left primitive and right primitive.

Note. One can define primitive and right/left primitivity in exactly the
same way for arbitrary finite planar ternary rings. The authors have shown,
[3], that there are infinitely many finite quasifields (coordinatizing translation
planes) that are primitive, and also infinitely many finite quasifields that are not
primitive.

On the basis of a specific class of semifields and some computer-based in-
vestigations of small cases, Wene [25, 26] suggested:

Conjecture 1.6. (Wene, [26]) Every finite semifield is right primitive.

Rúa, [21], has shown that Conjecture 1.6 is false for the Knuth commutative
semifield of order 32: this is neither left primitive nor right primitive. Moreover,
Rúa also showed (ibid.) that some of the semifields of order n = 25 are left prim-
itive but not right primitive and vice-versa (by duality). Hentzel and Rúa, [9],
have established that the Wene Conjecture 1.6 does not hold for some semifields
of order n = 26, and again there are semifields of order 64 that are left primitive
but not right primitive and vice versa. But there are no known violations of the
Wene conjecture for semifields of order n �= 25, 26.

Since semifields of order q2 with center ⊇ GF (q) are fields, the first case
of interest are semifields of order q3 with center GF (q). All such semifields
are known: they are either fields or the twisted fields of Albert, as established
by a celebrated Theorem of Menichetti [18]. Rúa, [21], has shown the Wene
conjecture holds for these semifields. The present author’s have given a differ-
ent proof of Rúa’s Theorem, Cordero-Jha, [3], without assuming Menichetti’s
classification, [18].

In this paper, one of our main concerns is whether 5-dimensional semifields,
with center GF (q), are primitive. Note that Menichetti’s Theorem does not ap-
ply here since the Coulter-Matthews and the Ding-Yuan commutative semifields,
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[15], have orders 3n, n ≥ 5 odd; also, the failure of the Wene conjecture for the
case 25 needs to be taken into account.

The Knuth commutative semifield D of order 25, which violates the Wene
Conjecture 1.6, coordinatizes a fractional dimensional semifield plane. On the
other hand, the Coulter-Matthews plane of order 35 is fractional dimensional but
does not violate the Wene conjecture.

Thus, part of the motivation for this paper was to examine how these facts
concerning semifields of order p5, which seem to be pulling in opposite directions,
may be reconciled. Thus, we established the following asymptotic result.

Corollary A. (cf. Corollary 5.7) For all sufficiently large primes p, the
semifields coordinatizing a semifield plane Π of order p5 are all primitive (right
and left) if Π does not contain any proper subplane Π0 of order > p.

Note.

(1) More generally, cf. Theorem 5.6, suppose q = pr, with r fixed. Then there
is an integer Nr such that for all p > Nr any semifield plane Π
of order q5 with center GF (q) is coordinatized only by semifields
that are (left and right) primitive, whenever Π has no fractional
subplanes.

(2) In the p5-case the non-existence of fractional subplanes is equivalent to the
assertion that Π has no proper subplanes.

(3) It is conceivable that the theorem holds for all primes p, rather than for
“sufficiently large” p. (Although the commutative semifield plane of order
25 admits coordinatization by a non-primitive semifield, the corresponding
Knuth plane admits fractional subplanes, so the hypothesis of the above
corollary does not apply.)

The key to the proofs of our results is the structure of the slope maps of regulus
quasifields of low-dimension.

– Primitivity of Low-Dimensional Regulus Semifields

So far we have considered semifields D that have dimension n over the center
K = GF (q). We now turn to the more general case when K is the subfield of the
left nucleus N�(D), or kern, that commutes multiplicatively with D. We refer
to such subfields as regulus subfields of D. Every semifield is a regulus semifield
over its central fields, but often has other regulus subfields as well.

Definition 1.7. Let D be a semifield with a subfield

K = {k ∈ N� : k ◦ d = d ◦ k∀k ∈ N�}.
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If dimK D = n, then D is a regulus semifield of dimension n relative to the
regulus subfield K.

Note.

(1) Every semifield D of order pn is a regulus semifield over every subfield in
the center Z(D), hence over GF (p).

(2) More generally, a quasifield Q is a regulus quasifield if its kern contains a
subfield K that commutes with K multiplicatively. We determine the slope
structure of Q for the cases dimK Q ≤ 5, k �= 4, cf. Theorem 3.8, and use
the information to establish the right primitivity of semifields of dimension
n ≤ 5, n �= 4.

(3) The n-dimensional regulus semifields D, of order qn over a regulus field
GF (q), are precisely the semifields that coordinatize a semifield spread S <
PG(2n − 1, q) such that there is a regulus R ⊂ S of degree q + 1 with the
shears axis Y ∈ R.

(4) The 2-dimensional regulus semifields are precisely the semifields that co-
ordinatize the flock semifields in PG(3, q), e.g., Gevaert and Johnson, [8].
Infinitely many 2-dimensional regulus semifields exist (including the Kantor-
Knuth semifield flocks). Only the semifield flocks of even order q have been
classified: the corresponding 2-dimensional regulus semifields are fields, i.e.,
the flocks are linear, Johnson [14]. Thus for odd q only, the 2-dimensional
regulus semifields form a strictly larger class than the 2-dimensional cen-
tral semifields (which are merely fields). Moreover, each non-linear flocks is
coordinatizable by several non-isomorphic regulus semifields.

(5) Although the semifields D of dimension 3 over the center GF (q) have been
classified by Menichetti, the 3-dimensional regulus semifield planes have not
been classified.

By considering 2-dimensional regulus semifields and using note (4), we will
show:

Theorem. (cf. Corollary 7.3) All the semifields coordinatizing conical
flocks are right primitive.

Note. The duals of non-linear flock semifields are not flock semifields,
unless the semifields are fields. Hence, we may only assert that the duals are left
primitive: we do not know if they are right primitive.

For dimension 3 we prove an extension of Rúa’s Theorem: thus we prove
Wene’s Conjecture, Conjecture 1.6, for regulus semifields that are 3-dimensional
over a regulus field GF (q), provided q is large enough.

Theorem. (cf. Theorem 6.2) Let π be a semifield spread in PG(5, q) such
that π ⊃ R, a regulus of degree q + 1 such that the shears axis Y ∈ R. Then for
all sufficiently large q, every semifield coordinatizing π is right primitive.
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The above are proved by determining the slope maps of regulus quasifields
for dimension ≤ 5 (but not dimension 4 — where different arguments seem
necessary), cf. paragraph 3. These results are implicit in Theorem 3.8, and the
argument used in proving it.

2 – Preliminaries

We assume the reader to be familiar with affine translation planes and their
coordinatization by quasifields, particularly semifields, [10], and their connec-
tions with spread sets and spreads, e.g., [12, pp. 36–48], or [1]. To fix our
notation, particularly in regard to the non-standard notion of a “regulus” quasi-
field/semifield, we recall some terminology. Quasifields obey the right distribu-
tive law: (a + b) ◦ c = a ◦ c + b ◦ c.

Definition 2.1 (Slope Maps and Regulus Quasifields) Let Q is a
finite quasifield. Then its kern is the field

{k ∈ Q : ∀a, b ∈ Q : k ◦ (a + b) = k ◦ a + k ◦ b, k ◦ (a ◦ b) = (k ◦ a) ◦ b},
and any (sub)field K ∼= GF (q) of Q is a kern (sub)field of Q; now |Q| = qn for
some integer n ≥ 1, since Q is a K vector space.

The slope [map] of any non-zero m ∈ Q is Tm ∈ GL(Q, K) specified by
Tm : x �→ x ◦ m, x ∈ Q. Thus, Tm may (when convenient) be identified with
a non-singular K-matrix of order n × n, which depends on the choice of the
K-basis for Q. Also the slope set for Q (regarding T0 as is the zero map) is
τQ = {Tm : m ∈ Q}.

If the slopes of the elements k ∈ K are the scalar elements k15, then Q is
a regulus quasifield, and K a regulus subfield. (Equivalently, a kern field K is a
regulus field if each k ∈ K commute multiplicatively with every d ∈ Q.)

Note. The regulus quasifields, as described above, are the quasifield that
coordinatize the spreads S in PG(2n − 1, q) that contain a regulus R of degree
q + 1: regulus quasifields arise when the coordinatizing triad of components
defining the quasifield are selected from among the components in any regulus
R ⊂ S.

The above attributes of quasifields and semifields are also assigned to the
spread sets that they define.

Definition 2.2. Let V be a vector space of dimension n over a field K ∼=
GF (q), q = pr. Then a set of linear maps

τ ⊂ GL(V, K) ∪ {0n} := GL(n, K),

is a spread set on the K-space V if |τ | = |V | = qn, τ ⊃ {0n,1n}, and

A, B ∈ τ =⇒ A − B ∈ GL(n, K).
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(1) τ is a regulus spread-set if τ ⊃ K, where K = k1n : k ∈ K.
(2) τ is additive if it is closed under addition (equivalently, τ is an additive

group of order |V |, with all non-zero elements non-singular and including
1V ).

(3) An additive spread set τ is linear if τ is a K-subspace of the ring
Hom(V, +, K).

The following properties relating quasifields/semifields to their spread sets are
obvious.

Remark 2.3.
(1) If Q is a quasifield then its slope set τQ is a spread set.
(2) If Q is a regulus quasifield, relative to a field K, then τQ is a regulus spread

set, i.e., τQ contains the scalar subfield K ∼= K.
(3) If (D,+, ◦) is a semifield containing a field K ⊂ N�(D) then

(a) τD ⊂ GL(D, K) ∪ {0} is an additive spread set;
(b) If D is a regulus semifield over K then the additive spread set τD is a

K-regulus spread set;
(c) If D has K in its center (so K is a subfield of the nucleus N(D) =

N�(D) ∩ Nm(D) ∩ Nr(D) such that D centralizes K multiplicatively)
then τD is a K-linear vector space.

Note that an obvious “converse” of each part of Remark 2.3 is also valid, but
we shall only use the fact that every additive spread set is the slope set of a
semifield, cf. Remark 4.1.

3 – Slope Map Structure for 5-Dimensional Regulus Quasifields

The slope maps of the non-zero elements of an n-dimensional quasifield Q,
over a kern field K = GF (pr), are elements of GL(n, q). Constraints on the
permitted structure of the non-zero slope maps A ∈ τQ obviously influences the
structure of Q, hence also on the geometry of the associated translation plane.
We consider the case when Q is a regulus quasifield over K, so

τQ ⊂ GL(n, K), τQ ⊃ K = {k1n : k ∈ K}.

When n = 3, we showed, in, [3], that each non-scalar maps A ∈ τQ is irreducible,
thus yielding an alternative proof to Rúa Theorem, establishing the primitivity
of all semifields of order q3 with center GF (q). The key step was to show
(|A|, p) = 1.

Here we consider the analogous problem for regulus quasifields Q of order
q5. It turns out, that now there are more possibilities than in the q3-case: A still
has order relatively prime to p, but A might not be irreducible. Our goal here is
to describe the slope structure for 5-dimensional regulus quasifields, Definition
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2.1; in a later section we will specialize to the case when Q is a semifield to
obtain a criterion for Q to be a fractional semifield.

We begin with some Lemmas without imposing the dimensional restriction.
Thus, we consider a quasifield Q of order qn, characteristic p, that contains a
regulus subfield K = GF (q).

Lemma 3.1. Let A be a slope map of a regulus quasifield Q over GF (q),
Definition 2.1. Then A cannot leave invariant any one-space over GF (q), unless
A is one of the scalar slopes of Q.

Proof. Otherwise, A has a GF (q)-eigenvector, and hence a corresponding
eigenvalue λ in GF (q). So there is a matrix X such that XAX−1 is a matrix
with first column λe1, and now X(A−λIn)X−1 is singular, hence so is A−λIn,
which means A and λIn cannot both be slope maps in the same spread set unless
A = λIn.

We use 〈A〉 to denote the multiplicative group generated by any non-singular
matrix A.

Corollary 3.2. Let Q be a regulus quasifield over a subfield K. Let A
be the slope map of any element of Q \ K. Then, regarding Q as a vector space
over K:

(1) A does not fix any one-space or hyperplane of Q.

(2) No subgroup S of 〈A〉 fixes a unique one-space or a unique hyperplane of Q.

Proof. Consider the first part. Lemma 3.1 states A cannot fix a one-
dimensional K-space. Hence A cannot fix a hyperplane, since the number of fixed
one-spaces is the number of fixed hyperplanes, e.g., [5, 12, p. 81]Dembowski. The
second part follows since 〈A〉 is abelian.

Unless the contrary is indicated, A denotes the slope of some element of the
quasifield Q that does not lie in the scalar field InK = GF (q). So the cyclic
group 〈A〉 = P ⊕ R, where P denotes the (possibly trivial) p-Sylow subgroup
of 〈A〉 and R is its Hall p′-subgroup. Much of our effort will be devoted to
showing that P is often the trivial group. As a default assume P is non-trivial,
so Fix(P ) := FP is a non-trivial K-subspace of Q. So R, which centralizes P ,
leaves FP invariant. We count the set of Maschke R-complements of FP .

Lemma 3.3. [# P -complements] Suppose P is non-trivial, with fixed space
FP . Then for some integer k ≥ 1, R has kp distinct Maschke-complements C of
P , on the K-space Q. Also, R is completely reducible on FP
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Proof. Note that P can’t leave invariant any R-complement C of FP , since
P would then fix non-zero points on C. Hence each of the Maschke complements
of FP , for the p′-group R, must lie in a non-trivial P -orbit. The final sentence
holds because R is a p′-group that leaves FP invariant.

Corollary 3.4. 1) R cannot fix a 1-space in FP ; 2) FP cannot be a
1-space.

Proof. 1) Suppose R fixes a 1-space of FP . Then so does A since R and
P must both fix this space and hence so must the group they generate, viz.,
A ∈ R ⊕ P = 〈A〉. But now the eigenvalue argument, Lemma 3.1, yields a
contradiction so 1) follows. Part 2) is a special case since A, hence also R, leaves
FP invariant.

Up to now we have not imposed any restrictions on the dimension on the
dimension of regulus quasifield Q. For the remainder of the section we restrict
ourselves to the 5-dimensional case: Thus, Q is a quasifield of order q5 with a
regulus subfield K such that dimKQ = 5, so |Q| = q5. So by Corollary 3.2
above, we may assume FP has rank three or two: we consider each case in turn.

– Case: FP has rank 3.

We require a Corollary to:

Lemma 3.5. Suppose (m, n) = 1 and that q is any prime power. Then an
irreducible abelian group G < GL(n, q) cannot be isomorphic to an irreducible
subgroup of GL(m, q).

Proof. Since G is abelian, by Schur’s Lemma G is in a field GF (qn), but
not in any subfield of it. Hence |G| divides qn − 1 but not q − 1. However,

(qm − 1, qn − 1) = q(m,n) − 1 = q − 1,

shows that |G| does not divide qm − 1, the order of the multiplicative subgroup
of GF (qm). However, if G were an abelian irreducible subgroup of GL(m, q)
then, by Schur again, G would also be an irreducible subgroup of GF (qm),
contradicting the fact that |G| does not divide qm − 1.

Corollary 3.6. For any prime power q, an irreducible abelian subgroup
G of GL(3, q) cannot be isomorphic to any subgroup of GL(2, q).
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Proof. By the Lemma above, we need merely exclude the possibility that
G acts reducibly on the vector space V2(q). By Maschke, G diagonalizes hence
|G| divides (q − 1)2, contradicting the irreducibility of G on V3(q).

If R fixes a one-space on Fix(P ) then so does A, contradicting Corollary
3.2. If R fixes a 2-space T in Fix(P ) then it still fixes a one-space, the Maschke
complement of T in Fix(P ), so we have the same contradiction. Hence R acts
irreducibly on Fix(P ). Now any R-complement S of FP , has rank two, and
since, by Corollary 3.6, R cannot be faithful on a two-space, being irreducible
on a 3-space, a non-trivial subgroup R1 of R fixes S elementwise. Hence S1 =
Fix(R1) ≥ S = Fix(R) is P -invariant. There are the following cases to consider:
i) S1 = S implies P leaves S invariant and hence fixes non-zero vectors in S
contradicting the fact that S is a complement to FP ; ii) S1 > S so S1 ∩ FP is a
non-trivial proper subspace of FP since S ⊕FP = Q, and now we contradict the
fact that S acts irreducibly on FP . So the case FP has rank 3 can never occur.

– Case: FP has rank 2.

By Corollary 3.2 again, R has at least p distinct Maschke complements of
the subspace FP . Since these have rank 3 any two of them, say X and Y , must
intersect. Now if H := X ∩ Y has rank 2 then X + Y has rank 4, and either
X + Y intersects FP in a one-space, contrary to the eigenvalue argument, or
FP is a rank 2 subspace of the 4-space X + Y and now FP is too large to be
in a complement of X in X + Y : recall this is required because FP has X as a
complement.

Thus, H must have rank one, and FP < X + Y , since X + Y has rank
5 because H = X ∩ Y has rank one. Since R fixes H, a rank one-space, and
R acts irreducibly on FP , by the eigenvalue argument, we conclude H ∩ FP

is trivial. But since now R is irreducible on the rank 2 vector space FP , of
order q2, and moreover the rank one vector space H of order q is R invariant, it
follows that a non-trivial subgroup R1 of R acts trivially on H, since no scalar
group, hence of order dividing q − 1, can be irreducibly on FP since this is 2-
dimensional over K = GF (q). Note that since the p-group P , centralizes R1 < R,
P must leave F1 = FixR1 invariant, and hence fix non-zero points on it. Hence
F1 ∩ FP �= 0. If F1 ∩ FP is a one-space then R fixes this one-space, a possibility
already excluded (because A, generated by R and P , would be forced to fix this
one-space, contrary to Corollary 3.2). Hence F1 ≥ FP but then F1 > FP , since
F1 > H and H ∩ FP = 0.

Hence F1 must have rank 3: otherwise R1 fixes a hyperplane elementwise
which is A-invariant, since R1 is centralized by A, contrary to Corollary 3.2(1).
Now if R leaves invariant at least two rank-one subspaces of F1 that complement
FP , say Ci, i = 1, 2, then C1 ⊕ C2 meets FP in a rank-one subspace fixed by R,
contradicting the fact that R is irreducible on the 2-space FP . Thus R leaves
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invariant the unique complement C of FP in F1. Since A centralizes R1, it leaves
F1 invariant, and hence the unique complement C of F1, contrary to Corollary
3.2. So FP is not a rank 2 space.

Hence, since we have ruled out all putative dimensions for FP , we have
shown the order of A is not divisible by p:

Proposition 3.7. A is a p′-element in all cases, i.e. 〈A〉 = R.

So either (1) A is irreducible, or (2) A has a 3 + 2-split, Corollary 3.2. So
we have

Theorem 3.8. Let D be a quasifield of order q5, with regulus field K =
GF (q). Then the order of any slope map A := Td, for d ∈ D \K, is not divisible
by p. Hence any A is either scalar, irreducible or has a decomposition into
irreducible subspaces V3 ⊕ V2, where Vd denotes a K-subspace of D with rank d.

Corollary 3.9. The slope-map A = Td not reducible if and only if
|A|q5−1 = 1.

Proof. If A is irreducible or scalar then A lies in GF (q2), hence in both

cases |A|q5−1 = 1. If A is reducible but non-scalar then by Theorem 3.8 A|V3 is
irreducible hence by Schur’s Lemma |A| is divisible by a p-primitive divisor v of

q3 − 1. But since (q3 − 1, q5 − 1) = q − 1, it follows that |A|q5−1 �= 1.

4 – Primitive Spread Sets

Any spread set is the slope set of some quasifield. The case when the spread
set is additive is of special relevance:

Remark 4.1. Let S ⊂ GL(V, K) ∪ {0} be an additive spread set, on the
finite vector space (V, +) over a field K. Then for each non-zero choice of e ∈ V ,
there is a semifield De = (V, +, ◦) with slope set S, and multiplicative identity e.

Proof. Define x◦y = xTy, where Ty ∈ D is chosen such that y = eTy.

Note.
The semifields De, as e varies over V ∗, are all isomorphic only if S, equiva-

lently De, are all fields.

Suppose De is a semifield, coordinatizing a semifield plane Π, when the unit
point e is chosen on (fixed) unit line Z. The following Lemma implies that if D
is right primitive then all the semifields Df , based on choosing unit point f ∈ Z,
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are right primitive, cf. Corollary 4.4. The Lemma will be used in the proof of
our main result, Theorem 5.6.

Lemma 4.2. Let S be an additive spread set of order qn, over any finite
field K = GF (q). Then the following are equivalent

(1) Some Ω ∈ S has order qn − 1.

(2) Every semifield D with slope set τD = S is right cyclic.

(3) Some semifield D with slope set τD = S is right cyclic.

Proof. (1) =⇒ (2). Some Ω ∈ S has order qn − 1. Let D be any semifield
with slope set τD = S, and multiplicative identity e. Let eΩ = ω. Thus, by
Remark 4.1,

e ◦ ω, (e ◦ ω) ◦ ω, ((e ◦ ω) ◦ ω) ◦ ω, . . . = eΩ, (eΩ)Ω, ((eΩ)Ω)Ω, . . .

= eΩ, eΩ2, eΩ3, . . . , eΩpn−1, . . .

However, since the cyclic group 〈Ω〉 ⊂ GL(n, K) is the multiplicative group of
a matrix field ∼= GF (qn), the group 〈Ω〉 is sharply 1-transitive on the non-zero
elements of the K-space Kn. So the above sequence imcludes all the pn − 1
non-zero elements of Kn, which means the right powers of ω:

ω, (ω ◦ ω), ((ω ◦ ω)) ◦ ω, (((ω ◦ ω)) ◦ ω) ◦ ω, . . . ,

run over all of D∗: so D is right primitive. Thus, (1) =⇒ (2) holds. (2) =⇒ (3)
is immediate. (3) =⇒ (1). Suppose D is right primitive, and τD = S its slope
set. Let ω be a right primitive element of D, and Ω = Tω be its (right) slope
map. Then, as above, it is easy to see that Ω has order pn − 1.

Since right primitive semifields are those that admit a primitive matrix as
a slope map, Lemma 4.2(1), and the fact that duals of right primitive semifields
are left primitive Lemma 4.2 yields:

Corollary 4.3. Let Π be a semifield plane. Then the following conditions
are equivalent.

(1) All semifields D coordinatizing Π are right primitive.

(2) All semifields D coordinatizing the dual plane of Π are left primitive.

(3) All semifields D coordinatizing Πt the transpose plane of Π are right prim-
itive.
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As indicated earlier, p.5, the work of Rúa, and Hentzel-Rúa, [21, 9], shows
that left primitivity and right primitivity for a semifield are not mutually equiv-
alent concepts, for semifields, of order 16 and 64. Lemma 4.2, suggests a possible
approach for finding further examples. Thus, applying Lemma 4.2 to a commu-
tative semifield D which is right primitive, hence also left primitive, we obtain
a chain of semifields of type:

left & right primitive → right primitive [transpose]→ left primitive [dualize],

and the middle semifield might only be right primitive in which case the final
semifield would be left primitive but not right primitive.

Lemma 4.2 also yields the following geometric characterization of planes all
whose coordinatizing semifields are right primitive semifields.

Corollary 4.4. Let Π be an affine semifield plane with shears axis Y .
Suppose Π is coordinatized by a semifield based on choosing any axis X �= Y as
the x-axis and unit point e ∈ Z, where Z /∈ {X, Y } is any fixed line through
O = X ∩ Y . Then the semifield De coordinatizing Π with the above choices
is primitive iff every semifield Df , based on unit point f ∈ Z \ {O}, is right
primitive.

Proof. Interpret the claim in terms of spreads. Thus π is a spread specified
by a spread set S such that line Z is identified with y = x1, 1 ∈ S. Now the
semifields Df and De have the same slope set.

5 – Proof of Main Theorem

In this section we prove Theorem 5.6 . The proof of the following Lemma
implicitly describes a technique for detecting fractional subplanes of a given
semifield plane. Given a 5-dimensional semifield D, not necessarily fractional,
with slope set τD, the Lemma shows how to replace D by a fractional semifield
D′, such that D′ is fractional and τD′ = τD, whenever such a D′ exists. An
elaboration of this method is used to construct fractional dimensional planes of
odd order in Cordero and Jha, [3]. Note that the argument makes crucial use of
the fact that D is 5-dimensional over a subfield field K = GF (q) in the center
of D, rather than merely requiring that D be a regulus subfield over K.

Lemma 5.1. Let D := (D,+, ◦) be a 5-dimensional semifield over its center
K = GF (q), with slope-set S ⊂ GL(D, K). Then either there is a fractional
semifield D∗ := (D,+, ∗) relative to a field (F, +, ∗) ∼= GF (q2), with center
Z(D∗) ⊂ (F,+, ∗), such that S is also the slope-set of D∗, or every non-scalar
element m ∈ D \ K has irreducible slope map Tm ∈ S.
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Proof. Suppose the irreducible condition fails. So there is an m ∈ D \ K
such that its slope-map A := Tm is not irreducible. Then by Theorem 3.8, A
admits a decomposition V2 ⊕ V3, where V2 and V3 are irreducible A-invariant
subspaces of D that, as K-subspaces, are of dimensions 2 and 3 respectively.
By Remark 2.3((c) ), S is closed under both addition, and multiplication by
the scalar field K ⊂ S, K ∼= GF (q). So S ⊃ K + KA, and this additively
closed partial spread set, of size q2, leaves V2 invariant and hence, by counting,
K + KA clearly induces an additive spread on V2. Fix any non-zero e ∈ V2.
Then, cf. Remark 4.1, define a new semifield (D,+, ∗) by the rule x ∗ y = xθy

where θy ∈ S such that eθy = y. It is straightforward to verify that (D,+, ∗)
is a semifield with center (K, +, ∗), and obviously τD∗ = τD = S. Moreover,
since V2 is invariant under K + KA ⊂ S, (V2, ∗) is multiplicatively closed, hence
by finiteness, the multiplicative loop of (D∗, ∗) induces a loop on (V2, ∗). Thus
(D,+, ∗) is a semifield with a sub-semifield (V2,+, ∗). Put K2 = (e)K and
observe that V2 ⊃ K2 and that K2 is in the center of (D,+, ∗): K2 is actually
the full center of (D,+, ∗), by the Baer condition. Thus, since dimK2

V2 = 2,
V2 must be a field, since semifields that are 2-dimensional extensions over a field
are field. So choosing F := V2, completes the proof.

We require a fundamental Theorem of Davenport, which we describe using
the following:

Notation 5.2. Let F be finite field. So for any subfield G < F , and x ∈ F ∗

the ring G[x], of x-polynomials over G, is the subfield of F generated by G∪{x}.
We consider G[x] to be the field generated by x over G.

Result 5.3.(Davenport, [6, Theorem 1].) There exists a positive integer
function, δ : P → P, such that in any field F = GF (pk) > GF (p) = Zp, for k ≤ r
the following holds: if θ ∈ F generates F over Zp then there exists α ∈ Zp such
that θ − α is a primitive element of F .

We require a consequence of this result for which the subfield chosen is not
necessarily Zp. The proof makes extensive use of notation 5.2.

Lemma 5.4. Let F = GF (qd) > GF (q) = K, where d is prime and
q = pr, and assume that the prime p > δ(rd). Then to each t ∈ F \K correspond
α, β ∈ K such that βt + α is a primitive element of F .

Proof. Let Zp ≤ K be the prime subfield of F . Since the dimension [F :
K] = d is prime, for any T ∈ F \K we have F = K[T ]. Let FT = Zp[T ] = GF (pt)
for some t > 1. By Davenport, result 5.3, T + z is a primitive element of FT ,
hence the result holds unless neither of the fields K and FT contains the other
field. So T + z /∈ K, hence without loss of generality we may assume T itself is
a primitive element of FT . Let ω be a primitive element of the maximal subfield
K, so Tω is not in K ∪ FT , and (pr − 1)(pt − 1) is an exponent of Tω. We
concentrate on the main case:
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Case: Neither K nor FT has order p2 when p + 1 = 2x.
Let ρ and τ be respectively p-primitive divisor of pr − 1 and pt − 1. Now

ωpt−1, a power of ωT , has order divisible by ρ; for if not then ρ divides pt − 1
so an element of FT is a generator of K, over Zp, so FT > K a contradiction.

Hence Zp[ω
pt−1] = K, so Zp[ωT ] ⊇ K.

By a similar argument, T ps−1, also a power of ωT , has order divisible by τ
(otherwise τ divides ps − 1 and K contains an element of order τ so K ⊇ FT , a
contradiction), and hence Zp[ωT ] ⊇ FT .

Hence we have shown the field Zp[ωT ] includes K ∪ T , hence, since K is
maximal in F, F = Zp[ωT ]. But now by Davenport again, result 5.3, for some
α ∈ Zp, ωT + α is a primitive of F . This is the required result.

We turn to the exceptional case when one of the fields K or FT has no
p-primitive divisors. Note that since p is large we may assume p > 64. Thus we
need only consider:

Case: p + 1 = 2x, and exactly one of K, FT
∼= GF (p2).

Consider the case K = GF (p2), p + 1 = 2x, and FT = GF (pt), t > 1

odd. So ωT has exponent (p2 − 1)(pt − 1), and (ωT )(p
t−1) = ω(pt−1). But since

gcd(p2 − 1, pt − 1) = p − 1, implies pt − 1 = (p − 1)ν, ν an odd integer > 1, it

follows that ω(pt−1) = ω(p−1)ν /∈ Zp, since ω(p−1)ν is a 2-element, of order p + 1.

Hence K = Zp[ω
(pt−1)] ⊆ Zp[ωT ].

It remains to rule out the case K = GF (pw), and FT = GF (p2), p + 1 = 2x,
t > 1 odd. Arguing as before, pt−1 = (p−1)ν, ν odd, and now ωT has exponent
(p2−1)(pw−1), so (ωT )(p

w−1) = T (pw−1), where T (pw−1) = T (p−1)ν /∈ Zp. Hence
FT = Zp[T

(pw−1)] ⊆ Zp[ωT ].

We will use the special case of the Lemma, when F = GF (q5).

Corollary 5.5. Let F = GF (q5) > GF (q) = K, where q = pr. Then
there is a function Δ(r), r ∈ P, such that for all p > Δ(r), to every t ∈ F \ K
correspond α, β ∈ K such that βt + α is a primitive element of F .

Theorem 5.6. Let Π be any semifield plane of order q5 with center
GF (q), q = pr, with r fixed. Suppose the prime p > Δ(r), where the function Δ
is a Davenport function, as in Corollary 5.5. Then all the semifields coordinatiz-
ing Π are right primitive and left primitive, whenever Π contains no fractional
subplanes Ψ [that contain a central subplane of Π] .

Proof. We suppose Ψ does not exist. Let D be any semifield coordinatizing
Π, with center K ∼= GF (q), and let τD denote the slope set of D. Thus τD is an
additive spread set that includes the scalar field {K = k1 : k ∈ K}, and in fact
τD is a linear spread set over the field K ∼= GF (q). Let π be the corresponding
spread on D ⊕ D; thus X = D ⊕ 0 ∈ π and Y = 0 ⊕ D ∈ π, where Y is
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the shears axis. Suppose Td ∈ τD \ K is reducible. Then by Lemma 5.1, Π
may be recoordinatized by a fractional semifield E, that contains GF (q) in its
center, so the plane ΠE coordinatized by E has a fractional central subplane, but
since Π = ΠE we contradict our assumption that contains no fractional central
subplane.

Hence, every non-scalar in τD is irreducible. Choose any non-scalar T ∈ τ .
Then since T is irreducible, Schur’s Lemma implies that there is a field Θ of
K-linear maps containing {K, T}, and since D must be a vector space over Θ,
it follows that GF (q5) ∼= Θ ⊃ K. Hence T , viewed as a K-linear map, is an
irreducible element of the field Θ, over the subfield K. So by Corollary 5.5,
there are elements α, β ∈ K such that W = αT + β ∈ GL(D, K) is a primitive
element of the field Θ, hence W , as an element GL(D, K), has multiplicative
order |W | = q5 − 1. Moreover, since τD is a K-linear set, we also have W ∈ τD.
But then, by Lemma 4.2(1), D is right-primitive. We still need to check that all
such D are left primitive.

Consider the dual plane Π′ of Π. Suppose, if possible, that Π′ has a fractional
subplane, containing a central subplane. So there is a semifield D′ := (D,+, ∗),
with center K = GF (q), coordinatizing Π′ such that D′ := (D,+, ∗) contains a
subfield F := (F,+, ∗) > (K, +, ∗), with F ∼= GF (q2). Now the dual semifield,
of D′ := (D,+, ∗), is a semifield D := (D,+, ◦) (thus x◦y = y∗x, x, y ∈ D), with
center (K, +, ∗), and this contains the subfield (F, +, ◦) = (F,+, ∗) ∼= GF (q2),
hence the corresponding plane Π(D) is fractional relative to the central plane
Π(F ). However, Π(D) ∼= Π, which has no fractional subplane. This contradiction
shows that Π′ cannot be coordinatized by a fractional subplane. Hence, by
what has been proved above, the semifields coordinatizing Π′ are right primitive,
so the semifields coordinatizing Π are left primitive. Thus all the semifields
coordinatizing Π are both right primitive and left primitive.

Corollary 5.7. Let Π be any semifield plane of order p5. If Π does not
admit fractional planes, and p is sufficiently large, then every semifield coordi-
natizing Π is right primitive and left primitive.

6 – Generalization of Rúa’s Theorem to Regulus Semifields in PG(7, q)

Recall that Rúa has shown that semifields of order q3 with center GF (q)
are both right primitive and left primitive. However, in view of the Menichetti
classification of such semifields, [18], this result is essentially a result concerning
the Albert semifields of order q3, with center GF (q).

On the other hand, 3-dimensional regulus semifields have yet to be classified.
These semifields are precisely the semifields that coordinatize semifield spreads
S in PG(7, q) that contain a regulus R of degree q + 1. We show that such
semifields are right primitive if q is sufficiently large, Theorem 6.2. For this we
require a stronger form of Lemma 5.4, for qd = q3, due to Mills and McNay.
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Result 6.1. (Mills and McNay, [16, Paragraph 5]) Suppose GF (q3) ∼=
F > K ∼= GF (q). Then for sufficiently large values of q, to each θ ∈ F \ K,
corresponds an element k ∈ K such that θ + k is a primitive element of F .

We may now generalize Rúa’s Theorem, [21, Theorem 4], by establishing
the right primitivity of semifields 3-dimensional over a regulus subfield GF (q),
as opposed to a central subfield GF (q).

Theorem 6.2. Let D be a semifield of order q3 with kern K = GF (q)
such that K centralizes D multiplicatively. Then for sufficiently large q, D is
right primitive.

Proof. Let τD be the (additive) spread set of D, and K be the scalar
field in GLK(D,+) ∪ {0}, associated with the slope set of K. Then any T ∈
τD \K is irreducible. This follows by noting that by the “eigenvalue-argument”,
Lemma 3.1, T fixes no one-space of the projective plane PG(D, K), hence also no
“hyperplane”. Thus, by Schur’s Lemma, the centralizer of T in GLK(D,+)∪{0}
is a field FT ⊃ {T} ∪ K, whenever T /∈ K. Since FT

∼= GF (q3) and K ∼= GF (q),
Mills and McNay, result 6.1, shows that T +κ, for some κ ∈ K, has multiplicative
order q3 − 1. Since, by the additivity of τD, T + κ ∈ τD, we have τD contains a
primitive matrix, so (D,+, ◦) is right primitive by Lemma 4.2.

7 – Right Primitivity of Flock Semifields

The following result is part of a slightly more general Theorem due to S. D.
Cohen:

Result 7.1. (Cohen, [2].) Let F = GF (q2) ⊃ GF (q) = K, q any prime
power. Then to each θ ∈ F \ K there correspond α ∈ K such that θ + α is a
primitive element of F , hence of multiplicative order q2 − 1.

Lemma 7.2. Let D := (D,+, ◦) be a semifield with kern K such that K
commutes multiplicatively with D and dimK Q = 2. Then D is right primitive.

Proof. The slope set τD may be regarded as an additive group in GL(2, q)∪
{02}, acting on the K-space (D,+), such that τD ⊃ K, where K is the scalar
field {k12 : k ∈ K}. Let T ∈ τD \ K. Now T is K-linear and acts irreducibly
on (D,+), by the “eigenvalue-argument”, Lemma 3.1, so by Schur’s Lemma the
centralizer of T in Hom(D,+) is a field FT ⊃ T ∪K. Evidently, we have shown
the field FT

∼= GF (q2), contains K ∼= GF (q), with T ∈ F \K. Hence, by Cohen’s
Theorem, result 7.1, we have T +A, for some A ∈ K, is a primitive element of FT .
However, as τD is an additive group T + A ∈ τD is an element in GL(2, q) with
multiplicative order q2 − 1. Hence (D,+, ◦) is right primitive by Lemma 4.2.
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The semifields D that are 2-dimensional over their central kern are precisely
the semifields that coordinatize the flock semifield planes. Thus, Lemma 7.2 is
equivalent to:

Corollary 7.3. The semifields coordinatizing a flock semifield plane are
are all right primitive.

Note that any non-Desarguesian flock semifield plane admits coordinatiza-
tion by several non-isomorphic semifields, and all these are flock semifields hence
right primitive. However, it is not clear to us whether they are left primitive.

Note. The duals of flock semifields are always left primitive, by Corollary
7.3. But the duals of flock semifields are not flock semifields unless the semifield
is a field.
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