# Combinatorial methods for determining subgroup structures of finite groups 

CAFER CALISKAN - S. S. MAGLIVERAS -L. C. YU

Dedicated to Prof. Marialuisa J. de Resmini


#### Abstract

In this paper we discuss methods that might be employed in determining the subgroup structure of a finite group $G$. These methods have a particularly combinatorial flavor connected with graphs, designs and the combinatorial nature of presentations of groups. In particular, the methods are illustrated for the case of the simple group $U_{3}(5)=P S U_{3}\left(5^{2}\right)$ whose maximal subgroups are determined up to conjugacy.


## 1 - Introduction

This paper is devoted to a discussion of some methods that might be employed in determining the subgroup structure of a finite group $G$. The methods have a strong combinatorial flavor and are illustrated here for the case of the simple group $U_{3}(5)=P S U_{3}\left(5^{2}\right)$ whose maximal subgroups are determined up to conjugacy. This example possesses a measure of difficulty suitable for exemplifying these methods. The reader is assumed to be acquainted with the elements of the theory of finite groups, including finite permutation groups as for example discussed in [8], [12], [19], [20], [22]. He is also assumed to have knowledge of the rudiments of the theory of strongly regular graphs and association schemes as

[^0]discussed in [2], [3], [9], [10], [11]. Finally, the reader should have some knowledge of the beautiful Frobenius theory of ordinary characters [6], [7], [13], [16].

## 2 - The controlling viewpoint

The question of whether a list of subgroups is complete for a given group $G$ can most effectively be dealt with if anticipated. Since the minimal normal subgroups of a group are characteristically simple, every subgroup $M$ of a finite group $G$ normalizes some subgroup of the form $A^{r}=A \times A \times \cdots \times A$ with $A$ simple. This suggests that a systematic approach to determining the subgroups structure of $G$ could consist of determining, up to conjugacy, all characteristically simple subgroups of $G$ and subsequently determining their normalizers. The above observation allows us to "control" the process of determining the subgroups of $G$, and affords a way of verifying completeness.

We usually advance with the above procedure in two stages: First, we obtain the class $\Lambda$ of local subgroups of $G$, i.e. the normalizers of the elementary abelian subgroups of $G$. Subsequently, we determine the class $\Xi$ of normalizers of the non-soluble characteristically simple groups in $G$. The maximal subgroups of $G$ must clearly occur in $\Xi \cup \Lambda$. Of course, we often have that $\Xi \cap \Lambda \neq \emptyset$.

## 3 - Matrices belonging to subgroups

Let $G$ be a finite group acting transitively on a set $\Omega$, and let $\Gamma$ be the graph induced on $\Omega$ by a non-trivial, self-paired orbital of $G$ on $\Omega \times \Omega$ [9], [21], [22]. Since the orbital is self-paired and non-trivial the graph is undirected and irreflexive. If $x \in \Omega$ and $r$ is a non-negative integer, the circle of radius $r$ about $x$ is defined to be the set

$$
S_{r}(x)=\{y \in \Omega: d(x, y)=r\}
$$

where $d$ is the usual distance function in the graph $\Gamma$.
If $\left\{\Delta_{1}, \ldots, \Delta_{\ell}\right\}$ is a partition of $\Omega$ we denote by $\left[\Delta_{1}, \Delta_{2}, \ldots, \Delta_{\ell}\right]$ the collection of all subgroups of $G$ fixing each of the $\Delta_{i}$ setwise. Furthermore, if $k_{1}, \ldots, k_{\ell}$ are positive integers such that

$$
\sum_{i=1}^{\ell} k_{i}=|\Omega|
$$

we denote by $\left[k_{1}, k_{2}, \ldots, k_{\ell}\right.$ ] the collection of all subgroups of $G$ which have orbits of lengths $k_{1}, k_{2}, \ldots, k_{\ell}$.

If $H \leq G$, and $H$ has orbits $\Delta_{1}, \ldots, \Delta_{\ell}$ on $\Omega$, for $x \in \Delta_{i}$ we put $a_{H}(i, j)=$ $\left|S_{1}(x) \cap \Delta_{j}\right|$. We call the matrix $A_{H}=\left(a_{H}(i, j)\right)$ the matrix belonging to the subgroup $H$.

Let $M=\left(m_{i, j}\right)$ be an $n \times n$ matrix with non-negative integral entries and constant row sums. The domain of $M, \mathcal{D}(M)$ is defined to be the collection of all partitions $P=\left\{\Delta_{i}\right\}_{i=1}^{k}$ of $\Omega=\{1,2, \ldots, n\}$ for which $x, y \in \Delta_{i}$ implies that

$$
\sum_{q \in \Delta_{j}} m_{x, q}=\sum_{q \in \Delta_{j}} m_{y, q}=\overline{m_{i, j}}
$$

for each pair of indices $i, j, 1 \leq i, j \leq k$. We set $M(P)=\overline{\left(m_{i, j}\right)}$.
If $N=M(P)$ for some $P \in \mathcal{D}(M)$ we say that $N$ covers $M$ and write $M \leq N$. We note that if $M \leq N$ then $N$ is a $k \times k$ matrix with non-negative entries, constant row sums, and $k \leq n$. We write $\int M$ for the collection of all covers of $M$ and call $\int M$ the cover of $M$. We omit the proof of the following easy consequence:

Proposition 3.1. If $H, K$ are subgroups of $G$ and $H \leq K$, then $A_{H} \leq$ $A_{K}$.

Thus, the mapping $H \rightarrow A_{H}$ is an isotone function from the lattice of subgroups of $G$ to the partially ordered set of all covers of the adjacency matrix of $\Gamma$.

The connection of the above concept with the concepts developed by D.G. Higman [10], [11], and also by Kramer and Mesner [14], [15], is apparent. The authors wish to emphasize the utility of the concept in investigations involving the determination of subgroup structures. We give below a hint of the way in which the matrices $A_{H}$ are used and use the method more extensively in the $U_{3}(5)$ example.

When the adjacency matrix $A$ of the graph $\Gamma$ is given, one can calculate $\int A$. If $H$ is any subgroup of $G$ which is intransitive on $\Omega$, then it corresponds to a cover of $A$. In particular, the covers determine which partitions of $\Omega$ are stabilized by intransitive subgroups of $G$. To obtain a focusing effect, and ignore duplication due to conjugacy, we may select a certain cyclic subgroup $H$ of $G$, determine its matrix $A_{H}$ and calculate $\int A_{H}$. This process is especially useful when we are seeking the non-soluble simple subgroups of $G$ which contain $H$ or a partial normalizer of $H$. Usually, only very few such covers exist, and these point to partitions whose stabilizers are the desired simple subgroups. If one knows the number of orbits of a sought subgroup, or even better, the vector of orbit lengths, the number of partitions of the given type corresponding to covers of $A_{H}$ is even smaller. Sometimes, other small subgroups can be used in place of cyclic groups. For example, minimal simple groups which are known to be contained in $G$ and whose orbit structure on $\Omega$ as well as corresponding matrices are easy to obtain.

The method can be used to determine whether some intransitive subgroup $H$ of known matrix $A_{H}$ is contained in any intransitive subgroup $K$, thus contributing to questions of maximality of a given subgroup.

The method is, of course, useful for the study of intransitive subgroups of $G$, however, its effectiveness is limited to relatively small $|\Omega|$. Transitive subgroups can be handled if one considers simultaneously several transitive permutation representations of $G$.

## 4 - Two-generator subgroups

Interest in two-generator subgroups becomes justified in view of the fact that there is evidence to support a conjecture that every finite non-abelian simple group is a 2-generator group. Even if the conjecture is false, all known simple groups except possibly for a few sporadic ones, are known to be 2-generator groups. For example, all $P S L_{2}(q)$ can be generated by two elements, one of which is an involution [1]. If $q \neq 9$, furthermore, $P S L_{2}(q)$ can be generated by two elements, one of order 2 and one of order 3 . It is convenient to use the following notation: the conjugacy classes of $G$ are denoted by $K_{1}=\{1\}, K_{2}, \ldots, K_{c}$.

If $x$ is an element of $G$ then $C(x)=C_{G}(x)$ denotes the centralizer of $x$ in $G$. Furthermore $\sigma_{x}$ denotes the order of $C(x)$. If $G \mid \Omega$ is a group action, the meta-rank, $\rho(G \mid \Omega)$, is defined to be the number of $G$-orbits on $\Omega$. We write:

$$
\begin{equation*}
\left[K_{i} \times K_{j} \rightarrow K_{k}\right]=\left\{(a, b) \in K_{i} \times K_{j} \mid a b \in K_{k}\right\}, i, j, k \in\{1, \ldots, c\} \tag{4.1}
\end{equation*}
$$

We denote $\left|\left[K_{i} \times K_{j} \rightarrow K_{k}\right]\right|$ by $\left|K_{i} \times K_{j} \rightarrow K_{k}\right|$.

$$
\begin{equation*}
\left\langle K_{i} \times K_{j} \rightarrow K_{k}\right\rangle=\left\{\langle a, b\rangle \mid(a, b) \in\left[K_{i} \times K_{j} \rightarrow K_{k}\right]\right\} \tag{4.2}
\end{equation*}
$$

Here, $\langle a, b\rangle$ denotes the subgroup of $G$ generated by $a$ and $b$.

$$
\begin{equation*}
\sigma_{i}=\left|C_{G}(x)\right|, \quad x \in K_{i} \tag{4.3}
\end{equation*}
$$

For $x_{1}, x_{2}, \ldots, x_{\ell} \in G$,

$$
\begin{equation*}
\sigma_{x_{1}, \ldots, x_{\ell}}=\left|\bigcap_{i=1}^{\ell} C_{G}\left(x_{i}\right)\right|=\left|C_{G}\left\langle x_{1}, \ldots, x_{\ell}\right\rangle\right| \tag{4.4}
\end{equation*}
$$

The structure constants of the center of the group algebra are denoted by $a_{i, j, k}$; thus,

$$
\begin{equation*}
K_{i} K_{j}=\sum_{k=1}^{c} a_{i, j, k} K_{k} \quad i, j \in\{1, \ldots, c\} ; \text { also } \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
a_{i, j, k}=\frac{|G|}{\sigma_{i} \sigma_{j}} \sum_{t=1}^{c} \frac{\chi_{t}(i) \chi_{t}(j) \overline{\chi_{t}(k)}}{\chi_{t}(1)} \tag{4.6}
\end{equation*}
$$

where $\chi_{t}(i)$ is the value of the irreducible ordinary character $\chi_{t}$ of $G$ on the elements of the class $K_{i}$.

We also introduce the symmetric rational constants:

$$
\begin{equation*}
\beta_{i, j, k}=\frac{a_{i, j, k}}{\sigma_{k}}, \quad i, j, k \in\{1, \ldots, c\} . \tag{4.7}
\end{equation*}
$$

Consider the action of $G$ on $K_{i} \times K_{j}$ by conjugation and define the mapping

$$
\begin{aligned}
\phi & : K_{i} \times K_{j}
\end{aligned} \rightarrow G,
$$

then, $\left(x^{\prime}, y^{\prime}\right) \in(x, y)^{G}$ implies that $\phi\left(x^{\prime}, y^{\prime}\right)$ is conjugate to $\phi(x, y)$ in $G$. Furthermore, if $z$ is G-conjugate to $x y \in K_{i} \times K_{j}$, then there exists $\left(x^{\prime}, y^{\prime}\right) \in(x, y)^{G}$ such that $\phi\left(x^{\prime}, y^{\prime}\right)=z$. Hence, $\phi$ is a surjection onto a union of classes of $G$ and [ $K_{i} \times K_{j} \rightarrow K_{k}$ ] is a union of $G$-orbits of $K_{i} \times K_{j}$. We have that:

$$
\left|(x, y)^{G}\right|=[G: C(x) \cap C(y)]=\frac{|G|}{\sigma_{x, y}}
$$

furthermore,

$$
\begin{equation*}
\left|(x, y)^{G} \cap \phi^{-1}(x y)\right|=[C(x y): C(x) \cap C(y)]=\frac{\sigma_{x y}}{\sigma_{x, y}} \tag{4.8}
\end{equation*}
$$

an invariant of the orbit $(x, y)^{G}$. Given a fixed element $z \in K_{k}, a_{i, j, k}=\left|\phi^{-1}(z)\right|$. If the $G$-orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{m}$ of $K_{i} \times K_{j}$ and no others are carried by $\phi$ into $K_{k}$, choose $\left(x_{i}, y_{i}\right) \in \Omega_{i}$ such that $\phi\left(x_{i}, y_{i}\right)=x_{i} y_{i}=z$, we get:

$$
a_{i, j, k}=\sum_{i=1}^{m}\left|\Omega_{i} \cap \phi^{-1}(z)\right|=\sum_{i=1}^{m} \sigma_{z} / \sigma_{x_{i}, y_{i}}
$$

hence,

$$
\begin{equation*}
\beta_{i, j, k}=\sum_{i=1}^{m} \frac{1}{\sigma_{x_{i}, y_{i}}} . \tag{4.9}
\end{equation*}
$$

Since $\sigma_{x_{i}, y_{i}}=\sigma_{x_{i}, y_{i}, x_{i} y_{i}}$, we obtain:

$$
\begin{equation*}
\sigma_{x_{i}, y_{i}} \mid \operatorname{gcd}\left(\sigma_{i}, \sigma_{j}, \sigma_{x_{i} y_{i}}\right) \tag{4.10}
\end{equation*}
$$

If the induced characters $\theta_{i}=1_{C(x)} \uparrow^{G}, \theta_{j}=1_{C(y)} \uparrow^{G},(x, y) \in K_{i} \times K_{j}$ are known, then

$$
\begin{equation*}
\rho\left(G \mid K_{i} \times K_{j}\right)=\left(\theta_{i}, \theta_{j}\right) \tag{4.11}
\end{equation*}
$$

and conditions (4.9), (4.10) and (4.11) are usually sufficient to determine the number of orbits of $G$ on $\left[K_{i} \times K_{j} \rightarrow K_{k}\right]$ for each $k \in\{1, \ldots, c\}$.

Now, if $\left(x^{\prime}, y^{\prime}\right)=(x, y)^{g}$, then $\left\langle x^{\prime}, y^{\prime}\right\rangle=\langle x, y\rangle^{g}$. Hence, if we are interested in $\left\{\langle x, y\rangle \mid(x, y) \in K_{i} \times K_{j}\right\}$ up to conjugacy, it suffices to consider one pair from each $G$-orbit of $K_{i} \times K_{j}$. We must, however, observe that it is possible for $(x, y),\left(x^{\prime}, y^{\prime}\right)$ to belong to different $G$-orbits yet $\langle x, y\rangle$ to be $G$-conjugate to $\left\langle x^{\prime}, y^{\prime}\right\rangle$. Thus,

$$
\begin{equation*}
\rho\left(G \mid\left\langle K_{i} \times K_{j} \rightarrow K_{k}\right\rangle\right) \leq \rho\left(G \mid\left[K_{i} \times K_{j} \rightarrow K_{k}\right]\right) . \tag{4.12}
\end{equation*}
$$

To determine what orbit fusion is induced when we pass from the group action $G \mid\left[K_{i} \times K_{j} \rightarrow K_{k}\right]$ to the group action $G \mid\left\langle K_{i} \times K_{j} \rightarrow K_{k}\right\rangle$, in addition to standard group action conditions we use a certain combinatorial technique which roughly speaking, involves counting the number of ways in which a fixed two-generator subgroup is generated by pairs of elements of $K_{i} \times K_{j}$. More specifically, we introduce mappings of the sort

$$
\begin{aligned}
& f:\left[K_{i} \times K_{j} \rightarrow K_{k}\right] \rightarrow\left\langle K_{i} \times K_{j} \rightarrow K_{k}\right\rangle \\
& f:(x, y) \rightarrow\langle x, y\rangle
\end{aligned}
$$

and determine the uniform sizes of preimages $f^{-1}(\langle x, y\rangle)$. The $U_{3}(5)$ example involves several applications of the above ideas.

## 5 - Compound Characters

Let $G$ be a finite group whose irreducible ordinary characters are $1_{G}, \chi_{2}, \chi_{3}$, $\ldots, \chi_{c}$. If $x \in G, H \leq G$, then we write $g_{x}=|[x]|$, and $h_{x}=|[x] \cap H|$, where $[x]=x^{G}$ is the $G$-conjugacy class containing $x$.

If $\theta$ and $\psi$ are two ordinary characters of $G$, we denote by $(\theta, \psi)$ their inner product in the algebra of class functions of $G$. If $\phi$ is an ordinary character of $G$, then $\phi=\sum_{i=1}^{c} a_{i} \chi_{i}$, with $a_{i} \in \mathbb{Z}^{+}=\{0,1,2, \ldots\}$. Since the collection $\left\{\chi_{i}\right\}_{i=1}^{c}$ forms an orthonormal basis for the algebra of class functions of $G$, we have that $a_{i}=\left(\phi, \chi_{i}\right)$.

If $H \leq G$, then the character $\theta$ of the transitive permutation representation

$$
\begin{gathered}
\pi: G \rightarrow \mathcal{S}_{m} m=[G: H] \\
g \rightarrow \pi(g)=\binom{H x}{H x g}
\end{gathered}
$$

is the induced character $1_{H} \uparrow^{G}$ of the principle character of $H$ to $G$ [7], [16].

It is immediate that the following necessary conditions are satisfied by $\theta$ :
(i) $\left(\theta, 1_{G}\right)=1$
(ii) $\quad \theta(x) \in \mathbb{Z}^{+}$, for each $x \in G$
(iii) $\left(\theta, \chi_{i}\right) \leq \chi_{i}(1)=n_{i}$
(iv) $\theta\left(x^{k}\right) \geq \theta(x)$, for $x \in G, \quad k \in \mathbb{Z}^{+}$
(v) $\theta(1)=[G: H]$, hence $\theta(1)$ divides $|G|$
(vi) $\quad \theta(x)=\theta(1) \cdot\left(h_{x} / g_{x}\right)$ and therefore $\theta(1)$ divides $\theta(x) \cdot g_{x}$.
(vii) $\left(\theta, \chi_{i}\right)=\left(\theta, \overline{\chi_{i}}\right)$, where $\overline{\chi_{i}}$ is the complex conjugate character of $\chi_{i}$.

By a compound character of $G$ we mean here any character of $G$ satisfying conditions ( $i$ ) to (vii). Thus, the character of every transitive permutation representation of $G$ is a compound character but there may exist compound characters which are not the characters of any transitive permutation representation of $G$ and therefore which correspond to no subgroup $H$ of $G$.

In investigating the subgroup structure of a group $G$ whose character table is known the following question arises: "Are there any subgroups of $G$ of index $\delta$ ? " More generally, if it is known that $G$ possesses a subgroup $H$ with associated compound character $\theta$, what are the compound characters $\phi$ corresponding to subgroups $K$ of $G$ subject to $H \leq K \leq G$ ? If such an intermediate subgroup exists, then

$$
\theta=1_{H} \uparrow^{G}=1_{H} \uparrow^{K} \uparrow^{G}, \quad \text { and }\left(1_{H} \uparrow^{K}, 1_{K}\right)=1
$$

imply that:

$$
\text { (viii) } \quad\left(\theta, \chi_{i}\right) \geq\left(\phi, \chi_{i}\right), i \in\{1, \ldots, c\} \text {. }
$$

i.e. the multiplicities of the irreducible characters of $G$ in $\theta$ are greater than or equal to those in $\phi$. Thus, there is an order inverting homomorphism from the lattice of subgroups of $G$ into the cone $\left(\mathbb{Z}^{+}\right)^{c}$, each subgroup mapping onto a vector of multiplicities $\bar{a}=\left(a_{1}, \ldots, a_{c}\right)$ of the associated compound character. The authors, and undoubtedly others, have algorithms which answer the above question by investigating all partitions of $\delta$ :

$$
\delta=1+\sum a_{i} \chi_{i}(1) \quad \text { for each } \delta||H|,|H|| \delta
$$

and testing that the corresponding character

$$
\theta=[1]+\sum a_{i} \chi_{i}
$$

satisfies (i) to (viii). Such programs can be made quite efficient if the algorithms incorporate knowledge of special numerical conditions in the given character table.

## 6 - The Maximal Subgroups of $U_{3}(5)$

In this section we illustrate the methods discussed on the simple group $U_{3}(5)$. We obtain the following result :

ThEOREM 6.1. There are eight conjugacy classes of maximal subgroups of $U_{3}(5)$ as follows : a) Local: $C_{G}(z) \cong\langle z\rangle \backslash \mathcal{S}_{5}, z$ is an involution in $G$; for $Q \in \operatorname{Syl}_{5}(G), N_{G}(Q)=N_{G}\left\langle 5_{1}\right\rangle \cong Q \backslash \mathbb{Z}_{8}$. b) Non-local: Three conjugacy classes of self normalizing $A_{7}$ 's ; Three conjugacy classes of $M_{10}$ 's each normalizing a subgroup of $G$ isomorphic to $A_{6}$. The classes of $A_{7}$ 's and the classes of $M_{10}$ 's are distinguished by the $G$-class of elements of order five they contain.

## LOCAL ANALYSIS

## 6.1 - Local 2-Subgroups

There is one conjugacy class of involutions in $G$, and the Sylow-2 subgroup of $G$ is quasidihedral. Thus, the only possible elementary abelian 2 -groups of order greater than 2 that can occur in $G$ are Klein four groups $V_{4} \cong C_{2} \times C_{2}$.

Lemma 6.1. There is exactly one conjugacy class of $V_{4}$ 's in $G$.
Proof. $a_{2,2,2} \neq 0$ implies that there exist $V_{4}$ 's in $G .\left|C_{G}(z)\right|=240,[G$ : $\left.C_{G}(z)\right]=525$, and from the fusion map $C_{G}(z) \rightarrow G$ we compute the character of the action $G \mid K_{2}$ as

$$
\theta_{525}=1_{C(z)} \uparrow^{G}=[1]+[28]_{1}+[28]_{2}+[28]_{3}+[84]+[105]+[125]+[126] .
$$

Hence, $\rho\left(G \mid K_{2} \times K_{2}\right)=\left(\theta_{525}, \theta_{525}\right)=8$. Computation of the $a_{2,2, k}$ (See Table 1) shows that the 8 orbits of $G \mid K_{2} \times K_{2}$ are already differentiated by the class in which $k$ lies. i.e. There are precisely $8 a_{2,2, k} \neq 0$ for $k$ lying in 8 distinct conjugacy classes, and consequently the orbits are $\left[K_{2} \times K_{2} \rightarrow K_{j}\right.$ ] for those $j$ for which $a_{2,2, j} \neq 0$. Thus $\left[K_{2} \times K_{2} \rightarrow K_{2}\right]$ is a $G$-orbit, and there exists one conjugacy class of $V_{4}$ 's.

Table 1

| k | $:$ | 1 | 2 | 4 | $8_{1}$ | $8_{2}$ | 3 | 6 | $5_{1}$ | $5_{2}$ | $5_{3}$ | $5_{4}$ | 10 | $7_{+}$ | $7_{-}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{2,2, k}$ | $:$ | 525 | 20 | 4 | 0 | 0 | 18 | 6 | 0 | 5 | 5 | 5 | 0 | 0 | 0 |
| $\langle 2,2, k\rangle$ | $:$ | $\langle z\rangle$ | $V_{4}$ | $D_{4}$ | - | - | $\mathcal{S}_{3}$ | $D_{6}$ | - | $D_{5_{2}}$ | $D_{5_{3}}$ | $D_{5_{4}}$ | - | - | - |
| $\langle 2,2, k\rangle \mid$ | $:$ | 2 | 4 | 8 | - | - | 6 | 12 | - | 10 | 10 | 10 | - | - | - |

Let $z$ be an involution of $G$. It is easy to verify that $C_{G}(z)$ acts primitively on fix (z) with kernel $\langle z\rangle$. Thus $C_{G}(z) \cong\langle z\rangle \backslash \mathcal{S}_{5}$.

Proposition 6.1. $C_{G}(z),|z|=2$, is maximal in $G$.
Proof. From the proof of Lemma 6.1

$$
\theta_{525}=1_{C(z)} \uparrow^{G}=[1]+[28]_{1}+[28]_{2}+[28]_{3}+[84]+[105]+[125]+[126] .
$$

Suppose $C(z)$ is not maximal, then there exists $H \leq G$ such that $C(z) \lesseqgtr H \leq G$ and $[G: H] \mid 3 \cdot 5^{2} \cdot 7$. By considering compound characters of degrees $\delta \mid 3 \cdot 5^{2} \cdot 7$, we rule out all but one case, namely the case $[G: H]=175$. In this case $H$ would be a group of order $720=2^{4} \cdot 3^{2} \cdot 5,[G: H]=175$, and $\theta_{175}=1_{H} \uparrow^{G}=$ $[1]+[125]+[21]+[28]_{i}$ for $i \in\{1,2,3\}$. We note that character [21] does not appear in $1_{C(z)} \uparrow^{G}$, a contradiction to 5.(viii). Hence $C(z)$ is maximal.

### 6.1.1- $C_{G}\left(V_{4}\right), N_{G}\left(V_{4}\right)$

$a_{2,2,2}=20$ implies that $\beta_{2,2,2}=20 / 240=1 / 12$; but the number of orbits of $G$ on $\left[K_{2} \times K_{2} \rightarrow K_{2}\right]$ is 1. Therefore $\beta_{2,2,2}=\frac{1}{\left|C\left(V_{4}\right)\right|} \Rightarrow\left|C\left(V_{4}\right)\right|=12$. $N\left(V_{4}\right) / C\left(V_{4}\right) \stackrel{\sim}{\leq} A u t V_{4} \cong G L_{2}(2) \cong \mathcal{S}_{3} \Rightarrow\left|N\left(V_{4}\right)\right|$ divides $6 \cdot 12=72$. Consider an $A_{7}$ inside $G$, and represent $A_{7}$ in its canonical representation. Let $V_{4}=$ $[1,(12)(34),(13)(24),(14)(23)] \leq A_{7}$, then $C_{A_{7}}\left(V_{4}\right)=V_{4} \times\langle\sigma\rangle$ where $\sigma=(567)$. Therefore $C_{G}\left(V_{4}\right)=C_{A_{7}}\left(V_{4}\right) \cong V_{4} \times \mathbb{Z}_{3}$. The elements $\rho=(23)(56), z=(234)$ normalize $V_{4}$ in $A_{7}$; thus $\left\langle V_{4}, \sigma, \rho, z\right\rangle \subseteq N_{A_{7}}\left(V_{4}\right) \subseteq N_{G}\left(V_{4}\right)$. But $\left|\left\langle V_{4}, \sigma, \rho, z\right\rangle\right|=$ 72 implies that $\left|N_{G}\left(V_{4}\right)\right|=72$ and $N_{G}\left(V_{4}\right)=N_{A_{7}}\left(V_{4}\right)$. Therefore, $N_{G}\left(V_{4}\right) \leq A_{7}$, i.e. $N_{G}\left(V_{4}\right)$ is not maximal. It follows from the above that the structure of $N\left(V_{4}\right)$ is $\left(V_{4} \times \mathbb{Z}_{3}\right) \backslash \mathcal{S}_{3}$; in fact, since $\langle\rho, z\rangle \leq N\left(V_{4}\right),\langle\rho, z\rangle \cong \mathcal{S}_{3}$ and $\langle\rho, z\rangle \cap\left\langle V_{4}, \sigma\right\rangle=1$, the extension splits.

## 6.2 - Local 3-groups

Clearly, there is one conjugacy class of $\mathbb{Z}_{3}$ 's and one class of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ 's in $G$. We will now investigate the structures of $C_{G}\left(\mathbb{Z}_{3}\right), N_{G}\left(\mathbb{Z}_{3}\right), C_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$, $N_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$.

Lemma 6.2. Let $\sigma \in G,|\sigma|=3$, then $C_{G}(\sigma) \cong \mathbb{Z}_{3} \times A_{4}$.
Proof. Take $\sigma \in 3 \cdot 1^{4}$ in $A_{7}$, then $C_{A_{7}}(\sigma)=\mathbb{Z}_{3} \times A_{4} \leq A_{7}$, but $\left|C_{G}(\sigma)\right|=$ 36, therefore $C_{G}(\sigma) \cong \mathbb{Z}_{3} \times A_{4}$.

REmARK 6.1 Since $C_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \subseteq C_{G}\left(\mathbb{Z}_{3}\right) \cong \mathbb{Z}_{3} \times A_{4} \leq A_{7}$, neither of $C_{G}\left(\mathbb{Z}_{3}\right), C_{G}\left(\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right)$ are maximal. Since there is exactly one conjugacy class of elts of order $3,\left|N_{G}\left(\mathbb{Z}_{3}\right)\right|=2\left|C_{G}\left(\mathbb{Z}_{3}\right)\right|$, hence $\left|N_{G}\left(\mathbb{Z}_{3}\right)\right|=2^{3} \cdot 3^{2}$ and $N_{G}\left(\mathbb{Z}_{3}\right) \cong C_{G}\left(\mathbb{Z}_{3}\right) \backslash \mathbb{Z}_{2}$.

Lemma 6.3. If $\sigma=(123)(4)(5)(6)(7) \in A_{7} \leq G$, then $N_{G}\langle\sigma\rangle=N_{A_{7}}\langle\sigma\rangle$.
Proof. $C_{A_{7}}(\sigma)=\langle\sigma\rangle \times A_{4}$ with $A_{4}$ on $\{4,5,6,7\}$; furthermore, $\nu=(23)(45)$ normalizes $\langle\sigma\rangle=\left\{1, \sigma, \sigma^{2}\right\}$. Hence, $\left\langle C_{A_{7}}(\sigma), \nu\right\rangle \subseteq N_{A_{7}}(\sigma)$, but $\left|\left\langle C_{A_{7}}(\sigma), \nu\right\rangle\right|=$ 72; therefore, $N_{G}(\langle\sigma\rangle)=N_{A_{7}}(\langle\sigma\rangle)=\left\langle C_{A_{7}}(\sigma), \nu\right\rangle \leq A_{7}$.

Corollary 6.1. $\quad N_{G}\left(\mathbb{Z}_{3}\right)$ is not maximal in $G$.

Lemma 6.4. The Sylow-3 subgroups in $G$ are self-centralizing in $G$.
Proof. $C_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \subseteq C_{G}\left(\mathbb{Z}_{3}\right)=C_{A_{7}}\left(3 \cdot 1^{4}\right) \cong \mathbb{Z}_{3} \times A_{4}$. It suffices to find $C_{C_{3} \times A_{4}}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$. But easily, $C_{\mathbb{Z}_{3} \times A_{4}}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

In 6.9 we prove that there exists a subgroup $S$ of $G$ with $S \cong M_{10}, M_{10}$ the Mathieu group on 10 letters. $M_{10}$ is transitive on the 10 letters and the order of the stabilizer of a point, $M_{10_{x}}$, is 72 . Let $H=M_{10_{x}}$; the values of the induced character $1_{H} \uparrow^{M_{10}}$ on the conjugacy classes yield that there will be exactly 8 elements of order 3 in $H$ and 63 elements of 2-power orders $2^{a}$. Therefore, if $T \in \operatorname{Syl}_{3}(G),\left|N_{G}(T)\right| \geq 72$. Now,

$$
N_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) / C_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \stackrel{\tilde{s}}{\leq} A u t\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)
$$

implies that

$$
\left|N_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right| \text { divides } 9 \cdot\left|G L_{2}(3)\right|=3^{3} \cdot 2^{4}
$$

Therefore, $|N|=72$ or $2 \cdot 72$. But by Sylow's Theorem, $2 \cdot 72$ is ruled out. Hence, $|N|=72$, and

$$
N_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=N_{M_{10}}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \leq M_{10}
$$

Corollary 6.2. $N_{G}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$ is not maximal in $G$.

## 6.3 - Local 5-groups

Since $Q \in \operatorname{Syl}_{5}(G)$ is non-abelian of order $5^{3}$ and contain no elements of order $25, Q$ must have the presentation:

$$
Q=\left\langle\alpha, \beta, \gamma \mid \alpha^{5}=\beta^{5}=\gamma^{5}=1, \alpha^{\gamma}=\alpha, \beta^{\gamma}=\beta,[\alpha, \beta]=\gamma\right\rangle .
$$

The elements of $Q$ can be written in the form $\alpha^{k} \beta^{l} \gamma^{m} ; k, l, m \in \mathbb{Z}_{5}$, and $\mathbb{Z}(Q)=$ $\langle\gamma\rangle$. Since $\alpha^{\beta}=\alpha^{4} \gamma, \beta^{\alpha}=\beta \gamma^{4}$, the conjugacy class in $Q$ of a non-central element $x$ is the coset $\langle\gamma\rangle x$. Thus $Q$ contains 24 non-central classes each of size 5.

Lemma 6.5. The central element $\gamma$ must belong to $5_{1}$ and $Q$ consists of exactly

1. the identity
2. 4 elements of type $5_{1}$
3. 40 elements of each of types $5_{2}, 5_{3}, 5_{4}$.

Proof. $Q \unlhd N_{G}(Q), \theta_{126}=1_{N_{G}(Q)} \uparrow^{G}=[1]+[125]$ and $\theta_{126}\left(5_{2}\right)=$ $\theta_{126}\left(5_{3}\right)=\theta_{126}\left(5_{4}\right),\left|C_{G}\left(5_{i}\right)\right|=25, i=1,2,3,4$ imply that $Q$ contains exactly 40 elements of each $5_{i}, i \in\{1,2,3,4\}$.

From the character table of $G$ follows that $\left|C_{G}(\gamma)\right|=2 \cdot 5^{3}$. But $\langle\gamma\rangle$ is a characteristic subgroup of $Q$ which implies that $N_{G}(Q) \leq N_{G}(Y)$. Therefore $\left|N_{G}(Q)\right||4 \cdot| C_{G}(Y) \mid=2^{3} \cdot 5^{3}$. By Sylow's Theorem, it follows that $\left|N_{G}(Q)\right|=$ $2^{3} \cdot 5^{3}$. By [18], $N_{G}(Q) \cong Q \backslash \mathbb{Z}_{8}$ and every element of order 5 is conjugate to its powers. Thus there are exactly four conjugacy classes of $\mathbb{Z}_{5}$ 's in $G$, namely $\left\langle 5_{1}\right\rangle$, $\left\langle 5_{2}\right\rangle,\left\langle 5_{3}\right\rangle,\left\langle 5_{4}\right\rangle$.

## The structure and maximality of $N\left\langle 5_{1}\right\rangle$.

Since $|\sigma|=5 \Rightarrow \sigma \sim \sigma^{k}, k=1,2,3,4$, we have that $\left|N\left\langle 5_{i}\right\rangle\right|=4 \cdot\left|C\left\langle 5_{i}\right\rangle\right|$. Hence $\left|N\left\langle 5_{1}\right\rangle\right|=1000 ;\left|N\left\langle 5_{i}\right\rangle\right|=100$ if $i \in\{2,3,4\}$. Hence, $N(Q)=N\left\langle 5_{1}\right\rangle \cong$ $Q \backslash \mathbb{Z}_{8}$.

Proposition 6.2. $N\left\langle 5_{1}\right\rangle$ is maximal in $G$.
Proof. $\left[G: N\left\langle 5_{1}\right\rangle\right]=\frac{126000}{1000}=126$. The character of the transitive permutation representation of $G$ on the right cosets of $N_{G}\left\langle 5_{1}\right\rangle$ is $\theta_{126}=1_{N\left\langle 5_{1}\right\rangle} \uparrow^{G}=$ $[1]+[125]$; therefore, the representation is doubly-transitive, hence it is primitive and consequently, the stabilizer of a point, namely $N\left\langle 5_{1}\right\rangle$ is maximal.

Lemma 6.6. $i \in\{2,3,4\} \Rightarrow\left\langle 5_{1}, 5_{i}\right\rangle$ contains exactly

1. the identity
2. 4 elements of type $5_{1}$
3. 20 elements from class $5_{i}$.

Proof. Let $\gamma \in 5_{1}$ and $\sigma \in 5_{i}, i \neq 1$, such that $\sigma^{\gamma}=\sigma$. Also let $Q \in$ $S y l_{5}(G)$ such that $\langle\gamma, \sigma\rangle \leq Q$. Then $y \in\langle\gamma\rangle x \Rightarrow y$ is $Q$-conjugate to $x \Rightarrow y$ is $G$-conjugate to $x$. But also, $x \sim x^{k}$ for any $k \not \equiv 0(\bmod 5)$.

Proposition 6.3. $N\left\langle 5_{i}\right\rangle \leq\left\langle 5_{1}\right\rangle$ if $i \in\{1,2,3,4\}$. Consequently, for $i \neq 1$ $N\left\langle 5_{i}\right\rangle$ are not maximal.

Proof. Obvious for $i=1$. Consider now the case where $i>1$. If $\sigma \in N\left\langle 5_{i}\right\rangle$, then $\sigma$ normalizes $C\left(5_{i}\right)=\left\langle 5_{1}, 5_{i}\right\rangle$. Let $\gamma \in 5_{1} \cap C\left(5_{i}\right)$, then by Lemma 6.6 $\gamma^{\sigma} \in\langle\gamma\rangle \Rightarrow\langle\gamma\rangle^{\sigma}=\langle\sigma\rangle$, i.e. $\sigma$ normalizes $\left\langle 5_{1}\right\rangle$. Therefore $N\left\langle 5_{i}\right\rangle \leq N\left\langle 5_{1}\right\rangle$.

Corollary 6.3. $N\left\langle 5_{1}, 5_{i}\right\rangle \leq N\left\langle 5_{1}\right\rangle, i \neq 1$.
Proof. Let $\sigma \in N\left\langle 5_{1}, 5_{i}\right\rangle$ and let $\sigma \in 5_{1} \cap\left\langle 5_{1}, 5_{i}\right\rangle$, then $\gamma^{\sigma} \in 5_{1} \cap\left\langle 5_{1}, 5_{i}\right\rangle$, therefore by Lemma 6.6, $\langle\gamma\rangle^{\sigma}=\langle\gamma\rangle$.

Thus, we have the following :
Proposition 6.4. There is exactly one up to conjugacy 5-local maximal subgroup of $G$; it is $N\left\langle 5_{1}\right\rangle=N(Q)$ of order 1000 .

## 6.4 - Local 7-groups

It is immediate that $N_{G}\left(\mathbb{Z}_{7}\right) \cong \mathbb{Z}_{7}^{3}$. Furthermore, since $N_{A_{7}}\left(\mathbb{Z}_{7}\right) \cong \mathbb{Z}_{7}^{3}$, we have that $N_{G}\left(\mathbb{Z}_{7}\right) \leq A_{7}$ and consequently $N_{G}\left(\mathbb{Z}_{7}\right)$ is not maximal.

## 6.5 - Non-local Subgroups

Proposition 6.5. If $H \leq G, H$ non-abelian simple group, then $H$ is isomorphic to one of the following: $A_{5}, P S L_{2}(7), A_{6}, A_{7}$.

Proof. No simple groups not occurring in L.E.Dickson's list are found in the Higman-Sims group [18]. Hence, since $G \leq H S$, the only possible simple groups contained in $G$ must occur in Dickson's list. By consideration of order, the possible non-abelian simple groups are: $A_{5}, A_{6}, A_{7}, P S L_{2}(7), P S L_{2}(8)$. However $P S L_{2}(8) \not \leq H S$, therefore, $P S L_{2}(8) \not \leq G$.

Remark 6.2. Each of above indeed occurs in $G$. To see this we note that $A_{7} \stackrel{\sim}{\leq} G$ and therefore $A_{6}, A_{5}, P S L_{2}(7)$ which are contained in $A_{7}$ are subgroups of $G$. There remains to determine the number of conjugacy classes of each of the above, and their normalizers.

## 6.6 - The set $\left[K_{2} \times K_{3} \rightarrow K_{7}\right]$

From $\left|K_{2} \times K_{3}\right|=\frac{|G|}{240} \cdot \frac{|G|}{36}=2^{2} \cdot 3 \cdot 5^{5} \cdot 7^{2},\left|K_{2} \times K_{3} \rightarrow K_{7_{+}}\right|=a_{2,3,7_{+}} \cdot \frac{|G|}{7}=$ $3 \cdot|G|,\left|K_{2} \times K_{3} \rightarrow K_{7-}\right|=3 \cdot|G|,\left.a_{2,3,7_{+}}\right|_{L_{2}(7)}=7,\left|K_{2} \times K_{3} \rightarrow K_{7_{+}}\right| L_{L_{2}(7)} \mid=168$, we have:

$$
\# L_{2}(7)^{\prime} s=\frac{\left|K_{2} \times K_{3} \rightarrow K_{7}\right|}{2 \cdot 168}=2250
$$

Let $\Omega$ be the set of all $L_{2}(7)$ 's in $G$ and consider the group action $G \mid \Omega$ by conjugation. The length of an orbit, say $L^{G}, L \in \Omega$, is $\left|L^{G}\right|=\left[G: G_{L}\right]$ where $G_{L}=N_{G}(L)$. Hence, if there are $k$ orbits with representatives $L_{i}, i=1,2, \ldots, k$, we have

$$
\sum_{i=1}^{k}\left[G: G_{L_{i}}\right]=2 \cdot 3^{2} \cdot 5^{3}
$$

Therefore, $2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot \sum_{i=1}^{k} \frac{1}{\left|N_{G}\left(L_{i}\right)\right|}=2 \cdot 3^{2} \cdot 5^{3} \Rightarrow 2^{3} \cdot 7 \cdot \sum_{i=1}^{k} \frac{1}{\left|N\left(L_{i}\right)\right|}=1$.
Now since $L \in \Omega$ implies that $C_{G}(L)=1$, if we write $\left|\frac{N\left(L_{i}\right)}{L_{i}}\right|=\ell_{i}$ we have:

$$
\frac{1}{168} \sum_{i=1}^{k} \frac{1}{\ell_{i}}=\frac{1}{2^{3} \cdot 7}
$$

Hence, in particular $\sum_{i=1}^{k} \frac{1}{\ell_{i}}=3$ and $k \geq 3$. Consider the group action
$G \mid\left[K_{2} \times K_{3} \rightarrow K_{7_{+}}\right]$by conjugation. We have the following:
Lemma 6.7. The number of $G$ orbits on $\left[K_{2} \times K_{3} \rightarrow K_{7_{+}}\right]$is three.

Proof. Since g.c.d $\left(\sigma_{2}, \sigma_{3}, \sigma_{7}\right)=1, \rho\left(G \mid\left[K_{2} \times K_{3} \rightarrow K_{7_{+}}\right]\right)=\beta_{2,3,7_{+}}=$ $\frac{a_{2,3,7_{+}}}{7}=\frac{21}{7}=3$.

Every $\langle x, y\rangle$ such that $|x|=2,|y|=3,|x y|=7$ can be thought of as a $\left(2,3,7_{+}\right)$; for either $x y \in 7_{+}$in which case $(x, y) \in\left[K_{2} \times K_{3} \rightarrow K_{7_{+}}\right]$or else $x y \in 7_{-}$in which case $y^{-1} x^{-1} \in 7_{+}$and $\langle x, y\rangle=\left\langle x^{-1}, y^{-1}\right\rangle \in\left(2,3,7_{+}\right)$.

If $(x, y),\left(x^{\prime}, y^{\prime}\right) \in\left[K_{2} \times K_{3} \rightarrow K_{7_{+}}\right]$and $(x, y)$ is $G$-conjugate to $\left(x^{\prime}, y^{\prime}\right)$, then clearly $\langle x, y\rangle$ is $G$-conjugate to $\left(x^{\prime}, y^{\prime}\right)$. Therefore, if $\Omega=\{H \leq G \mid H \cong$ $\left.L_{2}(7)\right\}$, then $\rho(G \mid \Omega) \leq \rho\left(G \mid\left[K_{2} \times K_{3} \rightarrow K_{7_{+}}\right]\right)=3$.

Corollary 6.4. $k=3, \ell_{i}=1$ for $i \in\{1,2,3\}$. i.e. each $P S L_{2}(7)$ in $G$ is self-normalizing.

## 6.7 - The conjugacy classes of $A_{5}$ 's in $G$

If $H \cong A_{5}$, then $H \in(2,3,4)$. Since $\beta_{2,3,5_{1}}=0, \beta_{2,3,5_{i}}=1$ for $i \in\{2,3,4\}$ and $\operatorname{gcd}\left(\sigma_{2}, \sigma_{3}, \sigma_{5_{i}}\right)=1$ for $i>1$ it follows that there are exactly 3 conjugacy classes of $A_{5}$ 's in $G$ one for each $5_{i}, i>1$. Consider $A_{5_{i}}=\langle x, y\rangle,(x, y) \in$ $\left[K_{2} \times K_{3} \rightarrow K_{5_{i}}\right] . C\left(A_{5_{i}}\right)=C(x) \cap C(y) \cap C(x y)=1$, implies that each $A_{5}$ is centralized by 1. $N\left(A_{5}\right) / C\left(A_{5}\right) \stackrel{\sim}{\leq} A u t A_{5} \cong \mathcal{S}_{5}$. Therefore, $\left|N\left(A_{5}\right)\right| \mid 5$ !, hence $N\left(A_{5}\right) \cong A_{5}$ or $\mathcal{S}_{5}$.

Consider $\left[K_{2} \times K_{3} \rightarrow K_{5_{i}}\right.$ ] for a fixed $i \in\{2,3,4\}$. Then, $\mid K_{2} \times K_{3} \rightarrow$ $K_{5_{i}}\left|=a_{2,3,5_{i}} \cdot \frac{|G|}{25}=|G|\right.$. Consider the mapping $\Phi:\left[K_{2} \times K_{3} \rightarrow K_{5_{i}}\right] \rightarrow \Lambda_{i}$, $i \in\{2,3,4\}$, where $\Lambda_{i}$ is the conjugacy class of $A_{5}$ 's of type (2, 3, $5_{i}$ ), defined by $\Phi(x, y)=\langle x, y\rangle$. Then $H \in \Lambda_{i} \Rightarrow\left|\Phi^{-1}(H)\right|=\left|K_{2} \times K_{3} \rightarrow K_{5}\right|_{\left.\right|_{A_{5}}}$.
Hence, $\left|\Lambda_{i}\right|=\frac{2^{4} \cdot 2^{2} \cdot 5^{3} \cdot 7}{3 \cdot 4 \cdot 2 \cdot 5}=2 \cdot 3 \cdot 5^{2} \cdot 7$.
On the other hand

$$
\left|\Lambda_{i}\right|=\left[G: N_{G}(H)\right], H \in \Lambda_{i}
$$

Hence, $\frac{2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7}{2^{2} \cdot 3 \cdot 5} \sum_{i=1}^{3} \frac{1}{n_{i}}=2 \cdot 3^{2} \cdot 5^{2} \cdot 7=\left|\Lambda_{2}\right|+\left|\Lambda_{3}\right|+\left|\Lambda_{4}\right|$.
Hence, $\sum_{i=1}^{3} \frac{1}{n_{i}}=\frac{3}{2}$, and consequently, each $n_{i}=2$. Thus, there is a unique up to conjugacy $A_{5_{i}}$ for each $i \in\{2,3,4\}$ and each of these $A_{5}$ 's are contained in a corresponding $\mathcal{S}_{5}$. We will show later that none of the above $\mathcal{S}_{5}$ 's is maximal in $G$.

## 6.8-Groups containing $\mathbb{Z}_{7}^{3}$

It is well known that the full automorphism group of the Hoffman-Singleton graph on 50 verices is a split extension of our group $G=U_{3}(5)$ by a group of order 2 [17] [4]. In [17] the Higman-Sims graph of 100 vertices is viewed as the union of two Hoffman-Singleton graphs with appropriate interconnections between the two subgraphs on 50 vertices. In particular $U_{3}(5)$ acts intransitively
on the 100 vertices of the Higman-Sims graph, and transitively, of rank 3, on each of the two Hoffman-Singleton subgraphs of the Higman-Sims graph. In what follows we consider the transitive, rank-3 action of $G$ on the 50 vertices $\Omega$ of the Hoffman-Singleton graph. In view of the discussion in Section 5, the character of the action $G \mid \Omega$ must be of the form $\chi=[1]+[21]+[28]_{i}$ for some $i \in\{1,2,3\}$.

Suppose a subgroup $H$ of $G$ contains $\mathbb{Z}_{7}^{3}$ then

$$
A_{H} \geq A_{\mathbb{Z}_{7}^{3}}=\left(\begin{array}{llllll}
0 & 7 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 3 \\
0 & 1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 3 & 3 \\
0 & 1 & 0 & 3 & 0 & 3 \\
0 & 1 & 2 & 1 & 1 & 2
\end{array}\right)
$$

Suppose $H \leq G,[G: H]=50$, then $1_{H} \uparrow^{G}=[1]+[21]+[28]_{j}, j \in\{1,2,3\} \Rightarrow$ $\#[$ Orbits of $H$ on $\Omega]=\left(1_{H} \uparrow^{G}, \chi\right)=3$ or 2 .

Lemma 6.8. If $H \cong A_{7}, H \leq G$, then $H \in[1,7,42] \cup[15,35]$.
Proof. $[G: H]=50$. Via consideration of the possible compound characters of degree 50 , we see as above that $H$ has 2 or 3 orbits on the canonical set of 50 points. If there are 2 orbits then it easily follows that $A_{7} \in[15,35]$ by consideration of the possible transitive representations of $A_{7}$ on $\leq 50$ points. Otherwise if $A_{7}$ has 3 orbits, the least orbit is of length $\leq\left[\frac{50}{3}\right]=16$, hence of length 1,7 or 15 . If the least orbit has length $=1$ then $49=k+\ell$, and $A_{7}$ acts transitively on $k$ (as well as $\ell$ ) points, therefore $k=7, \ell=42$. If the least orbit has length $>1$ then by considering the possible transitive representations of $A_{7}$ we see that no assignment to $k$ and $\ell$ is possible. Hence the least orbit must be of length 1 . Clearly there is an $A_{7} \in[1,7,42]$, since $G_{\alpha}$ in the canonical representation of $G$ on 50 points is isomorphic to $A_{7}$. Since $G$ is transitive on 50 points all $A_{7}$ 's with orbit structure $[1,7,42]$ are conjugate.

Now we will show that there are two other conjugacy classes of $A_{7}$ 's in $G$, which in the standard representation $G \mid \Omega$ have orbit types [15, 35].

Lemma 6.9. If

$$
\begin{aligned}
& \sigma=(1)(21165261621)(3393130365041) \\
& \text { (4 } 29323317469 \text { ) (7 } 144325341947 \text { ) } \\
& \text { (8202840242713)(10494223223548) } \\
& (12443715451838) \in G
\end{aligned}
$$

and cycles of $\sigma$ are labelled PABCDEFK, then $\mathbb{Z}_{7}^{3}=N_{G}\langle\sigma\rangle \in[P, A, C F K$, $B, E, D]:[1,7,21,7,7,7]$, and any cover of $\mathbb{Z}_{7}^{3}$ with two orbits has orbit type [PED, ABCFK] or $[P B D, A C E F K]$.

Proof. This follows immediately by the discussion of section 3 and $A_{\mathbb{Z}_{7}^{3}}$.

Corollary 6.5. If $H \cong A_{7}, H \leq G$ and $H$ has two orbits on $\Omega$, then $H \in[P E D, A B C F K] \cup[P B D, A C E F K]$ and consequently there can be at most 3 conjugacy classes of $A_{7}$ 's in $G$.

DEFINITION 6.1. Let $\Delta_{1}=P E D \subseteq \Omega$ and $\Delta_{2}=P B D \subseteq \Omega$, then we call a subset $\Gamma \subseteq \Omega$ a decapentad of type 1 if and only if $\Gamma^{g}=\Delta_{1}$ for some $g \in G$, or a decapentad of type 2 if and only if $\Gamma^{g}=\Delta_{2}$ for some $g \in G$. Computation shows there are precisely 50 decapentads of each type.

Let $\Lambda_{i}=\Delta_{i}^{G}$. Then $G$ acts transitively on $\Lambda_{1}, \Lambda_{2}$ and $\left|G_{\left(\Delta_{i}\right)}\right|=\frac{|G|}{50}=\frac{7!}{2}$. Hence each $G_{\left(\Delta_{1}\right)}, G_{\left(\Delta_{2}\right)}$ are subgroups of $G$ of order $\frac{7!}{2}$ and $G_{\left(\Delta_{1}\right)}$ is not $G$-conjugate to $G_{\left(\Delta_{2}\right)}$ since $\Delta_{2} \notin \Lambda_{i}$.

PROPOSITION 6.6. $G_{\left(\Delta_{1}\right)} \cong G_{\left(\Delta_{2}\right)} \cong A_{7}$.

Proof. $G_{\left(\Delta_{1}\right)}$ has a representation on the 15 points of $\Delta_{1}$. Since $G_{\left(\Delta_{1}\right)}$ has at most 3 orbits on $\Omega$ and since by consideration of $A_{\mathbb{Z}_{7}^{3}}, P \underline{E D}$ or $P E D$ are the only possible orbit structures, $G_{\left(\Delta_{1}\right)}$ is transitive on $\Delta_{1} . H=G_{\left(\Delta_{1}\right)}$ acts primitively on $\Delta_{1}$, for if $H_{\alpha} \leq K \leq H$, then $K$ would have orbit type [8,7] or [15] on $\Delta_{1}$. But $K \supseteq \mathbb{Z}_{7}^{3}$, since $H_{\alpha} \supseteq \mathbb{Z}_{7}^{3}$, hence [8, 7] is not possible. Therefore, $K$ would be transitive on $\Delta_{1}$, and consequently $|K|=\left|K_{\alpha}\right| \cdot 15$. But clearly $K_{\alpha}=H_{\alpha}$ and therefore $K=H$.

It is known however [5] that the only primitive group on 15 points of order $\frac{7!}{2}$ is a group isomorphic to $A_{7}$. Therefore, $G_{\left(\Delta_{1}\right)} \cong A_{7}$. Similarly $G_{\left(\Delta_{2}\right)} \cong A_{7}$.

Corollary 6.6. There are at least three conjugacy classes of $A_{7}$ 's namely $A_{7_{1}} \cong G_{\alpha}, A_{7_{2}} \cong G_{\left(\Delta_{1}\right)}, A_{7_{3}} \cong G_{\left(\Delta_{2}\right)}$. Hence there are exactly 3 conjugacy classes of $A_{7}$ 's in $G$.

The standard representation is $G \mid\left\{\right.$ right cosets of $\left.A_{7_{1}}\right\}$. Since $\chi=[1]+[21]+[28]_{i}$ for some $i$, and since $\#[o r b]=3$, without loss of generality we take:

$$
\chi=\chi_{1}=1_{A_{7_{1}}} \uparrow^{G}=1+[21]+[28]_{1}
$$

Since $A_{7_{2}}, A_{7_{3}}$ have 2 orbits on $\Omega$, without loss of generality

$$
\begin{aligned}
& 1_{A_{7_{2}}} \uparrow^{G}=1+[21]+[28]_{2} \\
& \quad \text { and } \\
& 1_{A_{7_{3}}} \uparrow^{G}=1+[21]+[28]_{3} .
\end{aligned}
$$

Therefore, the elements of order 5 in $A_{7_{2}}$ or $A_{7_{3}}$ come from $5_{3} \cup 5_{2}$. Clearly, there is a 3 way symmetry of the above argument relating the representation of $G$ on the cosets of $A_{7}$ 's to the 3 types of $A_{7}$ 's. Therefore each induced character involves each $[28]_{i}$ exclusively. Hence, $5_{2} \in A_{7_{1}}, 5_{3} \in A_{7_{2}}, 5_{4} \in A_{7_{3}}$.

Now we investigate the normalizer $N_{G}\left(A_{5_{i}}\right) \cong \mathcal{S}_{5}$. Since each $A_{5_{i}}$ is contained in an appropriate $A_{7_{i}}$ and the normalizer in $A_{7_{i}}$ of $A_{5_{i}}$ is isomorphic to $\mathcal{S}_{5}, N_{G}\left(A_{5_{i}}\right) \leq A_{7_{i}}$, and therefore $N_{G}\left(A_{5_{i}}\right)$ are not maximal in $G$. Of course $N_{G}\left(A_{7}\right)=A_{7_{i}}$ are maximal since there are no permutation characters for $G$ of degree less than 50 .

## 6.9 - The $A_{6}$ 's and their normalizers

Suppose $H \leq G, H \cong P G L_{2}(9)$, then $[G: H]=175$. Therefore, $\chi=$ $1_{H} \uparrow^{G}=1+[125]+[21]+[28]_{i} \quad i \in\{1,2,3\} \Rightarrow \chi(2)=1+5+5+4+15$. But $\chi(2)$ should be $\sigma_{G}(2)\left(\frac{1}{\sigma_{H}\left(2_{1}\right)}+\frac{1}{\sigma_{H}\left(2_{2}\right)}\right)=240\left(\frac{1}{16}+\frac{1}{20}\right)=27$, a contradiction. Hence no subgroup of $G$ is isomorphic to $P G L_{2}(9)$.

Suppose next that there exists $H \leq G, H \cong \mathcal{S}_{6}$. Then $\chi(2)=240\left(\frac{1}{48}+\frac{1}{16}+\right.$ $\left.\frac{1}{48}\right)=25$, a contradiction; therefore $\mathcal{S}_{6} \not \leq G$.

Hence if $A_{6} \triangleleft H \lesseqgtr G$, then $H \cong M_{10}$. Consider $\Omega=\left[K_{2} \times K_{4} \rightarrow K_{5_{i}}\right]$ $i \in\{2,3,4\}$ fixed. $|\Omega|=75 \cdot\left|K_{5_{i}}\right|=2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 7$ (Since $a_{2,4,5_{i}}=75$ ). Let $S \subseteq \Omega$ be defined by:

$$
(x, y) \in S \text { if and only if }\langle x, y\rangle \cong \mathcal{S}_{5}
$$

$S \neq \emptyset$, since there exists $H \leq G, H \cong \mathcal{S}_{5} \in\left(2,4,5_{i}\right)$.
There exists a mapping $\Phi$ from $S$ into the collection of all subgroups of $G$, namely

$$
\Phi:(x, y) \rightarrow\langle x, y\rangle
$$

We have

$$
|\Phi(S)|=\#\left[\text { of } S_{5} \text { with a } 5_{i}\right]=\left[G: \mathcal{S}_{5}\right]=2 \cdot 3 \cdot 5^{2} \cdot 7
$$

any $H \in \Phi(S)$ is generated in 120 ways as $\langle x, y\rangle|x|=2,|y|=4,|x y|=5$, $x, y \in H$.

Therefore, $|S|=120 \cdot|\Phi(S)|=2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$.
Therefore, $T=\Omega \backslash S$ has $2^{5} \cdot 3^{2} \cdot 5^{3} \cdot 7$ elements.
Now consider an $A_{6}$ with a $5_{i}$ in it. (Such exists since $A_{6} \leq A_{7}$ ) If $N\left(A_{6}\right)=$ $A_{6}$, then

$$
\#\left[A_{6}^{\prime} s \text { conjugate to this } A_{6}\right]=\left[G: A_{6}\right]=350
$$

But each $A_{6}$ is generated as a $\left(2,4,5_{i}\right)$ in $2^{5} .3^{2} .5$ ways. Therefore, there would be $350 \cdot 2^{5} \cdot 3^{2} \cdot 5$ ordered pairs in $\Omega$ yielding $A_{6}$ 's. But $350 \cdot 2^{5} \cdot 3^{2} \cdot 5>|T|=2^{5} \cdot 3^{2} \cdot 5^{3} \cdot 7$ a contradiction. Hence, $N\left(A_{6}\right) \cong M_{10}$ and then

$$
|T|=175 \cdot 2^{5} \cdot 3^{2} \cdot 5
$$

Corollary 6.7. There are exactly 3 conjugacy classes of $A_{6}$ 's one for each $5_{2}, 5_{3}, 5_{4}$, each normalized by an $M_{10}$.

## - Appendix

## Generators of $P S U_{3}\left(5^{2}\right)$ :

$$
\begin{aligned}
& x: \\
& (3,17,7)(4,46,38)(5,11,21)(6,26,16)(8,36,32)(9,28,19) \\
& (10,13,33)(14,47,15)(18,43,49)(20,44,23)(24,25,39) \\
& (29,50,37)(30,35,41)(31,45,40)(34,42,48) \\
& y: \\
& (1,3,5,2,4)(6,28,20,12,24)(7,29,16,13,25)(8,30,17,14,21) \\
& (9,26,18,15,22)(10,27,19,11,23)(36,37,38,39,40) \\
& (41,45,44,43,42)(46,49,47,50,48)
\end{aligned}
$$

## Character Table of $\mathrm{PSU}_{3}\left(5^{2}\right)$ :

| $x$ | 1 | 2 | 4 | $8_{1}$ | $8_{2}$ | 3 | 6 | $5_{1}$ | $5_{2}$ | $5_{3}$ | $5_{4}$ | 10 | $7_{1}$ | $7_{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $\sigma_{x}$ | $\|G\|$ | 240 | 8 | 8 | 8 | 36 | 12 | 250 | 25 | 25 | 25 | 10 | 7 | 7 |
| $\kappa_{x}$ | 1 | 525 | 15750 | 15750 | 15750 | 3500 | 10500 | 504 | 5040 | 5040 | 5040 | 12600 | 18000 | 18000 |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 20 | -4 | 0 | 0 | 0 | 2 | 2 | -5 | 0 | 0 | 0 | 1 | -1 | -1 |
| $\chi_{3}$ | 28 | 4 | 0 | 0 | 0 | 1 | 1 | 3 | 3 | -2 | -2 | -1 | 0 | 0 |
| $\chi_{4}$ | 28 | 4 | 0 | 0 | 0 | 1 | 1 | 3 | -2 | -2 | 3 | -1 | 0 | 0 |
| $\chi_{5}$ | 28 | 4 | 0 | 0 | 0 | 1 | 1 | 3 | -2 | 3 | -2 | -1 | 0 | 0 |
| $\chi_{6}$ | 21 | 5 | 1 | -1 | -1 | 3 | -1 | -4 | 1 | 1 | 1 | 0 | 0 | 0 |
| $\chi_{7}$ | 84 | -4 | 0 | 0 | 0 | 3 | -1 | 9 | -1 | -1 | -1 | 1 | 0 | 0 |
| $\chi_{8}$ | 126 | 6 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| $\chi_{9}$ | 105 | 1 | 1 | -1 | -1 | -3 | 1 | 5 | 0 | 0 | 0 | 1 | 0 | 0 |
| $\chi_{10}$ | 144 | 0 | 0 | 0 | 0 | 0 | 0 | -6 | -1 | -1 | -1 | 0 | $\gamma$ | $\delta$ |
| $\chi_{11}$ | 144 | 0 | 0 | 0 | 0 | 0 | 0 | -6 | -1 | -1 | -1 | 0 | $\delta$ | $\gamma$ |
| $\chi_{12}$ | 125 | 5 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
| $\chi_{13}$ | 126 | -6 | 0 | $\alpha$ | $\beta$ | 0 | 0 | 1 | 1 | 1 | 1 | -1 | 0 | 0 |
| $\chi_{14}$ | 126 | -6 | 0 | $\beta$ | $\alpha$ | 0 | 0 | 1 | 1 | 1 | 1 | -1 | 0 | 0 |

## Hoffman-Singleton Graph

| $1 /$ | 2 | 5 | 6 | 11 | 16 | 21 | 26 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| $2 /$ | 1 | 3 | 7 | 12 | 17 | 22 | 27 |
| $3 /$ | 2 | 4 | 8 | 13 | 18 | 23 | 28 |
| $4 /$ | 3 | 5 | 9 | 14 | 19 | 24 | 29 |
| $5 /$ | 1 | 4 | 10 | 15 | 20 | 25 | 30 |
| $6 /$ | 1 | 8 | 9 | 31 | 37 | 43 | 48 |
| $7 /$ | 2 | 9 | 10 | 32 | 38 | 44 | 49 |
| $8 /$ | 3 | 6 | 10 | 33 | 39 | 45 | 50 |
| $9 /$ | 4 | 6 | 7 | 34 | 40 | 41 | 46 |
| $10 /$ | 5 | 7 | 8 | 35 | 36 | 42 | 47 |
| $11 /$ | 1 | 13 | 14 | 35 | 39 | 44 | 46 |
| $12 /$ | 2 | 14 | 15 | 31 | 40 | 45 | 47 |
| $13 /$ | 3 | 11 | 15 | 32 | 36 | 41 | 48 |
| $14 /$ | 4 | 11 | 12 | 33 | 37 | 42 | 49 |
| $15 /$ | 5 | 12 | 13 | 34 | 38 | 43 | 50 |
| $16 /$ | 1 | 18 | 19 | 32 | 40 | 42 | 50 |
| $17 /$ | 2 | 19 | 20 | 33 | 36 | 43 | 46 |
| $18 /$ | 3 | 16 | 20 | 34 | 37 | 44 | 47 |
| $19 /$ | 4 | 16 | 17 | 35 | 38 | 45 | 48 |
| $20 /$ | 5 | 17 | 18 | 31 | 39 | 41 | 49 |
| $21 /$ | 1 | 23 | 24 | 33 | 38 | 41 | 47 |
| $22 /$ | 2 | 24 | 25 | 34 | 39 | 42 | 48 |
| $23 /$ | 3 | 25 | 21 | 35 | 40 | 43 | 49 |
| $24 /$ | 4 | 21 | 22 | 31 | 36 | 44 | 50 |
| $25 /$ | 5 | 22 | 23 | 32 | 37 | 45 | 46 |
| 24 |  |  |  |  |  |  |  |


| $26 /$ | 1 | 28 | 29 | 34 | 36 | 45 | 49 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $27 /$ | 2 | 29 | 30 | 35 | 37 | 41 | 50 |
| $28 /$ | 3 | 26 | 30 | 31 | 38 | 42 | 46 |
| 29 | 4 | 26 | 27 | 32 | 39 | 43 | 47 |
| $30 /$ | 5 | 27 | 28 | 33 | 40 | 44 | 48 |
| $31 /$ | 6 | 12 | 20 | 24 | 28 | 32 | 35 |
| $32 /$ | 7 | 13 | 16 | 25 | 29 | 31 | 33 |
| $33 /$ | 8 | 14 | 17 | 21 | 30 | 32 | 34 |
| $34 /$ | 9 | 15 | 18 | 22 | 26 | 33 | 35 |
| $35 /$ | 10 | 11 | 19 | 23 | 27 | 31 | 34 |
| $36 /$ | 10 | 13 | 17 | 24 | 26 | 37 | 40 |
| $37 /$ | 6 | 14 | 18 | 25 | 27 | 36 | 38 |
| $38 /$ | 7 | 15 | 19 | 21 | 28 | 37 | 39 |
| $39 /$ | 8 | 11 | 20 | 22 | 29 | 38 | 40 |
| $40 /$ | 9 | 12 | 16 | 23 | 30 | 36 | 39 |
| $41 /$ | 9 | 13 | 20 | 21 | 27 | 42 | 45 |
| $42 /$ | 10 | 14 | 16 | 22 | 28 | 41 | 43 |
| $43 /$ | 6 | 17 | 23 | 29 | 15 | 42 | 44 |
| $44 /$ | 7 | 11 | 18 | 24 | 30 | 43 | 45 |
| $45 /$ | 8 | 12 | 19 | 25 | 26 | 41 | 44 |
| $46 /$ | 9 | 11 | 17 | 25 | 28 | 47 | 50 |
| $47 /$ | 10 | 12 | 18 | 21 | 29 | 46 | 48 |
| $48 /$ | 6 | 13 | 19 | 30 | 47 | 49 | 22 |
| $49 /$ | 7 | 14 | 20 | 23 | 26 | 48 | 50 |
| $50 /$ | 8 | 15 | 16 | 24 | 27 | 46 | 49 |
| 34 |  |  |  |  |  |  |  |


| $\Lambda_{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 7 | 8 | 13 | 14 | 19 | 20 | 24 | 25 | 27 | 28 | 34 | 40 | 43 | 47 |
| 2 | 2 | 8 | 9 | 14 | 15 | 20 | 16 | 25 | 21 | 28 | 29 | 35 | 36 | 44 | 48 |
| 3 | 3 | 9 | 10 | 15 | 11 | 16 | 17 | 21 | 22 | 29 | 30 | 31 | 37 | 45 | 49 |
| 4 | 4 | 10 | 6 | 11 | 12 | 17 | 18 | 22 | 23 | 30 | 26 | 32 | 38 | 41 | 50 |
| 5 | 5 | 6 | 7 | 12 | 13 | 18 | 19 | 23 | 24 | 26 | 27 | 33 | 39 | 42 | 46 |
| 6 | 11 | 20 | 4 | 43 | 45 | 28 | 21 | 34 | 2 | 40 | 32 | 48 | 50 | 37 | 10 |
| 7 | 6 | 28 | 29 | 25 | 18 | 40 | 2 | 19 | 11 | 24 | 33 | 10 | 41 | 15 | 49 |
| 8 | 5 | 40 | 32 | 34 | 38 | 24 | 11 | 47 | 6 | 27 | 17 | 49 | 3 | 45 | 42 |
| 9 | 16 | 27 | 17 | 47 | 44 | 13 | 5 | 14 | 26 | 8 | 9 | 23 | 31 | 38 | 22 |
| 10 | 21 | 13 | 46 | 7 | 37 | 8 | 26 | 43 | 16 | 20 | 4 | 22 | 30 | 12 | 35 |
| 11 | 39 | 4 | 49 | 45 | 6 | 21 | 46 | 2 | 35 | 32 | 36 | 30 | 15 | 18 | 42 |
| 12 | 31 | 29 | 42 | 18 | 5 | 2 | 9 | 11 | 48 | 33 | 50 | 36 | 45 | 38 | 23 |
| 13 | 36 | 33 | 22 | 12 | 16 | 6 | 29 | 5 | 49 | 46 | 3 | 41 | 38 | 44 | 35 |
| 14 | 50 | 17 | 35 | 44 | 21 | 5 | 32 | 26 | 42 | 9 | 39 | 3 | 12 | 37 | 48 |
| 15 | 41 | 46 | 48 | 37 | 2 | 26 | 33 | 16 | 23 | 4 | 31 | 39 | 44 | 15 | 10 |
| 16 | 17 | 22 | 21 | 16 | 45 | 29 | 37 | 49 | 10 | 3 | 11 | 9 | 15 | 30 | 31 |
| 17 | 46 | 35 | 2 | 21 | 18 | 32 | 15 | 42 | 49 | 39 | 6 | 4 | 45 | 36 | 30 |
| 18 | 13 | 17 | 1 | 45 | 42 | 30 | 23 | 31 | 4 | 37 | 34 | 50 | 47 | 39 | 7 |
| 19 | 14 | 18 | 2 | 41 | 43 | 26 | 24 | 32 | 5 | 38 | 35 | 46 | 48 | 40 | 8 |
| 20 | 15 | 19 | 3 | 42 | 44 | 27 | 25 | 33 | 1 | 39 | 31 | 47 | 49 | 36 | 9 |
| 21 | 7 | 29 | 30 | 21 | 19 | 36 | 3 | 20 | 12 | 25 | 34 | 6 | 42 | 11 | 50 |
| 22 | 10 | 27 | 28 | 24 | 17 | 39 | 1 | 18 | 15 | 23 | 32 | 9 | 45 | 14 | 48 |
| 23 | 1 | 36 | 33 | 35 | 39 | 25 | 12 | 48 | 7 | 28 | 18 | 50 | 4 | 41 | 43 |
| 24 | 2 | 37 | 34 | 31 | 40 | 21 | 13 | 49 | 8 | 29 | 19 | 46 | 5 | 42 | 44 |
| 25 | 3 | 38 | 35 | 32 | 36 | 22 | 14 | 50 | 9 | 30 | 20 | 47 | 1 | 43 | 45 |
| 26 | 7 | 33 | 29 | 19 | 36 | 12 | 22 | 18 | 6 | 41 | 28 | 23 | 16 | 50 | 5 |
| 27 | 8 | 34 | 30 | 20 | 37 | 13 | 23 | 19 | 7 | 42 | 29 | 24 | 17 | 46 | 1 |
| 28 | 9 | 35 | 26 | 16 | 38 | 14 | 24 | 20 | 8 | 43 | 30 | 25 | 18 | 47 | 2 |
| 29 | 10 | 31 | 27 | 17 | 39 | 15 | 25 | 16 | 9 | 44 | 26 | 21 | 19 | 48 | 3 |
| 30 | 27 | 18 | 25 | 13 | 28 | 1 | 12 | 10 | 43 | 39 | 9 | 49 | 19 | 48 | 3 |
| 31 | 28 | 19 | 21 | 14 | 29 | 2 | 13 | 6 | 44 | 40 | 10 | 50 | 20 | 25 | 34 |
| 32 | 29 | 20 | 22 | 15 | 30 | 3 | 14 | 7 | 45 | 36 | 6 | 46 | 16 | 21 | 35 |
| 33 | 30 | 16 | 23 | 11 | 26 | 4 | 15 | 8 | 41 | 37 | 7 | 47 | 17 | 22 | 31 |
| 34 | 17 | 47 | 28 | 45 | 14 | 27 | 7 | 5 | 24 | 13 | 16 | 6 | 39 | 23 | 34 |
| 35 | 18 | 48 | 29 | 41 | 15 | 28 | 8 | 1 | 25 | 14 | 17 | 7 | 40 | 20 | 35 |
| 36 | 19 | 49 | 30 | 42 | 11 | 29 | 9 | 2 | 21 | 15 | 18 | 8 | 36 | 25 | 31 |
| 37 | 24 | 7 | 11 | 40 | 6 | 19 | 3 | 27 | 25 | 42 | 26 | 47 | 15 | 33 | 20 |
| 38 | 25 | 8 | 12 | 36 | 7 | 20 | 4 | 28 | 21 | 43 | 27 | 48 | 11 | 34 | 16 |
| 39 | 33 | 18 | 26 | 2 | 4 | 50 | 10 | 48 | 38 | 41 | 43 | 31 | 40 | 25 | 11 |
| 40 | 34 | 19 | 27 | 3 | 5 | 46 | 6 | 49 | 39 | 42 | 44 | 32 | 36 | 21 | 12 |
| 41 | 35 | 20 | 28 | 4 | 1 | 47 | 7 | 50 | 40 | 43 | 45 | 33 | 37 | 22 | 13 |
| 42 | 39 | 5 | 31 | 19 | 9 | 47 | 26 | 2 | 44 | 13 | 37 | 50 | 42 | 33 | 23 |
| 43 | 40 | 1 | 32 | 20 | 10 | 48 | 27 | 3 | 45 | 14 | 38 | 46 | 43 | 34 | 24 |
| 44 | 30 | 2 | 50 | 45 | 47 | 23 | 36 | 20 | 34 | 32 | 11 | 38 | 4 | 42 | 6 |
| 45 | 26 | 3 | 46 | 41 | 48 | 24 | 37 | 16 | 35 | 33 | 12 | 39 | 5 | 43 | 7 |
| 46 | 27 | 4 | 47 | 42 | 49 | 25 | 38 | 17 | 31 | 34 | 13 | 40 | 1 | 44 | 8 |
| 47 | 28 | 5 | 48 | 43 | 50 | 21 | 39 | 18 | 32 | 35 | 14 | 36 | 2 | 45 | 9 |
| 48 | 34 | 2 | 24 | 11 | 5 | 49 | 28 | 8 | 47 | 37 | 19 | 41 | 32 | 40 | 43 |
| 49 | 31 | 4 | 21 | 13 | 2 | 46 | 30 | 10 | 49 | 39 | 16 | 43 | 34 | 37 | 45 |
| 50 | 32 | 5 | 22 | 14 | 3 | 47 | 26 | 6 | 50 | 40 | 17 | 44 | 35 | 38 | 41 |


| $\Lambda_{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 3 | 7 | 14 | 19 | 25 | 30 | 31 | 34 | 36 | 39 | 41 | 43 | 47 | 50 |
| 2 | 2 | 4 | 8 | 15 | 20 | 21 | 26 | 32 | 35 | 37 | 40 | 42 | 44 | 48 | 46 |
| 3 | 3 | 5 | 9 | 11 | 16 | 22 | 27 | 33 | 31 | 38 | 36 | 43 | 45 | 49 | 47 |
| 4 | 4 | 1 | 10 | 12 | 17 | 23 | 28 | 34 | 32 | 39 | 37 | 44 | 41 | 50 | 48 |
| 5 | 5 | 2 | 6 | 13 | 18 | 24 | 29 | 35 | 33 | 40 | 38 | 45 | 42 | 46 | 49 |
| 6 | 11 | 29 | 20 | 45 | 28 | 2 | 16 | 33 | 48 | 15 | 24 | 23 | 37 | 10 | 9 |
| 7 | 6 | 32 | 28 | 18 | 40 | 11 | 21 | 17 | 10 | 45 | 27 | 22 | 15 | 49 | 4 |
| 8 | 26 | 17 | 24 | 12 | 27 | 5 | 11 | 9 | 42 | 38 | 8 | 48 | 18 | 23 | 32 |
| 9 | 16 | 46 | 27 | 44 | 13 | 26 | 6 | 4 | 23 | 12 | 20 | 10 | 38 | 22 | 33 |
| 10 | 21 | 9 | 13 | 37 | 8 | 16 | 5 | 29 | 22 | 44 | 28 | 49 | 12 | 35 | 17 |
| 11 | 39 | 26 | 4 | 6 | 21 | 35 | 13 | 17 | 30 | 12 | 50 | 25 | 18 | 42 | 7 |
| 12 | 31 | 16 | 29 | 5 | 2 | 48 | 8 | 46 | 36 | 44 | 41 | 34 | 38 | 23 | 14 |
| 13 | 30 | 21 | 32 | 26 | 11 | 10 | 20 | 9 | 50 | 37 | 3 | 19 | 12 | 22 | 43 |
| 14 | 36 | 2 | 33 | 16 | 6 | 49 | 28 | 4 | 41 | 15 | 39 | 47 | 44 | 35 | 25 |
| 15 | 50 | 11 | 17 | 21 | 5 | 42 | 40 | 29 | 3 | 45 | 31 | 7 | 37 | 48 | 34 |
| 16 | 41 | 6 | 46 | 2 | 26 | 23 | 24 | 32 | 39 | 18 | 30 | 14 | 15 | 10 | 19 |
| 17 | 29 | 1 | 49 | 44 | 46 | 22 | 40 | 19 | 33 | 31 | 15 | 37 | 3 | 41 | 10 |
| 18 | 32 | 1 | 42 | 37 | 9 | 35 | 24 | 47 | 17 | 30 | 45 | 15 | 39 | 3 | 49 |
| 19 | 33 | 1 | 23 | 15 | 4 | 48 | 27 | 7 | 46 | 36 | 18 | 45 | 31 | 39 | 42 |
| 20 | 17 | 1 | 22 | 45 | 29 | 10 | 13 | 14 | 9 | 50 | 38 | 18 | 30 | 31 | 23 |
| 21 | 46 | 1 | 35 | 18 | 32 | 49 | 8 | 43 | 4 | 41 | 12 | 38 | 36 | 30 | 22 |
| 22 | 9 | 1 | 48 | 38 | 33 | 42 | 20 | 25 | 29 | 3 | 44 | 12 | 50 | 36 | 35 |
| 23 | 12 | 30 | 16 | 41 | 29 | 3 | 17 | 34 | 49 | 11 | 25 | 24 | 38 | 6 | 10 |
| 24 | 14 | 27 | 18 | 43 | 26 | 5 | 19 | 31 | 46 | 13 | 22 | 21 | 40 | 8 | 7 |
| 25 | 15 | 28 | 19 | 44 | 27 | 1 | 20 | 32 | 47 | 14 | 23 | 22 | 36 | 9 | 8 |
| 26 | 40 | 5 | 50 | 41 | 7 | 22 | 47 | 3 | 31 | 33 | 37 | 26 | 11 | 19 | 43 |
| 27 | 36 | 1 | 46 | 42 | 8 | 23 | 48 | 4 | 32 | 34 | 38 | 27 | 12 | 20 | 44 |
| 28 | 37 | 2 | 47 | 43 | 9 | 24 | 49 | 5 | 33 | 35 | 39 | 28 | 13 | 16 | 45 |
| 29 | 38 | 3 | 48 | 44 | 10 | 25 | 50 | 1 | 34 | 31 | 40 | 29 | 14 | 17 | 41 |
| 30 | 32 | 30 | 43 | 19 | 1 | 3 | 10 | 12 | 49 | 34 | 46 | 37 | 41 | 39 | 24 |
| 31 | 33 | 26 | 44 | 20 | 2 | 4 | 6 | 13 | 50 | 35 | 47 | 38 | 42 | 40 | 25 |
| 32 | 34 | 27 | 45 | 16 | 3 | 5 | 7 | 14 | 46 | 31 | 48 | 39 | 43 | 36 | 21 |
| 33 | 35 | 28 | 41 | 17 | 4 | 1 | 8 | 15 | 47 | 32 | 49 | 40 | 44 | 37 | 22 |
| 34 | 40 | 32 | 21 | 11 | 20 | 10 | 28 | 4 | 48 | 50 | 2 | 45 | 37 | 43 | 34 |
| 35 | 46 | 18 | 31 | 45 | 22 | 1 | 33 | 27 | 43 | 10 | 40 | 4 | 13 | 38 | 49 |
| 36 | 47 | 19 | 32 | 41 | 23 | 2 | 34 | 28 | 44 | 6 | 36 | 5 | 14 | 39 | 50 |
| 37 | 48 | 20 | 33 | 42 | 24 | 3 | 35 | 29 | 45 | 7 | 37 | 1 | 15 | 40 | 46 |
| 38 | 49 | 16 | 34 | 43 | 25 | 4 | 31 | 30 | 41 | 8 | 38 | 2 | 11 | 36 | 47 |
| 39 | 8 | 46 | 1 | 18 | 23 | 36 | 22 | 30 | 29 | 15 | 19 | 41 | 7 | 31 | 14 |
| 40 | 43 | 38 | 11 | 3 | 25 | 16 | 27 | 33 | 26 | 12 | 48 | 9 | 10 | 24 | 20 |
| 41 | 25 | 12 | 6 | 39 | 34 | 21 | 13 | 17 | 16 | 44 | 10 | 4 | 49 | 27 | 28 |
| 42 | 19 | 37 | 26 | 30 | 47 | 11 | 20 | 9 | 2 | 15 | 42 | 32 | 23 | 8 | 24 |
| 43 | 47 | 15 | 16 | 36 | 7 | 6 | 28 | 4 | 11 | 45 | 23 | 33 | 22 | 20 | 27 |
| 44 | 7 | 45 | 21 | 50 | 14 | 5 | 40 | 29 | 6 | 18 | 22 | 17 | 35 | 28 | 13 |
| 45 | 43 | 33 | 50 | 11 | 7 | 41 | 31 | 40 | 37 | 19 | 47 | 26 | 22 | 5 | 3 |
| 46 | 25 | 17 | 41 | 6 | 14 | 3 | 30 | 24 | 15 | 47 | 7 | 16 | 35 | 26 | 39 |
| 47 | 19 | 9 | 39 | 26 | 25 | 31 | 50 | 13 | 18 | 14 | 43 | 2 | 10 | 21 | 30 |
| 48 | 42 | 8 | 24 | 13 | 9 | 30 | 1 | 12 | 18 | 35 | 17 | 29 | 38 | 25 | 49 |
| 49 | 22 | 28 | 13 | 20 | 29 | 50 | 1 | 37 | 12 | 10 | 9 | 33 | 44 | 19 | 23 |
| 50 | 1 | 50 | 17 | 48 | 31 | 34 | 44 | 10 | 14 | 40 | 38 | 41 | 29 | 3 | 25 |

## Acknowledgement

The second author wishes to express his thanks to the Institute for Experimental Mathematics, University of Essen, Germany, and to the Centre for Applied Cryptographic Research, University of Waterloo, Canada, whose hospitality he enjoyed while carrying out parts of this work. Thanks also to L. Babai and E. Luks for many helpful comments.
Research supported in part by National Science Foundation grant CCR- 9610138.

## REFERENCES

[1] A. A. Albert - J. Thompson: Two-element generation of the projective unimodular group, Illinois J. Math., 3 (1959) pp. 421-439.
[2] E. Bannai - T. Ito: Algebraic Combinatorics I-Association schemes, Benjamin/Cummings Publishing Co., London, 1984.
[3] N. Biggs: Algebraic graph theory, Cambridge University Press, Cambridge, 1974.
[4] A. E. Brower - J. H. van Lint: Strongly regular graphs and partial geometries, in: Enumeration and Design, Proc. Silver Jubilee Conf. on Combinatorics, Waterloo, 1982, D.M. Jackson \& S.A. Vanstone (eds.) Academic Press, Toronto (1984) pp. 85-122.
[5] C. J. Colbourn - J. H. Dinitz: Handbook of Combinatorial Designs, Chapman \& Hall/CRC, Boca Raton, 2007.
[6] C. W. Curtis - I. Reiner: Methods of Representation Theory with Applications to Finite Groups and Orders, John Wiley \& Sons, New York, 1981.
[7] W. Feit: Characters of Finite groups, W. A. Benjamin, Inc., New York, 1967.
[8] D. Gorenstein: Finite groups, Harper \& Row, New York, 1968.
[9] M. D. Hestenes - D. G. Higman: Rank 3 Groups and Strongly Regular Graphs, Computers in Algebra and Number Theory, SIAM-AMS Proceeding, 4 (1971) pp. 141-159.
[10] D. G. Higman: Intersection Matrices for Finite Permutation Groups, J. Algebra, 6 (1967) pp. 22-42.
[11] D. G. Higman: Coherent Configurations, Oxford University Lecture Notes, 4 (1971) pp. 141-159.
[12] B. Huppert: Endliche Gruppen, Springer, 1967.
[13] I. M. Isaacs: Character Theory of Finite Groups, Academic Press, 1976.
[14] E. S. Kramer - D. M. Mesner: t-designs on hypergraphs, Discrete Math., 15 (1976) pp. 263-296.
[15] E. S. Kramer - S. S. Magliveras - D. M. Mesner: $t$-designs from the large Mathieu groups, Discrete Math., 36 (1981) pp. 171-189.
[16] D. E. Littlewood: The Theory of group characters, 2nd edition, Clarendon Press, Oxford, 1958.
[17] S. S. Magliveras: The Subgroup Structure of the Higman-Sims Simple Group, Ph.D. Dissertation, University of Birmingahm, England (1970), pp. 1-141.
[18] S. S. Magliveras: The Subgroup Structure of the Higman-Sims Simple Group, Bulletin of the AMS 77, 4 (1971) pp. 535-539.
[19] M. Hall Jr.: The theory of groups, Macmillan, New York, 1959.
[20] D. S. Passman: Permutation Groups, W.A. Benjamin, Inc., New York, 1968.
[21] C. C. Sims: Graphs and Finite Permutation Groups, Math. Z., 95 (1967) pp. 76-86.
[22] H. Wielandt: Finite Permutation Groups, Academic Press, 1964.
Lavoro pervenuto alla redazione il 10 marzo 2010 ed accettato per la pubblicazione il 15 marzo 2010. Bozze licenziate il 20 aprile 2010


[^0]:    Key Words and Phrases: Finite groups - Subgroup structure - Combinatorial methods
    A.M.S. Classification: 20E32, 20E28, 05E30.

