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Combinatorial methods for

determining subgroup structures of finite groups

CAFER CALISKAN – S. S. MAGLIVERAS –L. C. YU

Dedicated to Prof. Marialuisa J. de Resmini

Abstract: In this paper we discuss methods that might be employed in deter-
mining the subgroup structure of a finite group G. These methods have a particularly
combinatorial flavor connected with graphs, designs and the combinatorial nature of pre-
sentations of groups. In particular, the methods are illustrated for the case of the simple
group U3(5) = PSU3(5

2) whose maximal subgroups are determined up to conjugacy.

1 – Introduction

This paper is devoted to a discussion of some methods that might be em-
ployed in determining the subgroup structure of a finite group G. The methods
have a strong combinatorial flavor and are illustrated here for the case of the
simple group U3(5) = PSU3(5

2) whose maximal subgroups are determined up to
conjugacy. This example possesses a measure of difficulty suitable for exempli-
fying these methods. The reader is assumed to be acquainted with the elements
of the theory of finite groups, including finite permutation groups as for example
discussed in [8], [12], [19], [20], [22]. He is also assumed to have knowledge of the
rudiments of the theory of strongly regular graphs and association schemes as
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discussed in [2], [3], [9], [10], [11]. Finally, the reader should have some knowledge
of the beautiful Frobenius theory of ordinary characters [6], [7], [13], [16].

2 – The controlling viewpoint

The question of whether a list of subgroups is complete for a given group
G can most effectively be dealt with if anticipated. Since the minimal normal
subgroups of a group are characteristically simple, every subgroup M of a finite
group G normalizes some subgroup of the form Ar = A×A×· · ·×A with A simple.
This suggests that a systematic approach to determining the subgroups structure
of G could consist of determining, up to conjugacy, all characteristically simple
subgroups of G and subsequently determining their normalizers. The above
observation allows us to “control” the process of determining the subgroups of
G, and affords a way of verifying completeness.

We usually advance with the above procedure in two stages: First, we obtain
the class Λ of local subgroups of G, i.e. the normalizers of the elementary abelian
subgroups of G. Subsequently, we determine the class Ξ of normalizers of the
non-soluble characteristically simple groups in G. The maximal subgroups of G
must clearly occur in Ξ ∪ Λ. Of course, we often have that Ξ ∩ Λ �= ∅.

3 – Matrices belonging to subgroups

Let G be a finite group acting transitively on a set Ω, and let Γ be the
graph induced on Ω by a non-trivial, self-paired orbital of G on Ω × Ω [9], [21],
[22]. Since the orbital is self-paired and non-trivial the graph is undirected and
irreflexive. If x ∈ Ω and r is a non-negative integer, the circle of radius r about
x is defined to be the set

Sr(x) = {y ∈ Ω : d(x, y) = r}
where d is the usual distance function in the graph Γ.

If {Δ1, . . . ,Δ�} is a partition of Ω we denote by [Δ1,Δ2, . . . ,Δ�] the collec-
tion of all subgroups of G fixing each of the Δi setwise. Furthermore, if k1, . . . , k�

are positive integers such that

�∑

i=1

ki = |Ω|,

we denote by [k1, k2, . . . , k�] the collection of all subgroups of G which have
orbits of lengths k1, k2, . . . , k�.

If H ≤ G, and H has orbits Δ1, . . . ,Δ� on Ω, for x ∈ Δi we put aH(i, j) =
|S1(x) ∩ Δj |. We call the matrix AH = (aH(i, j)) the matrix belonging to the
subgroup H.
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Let M = (mi,j) be an n × n matrix with non-negative integral entries and
constant row sums. The domain of M , D(M) is defined to be the collection of
all partitions P = {Δi}k

i=1 of Ω = {1, 2, . . . , n} for which x, y ∈ Δi implies that

∑

q∈Δj

mx,q =
∑

q∈Δj

my,q = mi,j

for each pair of indices i, j, 1 ≤ i, j ≤ k. We set M(P ) = (mi,j).
If N = M(P ) for some P ∈ D(M) we say that N covers M and write

M ≤ N . We note that if M ≤ N then N is a k × k matrix with non-negative
entries, constant row sums, and k ≤ n. We write

∫
M for the collection of all

covers of M and call
∫

M the cover of M . We omit the proof of the following
easy consequence:

Proposition 3.1. If H, K are subgroups of G and H ≤ K, then AH ≤
AK .

Thus, the mapping H → AH is an isotone function from the lattice of subgroups
of G to the partially ordered set of all covers of the adjacency matrix of Γ.

The connection of the above concept with the concepts developed by D.G.
Higman [10], [11], and also by Kramer and Mesner [14], [15], is apparent. The
authors wish to emphasize the utility of the concept in investigations involving
the determination of subgroup structures. We give below a hint of the way in
which the matrices AH are used and use the method more extensively in the
U3(5) example.

When the adjacency matrix A of the graph Γ is given, one can calculate∫
A. If H is any subgroup of G which is intransitive on Ω, then it corresponds

to a cover of A. In particular, the covers determine which partitions of Ω are
stabilized by intransitive subgroups of G. To obtain a focusing effect, and ignore
duplication due to conjugacy, we may select a certain cyclic subgroup H of G,
determine its matrix AH and calculate

∫
AH . This process is especially useful

when we are seeking the non-soluble simple subgroups of G which contain H or
a partial normalizer of H. Usually, only very few such covers exist, and these
point to partitions whose stabilizers are the desired simple subgroups. If one
knows the number of orbits of a sought subgroup, or even better, the vector of
orbit lengths, the number of partitions of the given type corresponding to covers
of AH is even smaller. Sometimes, other small subgroups can be used in place
of cyclic groups. For example, minimal simple groups which are known to be
contained in G and whose orbit structure on Ω as well as corresponding matrices
are easy to obtain.

The method can be used to determine whether some intransitive subgroup
H of known matrix AH is contained in any intransitive subgroup K, thus con-
tributing to questions of maximality of a given subgroup.
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The method is, of course, useful for the study of intransitive subgroups of G,
however, its effectiveness is limited to relatively small |Ω|. Transitive subgroups
can be handled if one considers simultaneously several transitive permutation
representations of G.

4 – Two-generator subgroups

Interest in two-generator subgroups becomes justified in view of the fact
that there is evidence to support a conjecture that every finite non-abelian simple
group is a 2-generator group. Even if the conjecture is false, all known simple
groups except possibly for a few sporadic ones, are known to be 2-generator
groups. For example, all PSL2(q) can be generated by two elements, one of which
is an involution [1]. If q �= 9, furthermore, PSL2(q) can be generated by two
elements, one of order 2 and one of order 3. It is convenient to use the following
notation: the conjugacy classes of G are denoted by K1 = {1}, K2, . . . , Kc.

If x is an element of G then C(x) = CG(x) denotes the centralizer of x in
G. Furthermore σx denotes the order of C(x). If G|Ω is a group action, the
meta-rank, ρ(G|Ω), is defined to be the number of G-orbits on Ω. We write:

(4.1) [Ki × Kj → Kk] = {(a, b) ∈ Ki × Kj | ab ∈ Kk}, i, j, k ∈ {1, . . . , c}

We denote | [Ki × Kj → Kk] | by |Ki × Kj → Kk|.

(4.2) 〈Ki × Kj → Kk〉 = {〈a, b〉 | (a, b) ∈ [Ki × Kj → Kk] }

Here, 〈a, b〉 denotes the subgroup of G generated by a and b.

(4.3) σi = |CG(x)|, x ∈ Ki ;

For x1, x2, . . . , x� ∈ G,

(4.4) σx1,... ,x�
= |

�⋂

i=1

CG(xi)| = |CG〈x1, . . . , x�〉|

The structure constants of the center of the group algebra are denoted by ai,j,k;
thus,

(4.5) KiKj =

c∑

k=1

ai,j,kKk i, j ∈ {1, . . . , c} ; also,

(4.6) ai,j,k =
|G|
σiσj

c∑

t=1

χt(i)χt(j)χt(k)

χt(1)
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where χt(i) is the value of the irreducible ordinary character χt of G on the
elements of the class Ki.

We also introduce the symmetric rational constants:

(4.7) βi,j,k =
ai,j,k

σk
, i, j, k ∈ {1, . . . , c}.

Consider the action of G on Ki × Kj by conjugation and define the mapping

φ : Ki × Kj →G

φ : (x, y) �→xy ,

then, (x′, y′) ∈ (x, y)G implies that φ(x′, y′) is conjugate to φ(x, y) in G. Further-
more, if z is G-conjugate to xy ∈ Ki × Kj , then there exists (x′, y′) ∈ (x, y)G

such that φ(x′, y′) = z. Hence, φ is a surjection onto a union of classes of G and
[Ki × Kj → Kk] is a union of G-orbits of Ki × Kj . We have that:

|(x, y)G| = [G : C(x) ∩ C(y)] =
|G|
σx,y

,

furthermore,

(4.8) |(x, y)G ∩ φ−1(xy)| = [C(xy) : C(x) ∩ C(y)] =
σxy

σx,y
,

an invariant of the orbit (x, y)G. Given a fixed element z ∈ Kk, ai,j,k = |φ−1(z)|.
If the G-orbits Ω1,Ω2, . . . ,Ωm of Ki × Kj and no others are carried by φ into
Kk, choose (xi, yi) ∈ Ωi such that φ(xi, yi) = xiyi = z, we get:

ai,j,k =

m∑

i=1

|Ωi ∩ φ−1(z)| =

m∑

i=1

σz/σxi,yi

hence,

(4.9) βi,j,k =

m∑

i=1

1

σxi,yi

.

Since σxi,yi = σxi,yi,xiyi , we obtain:

(4.10) σxi,yi
|gcd(σi, σj , σxiyi

)

If the induced characters θi = 1C(x) ↑G, θj = 1C(y) ↑G, (x, y) ∈ Ki × Kj are
known, then

(4.11) ρ(G|Ki × Kj ) = (θi, θj),
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and conditions (4.9), (4.10) and (4.11) are usually sufficient to determine the
number of orbits of G on [Ki × Kj → Kk] for each k ∈ {1, . . . , c}.

Now, if (x′, y′) = (x, y)g, then 〈x′, y′〉 = 〈x, y〉g. Hence, if we are interested
in {〈x, y〉 | (x, y) ∈ Ki × Kj } up to conjugacy, it suffices to consider one pair
from each G-orbit of Ki × Kj . We must, however, observe that it is possible
for (x, y), (x′, y′) to belong to different G-orbits yet 〈x, y〉 to be G-conjugate to
〈x′, y′〉. Thus,

(4.12) ρ(G| 〈Ki × Kj → Kk〉 ) ≤ ρ(G| [Ki × Kj → Kk] ) .

To determine what orbit fusion is induced when we pass from the group ac-
tion G| [Ki × Kj → Kk] to the group action G| 〈Ki × Kj → Kk〉 , in addition
to standard group action conditions we use a certain combinatorial technique
which roughly speaking, involves counting the number of ways in which a fixed
two-generator subgroup is generated by pairs of elements of Ki × Kj . More
specifically, we introduce mappings of the sort

f : [Ki × Kj → Kk] → 〈Ki × Kj → Kk〉
f : (x, y) → 〈x, y〉

and determine the uniform sizes of preimages f−1(〈x, y〉). The U3(5) example
involves several applications of the above ideas.

5 – Compound Characters

Let G be a finite group whose irreducible ordinary characters are 1G, χ2, χ3,
. . . , χc. If x ∈ G, H ≤ G, then we write gx = |[x]|, and hx = |[x] ∩ H|, where
[x] = xG is the G-conjugacy class containing x.

If θ and ψ are two ordinary characters of G, we denote by (θ, ψ) their inner
product in the algebra of class functions of G. If φ is an ordinary character of G,
then φ =

∑c
i=1 aiχi, with ai ∈ Z+ = {0, 1, 2, . . . }. Since the collection {χi}c

i=1

forms an orthonormal basis for the algebra of class functions of G, we have that
ai = (φ, χi).

If H ≤ G, then the character θ of the transitive permutation representation

π : G → Sm m = [G : H]

g → π(g) =

(
Hx

Hxg

)

is the induced character 1H ↑G of the principle character of H to G [7], [16].
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It is immediate that the following necessary conditions are satisfied by θ :

(i) (θ, 1G) = 1

(ii) θ(x) ∈ Z+, for each x ∈ G

(iii) (θ, χi) ≤ χi(1) = ni

(iv) θ(xk) ≥ θ(x), for x ∈ G, k ∈ Z+

(v) θ(1) = [G : H], hence θ(1) divides |G|

(vi) θ(x) = θ(1) · (hx/gx) and therefore θ(1) divides θ(x) · gx.

(vii) (θ, χi) = (θ, χi), where χi is the complex conjugate character of χi.

By a compound character of G we mean here any character of G satisfying condi-
tions (i) to (vii). Thus, the character of every transitive permutation represen-
tation of G is a compound character but there may exist compound characters
which are not the characters of any transitive permutation representation of G
and therefore which correspond to no subgroup H of G.

In investigating the subgroup structure of a group G whose character table
is known the following question arises: “Are there any subgroups of G of index δ?
” More generally, if it is known that G possesses a subgroup H with associated
compound character θ, what are the compound characters φ corresponding to
subgroups K of G subject to H ≤ K ≤ G ? If such an intermediate subgroup
exists, then

θ = 1H ↑G= 1H ↑K↑G, and (1H ↑K , 1K) = 1

imply that:

(viii) (θ, χi) ≥ (φ, χi), i ∈ {1, . . . , c}.

i.e. the multiplicities of the irreducible characters of G in θ are greater than or
equal to those in φ. Thus, there is an order inverting homomorphism from the
lattice of subgroups of G into the cone (Z+)c, each subgroup mapping onto a
vector of multiplicities a = (a1, . . . , ac) of the associated compound character.
The authors, and undoubtedly others, have algorithms which answer the above
question by investigating all partitions of δ :

δ = 1 +
∑

aiχi(1) for each δ | |H|, |H| | δ,
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and testing that the corresponding character

θ = [1] +
∑

aiχi

satisfies (i) to (viii). Such programs can be made quite efficient if the algorithms
incorporate knowledge of special numerical conditions in the given character
table.

6 – The Maximal Subgroups of U3(5)

In this section we illustrate the methods discussed on the simple group
U3(5). We obtain the following result :

Theorem 6.1. There are eight conjugacy classes of maximal subgroups
of U3(5) as follows : a) Local: CG(z) ∼= 〈z〉 \ S5, z is an involution in G; for
Q ∈ Syl5(G), NG(Q) = NG〈51〉 ∼= Q\Z8. b) Non-local : Three conjugacy classes
of self normalizing A7’s ; Three conjugacy classes of M10’s each normalizing a
subgroup of G isomorphic to A6. The classes of A7’s and the classes of M10’s
are distinguished by the G-class of elements of order five they contain.

LOCAL ANALYSIS

6.1 – Local 2-Subgroups

There is one conjugacy class of involutions in G, and the Sylow-2 subgroup
of G is quasidihedral. Thus, the only possible elementary abelian 2-groups of
order greater than 2 that can occur in G are Klein four groups V4

∼= C2 × C2.

Lemma 6.1. There is exactly one conjugacy class of V4’s in G.

Proof. a2,2,2 �= 0 implies that there exist V4’s in G. |CG(z)| = 240, [G :
CG(z)] = 525, and from the fusion map CG(z) → G we compute the character
of the action G|K2 as

θ525 = 1C(z) ↑G= [1] + [28]1 + [28]2 + [28]3 + [84] + [105] + [125] + [126].

Hence, ρ(G|K2 × K2) = (θ525, θ525) = 8. Computation of the a2,2,k (See Table
1) shows that the 8 orbits of G|K2 × K2 are already differentiated by the class
in which k lies. i.e. There are precisely 8 a2,2,k �= 0 for k lying in 8 distinct
conjugacy classes, and consequently the orbits are [K2 × K2 → Kj ] for those j
for which a2,2,j �= 0. Thus [K2 × K2 → K2] is a G-orbit, and there exists one
conjugacy class of V4’s.
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Table 1

k : 1 2 4 81 82 3 6 51 52 53 54 10 7+ 7−

a2,2,k : 525 20 4 0 0 18 6 0 5 5 5 0 0 0

〈2, 2, k〉 : 〈z〉 V4 D4 - - S3 D6 - D52 D53 D54 - - -

|〈2, 2, k〉| : 2 4 8 - - 6 12 - 10 10 10 - - -

Let z be an involution of G. It is easy to verify that CG(z) acts primitively on
fix(z) with kernel 〈z〉. Thus CG(z) ∼= 〈z〉 \ S5.

Proposition 6.1. CG(z), |z| = 2, is maximal in G.

Proof. From the proof of Lemma 6.1

θ525 = 1C(z) ↑G= [1] + [28]1 + [28]2 + [28]3 + [84] + [105] + [125] + [126].

Suppose C(z) is not maximal, then there exists H ≤ G such that C(z) � H � G
and [G : H] | 3 ·52 ·7. By considering compound characters of degrees δ | 3 ·52 ·7,
we rule out all but one case, namely the case [G : H] = 175. In this case H
would be a group of order 720 = 24 · 32 · 5, [G : H] = 175, and θ175 = 1H ↑G=
[1] + [125] + [21] + [28]i for i ∈ {1, 2, 3}. We note that character [21] does not
appear in 1C(z) ↑G, a contradiction to 5.(viii). Hence C(z) is maximal.

6.1.1 – CG(V4), NG(V4)

a2,2,2 = 20 implies that β2,2,2 = 20/240 = 1/12; but the number of orbits
of G on [K2 × K2 → K2] is 1. Therefore β2,2,2 = 1

|C(V4)| ⇒ |C(V4)| = 12.

N(V4)/C(V4)
∼
≤ AutV4

∼= GL2(2) ∼= S3 ⇒ |N(V4)| divides 6 · 12 = 72. Consider
an A7 inside G, and represent A7 in its canonical representation. Let V4 =
[1, (12)(34), (13)(24), (14)(23)] ≤ A7, then CA7

(V4) = V4 × 〈σ〉 where σ = (567).
Therefore CG(V4) = CA7

(V4) ∼= V4 × Z3. The elements ρ = (23)(56), z = (234)
normalize V4 in A7; thus 〈V4, σ, ρ, z〉 ⊆ NA7

(V4) ⊆ NG(V4). But |〈V4, σ, ρ, z〉| =
72 implies that |NG(V4)| = 72 and NG(V4) = NA7(V4). Therefore, NG(V4) ≤ A7,
i.e. NG(V4) is not maximal. It follows from the above that the structure of N(V4)
is (V4×Z3)\S3; in fact, since 〈ρ, z〉 ≤ N(V4), 〈ρ, z〉 ∼= S3 and 〈ρ, z〉∩〈V4, σ〉 = 1,
the extension splits.

6.2 – Local 3-groups

Clearly, there is one conjugacy class of Z3’s and one class of Z3 × Z3’s in
G. We will now investigate the structures of CG(Z3), NG(Z3), CG(Z3 × Z3),
NG(Z3 × Z3).
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Lemma 6.2. Let σ ∈ G, |σ| = 3, then CG(σ) ∼= Z3 × A4.

Proof. Take σ ∈ 3 · 14 in A7, then CA7(σ) = Z3 ×A4 ≤ A7, but |CG(σ)| =
36, therefore CG(σ) ∼= Z3 × A4.

Remark 6.1 Since CG(Z3 × Z3) ⊆ CG(Z3) ∼= Z3 × A4 ≤ A7, neither
of CG(Z3), CG((Z3 × Z3)) are maximal. Since there is exactly one conjugacy
class of elts of order 3, |NG(Z3)| = 2|CG(Z3)|, hence |NG(Z3)| = 23 · 32 and
NG(Z3) ∼= CG(Z3) \ Z2.

Lemma 6.3. If σ = (123)(4)(5)(6)(7) ∈ A7 ≤ G, then NG〈σ〉 = NA7
〈σ〉.

Proof. CA7(σ) = 〈σ〉×A4 with A4 on {4, 5, 6, 7}; furthermore, ν = (23)(45)
normalizes 〈σ〉 = {1, σ, σ2}. Hence, 〈CA7

(σ), ν〉 ⊆ NA7
(σ), but |〈CA7

(σ), ν〉| =
72; therefore, NG(〈σ〉) = NA7

(〈σ〉) = 〈CA7
(σ), ν〉 ≤ A7.

Corollary 6.1. NG(Z3) is not maximal in G.

Lemma 6.4. The Sylow-3 subgroups in G are self-centralizing in G.

Proof. CG(Z3 ×Z3) ⊆ CG(Z3) = CA7
(3 · 14) ∼= Z3 ×A4. It suffices to find

CC3×A4(Z3 × Z3). But easily, CZ3×A4
(Z3 × Z3) = Z3 × Z3.

In 6.9 we prove that there exists a subgroup S of G with S ∼= M10, M10 the
Mathieu group on 10 letters. M10 is transitive on the 10 letters and the order of
the stabilizer of a point, M10x

, is 72. Let H = M10x
; the values of the induced

character 1H ↑M10 on the conjugacy classes yield that there will be exactly 8
elements of order 3 in H and 63 elements of 2-power orders 2a. Therefore, if
T ∈ Syl3(G), |NG(T )| ≥ 72. Now,

NG(Z3 × Z3)/CG(Z3 × Z3)
∼
≤ Aut(Z3 × Z3)

implies that
|NG(Z3 × Z3)| divides 9 · |GL2(3)| = 33 · 24.

Therefore, |N | = 72 or 2 ·72. But by Sylow’s Theorem, 2 ·72 is ruled out. Hence,
|N | = 72, and

NG(Z3 × Z3) = NM10(Z3 × Z3) ≤ M10.

Corollary 6.2. NG(Z3 × Z3) is not maximal in G.



[11] Determining subgroup structures of finite groups 131

6.3 – Local 5-groups

Since Q ∈ Syl5(G) is non-abelian of order 53 and contain no elements of
order 25, Q must have the presentation:

Q = 〈α, β, γ | α5 = β5 = γ5 = 1, αγ = α, βγ = β, [α, β] = γ〉.

The elements of Q can be written in the form αkβlγm; k, l, m ∈ Z5, and Z(Q) =
〈γ〉. Since αβ = α4γ, βα = βγ4, the conjugacy class in Q of a non-central
element x is the coset 〈γ〉x. Thus Q contains 24 non-central classes each of size
5.

Lemma 6.5. The central element γ must belong to 51 and Q consists of
exactly

1. the identity
2. 4 elements of type 51

3. 40 elements of each of types 52, 53, 54.

Proof. Q � NG(Q), θ126 = 1NG(Q) ↑G= [1] + [125] and θ126(52) =
θ126(53) = θ126(54), |CG(5i)| = 25, i = 1, 2, 3, 4 imply that Q contains exactly
40 elements of each 5i, i ∈ {1, 2, 3, 4}.

From the character table of G follows that |CG(γ)| = 2 · 53. But 〈γ〉 is a
characteristic subgroup of Q which implies that NG(Q) ≤ NG(Y ). Therefore
|NG(Q)| | 4 · |CG(Y )| = 23 · 53. By Sylow’s Theorem, it follows that |NG(Q)| =
23 · 53. By [18], NG(Q) ∼= Q \Z8 and every element of order 5 is conjugate to its
powers. Thus there are exactly four conjugacy classes of Z5’s in G, namely 〈51〉,
〈52〉, 〈53〉, 〈54〉.

The structure and maximality of N〈51〉.
Since |σ| = 5 ⇒ σ ∼ σk, k = 1, 2, 3, 4, we have that |N〈5i〉| = 4 · |C〈5i〉|.

Hence |N〈51〉| = 1000; |N〈5i〉| = 100 if i ∈ {2, 3, 4}. Hence, N(Q) = N〈51〉 ∼=
Q \ Z8.

Proposition 6.2. N〈51〉 is maximal in G.

Proof. [G : N〈51〉] = 126000
1000 = 126. The character of the transitive permu-

tation representation of G on the right cosets of NG〈51〉 is θ126 = 1N〈51〉 ↑G=
[1]+[125]; therefore, the representation is doubly-transitive, hence it is primitive
and consequently, the stabilizer of a point, namely N〈51〉 is maximal.
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Lemma 6.6. i ∈ {2, 3, 4} ⇒ 〈51, 5i〉 contains exactly

1. the identity
2. 4 elements of type 51

3. 20 elements from class 5i.

Proof. Let γ ∈ 51 and σ ∈ 5i, i �= 1, such that σγ = σ. Also let Q ∈
Syl5(G) such that 〈γ, σ〉 ≤ Q. Then y ∈ 〈γ〉x ⇒ y is Q-conjugate to x ⇒ y is
G-conjugate to x. But also, x ∼ xk for any k �≡ 0 (mod 5).

Proposition 6.3. N〈5i〉 ≤ 〈51〉 if i ∈ {1, 2, 3, 4}. Consequently, for i �= 1
N〈5i〉 are not maximal.

Proof. Obvious for i = 1. Consider now the case where i > 1. If σ ∈ N〈5i〉,
then σ normalizes C(5i) = 〈51, 5i〉. Let γ ∈ 51 ∩ C(5i), then by Lemma 6.6
γσ ∈ 〈γ〉 ⇒ 〈γ〉σ = 〈σ〉, i.e. σ normalizes 〈51〉. Therefore N〈5i〉 ≤ N〈51〉.

Corollary 6.3. N〈51, 5i〉 ≤ N〈51〉, i �= 1.

Proof. Let σ ∈ N〈51, 5i〉 and let σ ∈ 51 ∩ 〈51, 5i〉, then γσ ∈ 51 ∩ 〈51, 5i〉,
therefore by Lemma 6.6, 〈γ〉σ = 〈γ〉.

Thus, we have the following :

Proposition 6.4. There is exactly one up to conjugacy 5-local maximal
subgroup of G; it is N〈51〉 = N(Q) of order 1000.

6.4 – Local 7-groups

It is immediate that NG(Z7) ∼= Z3
7. Furthermore, since NA7

(Z7) ∼= Z3
7, we

have that NG(Z7) ≤ A7 and consequently NG(Z7) is not maximal.

6.5 – Non-local Subgroups

Proposition 6.5. If H ≤ G, H non-abelian simple group, then H is
isomorphic to one of the following: A5, PSL2(7), A6, A7.
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Proof. No simple groups not occurring in L.E.Dickson’s list are found in
the Higman-Sims group [18]. Hence, since G ≤ HS, the only possible simple
groups contained in G must occur in Dickson’s list. By consideration of order,
the possible non-abelian simple groups are: A5, A6, A7, PSL2(7), PSL2(8).
However PSL2(8) � HS, therefore, PSL2(8) � G.

Remark 6.2. Each of above indeed occurs in G. To see this we note that

A7

∼
≤ G and therefore A6, A5, PSL2(7) which are contained in A7 are subgroups

of G. There remains to determine the number of conjugacy classes of each of the
above, and their normalizers.

6.6 – The set [K2 × K3 → K7]

From |K2×K3| = |G|
240 ·

|G|
36 = 22 ·3 ·55 ·72, |K2×K3 → K7+

| = a2,3,7+
· |G|

7 =
3·|G|, |K2×K3 → K7− | = 3·|G|, a2,3,7+ |L2(7) = 7, |K2×K3 → K7+ |L2(7)| = 168,
we have:

#L2(7)′s =
|K2 × K3 → K7|

2 · 168
= 2250.

Let Ω be the set of all L2(7)’s in G and consider the group action G|Ω by
conjugation. The length of an orbit, say LG, L ∈ Ω, is |LG| = [G : GL] where
GL = NG(L). Hence, if there are k orbits with representatives Li, i = 1, 2, . . . , k,
we have

k∑

i=1

[G : GLi
] = 2 · 32 · 53.

Therefore, 24 · 32 · 53 · 7 · ∑k
i=1

1
|NG(Li)| = 2 · 32 · 53 ⇒ 23 · 7 · ∑k

i=1
1

|N(Li)| = 1.

Now since L ∈ Ω implies that CG(L) = 1, if we write |N(Li)
Li

| = �i we have:

1

168

k∑

i=1

1

�i
=

1

23 · 7 .

Hence, in particular
∑k

i=1
1
�i

= 3 and k ≥ 3. Consider the group action
G|[K2 × K3 → K7+ ] by conjugation. We have the following:

Lemma 6.7. The number of G orbits on [K2 × K3 → K7+ ] is three.

Proof. Since g.c.d(σ2, σ3, σ7) = 1, ρ(G|[K2 × K3 → K7+ ]) = β2,3,7+ =
a2,3,7+

7 = 21
7 = 3.



134 CAFER CALISKAN – S. S. MAGLIVERAS –L. C. YU [14]

Every 〈x, y〉 such that |x| = 2, |y| = 3, |xy| = 7 can be thought of as a (2, 3, 7+);
for either xy ∈ 7+ in which case (x, y) ∈ [K2 × K3 → K7+ ] or else xy ∈ 7− in
which case y−1x−1 ∈ 7+ and 〈x, y〉 = 〈x−1, y−1〉 ∈ (2, 3, 7+).

If (x, y), (x′, y′) ∈ [K2 × K3 → K7+
] and (x, y) is G-conjugate to (x′, y′),

then clearly 〈x, y〉 is G-conjugate to (x′, y′). Therefore, if Ω = {H ≤ G | H ∼=
L2(7)}, then ρ(G|Ω) ≤ ρ(G|[K2 × K3 → K7+

]) = 3.

Corollary 6.4. k = 3, �i = 1 for i ∈ {1, 2, 3}. i.e. each PSL2(7) in G
is self-normalizing.

6.7 – The conjugacy classes of A5’s in G

If H ∼= A5, then H ∈ (2, 3, 4). Since β2,3,51 = 0, β2,3,5i = 1 for i ∈ {2, 3, 4}
and gcd(σ2, σ3, σ5i

) = 1 for i > 1 it follows that there are exactly 3 conjugacy
classes of A5’s in G one for each 5i, i > 1. Consider A5i

= 〈x, y〉, (x, y) ∈
[K2 × K3 → K5i ]. C(A5i) = C(x) ∩ C(y) ∩ C(xy) = 1, implies that each A5 is

centralized by 1. N(A5)/C(A5)
∼
≤ AutA5

∼= S5. Therefore, |N(A5)| | 5!, hence
N(A5) ∼= A5 or S5.

Consider [K2 × K3 → K5i
] for a fixed i ∈ {2, 3, 4}. Then, |K2 × K3 →

K5i
| = a2,3,5i

· |G|
25 = |G|. Consider the mapping Φ : [K2 × K3 → K5i

] → Λi,
i ∈ {2, 3, 4}, where Λi is the conjugacy class of A5’s of type (2, 3, 5i), defined by
Φ(x, y) = 〈x, y〉. Then H ∈ Λi ⇒ |Φ−1(H)| = |K2 × K3 → K5||A5

.

Hence, |Λi| = 24·32·53·7
3·4·2·5 = 2 · 3 · 52 · 7.

On the other hand

|Λi| = [G : NG(H)], H ∈ Λi.

Hence, 24·32·53·7
22·3·5

∑3
i=1

1
ni

= 2 · 32 · 52 · 7 = |Λ2| + |Λ3| + |Λ4|.
Hence,

∑3
i=1

1
ni

= 3
2 , and consequently, each ni = 2. Thus, there is a unique

up to conjugacy A5i for each i ∈ {2, 3, 4} and each of these A5’s are contained in
a corresponding S5. We will show later that none of the above S5’s is maximal
in G.

6.8 – Groups containing Z3
7

It is well known that the full automorphism group of the Hoffman-Singleton
graph on 50 verices is a split extension of our group G = U3(5) by a group
of order 2 [17] [4]. In [17] the Higman-Sims graph of 100 vertices is viewed as
the union of two Hoffman-Singleton graphs with appropriate interconnections
between the two subgraphs on 50 vertices. In particular U3(5) acts intransitively



[15] Determining subgroup structures of finite groups 135

on the 100 vertices of the Higman-Sims graph, and transitively, of rank 3, on
each of the two Hoffman-Singleton subgraphs of the Higman-Sims graph. In
what follows we consider the transitive, rank-3 action of G on the 50 vertices
Ω of the Hoffman-Singleton graph. In view of the discussion in Section 5, the
character of the action G|Ω must be of the form χ = [1] + [21] + [28]i for some
i ∈ {1, 2, 3}.

Suppose a subgroup H of G contains Z3
7 then

AH ≥ AZ3

7
=

⎛
⎜⎜⎜⎜⎜⎝

0 7 0 0 0 0
1 0 1 1 1 3
0 1 0 0 0 6
0 1 0 0 3 3
0 1 0 3 0 3
0 1 2 1 1 2

⎞
⎟⎟⎟⎟⎟⎠

Suppose H ≤ G, [G : H] = 50, then 1H ↑G= [1] + [21] + [28]j , j ∈ {1, 2, 3} ⇒
#[Orbits of H on Ω] = (1H ↑G, χ) = 3 or 2.

Lemma 6.8. If H ∼= A7, H ≤ G, then H ∈ [1, 7, 42] ∪ [15, 35].

Proof. [G : H] = 50. Via consideration of the possible compound char-
acters of degree 50, we see as above that H has 2 or 3 orbits on the canonical
set of 50 points. If there are 2 orbits then it easily follows that A7 ∈ [15, 35] by
consideration of the possible transitive representations of A7 on ≤ 50 points.
Otherwise if A7 has 3 orbits, the least orbit is of length ≤ [ 503 ] = 16, hence of
length 1, 7 or 15. If the least orbit has length = 1 then 49 = k + �, and A7

acts transitively on k (as well as �) points, therefore k = 7, � = 42. If the least
orbit has length > 1 then by considering the possible transitive representations
of A7 we see that no assignment to k and � is possible. Hence the least orbit
must be of length 1. Clearly there is an A7 ∈ [1, 7, 42], since Gα in the canonical
representation of G on 50 points is isomorphic to A7. Since G is transitive on 50
points all A7’s with orbit structure [1, 7, 42] are conjugate.

Now we will show that there are two other conjugacy classes of A7’s in G,
which in the standard representation G|Ω have orbit types [15, 35].

Lemma 6.9. If

σ =(1)(2 11 6 5 26 16 21)(3 39 31 30 36 50 41)

(4 29 32 33 17 46 9)(7 14 43 25 34 19 47)

(8 20 28 40 24 27 13)(10 49 42 23 22 35 48)

(12 44 37 15 45 18 38) ∈ G
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and cycles of σ are labelled PABCDEFK, then Z3
7 = NG〈σ〉 ∈ [P, A, CFK,

B, E, D] : [1, 7, 21, 7, 7, 7], and any cover of Z3
7 with two orbits has orbit type

[PED, ABCFK] or [PBD, ACEFK].

Proof. This follows immediately by the discussion of section 3 and AZ3

7
.

Corollary 6.5. If H ∼= A7, H ≤ G and H has two orbits on Ω, then
H ∈ [PED, ABCFK]∪ [PBD, ACEFK] and consequently there can be at most
3 conjugacy classes of A7’s in G.

Definition 6.1. Let Δ1 = PED ⊆ Ω and Δ2 = PBD ⊆ Ω, then we call
a subset Γ ⊆ Ω a decapentad of type 1 if and only if Γg = Δ1 for some g ∈ G,
or a decapentad of type 2 if and only if Γg = Δ2 for some g ∈ G. Computation
shows there are precisely 50 decapentads of each type.

Let Λi = ΔG
i . Then G acts transitively on Λ1, Λ2 and |G(Δi)| = |G|

50 = 7!
2 . Hence

each G(Δ1), G(Δ2) are subgroups of G of order 7!
2 and G(Δ1) is not G-conjugate

to G(Δ2) since Δ2 /∈ Λi.

Proposition 6.6. G(Δ1)
∼= G(Δ2)

∼= A7.

Proof. G(Δ1) has a representation on the 15 points of Δ1. Since G(Δ1)

has at most 3 orbits on Ω and since by consideration of AZ3

7
, PED or PED are

the only possible orbit structures, G(Δ1) is transitive on Δ1. H = G(Δ1) acts
primitively on Δ1, for if Hα � K ≤ H, then K would have orbit type [8, 7] or
[15] on Δ1. But K ⊇ Z3

7, since Hα ⊇ Z3
7, hence [8, 7] is not possible. Therefore,

K would be transitive on Δ1, and consequently |K| = |Kα| · 15. But clearly
Kα = Hα and therefore K = H.

It is known however [5] that the only primitive group on 15 points of order 7!
2

is a group isomorphic to A7. Therefore, G(Δ1)
∼= A7. Similarly G(Δ2)

∼= A7.

Corollary 6.6. There are at least three conjugacy classes of A7’s namely
A71

∼= Gα, A72
∼= G(Δ1), A73

∼= G(Δ2). Hence there are exactly 3 conjugacy
classes of A7’s in G.
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The standard representation is G|{right cosets of A71}. Since χ = [1]+[21]+[28]i
for some i, and since #[orb] = 3, without loss of generality we take:

χ = χ1 = 1A71
↑G= 1 + [21] + [28]1.

Since A72
, A73

have 2 orbits on Ω, without loss of generality

1A72
↑G = 1 + [21] + [28]2

and

1A73
↑G = 1 + [21] + [28]3.

Therefore, the elements of order 5 in A72 or A73 come from 53 ∪ 52. Clearly,
there is a 3 way symmetry of the above argument relating the representation of
G on the cosets of A7’s to the 3 types of A7’s. Therefore each induced character
involves each [28]i exclusively. Hence, 52 ∈ A71 , 53 ∈ A72 , 54 ∈ A73 .

Now we investigate the normalizer NG(A5i
) ∼= S5. Since each A5i

is con-
tained in an appropriate A7i and the normalizer in A7i of A5i is isomorphic to
S5, NG(A5i

) ≤ A7i
, and therefore NG(A5i

) are not maximal in G. Of course
NG(A7) = A7i

are maximal since there are no permutation characters for G of
degree less than 50.

6.9 – The A6’s and their normalizers

Suppose H ≤ G, H ∼= PGL2(9), then [G : H] = 175. Therefore, χ =
1H ↑G= 1 + [125] + [21] + [28]i i ∈ {1, 2, 3} ⇒ χ(2) = 1 + 5 + 5 + 4 + 15. But
χ(2) should be σG(2)( 1

σH(21)
+ 1

σH(22)
) = 240( 1

16 + 1
20 ) = 27, a contradiction.

Hence no subgroup of G is isomorphic to PGL2(9).

Suppose next that there exists H ≤ G, H ∼= S6. Then χ(2) = 240( 1
48 + 1

16 +
1
48 ) = 25, a contradiction; therefore S6 � G.

Hence if A6 � H � G, then H ∼= M10. Consider Ω = [K2 × K4 → K5i ]
i ∈ {2, 3, 4} fixed. |Ω| = 75 · |K5i

| = 24 · 33 · 53 · 7 (Since a2,4,5i
= 75). Let S ⊆ Ω

be defined by:

(x, y) ∈ Sif and only if 〈x, y〉 ∼= S5

S �= ∅, since there exists H ≤ G, H ∼= S5 ∈ (2, 4, 5i).

There exists a mapping Φ from S into the collection of all subgroups of G, namely

Φ : (x, y) → 〈x, y〉.
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We have
|Φ(S)| = #[of S5 with a 5i] = [G : S5] = 2 · 3 · 52 · 7

any H ∈ Φ(S) is generated in 120 ways as 〈x, y〉 |x| = 2, |y| = 4, |xy| = 5,
x, y ∈ H.

Therefore, |S| = 120 · |Φ(S)| = 24 · 32 · 53 · 7.
Therefore, T = Ω \ S has 25 · 32 · 53 · 7 elements.
Now consider an A6 with a 5i in it. (Such exists since A6 ≤ A7) If N(A6) =

A6, then
#[A′

6s conjugate to this A6] = [G : A6] = 350.

But each A6 is generated as a (2, 4, 5i) in 25 ·32 ·5 ways. Therefore, there would be
350·25 ·32 ·5 ordered pairs in Ω yielding A6’s. But 350·25 ·32 ·5 > |T | = 25 ·32 ·53 ·7
a contradiction. Hence, N(A6) ∼= M10 and then

|T | = 175 · 25 · 32 · 5.

Corollary 6.7. There are exactly 3 conjugacy classes of A6’s one for
each 52, 53, 54, each normalized by an M10.
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– Appendix

Generators of PSU3(5
2):

x :

(3, 17, 7)(4, 46, 38)(5, 11, 21)(6, 26, 16)(8, 36, 32)(9, 28, 19)

(10, 13, 33)(14, 47, 15)(18, 43, 49)(20, 44, 23)(24, 25, 39)

(29, 50, 37)(30, 35, 41)(31, 45, 40)(34, 42, 48)

y :

(1, 3, 5, 2, 4)(6, 28, 20, 12, 24)(7, 29, 16, 13, 25)(8, 30, 17, 14, 21)

(9, 26, 18, 15, 22)(10, 27, 19, 11, 23)(36, 37, 38, 39, 40)

(41, 45, 44, 43, 42)(46, 49, 47, 50, 48)

Character Table of PSU3(5
2):

x 1 2 4 81 82 3 6 51 52 53 54 10 71 72

σx |G| 240 8 8 8 36 12 250 25 25 25 10 7 7

κx 1 525 15750 15750 15750 3500 10500 504 5040 5040 5040 12600 18000 18000

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 20 −4 0 0 0 2 2 −5 0 0 0 1 −1 −1

χ3 28 4 0 0 0 1 1 3 3 −2 −2 −1 0 0

χ4 28 4 0 0 0 1 1 3 −2 −2 3 −1 0 0

χ5 28 4 0 0 0 1 1 3 −2 3 −2 −1 0 0

χ6 21 5 1 −1 −1 3 −1 −4 1 1 1 0 0 0

χ7 84 −4 0 0 0 3 −1 9 −1 −1 −1 1 0 0

χ8 126 6 −2 0 0 0 0 1 1 1 1 1 0 0

χ9 105 1 1 −1 −1 −3 1 5 0 0 0 1 0 0

χ10 144 0 0 0 0 0 0 −6 −1 −1 −1 0 γ δ

χ11 144 0 0 0 0 0 0 −6 −1 −1 −1 0 δ γ

χ12 125 5 1 1 1 −1 −1 0 0 0 0 0 −1 −1

χ13 126 −6 0 α β 0 0 1 1 1 1 -1 0 0

χ14 126 −6 0 β α 0 0 1 1 1 1 −1 0 0
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Hoffman-Singleton Graph

1/ 2 5 6 11 16 21 26 26/ 1 28 29 34 36 45 49

2/ 1 3 7 12 17 22 27 27/ 2 29 30 35 37 41 50

3/ 2 4 8 13 18 23 28 28/ 3 26 30 31 38 42 46

4/ 3 5 9 14 19 24 29 29 4 26 27 32 39 43 47

5/ 1 4 10 15 20 25 30 30/ 5 27 28 33 40 44 48

6/ 1 8 9 31 37 43 48 31/ 6 12 20 24 28 32 35

7/ 2 9 10 32 38 44 49 32/ 7 13 16 25 29 31 33

8/ 3 6 10 33 39 45 50 33/ 8 14 17 21 30 32 34

9/ 4 6 7 34 40 41 46 34/ 9 15 18 22 26 33 35

10/ 5 7 8 35 36 42 47 35/ 10 11 19 23 27 31 34

11/ 1 13 14 35 39 44 46 36/ 10 13 17 24 26 37 40

12/ 2 14 15 31 40 45 47 37/ 6 14 18 25 27 36 38

13/ 3 11 15 32 36 41 48 38/ 7 15 19 21 28 37 39

14/ 4 11 12 33 37 42 49 39/ 8 11 20 22 29 38 40

15/ 5 12 13 34 38 43 50 40/ 9 12 16 23 30 36 39

16/ 1 18 19 32 40 42 50 41/ 9 13 20 21 27 42 45

17/ 2 19 20 33 36 43 46 42/ 10 14 16 22 28 41 43

18/ 3 16 20 34 37 44 47 43/ 6 17 23 29 15 42 44

19/ 4 16 17 35 38 45 48 44/ 7 11 18 24 30 43 45

20/ 5 17 18 31 39 41 49 45/ 8 12 19 25 26 41 44

21/ 1 23 24 33 38 41 47 46/ 9 11 17 25 28 47 50

22/ 2 24 25 34 39 42 48 47/ 10 12 18 21 29 46 48

23/ 3 25 21 35 40 43 49 48/ 6 13 19 30 47 49 22

24/ 4 21 22 31 36 44 50 49/ 7 14 20 23 26 48 50

25/ 5 22 23 32 37 45 46 50/ 8 15 16 24 27 46 49
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Λ1

1 1 7 8 13 14 19 20 24 25 27 28 34 40 43 47
2 2 8 9 14 15 20 16 25 21 28 29 35 36 44 48
3 3 9 10 15 11 16 17 21 22 29 30 31 37 45 49
4 4 10 6 11 12 17 18 22 23 30 26 32 38 41 50
5 5 6 7 12 13 18 19 23 24 26 27 33 39 42 46
6 11 20 4 43 45 28 21 34 2 40 32 48 50 37 10
7 6 28 29 25 18 40 2 19 11 24 33 10 41 15 49
8 5 40 32 34 38 24 11 47 6 27 17 49 3 45 42
9 16 27 17 47 44 13 5 14 26 8 9 23 31 38 22
10 21 13 46 7 37 8 26 43 16 20 4 22 30 12 35
11 39 4 49 45 6 21 46 2 35 32 36 30 15 18 42
12 31 29 42 18 5 2 9 11 48 33 50 36 45 38 23
13 36 33 22 12 16 6 29 5 49 46 3 41 38 44 35
14 50 17 35 44 21 5 32 26 42 9 39 3 12 37 48
15 41 46 48 37 2 26 33 16 23 4 31 39 44 15 10
16 17 22 21 16 45 29 37 49 10 3 11 9 15 30 31
17 46 35 2 21 18 32 15 42 49 39 6 4 45 36 30
18 13 17 1 45 42 30 23 31 4 37 34 50 47 39 7
19 14 18 2 41 43 26 24 32 5 38 35 46 48 40 8
20 15 19 3 42 44 27 25 33 1 39 31 47 49 36 9
21 7 29 30 21 19 36 3 20 12 25 34 6 42 11 50
22 10 27 28 24 17 39 1 18 15 23 32 9 45 14 48
23 1 36 33 35 39 25 12 48 7 28 18 50 4 41 43
24 2 37 34 31 40 21 13 49 8 29 19 46 5 42 44
25 3 38 35 32 36 22 14 50 9 30 20 47 1 43 45
26 7 33 29 19 36 12 22 18 6 41 28 23 16 50 5
27 8 34 30 20 37 13 23 19 7 42 29 24 17 46 1
28 9 35 26 16 38 14 24 20 8 43 30 25 18 47 2
29 10 31 27 17 39 15 25 16 9 44 26 21 19 48 3
30 27 18 25 13 28 1 12 10 43 39 9 49 19 48 3
31 28 19 21 14 29 2 13 6 44 40 10 50 20 25 34
32 29 20 22 15 30 3 14 7 45 36 6 46 16 21 35
33 30 16 23 11 26 4 15 8 41 37 7 47 17 22 31
34 17 47 28 45 14 27 7 5 24 13 16 6 39 23 34
35 18 48 29 41 15 28 8 1 25 14 17 7 40 20 35
36 19 49 30 42 11 29 9 2 21 15 18 8 36 25 31
37 24 7 11 40 6 19 3 27 25 42 26 47 15 33 20
38 25 8 12 36 7 20 4 28 21 43 27 48 11 34 16
39 33 18 26 2 4 50 10 48 38 41 43 31 40 25 11
40 34 19 27 3 5 46 6 49 39 42 44 32 36 21 12
41 35 20 28 4 1 47 7 50 40 43 45 33 37 22 13
42 39 5 31 19 9 47 26 2 44 13 37 50 42 33 23
43 40 1 32 20 10 48 27 3 45 14 38 46 43 34 24
44 30 2 50 45 47 23 36 20 34 32 11 38 4 42 6
45 26 3 46 41 48 24 37 16 35 33 12 39 5 43 7
46 27 4 47 42 49 25 38 17 31 34 13 40 1 44 8
47 28 5 48 43 50 21 39 18 32 35 14 36 2 45 9
48 34 2 24 11 5 49 28 8 47 37 19 41 32 40 43
49 31 4 21 13 2 46 30 10 49 39 16 43 34 37 45
50 32 5 22 14 3 47 26 6 50 40 17 44 35 38 41
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Λ2

1 1 3 7 14 19 25 30 31 34 36 39 41 43 47 50
2 2 4 8 15 20 21 26 32 35 37 40 42 44 48 46
3 3 5 9 11 16 22 27 33 31 38 36 43 45 49 47
4 4 1 10 12 17 23 28 34 32 39 37 44 41 50 48
5 5 2 6 13 18 24 29 35 33 40 38 45 42 46 49
6 11 29 20 45 28 2 16 33 48 15 24 23 37 10 9
7 6 32 28 18 40 11 21 17 10 45 27 22 15 49 4
8 26 17 24 12 27 5 11 9 42 38 8 48 18 23 32
9 16 46 27 44 13 26 6 4 23 12 20 10 38 22 33
10 21 9 13 37 8 16 5 29 22 44 28 49 12 35 17
11 39 26 4 6 21 35 13 17 30 12 50 25 18 42 7
12 31 16 29 5 2 48 8 46 36 44 41 34 38 23 14
13 30 21 32 26 11 10 20 9 50 37 3 19 12 22 43
14 36 2 33 16 6 49 28 4 41 15 39 47 44 35 25
15 50 11 17 21 5 42 40 29 3 45 31 7 37 48 34
16 41 6 46 2 26 23 24 32 39 18 30 14 15 10 19
17 29 1 49 44 46 22 40 19 33 31 15 37 3 41 10
18 32 1 42 37 9 35 24 47 17 30 45 15 39 3 49
19 33 1 23 15 4 48 27 7 46 36 18 45 31 39 42
20 17 1 22 45 29 10 13 14 9 50 38 18 30 31 23
21 46 1 35 18 32 49 8 43 4 41 12 38 36 30 22
22 9 1 48 38 33 42 20 25 29 3 44 12 50 36 35
23 12 30 16 41 29 3 17 34 49 11 25 24 38 6 10
24 14 27 18 43 26 5 19 31 46 13 22 21 40 8 7
25 15 28 19 44 27 1 20 32 47 14 23 22 36 9 8
26 40 5 50 41 7 22 47 3 31 33 37 26 11 19 43
27 36 1 46 42 8 23 48 4 32 34 38 27 12 20 44
28 37 2 47 43 9 24 49 5 33 35 39 28 13 16 45
29 38 3 48 44 10 25 50 1 34 31 40 29 14 17 41
30 32 30 43 19 1 3 10 12 49 34 46 37 41 39 24
31 33 26 44 20 2 4 6 13 50 35 47 38 42 40 25
32 34 27 45 16 3 5 7 14 46 31 48 39 43 36 21
33 35 28 41 17 4 1 8 15 47 32 49 40 44 37 22
34 40 32 21 11 20 10 28 4 48 50 2 45 37 43 34
35 46 18 31 45 22 1 33 27 43 10 40 4 13 38 49
36 47 19 32 41 23 2 34 28 44 6 36 5 14 39 50
37 48 20 33 42 24 3 35 29 45 7 37 1 15 40 46
38 49 16 34 43 25 4 31 30 41 8 38 2 11 36 47
39 8 46 1 18 23 36 22 30 29 15 19 41 7 31 14
40 43 38 11 3 25 16 27 33 26 12 48 9 10 24 20
41 25 12 6 39 34 21 13 17 16 44 10 4 49 27 28
42 19 37 26 30 47 11 20 9 2 15 42 32 23 8 24
43 47 15 16 36 7 6 28 4 11 45 23 33 22 20 27
44 7 45 21 50 14 5 40 29 6 18 22 17 35 28 13
45 43 33 50 11 7 41 31 40 37 19 47 26 22 5 3
46 25 17 41 6 14 3 30 24 15 47 7 16 35 26 39
47 19 9 39 26 25 31 50 13 18 14 43 2 10 21 30
48 42 8 24 13 9 30 1 12 18 35 17 29 38 25 49
49 22 28 13 20 29 50 1 37 12 10 9 33 44 19 23
50 1 50 17 48 31 34 44 10 14 40 38 41 29 3 25
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