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Some results on Spreads and Ovoids
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Abstract: We survey some results on ovoids and spreads of finite polar spaces,
focusing on the ovoids of H(3, q2) arising from spreads of PG(3, q) via indicator sets
and Shult embedding, and on some related constructions. We conclude with a remark
on symplectic spreads of PG(2n − 1, q).

1 – Introduction

Let q be any prime power and let PG(2n − 1, q) be the projective space of
dimension 2n − 1 over the Galois field GF (q). A (n − 1)-spread S of PG(2n −
1, q) is a set of qn + 1 mutually skew (n − 1)-dimensional subspaces; hence the
elements of S partition the pointset of PG(2n − 1, q). Spreads of PG(2n − 1, q)
define translation planes of order qn , with kernel containing GF (q), embedding
PG(2n − 1, q) as a hyperplane in a PG(2n, q) and using the well known André-
Bruck/Bose construction, and conversely. This relationship is probably the main
motivation for the study of spreads, and the most studied case is n = 2.

Bruck in [8] introduced indicator sets in finite desarguesian projective planes
of square order, and their links with line spreads of projective 3-spaces have
been studied in the next years by Bruck himself in [9] and by Bruen in [10]; a
few years later, Lunardon in [15] further studied that relationship, mainly from
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the synthetic geometric point of view: with any spread of PG(3, q) a family of
indicator sets is associated. Indicator sets have been somehow aside for many
years, until Shult in [19] proved that a suitable set of lines, presently called
a Shult set, defines a locally Hermitian ovoid of the Hermitian variety via the
so-called Shult embedding, and conversely.

As a Shult set is the point-line dual of an indicator set, there immediately
followed a link between spreads of PG(3, q) and families of locally Hermitian
ovoids of H(3, q2), which was first studied by Cossidente, Ebert, Marino and
Siciliano in [11] focusing on those associated with the regular spread, the so called
classical and semiclassial ovoids of the Hermitian variety. In the subsequent
paper [12] Cossidente, Lunardon, Marino and Polverino classified the ovoids
arising from the regular spread and from a (proper) semifield spread via the
above construction, while in [2] Bader, Marino, Polverino and Trombetti further
studied the collineation group of the translation ovoids constructed via a Shult
embedding and pointed out that two constructions which could be performed (a
family of ovoids of the Klein quadric from the given family of locally Hermitian
ovoids of the Hermitian variety via a construction of Lunardon [17] and a family
of line spreads from the given family of Shult sets via a construction of Thas
[21]) do not produce any new example.

Here we deal with these results and we conclude the paper with a remark
linking symplectic spreads of PG(2n−1, q) and Thas maximal arcs in projective
planes of order qn and kernel containing GF (q).

2 – Spreads of PG(3, q), ovoids of H(3, q2) and some related construc-
tions

2.1 – Spreads, indicator sets, Shult sets

View Σ = PG(3, q) as a canonical subgeometry of a Σ∗ = PG(3, q2); let σ
be the collineation of Σ∗ fixing Σ pointwise (hence σ2 = id) and let S be any
spread of Σ. Fix a line l in S. A plane π ∼= PG(2, q2) of Σ∗ is an indicator
plane of S if π ∩ Σ = l; the indicator set of S in π is Iπ(S) = {m∗ ∩ π|m ∈ S},
where m∗ denotes the unique line of Σ∗ containing m. The set Iπ(S) has size
q2 and none of its secants contains points of l; conversely, any set I ′ of points
of π satisfying the previous two properties canonically defines a spread, namely
S ′ = {< Q, Qσ > ∩Σ | Q ∈ I ′} ∪ {l} and Iπ(S ′) = I ′. Hence, with any spread
S a family is associated of indicator sets Iπ(S). Furthermore, the spread S is
regular if and only if any Iπ(S) is either an affine line (classical indicator set) or
an affine Baer subplane (semiclassical indicator set). For more details, see e.g.
[8], [9], [10] and [15].

Let Σ = PG(3, q),Σ∗ = PG(3, q2), the plane π and the line l be as above,
and denote by l∗ the line of Σ∗ containing l. Let π̂ be the dual plane of π and
let P denote the point of π̂ corresponding to the line l∗. The points of l are
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mapped to the lines of a cone l̂ of π̂ having vertex P . Let F be the set of lines of
π̂ corresponding to the points of the indicator set I. Then: (i) π̂ is a projective

plane with a distinguished degenerate Hermitian variety (the Baer subpencil l̂
with vertex P ); (ii) F is a set of q2 lines of π̂, none of which contains P ; (iii)
any two distinct lines of F intersect in a point not on the Baer subpencil. Any
set of lines satisfying the above three properties is called a Shult set. Conversely,
a Shult set defines, by any polarity of its plane, an indicator set. In conclusion,
with any line spread a family of indicator sets or, equivalently, a family of Shult
sets is associated.

2.2 – Shult embedding

A Hermitian surface H = H(3, q2) of PG(3, q2) is the set of all isotropic
points of a non-degenerate unitary polarity. A line of PG(3, q2) meets H in 1
(tangent) or q + 1 (hyperbolic line) or q2 + 1 (generator) points. The hyperbolic
lines intersect H in Baer sublines which are called chords.

An ovoid O of H is a set of q3 + 1 points such that any generator of H
contains exactly one point of O. The Hermitian curve H(2, q2), intersection of
H with any of its secant planes, is the classical ovoid. An ovoid is called locally
Hermitian with respect to a point P if it is the union of q2 chords of H through
P and is called translation with respect to a point P if there is a collineation
group of H fixing P , all the generators through P, and acting regularly on the
points of O \ {P}. Note that any translation ovoid is locally Hermitian ([7]) but
not conversely, and a classical ovoid of H is a translation ovoid with respect to
each of its points.

Start off with a spread S of PG(3, q), fix a line l in S, an indicator plane
π through l as above, construct the indicator set and polarize to a Shult set F
with respect to the subpencil l̂ in the plane π̂ = PG(2, q2); embed the plane π̂ in
a PG(3, q2) containing a Hermitian surface H such that π̂ is the tangent plane

to H at P and l̂ = H ∩ π̂ ; denote by ρ be the polarity defined by H. Then
Shult has proved in [19] that Oπ(S) =

⋃{Lρ|L ∈ F} is an ovoid of H, which
is, by construction, locally Hermitian with respect to its point P . The above
construction is presently called a Shult embedding following [11].

We explicitly note that on the other hand, via the so-called Hermitian em-
bedding defined by Cossidente, Ebert, Marino and Siciliano in [11], symplectic
spreads of PG(3, q) are characterised as those corresponding to indicator sets
embedded in a Hermitian variety H, and conversely. Namely, let δ be a symplec-
tic polarity commuting with the unitary polarity ρ associated with H = H(3, q2).
The map σ = δ ◦ ρ = ρ ◦ δ is a (non-linear) collineation, fixing q3 + q2 + q + 1
points on H but no point off H, and leaving invariant q3 +q2 +q+1 generators of
H. Also, noting that any fixed point (invariant generator resp.) is incident with
q + 1 invariant generators (fixed points resp.), yields a symmetric configuration
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which extends in a suitable way to a symplectic polar space W = W (3, q) em-
bedded in a subgeometry Σ = PG(3, q) of the starting Σ∗ containing H. In this
context, the totally isotropic lines of Σ with respect to δ are exactly the lines of
W. Let S be a spread of Σ whose lines are isotropic with respect to δ. Let l be
a line of S and denote by l∗ the line of Σ∗ containing l, which is a generator of
H. Fix a point P ∈ l∗ \ l, hence P ρ ∩W = l. The indicator set is contained in H
and consists of the points in which all the extended lines of S meet P ρ. The con-
struction above can be reversed. Unfortunately, the Hermitian embedding does
not produce any locally Hermitian ovoid (whereas the Shult embedding does)
because the dual lines of the starting Hermitian indicator set not necessarily are
hyperbolic lines of H.

2.3 – Semiclassical ovoids of H(3, q2)

In [11] the Shult embedding is used to construct the classical ovoid and two
semiclassical ovoids of H(3, q2) arising from classical and semiclassical indicator
sets, respectively. Also, the groups of those ovoids are computed, proving that if
q > 3 there exist at least two (non isomorphic) semiclassical ovoids of H(3, q2),
depending on the elliptic quadric Q = Q−(3, q), image of the points of the
indicator set being permutable or not, i.e. the polarity defined by the Q+(5, q)
containing Q commutes with the unitary polarity associated with the Hermitian
variety. The first one, called the p-semiclassical ovoid (permutable semiclassical
ovoid), has an elementary abelian p-group (q = pr).

The notion of commuting polarities was introduced by Tits in 1955, and
Segre in 1965 studied Hermitian geometry over finite fields, also investigating the
polarities commuting with a unitary one. Starting with Segre’s results, recently
Cossidente, de Resmini and Marino in [13] have studied various geometrical
and combinatorial properties of permutable polarities, with special regard to
unitary polarities commuting with orthogonal ones, focusing on the relationship
between (regular) symplectic spreads of PG(3, q) and some remarkable subsets of
the Hermitian curve H(2, q2), the so-called CF−sets after Donati and Durante.
Furthermore, in [13] they discuss symplectic polarities commuting with unitary
polarities.

In order to compute the number of non isomorphic ovoids of H(3, q2) aris-
ing via the Shult embedding, the following definition has been introduced by
Cossidente, Lunardon, Marino and Polverino in [12]: two indicator sets I1 and
I2 in the same Σ∗ lying on the indicator planes π1 and π2, respectively, passing
through the line l∗, are said isomorphic if the associated spreads of Σ are, and
they are said equivalent if there is a collineation of Σ∗ mapping I1 to I2 and fixing
the Baer subline l. Note that equivalent indicator sets are isomorphic, whereas
it is worth noting that isomorphic indicator sets may be non equivalent. With
this approach, they can prove that two locally Hermitian ovoids of H(3, q2) are
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isomorphic if and only if the corresponding indicator sets are equivalent, and
consequently show that the number θ of non isomorphic semiclassical ovoids of
H(3, q2) is q−3

2 + 1 if q is a prime with q ≥ 3, whereas the following bounds hold

for any q : 2 ≤ θ ≤ q−2
2 if q is even and q > 2, and 2 ≤ θ ≤ q−3

2 + 1 if q is odd
and q > 3. For further details, see [12].

2.4 – Translation ovoids and their group

To obtain futher information on the collineation group of the ovoids arising
from the Shult embedding, we specialize to a distinguished class of spreads,
namely semifield spreads. A spread S is a semifield spread with respect to its
line �∞ if there exists a group fixing the line �∞ pointwise and acting regularly
on the set of the q2 lines of S different from �∞. Moreover, if S is a semifield
spread with respect to the line �∞ then, for any choice of the indicator plane π
such that �∞ ⊂ π, the ovoid Oπ(S) is a translation ovoid with respect to the
point P , and conversely.

Choose homogeneous projective coordinates (x0, x1, x2, x3) in such a way
that S = {�∞, �u,v|u, v ∈ GF (q)} with �∞ : x0 = x1 = 0, and �u,v = {(a, b, c, d) :

(c, d) = (a, b)Xu,v, a, b ∈ GF (q)} where Xu,v =

(
v h(u, v)
u k(u, v)

)
with h, k :

GF (q) × GF (q) → GF (q), h(0, 0) = k(0, 0) = 0. Since S is a semifield spread,
then {Xu,v|u, v ∈ GF (q)} is closed under addition hence h and k are additive
functions.

If πλ : x1 = λx0 is any indicator plane through �∞, where λ ∈ GF (q2) \
GF (q), then Iπλ

(S) = Iλ(S) = {(1, λ, v + λu, h(u, v) + λk(u, v)) : u, v ∈ GF (q)}
and

Oλ(S) = {(1,−v − λqu, h(u, v) + λqk(u, v), α + λ(vk(u, v) − uh(u, v))) :

u, v, α ∈ GF (q)} ∪ {P = (0, 0, 0, 1)}

is the locally Hermitian ovoid (with respect to P ) of H(3, q2) : y0y
q
3 − y3y

q
0 +

y2y
q
1 − y1y

q
2 = 0 arising via the Shult embedding (for more details, see [12]).

Let PGU(4, q2) be the group of the linear collineations of PG(3, q2) leaving
H invariant. The subgroup E of PGU(4, q2) fixing P and leaving invariant all
the generators through P has size q5 ([18]) and direct computations show that
E consists of the matrices

⎛
⎜⎝

1 α β c − αβq

0 1 0 −βq

0 0 1 αq

0 0 0 1

⎞
⎟⎠ , α, β ∈ GF (q2), c ∈ GF (q).
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The subgroup of E acting as translation group on the ovoid Oλ(S) is explicitly
computed in [2] as

G =

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

1 −v−λqu h(u, v)+λqk(u, v) c+(v + λqu)(h(u, v) + λk(u, v))
0 1 0 −h(u, v) − λk(u, v)
0 0 1 −v − λu
0 0 0 1

⎞
⎟⎠ ;

u, v, c∈Fq

}
.

As H(3, q2) can also be viewed as an elation generalised quadrangle, which can be
represented as a coset geometry with elation group (Ẽ, ◦) where Ẽ = GF (q2) ×
GF (q) × GF (q2) and (α, c, β) ◦ (α′, c′, β′) = (α + α′, c + c′ + Tr(α′βq), β + β′)
with α, β ∈ GF (q2) and c ∈ GF (q) (see e.g. [3]), the map

ψ : (α, c, β) ∈ Ẽ →

⎛
⎜⎝

1 α β c − αβq

0 1 0 −βq

0 0 1 αq

0 0 0 1

⎞
⎟⎠ ∈ E

is an isomorphism and the translation group of any translation ovoid Oλ(S)
arising from a semifield spread S via the Shult embedding is isomorphic to the
preimage of G

G̃ = ψ−1(G) = {(−v − λqu, α, h(u, v) + λqk(u, v)) : u, v, α ∈ GF (q)}

which turns out to be abelian if and only if Oλ(S) is p-semiclassical (see [2]).
Recall that the permutable semiclassical ovoid was the only translation ovoid

constructed in [11] admitting an elementary abelian p-group , q = pr, and in
[12] it is proved that the q + 1 p-semiclassical translation ovoids arising from a
given regular spread are all isomorphic. Hence there exists (up to isomorphism)
a unique translation ovoid of H(3, q2) with an abelian translation group, namely
the p-semiclassical. For more details, see [2].

2.5 – Ovoids of Q+(5, q) from indicator sets

Let S be any spread of Σ = PG(3, q) containing the lines �∞ and �0 and
defined by the functions h and k as in Section 2.4. Here, as S may not be a
semifield spread, hence h and k may not be additive.

Then Oλ(S) are the locally Hermitian ovoids of the Hermitian surface H :
x0x

q
3 − xq

0x3 + x2x
q
1 − xq

2x1 = 0 of Γ = PG(3, q2) arising from S, as λ varies in
GF (q2) \ GF (q).
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The projective plane π = PG(V, q2) is the lattice of the GF (q2)− sub-
spaces of the 3-dimensional vector space V (over GF (q2)); as V can also be
viewed as a 6-dimensional vector space over GF (q), a 5-dimensional projec-
tive space = PG(V, q) = PG(5, q) arises. A point (line resp.) of π is defined
by a GF (q2)−subspace of dimension 1 (2 resp.), which can be considered as a
GF (q)−subspace of dimension 2 (4 resp.); hence the pointset of π is mapped to
a lineset of Ω, which is a normal spread Rλ, and any line of π is mapped to a
3-space with a regular spread consisting of the images of the points of the line
itself . The pair (Ω,Rλ) is the Fq-linear representation of π with respect to the
basis {1, λ} (for more details see [2]).

Embed the above (Ω,Rλ) in Ω′ = PG(6, q) as a hyperplane and define the
point-line geometry π(Ω′,Ω,Rλ) as follows. The points are either the points of
Ω′\Ω or the elements of Rλ. The lines are either the planes of Ω′ which intersect
Ω in a line of Rλ or the regular spreads of the 3-dimensional projective spaces
〈A, B〉, where A and B are distinct lines of Rλ; the incidence is the natural one.
As Rλ is normal, π(Ω′,Ω,Rλ) is isomorphic to a PG(3, q2) containing π, and
the isomorphism extends the linear representation. This is the Barlotti-Cofman
representation of PG(3, q2) (for more details see [5]).

Lunardon in [17] has shown that the image of a Hermitian variety having π
as a tangent plane, in the Barlotti-Cofman representation, is a cone having vertex
in Ω and basis a suitable Q+(5, q) of Ω′, and that any locally Hermitian ovoid
Oπ(S) with respect to P of H is mapped to an ovoid, say Oλ, of the hyperbolic
quadric Q+(5, q), and conversely; if Oπ(S) is a translation ovoid, then Oλ is too.

On the other hand, to the line spread S there corresponds, via the Klein
map, an ovoid O(S) of the Klein quadric. Answering a question posed in [17],
in [2] it is shown that the ovoid O(S) is isomorphic to any Oλ, for any choice of
the indicator plane π, therefore no new ovoids of Q+(5, q) can be constructed in
this way.

2.6 – Spreads from indicator sets via locally Hermitian spreads of Q−(5, q)

Let S be any spread of Σ = PG(3, q). Embed Σ in Σ∗ = PG(3, q2) in such
a way that Σ = Fix(σ), where σ is an involutory collineation of Σ∗. Let π be an
indicator plane of S in PG(3, q2). Denote by l the line of S such that l is in π
and by Iπ(S) the indicator set of S in the plane π. Consider the point-line dual
plane of π: this is a plane π̃, in which l∗ (the extension of l in Σ∗) is represented
by a point P, the Baer subline l by a Baer subpencil l̃ through P and Iπ(S) by
a set F of q2 lines not containing P, any two of which intersect at a point of
π̃ \ l̃. (The set of lines F is the associated Shult set.) Fix a Hermitian surface
H = H(3, q2) in such a way that P ∈ H and π̃ ∩ H = l̃. Let ρ be the polarity
defined by H. The elements of Fρ are hyperbolic lines of H through P, hence the
set Oπ =

⋃
m∈F (mρ∩H) is a locally Hermitian ovoid of H. (Note that the ovoid
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depends on the choice of the indicator plane π.) The ovoid O corresponds, via the
Klein map κ, to a locally Hermitian spread Sπ of Q−(5, q) with respect to the line
L = Pκ. Let Λ = L⊥, where ⊥ is the orthogonal polarity induced by Q−(5, q).
If M is a line of Sπ different from L then mL,M = 〈L, M〉⊥ is a line of Λ disjoint
from 〈L, M〉. Moreover the set of lines S ′

π = {mL,M :M ∈ S, M �= L} ∪ {L}
turns out to be a spread of Λ as proved by Thas in [21]. If the spread S is a
semifield spread then the spread S ′

π also is. In [2] it is proved that S and S ′
π are

isomorphic for any choice of the indicator plane π, the proof being obtained by
reviewing the above construction embedding the involved spreads in the same
3-dimensional projective space over GF (q2). In the case S is a semifield spread,
the question on the relation between S and S ′

π was posed in [17, Par. 4.3].

3 – Symplectic spreads and Thas arcs

Let PG(2n− 1, q) be the projective (2n− 1)−dimensional space over Fq. A
spread of PG(2n − 1, q) is a set of qn + 1 pairwise disjoint (n − 1)−dimensional
subspaces which partition the pointset of PG(2n−1, q). A spread is symplectic if
all of its elements are totally isotropic with respect to some polarity of the space,
defined by a nonsingular alternating bilinear form of the underlying vector space.
For more details, the reader is referred e.g. to [14].

In [20] Thas gave the following construction of a maximal arc, which is
called Thas arc: let Q− = Q−(2n− 1, q) be an elliptic quadric of PG(2n− 1, q),
n ≥ 2, and let S− be a spread of Q−(2n − 1, q). Fix an (n − 1)−spread S of
H = PG(2n − 1, q) intersecting Q−(2n − 1, q) in S−. Embed PG(2n − 1, q) as
a hyperplane in PG(2n, q) and fix a point x ∈ PG(2n, q) \ PG(2n − 1, q). The
set {< x, y > |y ∈ Q−} \ Q− is a maximal (q2n−1 − qn + qn−1; qn−1)−arc of
the projective plane of order qn defined by S via the usual André-Bruck/Bose
construction. We recall that, following Barlotti in [4], a {k;m}−arc in a finite
projective plane of order s is a set of k points such that m is the greatest number
of collinear points in the set, and an arc is maximal if k attains its maximal value,
i.e. k = sm − s + m. In [6] Blockhuis, Hamilton and Wilbrink proved that no
Thas arcs exist for q odd, as conjectured in [20].

Recently, using some intersection properties of symplectic spreads and non-
singular quadrics, it has been proved in [1] that a translation plane of order qn,
q even, with kernel containing GF (q), is defined by a symplectic spread if and
only if it contains a Thas arc.

In the following Bibliography a huge number of actually relevant papers and
books are missing, for obvious reasons of space. We have just listed some items
we explicitly refer to, and we apologize to the Authors of the many missing ones.
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