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Abstract: The Gale transform is an involution on sets of points in a projective
space. It plays a crucial role in several different subjects, such as algebraic geometry,
optimization, coding theory, and so on. We give a brief survey—from a finite geometry
point of view—on the algebraic and geometrical implications of the Gale transform with
emphasis on its applications to coding theory, and describe some recent results.

1 – Introduction

The Gale transform of a set T consisting of γ labelled points of a projective
space PG(r, q) is an involution which maps T into a set T ′ consisting of γ labelled
points of PG(s, q), defined up to automprphisms of PG(s, q), with γ = r + s+2.

The simplest way to define the Gale transform of a set of points is in terms
of projective coordinates. Choose homogeneous coordinates in such a way that
the coordinates of the points of T are the rows of the matrix

(
Ir+1

A

)
,

where In denotes the n× n identity matrix and A is an (s + 1)× (r + 1) matrix.
Then, the Gale transform of T is the set T ′ consisting of the points of PG(s, q)
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whose homogeneous coordinates are the rows of the matrix

( τA

Is+1

)
,

where τA is the transpose matrix of A.
Although from the definition itself one may doubt whether the Gale trans-

form has any geometry at all in the classical projective sense, the research work
carried out over more than two centuries by some of the most important math-
ematicians is there to show that it is not true.

The first historical occurrency of a result related to the Gale transform is
the following theorem which appeared in Pascal’s “Essay Pour Les Coniques”,
see [24].

Theorem 1.1. (Pascal, 1640) The vertices of two triangles which are
circumscribed around the same conic lie on another conic.

Basically, the six points involved in Theorem 1.1 consitute a set of points which
is the Gale transform of itself. At an early stage, finding sets of points which are
the Gale transform of themselves represented the main goal of mathematicians
dealing with the Gale transform. After Pascal, sets that are the Gale transform
of themselves appeared in the work of Hesse [17, 18], von Staudt [26], Weddle
[27], Zeuthen [29], Dobriner [11], Sturm [25], Rosanes [22, 23], Castelnuovo (who
called two sets of points that are the Gale transform of one another “gruppi
associati di punti”) [3], and many others.

However, it was Coble—whose work had remarkable applications to theta
functions and Jacobians of curves, see [4, 5, 6, 7]—the first who studied the Gale
transform in a more general setting, starting off with the following alternative
definition formulated in terms of matrices over a field.

Let K be a field and r, s two integers not less than 1. Set γ = r + s + 2.
Consider a subset Γ of a projective spaces of dimension r and a subset Γ′ of
a projective space of dimension s. Further, let Γ and Γ′ be represented by a
γ × (r + 1) matrix G and a γ × (s + 1) matrix G′ respectively. Then Γ′ is said
to be the Gale transform of Γ if there is a nonsingular diagonal γ × γ matrix D
such that T GDG = 0.

Whitney [28] and Gale [14] developed similar ideas in the affine case. Later
on, Goppa—see [15] and [16] for instance—studied the Gale transform from a
coding theory point of view. It is well known that in coding theory the Gale
transform is the passage from a code to its dual; Goppa proved that a code
defined by the set of GF(q)-rational points on a certain algebraic curve is dual
to another code of similar nature.

What we have seen so far is just a quick outline of the rich history of
the Gale transform, which has implications in many other branches of modern
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mathematics such as optimization, group theory, linear spaces, scheme theory,
and so on. A full historical treatise on the development of the Gale transform
over more than 150 years is well beyond the scope of these notes. For a more
detailed historical account on the Gale transform the interested reader is referred
to [12] and the references therein.

2 – Preliminary results

The first crucial result concerning the Gale transform of sets of points in
finite projective spaces is stated in the following theorem.

Theorem 2.1. The Gale transform of the projective line PG(1, q), with
q ≥ 4, is a normal rational curve of PG(q − 2, q).

The result of Theorem 2.1 was already known to Goppa, as it is related with the
so-called Goppa duality among the error correcting codes bearing his name [15,
16]. In [8] there is an alternative proof of this result which is based only on the
properties of finite fields.

A natural generalisation of Theorem 2.1 in the finite case, if q is large enough,
is the following result.

Corollary 2.2. If � is a line in some projective space PG(r, q) and T ⊆ �,
with |T | = r + s + 2, then the Gale transform T ′ of T is contained in the unique
normal rational curve of PG(s, q) containing the fundamental frame.

The proof of Corollary 2.2 is based on the fact that the Gale transform of any
subset of points on a line in a projective space PG(r, q) of higher dimension is
independent of the embedding of the line in the space. This can be clarified by
means of a simple example obtained with the aid of MAGMA [2].

In the projective plane PG(2, 4), where (X1, X2, X3) are projective homo-
geneous coordinates, consider without loss of generality the line � : X3 = 0
whose point set is {(1, 0, 0), (0, 1, 0), (1, ω, 0), (1, ω2, 0), (1, 1, 0)}, with ω a prim-
itive element of GF(4). With respect to the Gale transform, the essential part
of � is the subset {1, ω, 0), (1, ω2, 0), (1, 1, 0)} which—after truncation at the sec-
ond coordinate—gives rise to the points (1, 1, 1) and (1, ω, ω2). By adding the
fundamental points of PG(2, 4) we get a conic of PG(2, 4).

Similarly, for q = 5 it can be observed that a line of PG(2, 5) is mapped by
the Gale transform onto a twisted cubic of PG(3, 5).

The following result is an important consequence of [19, Theorem 27.5.4].

Proposition 2.3. The Gale transform of a k-cap in a projective space
PG(r, q), k ≥ r + 4, is a k-cap in PG(k − r − 2, q).
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What we have seen so far can be summarized in the following fundamental result,
see [8].

Theorem 2.4. Let T be any set consisting of k of points in PG(r, q), r ≥ 2
and k ≥ r + 4. Then the Gale transform T ′ of T is a k-cap in PG(k − r − 2, q).

Sometimes it is convenient to have some control over the automorphism groups
associated to the geometrical objects obtained in some peculiar way. With this
respect, the Gale transform has an interesting behaviour, as it is shown by the
following result [8].

Proposition 2.5. Let K be a k-cap in PG(r, q) and K′ its Gale transform.
Then K and K′ have isomorphic collineation groups.

3 – Self-associated sets

A set of points which is the Gale transform of itself is called a self-associated
set. Actually, at an early stage the study of the Gale transform was mainly de-
voted to finding self-associated sets of points with some prescribed properties,
see [12] for details and historical information. Some more recent results concern-
ing self-associated sets from an algebraic geometry point of view can be found
in [13].

Unlike the classical case, in finite geometry self-associated sets are somehow
rare, due to the great number of constrains that the condition of being self-
associate imposes over sets of points in a finite projective space. What follows
provides a typical example of such results.

• A conic C in PG(2, q) is self-associated if and only if q = 5. In fact, γ =
|C| = q + 1 and from γ = r + s + 2, r = s = 2 it follows q = 5.

• In PG(r, q) no self-associated set is the complement of a hyperplane if q is
odd. Indeed, if π is a hyperplane of PG(r, q), then γ = qr = 2(r + 1), and
this equality cannot hold unless q is even.

• The complement of a plane in PG(3, q) is self-associated if and only if q = 2.
Indeed, if π is a plane in PG(3, q), then γ = |PG(3, q)\π| = q3 implies q3 = 8,
and hence q = 2.

• The complement of a hyperplane in PG(r, 2) is a self-associated set if and
only if r = 3. Indeed, let π be a hyperplane of PG(r, 2). Then, γ =
|PG(r, 2) \ π| = 2r. If r = s then 2r−1 = r + 1, which implies r = 3.

What we have just seen can be summarised as follows, see [8].

Lemma 3.1. The only finite projective space containing a self-associated
set which is the complement of a hyperplane is PG(3, 2).



[5] Some recent results in finite geometry and coding theory . . . 71

4 – The Gale transform of an elliptic quadric in PG(3, 3) and the Math-
ieu groups

In this section we show an interesting connection among the group of an
elliptic quadric of PG(3, 3) and the Mathieu groups M11, M12 obtained by means
of the Gale transform.

Let E be the elliptic quadric of PG(3, 3) whose points are

P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0), P3 = (0, 0, 1, 0),

P4 = (0, 0, 0, 1), P5 = (1, 1, 1, 0), P6 = (1, 0, 2, 1),

P7 = (1, 2, 1, 2), P8 = (1, 1, 2, 2), P9 = (1, 2, 0, 1),

P10 = (0, 1, 1, 1).

Their coordinate vectors are the rows of the matrix

(
I4

A

)
.

The matrix associated to the Gale transform E ′ of E is

( τA

I6

)
,

where

τA =

⎛
⎜⎝

1 1 1 1 1 0
1 0 2 1 2 1
1 2 1 2 0 1
0 1 2 2 1 1

⎞
⎟⎠ .

The rows of τA generate a vector space V1 = V (4, 3).

Let V = V (10, 3) be a 10-dimensional vector space over F3 equipped with
the standard scalar product. Then, the orthogonal complement of V1 in V is
V ⊥

1 = V (6, 3) = V2.

The 10-caps in PG(5, 3) whose points can be arranged to produce the rows
of a 10×6 matrix whose columns span a vector space like the above V2 are called
dual 10-caps of E .

Consider the (unique up to isomorphisms) Steiner System S = S(3, 4, 10)
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whose points are the points of E ′ and blocks are as follows:

{P4, P5, P7, P9}, {P1, P2, P3, P9}, {P6, P8, P9, P10},
{P3, P6, P7, P9}, {P3, P5, P9, P10}, {P2, P5, P6, P7},
{P2, P7, P9, P10}, {P4, P5, P6, P10}, {P2, P4, P6, P9},
{P1, P2, P4, P7}, {P1, P2, P5, P10}, {P3, P4, P8, P9},
{P2, P3, P6, P10}, {P1, P5, P6, P9}, {P3, P5, P6, P8},
{P4, P6, P7, P8}, {P5, P7, P8, P10}, {P1, P6, P7, P10},
{P3, P4, P7, P10}, {P1, P4, P5, P8}, {P2, P4, P8, P10},
{P1, P2, P6, P8}, {P1, P4, P9, P10}, {P1, P7, P8, P9},
{P2, P3, P7, P8}, {P2, P5, P8, P9}, {P1, P3, P8, P10},
{P2, P3, P4, P5}, {P1, P3, P5, P7}, {P1, P3, P4, P6}.

• E ′ and E admit the same automorphism group G = PGO−(4, q) which acts
transitively on the plane sections of E .

• S is the so-called Witt design W10;
• The isomorphism group of S is denoted by M10 and is isomorphic to a

proper subgroup of PGL(2, 9) containing PSL(2, 9).
• G in its 6-dimensional representation is reducible; it fixes a line � which is

splitted into two orbits:

�1 = {(1, 1, 0, 2, 2, 2), (1, 2, 2, 0, 1, 2)};
�2 = {(1, 0, 1, 1, 0, 2), (0, 1, 2, 1, 2, 0)}.

Fix the orbit �1 and let E1 = E ′∪{(1, 1, 0, 2, 2, 2)}. Then, E1 turns out to be
the set of points of the unique Steiner system S(4, 5, 11) admitting M11 as
its automorphism group. The cap code associated to E1 is the well known
ternary Golay code, which is a perfect [11, 6, 5]3 code, see [8, 20 ,21].
Further, let E2 = E1 ∪ {(1, 2, 2, 0, 1, 2)}. Then, E2 turns out to be the set

of points of the unique Steiner system S(5, 6, 12) admitting M12 as its automor-
phism group, see [8, 21]. We obtained the following result.

Lemma 4.1. The Gale transform of an elliptic quadric of PG(3, 3) can be
extended in PG(5, 3) to obtain the extended ternary Golay code.

Note that the above procedure can also be applied starting off with the
points of the affine plane AG(2, 3) obtained by removing from PG(2, 3) the line
of equation X1 + X2 + X3 = 0—in place of the points of E—to obtain a cap
admitting M12 as its automorphism group.
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Remark 4.2. A similar construction can be performed starting off with
an hyperbolic quadric in PG(3, 3) instead. In this case we end up with a 16-
cap in PG(11, 3) which is the join of four normal rational curves. Furthermore,
this 16-cap admits an automorphism group which is isomorphic to the group
PGL(2, 3) × PGL(2, 3) of the initial hyperbolic quadric.

5 – Extending scalars

In connection with what we have seen in the previous section, it is also
interesting to note the following constructions based on the action of the groups
M11 and M12.

5.1 – A [110, 5, 90]9-linear code [9]

Start off with a Singer cyclic subgroup S of PSL(5, 3). The group S admits
a subgroup of order 11 partitioning PG(4, 3) into 11-caps. Let K be one of these
caps. Then, K is the smallest complete cap in PG(4, 3), and it is preserved
setwise by the Mathieu group M11, see [20]. As we mentioned before, the cap
code associated to K is the well known ternary Golay code.

Embed Σ = PG(4, 3) in PG(4, 9) as a canonical Baer subgeometry, and look
at the orbits of M11 on PG(4, 9) \ Σ; it turns out that M11 has five orbits in
PG(4, 9) of lengths 110, 220, 990, 1980 and 3960.

Recall that K has 55 secants; let r be an arbitrary GF(9)-extended secant
to K. The stabilizer H of r in M11 is the group

M9 � C2 � (E9 × Q8) � C2

of order 144.
Now let O be the orbit of size 110 in PG(4, 9) \ Σ. The group H has four

orbits on r: three of them have length 2, while the fourth one has length 4. Two
of the orbits of length 2 yield the line r ∩ Σ. Varying r among the secants to
K, the other orbit of length 2 gives rise to the orbit O we mentioned before.
Actually, O is a complete 110-cap of PG(4, 9).

The 110-cap O yields a [110, 5, 90]9-linear code C with weight distribution

255, 81980, 111320, 142970, 17990, 2066.

A code with the same parameters can be found in [1]. However, in the cited
paper the authors do not mention its automorphism group. The main advantage
of our approach relies on the fact that it is possible to keep track of the auto-
morphism group throughout the construction procedure, and codes with large
automorphism groups are of some interest in their own right.
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5.2 – A [132, 6, 96]9-linear code

The extended ternary Golay code is a [12, 6, 6]3 linear code obtained by
adding a zero-sum check digit to the [11, 6, 5]3 code. The automorphism group
of the extended ternary Golay code is C2 × M12. Such a code can be realized
geometrically in terms of a 12-cap C in PG(5, 3), see [10].

Embed Π = PG(5, 3) in PG(5, 9) as a canonical Baer subgeometry and look
at the orbits of G = M12 on PG(5, 9) \ Π. With the aid of MAGMA [2] we
checked that G has one orbit O of size 132 which is a cap.

The number of secants to C is 66. Let r be an arbitrary F9-extended secant
to C. The stabiliser H of r in G is the group

M10 � C2 � A6 × E4

of order 1440. The group H has 4 orbits on r of lenghts 2, 2, 2 and 4.
Two orbits of length 2 form the the line r∩Π. Varying r among the secants

to C, the remaining orbit of size 2 gives rise to the cap O. Therefore, Coxeter’s
12-cap gives rise to our cap O. We checked with MAGMA [2] that the cap-code
arising from O is a [132, 6, 96]9 linear code.
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[20] G. Pellegrino: Sulle proprietà della 11-calotta completa di S4,3 e su un B.I.B.-
disegno ad essa collegato, Boll. Un. Mat. Ital. 7, 4 (1973) pp. 463–470.

[21] G. Pellegrino: Su una interpretazione geometrica dei gruppi M11 ed M12 di
Mathieu e su alcuni t−(v, k, λ)-disegni-deducibili da una (12)45,3 calotta completa,
Atti Sem. Mat. Fis. Univ. Modena 23, 1 (1974) pp. 103–117 (1975).
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