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Curves of genus 3
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Abstract: Any curve of genus 3 can be represented as a plane quartic curve.
The question of the maximum number of points on such a curve over a finite field is
discussed.

1 – Questions about curves

(i) What is meant by the ‘number of points’ on a curve?
(ii) What is the number of points on a curve that can occur, given some pa-

rameters such as
q, the size of the field,
g, the genus of the curve,
n, the degree of a plane curve?

(iii) What is the maximum number of points?
(iv) Find curves with certain parameters.
(v) Classify the curves with a set of these parameters.

One such problem is to find the number of rational points over Fq on a non-
singular plane quartic curve, that is, a curve of genus 3.

This article surveys this problem and its background. For contrast, curves
of genus 1 and 2 are also considered.
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2 – Cubic surfaces

Let V = v(F1, . . . , Fr) be the variety given by the zeros of the homogeneous
polynomials F1, . . . , Fr.

Theorem 2.1. A non-singular surface F3 of degree three over a field K
has at most 27 lines and over the algebraic closure K exactly 27 lines.

Theorem 2.2. Over Fq, there exists an F3 with 27 lines if q �= 2, 3, 5.
Equivalently, in PG(2, q), there exists a 6-arc not on a conic if q �= 2, 3, 5.

Theorem 2.3.
(i) The group G27 of automorphisms of the 27 lines is isomorphic to

PΓU(4, 4) ∼= PGO−(6, 2) ∼= PGSp(4, 3) ∼= PGO(5, 3),

and has order 51, 840 = 72 × 6!.
(ii) The simple group G′

27 of index two in G27 is isomorphic to PGU(4, 4), and
has order 25, 920 = 36 × 6!.

2.1 – From 27 to 28

Theorem 2.4. For a point P not on a line of F3, the intersection C6 of
F3 and the polar quadric Q2 of F3 at P has a double point at P ; it projects from
P to a non-singular plane quartic when K has characteristic other than two.

Figure 1

F3 ∩Q2 = C6 P→C4
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Proof. Let P = (1, 0, 0, 0) and π = v(X0). Then

F3 = v(X2
0f1(X1, X2, X3) + X0f2(X1, X2, X3) + f3(X1, X2, X3)),

Q2 = v(2X0f1(X1, X2, X3) + f1(X1, X2, X3)),

C6 = v(X2
0f1 + X0f2 + f3, 2X0f1 + f2)

C4 = v(f2
2 − 4f1f3, X0)

For q even, C4 = C2 ∪ C2, a repeated conic. For q odd, F3 is non-singular if and
only if C4 is non-singular.

Theorem 2.5. For q odd, q ≥ 9, there exists a non-singular C4 with 28
bitangents if and only if there exists F3 with 27 lines and P not on the lines.

Example 2.6. For q = 9, let

F = X4
0 + X4

1 + X4
2

= X0X̄0 + X1X̄1 + X2X̄2,

where t �→ t3 = t̄ is the involutory automorphism of F9. So F = v(F ) is a
Hermitian curve with q

√
q +1 = 28 rational points, all of which are undulations;

that is, the tangents have 4-point contact and so are bitangents.

2.2 – Number of points

Theorem 2.7.

(i) The number of rational points on a non-singular cubic surface F3 over Fq

is |F3(Fq)| = q2 + 7q + 1.
(ii)

(a) The 27 lines of F3 lie on 45 tritangent planes of which e meet F3 in
three concurrent lines.

(b) The number of rational points on the lines is N0 = 27(q − 4) + e.

Proof.
(i) In the correspondence between F3 and the plane, each line in one half of a

double-six corresponds to a point.
(ii) (b) A triangle contains 3q points, whereas a triad of concurrent lines contains

3q + 1 points. As each line meets 10 others, a count of points on just one of
the 27 lines plus those on more than one line gives the following:

N0 = 27(q + 1 − 10) + 27 × 10/2 + e.
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2.3 – Full F3

Definition 2.8. A cubic surface defined over K is full if its lines contain
all its rational points.

Theorem 2.8.
(i) There exists a full F3 for

q = 4, 7, 8, 9, 11, 13, 16 .

(ii) Canonical forms for the full surfaces are as follows:

E = v(X3
0 + X3

1 + X3
2 + X3

3 ), q = 4, 7, 13, 16;

D = v
(
X3

0 + X3
1 + X3

2 + X3
3 + X3

4 ,
∑

Xi

)
, q = 4, 11, 16;

D = v
(∑

XiXjXk,
∑

Xi

)
, q = 9;

C = v(X0X1(X0 + X1) + X2X3(X0 + X2 + X3)), q = 8.

(iii) For q = 4, 7, 8, every F3 is full.
(iv) For q > 16, no F3 is full.

2.4 – Number of lines and bitangents

Theorem 2.10. For a cubic surface F3 and the corresponding C4 over
Fq, let n be the number of possible lines on F3 and b the number of possible
bitangents on C4.

(i) For q odd,
n = 27, 15, 9, 7, 5, 3, 2, 1, 0;

b = 28, 16, 10, 8, 6, 4, 3, 2, 1, 0.

(ii) For q = 2,
n = 15, 9, 5, 3, 2, 1, 0.
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Question 2.11. What are the possible numbers of lines on a non-singular
cubic over F2h?

Theorem 2.12. For q even, the possible numbers of bitangents of a non-
singular plane quartic are 7, 3, 1, 0. In the case of 7 bitangents they form a
PG(2, 2).

Example 2.13. (The Klein curve for q = 8)

F = v(X3Y + Y 3Z + Z3X).

The 24 rational points are all inflexions. There are 7 bitangents

v(c3X + cY + Z), c ∈ F8\{0},

forming a PG(2, 2).

Theorem 2.14. For an algebraically closed field of characteristic two, the
possible configurations of bitangents are the following :

(1) 7 lines forming a PG(2, 2);
(2) 4 lines with 3 concurrent;
(3) 1 line;
(4) a pencil plus a line;
(5) a pencil with one special line.

3 – The number of points on a non-singular curve

For a curve F defined over Fq with Ni the number of points of F rational
over Fqi , the zeta function is

ζq(T ) = exp(1 + N1T + N2T
2/2 + N3T

3/3 + · · · ).

Theorem 3.1. (Hasse–Weil)

ζq(T ) = exp
(∑

NiT
i/i

)
=

f(T )

(1 − T )(1 − qT )
,

with f ∈ Z[T ], degf = 2g.
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Corollary 3.2.
(i) N1 ≤ q + 1 + 2g

√
q.

(ii) When g = 1,

ζq(T ) =
1 + c1T + qT 2

(1 − T )(1 − qT )
.

Theorem 3.3. (Serre) N1 ≤ q + 1 + g�2√q�.

Notation 3.4. Nq(g) = max N1, taken over all non-singular curves C of
genus g over Fq.

Example 3.5. For the Klein curve with q = 2,

F = X3Y + Y 3Z + Z3X,

N1 = 3, N2 − N1 = 2, N3 − N1 = 21,

f(T ) = 1 + 5T 3 + 8T 6.

A special case of an important theorem gives other bounds.

Theorem 3.6. (Stöhr–Voloch) For a plane curve of degree n with not all
points inflexions and p �= 2,

N1 ≤ 1

2
n(n + q − 1).

The case that q = 7, n = 4, g = 3 gives

N7(3) ≤ 20 < 23 = 7 + 1 + 3�2 ×
√

7�

In fact, N7(3) = 20.

4 – Curves of genus 1

A curve of genus 1, or elliptic curve, can be regarded as a plane non-singular
cubic. Plane cubics may be classified up to isomorphism or projective equiva-
lence.

Theorem 4.1. Up to isomorphism, a curve F = v(F ) of genus 1 over
Fq, with q = ph, has at least one point of inflexion and the following canonical
forms.
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(i) When p �= 2, 3,

F = Y 2Z + X3 + cXZ2 + dZ3,

where 4c3 + 27d2 �= 0.

(ii) When p = 3,

(a)

F = Y 2Z + X3 + bX2Z + dZ3,

where bd �= 0;

(b)

F ′ = Y 2Z + X3 + cXZ2 + dZ3,

where c �= 0.

(iii) When p = 2,

(a)

F = Y 2Z + XY Z + X3 + bX2Z + dZ3,

where b = 0 or a fixed element of trace 1, and c �= 0;

(b)

F ′ = Y 2Z + Y Z2 + eX3 + cXZ2 + dZ3,

where e = 1 when (q − 1, 3) = 1 and e = 1, α, α2 when (q − 1, 3) = 1, with α a
primitive element of Fq; also, d = 0 or a particular element of trace 1.

Canonical forms up to a projectivity exist for cubics with no inflexions; see [7,
Chapter 11]. For example, over F7, let

F = X3 + 2Y 3 + 3Z3.

The corresponding curve F has no inflexion.

Theorem 4.2. Let N1 be the number of rational points of an elliptic curve
over Fq.

(i)

q + 1 − 2
√

q ≤ N1 ≤ q + 1 + 2
√

q.

(ii) The precise number N1 = q +1− t, with | t | ≤ 2
√

q, of points that can occur
is given in Table 1.
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Table 1: Values of t

t p h

(1) t �≡ 0 ( mod p)

(2) t = 0 odd

(3) t = 0 p �≡ 1 (mod 4) even

(4) t = ±√
q p �≡ 1 (mod 3) even

(5) t = ±2
√

q even

(6) t = ±√
2q p = 2 odd

(7) t = ±√
3q p = 3 odd

Theorem 4.3. If Aq and Pq are the numbers of distinct elliptic curves up
to isomorphism and projective equivalence, then

Aq = 2q + 3 +

(−4

q

)
+ 2

(−3

q

)
;

Pq = 3q + 2 +

(−4

q

)
+

(−3

q

)2

+ 3

(−3

q

)
.

Here the bracketed numbers are Legendre and Legendre–Jacobi symbols taking
the values −1, 0, 1.

The prime power q = ph is exceptional if h is odd, h ≥ 3, and p divides �2√q�.

Theorem 4.4. The actual upper bounds for elliptic curves over Fq are as
follows:

Nq(1) =

{
q + �2√q�, if q is exceptional

q + 1 + �2√q�, if q is non-exceptional;

Corollary 4.5. The number N1 takes every value between q + 1−�2√q�
and q + 1 + �2√q� if and only if

(a) q = p;

(b) q = p2 with p = 2 or p = 3 or p ≡ 11 (mod 12).
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4.1 – Unsolved problem

Let m3(2, q) be the maximum size of a point set K in PG(2, q) such that at
most three points of K lie on a line. Show that

m3(2, q) > Nq(1) for q �= 4.

This is true for q ≤ 13 as in Table 2.

Table 2: Values of m3(2, q)

q 2 3 4 5 7 8 9 11 13
m3(2, q) 7 9 9 11 15 15 17 21 23
Nq(1) 5 7 9 10 13 14 16 18 21

5 – Curves of genus 2

Theorem 5.1. For a curve of genus 2 over Fq with q square,

Nq(2) = q + 1 + 4
√

q, if q �= 4, 9;

N4(2) = 10;

N9(2) = 20.

The prime power q = ph is special if (a) or (b) holds:

(a) p divides �2√q�;
(b) there exists m such that q = m2 + 1 or q = m2 + m + 1 or q = m2 + m + 2.

Theorem 5.2. If q is a non-square, with {2√q} = 2
√

q − �2√q�,

Nq(2) = q + 1 + 2�2√q�, if q is not special;

Nq(2) = q + 2�2√q�, if q is special and {2√q} >
1

2
(
√

5 − 1);

Nq(2) = q − 1 + 2�2√q�, if q is special and {2√q} <
1

2
(
√

5 − 1).
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6 – Curves of genus 3

From Section 3, there is the following result.

Theorem 6.1.
(i) Nq(3) ≤ q + 1 + 3�2√q� = S3.

(ii) Nq(3) ≤

⎧
⎪⎨
⎪⎩

28, q = 9

2(q + 3), q odd, q �= 9

2(q + 4), q even

= V3.

Theorem 6.2. (Lauter) For a curve of genus 3,

N1 ≤ q − 1 + 3�2√q� if q = m2 + 1;

N1 ≤ q − 1 + 3�2√q� if q = m2 + 2 with m ≥ 2;

N1 ≤ q − 2 + 3�2√q� if q = m2 + m + 1;

N1 ≤ q − 2 + 3�2√q� if q = m2 + m + 3 with m ≥ 3.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= L3

Theorem 6.3. For a curve of genus 3, if N1 > 2q + 6 then one of the
following holds:

(i) N1 = 28, q = 9 and C is the Hermitian curve;
(ii) N1 = 24, q = 8 and C is the Klein curve.

Table 3 summarises the results for small q.

Table 3: Number of points on curves of genus 3

q 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27

Nq(3) 7 10 14 16 20 24 28 28 32 38 40 44 48 56 56
S3 9 13 17 18 23 24 28 30 35 41 42 44 51 56 58
V3 10 12 16 16 20 24 28 28 32 40 40 44 52 56 60
L3 7 10 16 20 28 32 40 48 56

Theorem 6.4. (Ibukiyama) For q = p4m+2,

Nq(3) = q + 1 + 6
√

q.
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Theorem 6.5.

(i) When q < 100, there is equality Nq(3) = S3 if and only if

q ∈ {8, 9, 19, 25, 29, 41, 47, 49, 53, 61, 64, 67, 71, 79, 81, 89, 97}.

(ii) When q ≤ 27, there is equality Nq(3) = V3 if and only if

q ∈ {5, 7, 11, 13, 17, 19, 25}.
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