Rendiconti di Matematica, Serie VII
Volume 30, Roma (2010), 77-88

Curves of genus 3

J.W.P. HIRSCHFELD

Dedicated to Marialuisa de Resmini on her retirement

Abstract: Any curve of genus 3 can be represented as a plane quartic curve. The question of the maximum number of points on such a curve over a finite field is discussed.

1 - Questions about curves

(i) What is meant by the 'number of points' on a curve?
(ii) What is the number of points on a curve that can occur, given some parameters such as q, the size of the field, g, the genus of the curve, n, the degree of a plane curve?
(iii) What is the maximum number of points?
(iv) Find curves with certain parameters.
(v) Classify the curves with a set of these parameters.

One such problem is to find the number of rational points over \mathbf{F}_{q} on a nonsingular plane quartic curve, that is, a curve of genus 3 .

This article surveys this problem and its background. For contrast, curves of genus 1 and 2 are also considered.

Key Words and Phrases: Cubic surface - Quartic curve
A.M.S. Classification: 11G25, 51E20.

2 - Cubic surfaces

Let $\mathcal{V}=\mathbf{v}\left(F_{1}, \ldots, F_{r}\right)$ be the variety given by the zeros of the homogeneous polynomials F_{1}, \ldots, F_{r}.

Theorem 2.1. A non-singular surface \mathcal{F}^{3} of degree three over a field K has at most 27 lines and over the algebraic closure \bar{K} exactly 27 lines.

Theorem 2.2. Over \mathbf{F}_{q}, there exists an \mathcal{F}^{3} with 27 lines if $q \neq 2,3,5$. Equivalently, in $\mathrm{PG}(2, \mathrm{q})$, there exists a 6 -arc not on a conic if $q \neq 2,3,5$.

Theorem 2.3 .
(i) The group G_{27} of automorphisms of the 27 lines is isomorphic to

$$
\mathrm{P} \Gamma \mathrm{U}(4,4) \cong \mathrm{PGO}_{-}(6,2) \cong \operatorname{PGSp}(4,3) \cong \mathrm{PGO}(5,3)
$$

and has order $51,840=72 \times 6$!.
(ii) The simple group G_{27}^{\prime} of index two in G_{27} is isomorphic to $\operatorname{PGU}(4,4)$, and has order $25,920=36 \times 6$!.

2.1-From 27 to 28

Theorem 2.4. For a point P not on a line of \mathcal{F}^{3}, the intersection \mathcal{C}^{6} of \mathcal{F}^{3} and the polar quadric \mathcal{Q}^{2} of \mathcal{F}^{3} at P has a double point at P; it projects from P to a non-singular plane quartic when K has characteristic other than two.

Figure 1

$$
\mathcal{F}^{3} \cap \mathcal{Q}^{2}=\mathcal{C}^{6} \xrightarrow{P} \mathcal{C}^{4}
$$

Proof. Let $P=(1,0,0,0)$ and $\pi=\mathbf{v}\left(X_{0}\right)$. Then

$$
\begin{aligned}
\mathcal{F}^{3} & =\mathbf{v}\left(X_{0}^{2} f_{1}\left(X_{1}, X_{2}, X_{3}\right)+X_{0} f_{2}\left(X_{1}, X_{2}, X_{3}\right)+f_{3}\left(X_{1}, X_{2}, X_{3}\right)\right) \\
\mathcal{Q}^{2} & =\mathbf{v}\left(2 X_{0} f_{1}\left(X_{1}, X_{2}, X_{3}\right)+f_{1}\left(X_{1}, X_{2}, X_{3}\right)\right) \\
\mathcal{C}^{6} & =\mathbf{v}\left(X_{0}^{2} f_{1}+X_{0} f_{2}+f_{3}, 2 X_{0} f_{1}+f_{2}\right) \\
\mathcal{C}^{4} & =\mathbf{v}\left(f_{2}^{2}-4 f_{1} f_{3}, X_{0}\right)
\end{aligned}
$$

For q even, $\mathcal{C}^{4}=\mathcal{C}^{2} \cup \mathcal{C}^{2}$, a repeated conic. For q odd, \mathcal{F}^{3} is non-singular if and only if \mathcal{C}^{4} is non-singular.

Theorem 2.5. For q odd, $q \geq 9$, there exists a non-singular \mathcal{C}^{4} with 28 bitangents if and only if there exists \mathcal{F}^{3} with 27 lines and P not on the lines.

Example 2.6. For $q=9$, let

$$
\begin{aligned}
F & =X_{0}^{4}+X_{1}^{4}+X_{2}^{4} \\
& =X_{0} \bar{X}_{0}+X_{1} \bar{X}_{1}+X_{2} \bar{X}_{2}
\end{aligned}
$$

where $t \mapsto t^{3}=\bar{t}$ is the involutory automorphism of $\mathbf{F}_{\mathbf{9}}$. So $\mathcal{F}=\mathbf{v}(F)$ is a Hermitian curve with $q \sqrt{q}+1=28$ rational points, all of which are undulations; that is, the tangents have 4 -point contact and so are bitangents.

2.2 - Number of points

Theorem 2.7.

(i) The number of rational points on a non-singular cubic surface \mathcal{F}^{3} over \mathbf{F}_{q} is $\left|\mathcal{F}^{3}\left(\mathbf{F}_{q}\right)\right|=q^{2}+7 q+1$.
(ii)
(a) The 27 lines of \mathcal{F}^{3} lie on 45 tritangent planes of which e meet \mathcal{F}^{3} in three concurrent lines.
(b) The number of rational points on the lines is $N_{0}=27(q-4)+e$.

Proof.
(i) In the correspondence between \mathcal{F}^{3} and the plane, each line in one half of a double-six corresponds to a point.
(ii) (b) A triangle contains $3 q$ points, whereas a triad of concurrent lines contains $3 q+1$ points. As each line meets 10 others, a count of points on just one of the 27 lines plus those on more than one line gives the following:

$$
N_{0}=27(q+1-10)+27 \times 10 / 2+e .
$$

$2.3-$ Full \mathcal{F}^{3}

Definition 2.8. A cubic surface defined over K is full if its lines contain all its rational points.

Theorem 2.8.
(i) There exists a full \mathcal{F}^{3} for

$$
q=4,7,8,9,11,13,16
$$

(ii) Canonical forms for the full surfaces are as follows:

$$
\begin{aligned}
\mathcal{E} & =\mathbf{v}\left(X_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}\right), \quad q=4,7,13,16 \\
\mathcal{D} & =\mathbf{v}\left(X_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}+X_{4}^{3}, \sum X_{i}\right), \quad q=4,11,16 \\
\mathcal{D} & =\mathbf{v}\left(\sum X_{i} X_{j} X_{k}, \sum X_{i}\right), \quad q=9 \\
\mathcal{C} & =\mathbf{v}\left(X_{0} X_{1}\left(X_{0}+X_{1}\right)+X_{2} X_{3}\left(X_{0}+X_{2}+X_{3}\right)\right), \quad q=8
\end{aligned}
$$

(iii) For $q=4,7,8$, every \mathcal{F}^{3} is full.
(iv) For $q>16$, no \mathcal{F}^{3} is full.

2.4 - Number of lines and bitangents

THEOREM 2.10. For a cubic surface \mathcal{F}_{3} and the corresponding \mathcal{C}_{4} over \mathbf{F}_{q}, let n be the number of possible lines on \mathcal{F}_{3} and b the number of possible bitangents on \mathcal{C}_{4}.
(i) For q odd,

$$
\begin{aligned}
n & =27,15,9,7,5,3,2,1,0 \\
b & =28,16,10,8,6,4,3,2,1,0
\end{aligned}
$$

(ii) For $q=2$,

$$
n=15,9,5,3,2,1,0
$$

Question 2.11. What are the possible numbers of lines on a non-singular cubic over $\mathbf{F}_{\mathbf{2}^{\mathrm{h}}}$?

Theorem 2.12. For q even, the possible numbers of bitangents of a nonsingular plane quartic are $7,3,1,0$. In the case of 7 bitangents they form a PG(2, 2).

Example 2.13. (The Klein curve for $q=8$)

$$
\mathcal{F}=\mathbf{v}\left(X^{3} Y+Y^{3} Z+Z^{3} X\right)
$$

The 24 rational points are all inflexions. There are 7 bitangents

$$
\mathbf{v}\left(c^{3} X+c Y+Z\right), \quad c \in \mathbf{F}_{\mathbf{8}} \backslash\{\mathbf{0}\},
$$

forming a $\mathrm{PG}(2,2)$.

Theorem 2.14. For an algebraically closed field of characteristic two, the possible configurations of bitangents are the following:
(1) 7 lines forming a $\mathrm{PG}(2,2)$;
(2) 4 lines with 3 concurrent;
(3) 1 line;
(4) a pencil plus a line;
(5) a pencil with one special line.

3 - The number of points on a non-singular curve

For a curve \mathcal{F} defined over \mathbf{F}_{q} with N_{i} the number of points of \mathcal{F} rational over $\mathbf{F}_{\mathbf{q}^{\mathbf{i}}}$, the zeta function is

$$
\zeta_{q}(T)=\exp \left(1+N_{1} T+N_{2} T^{2} / 2+N_{3} T^{3} / 3+\cdots\right)
$$

Theorem 3.1. (Hasse-Weil)

$$
\zeta_{q}(T)=\exp \left(\sum N_{i} T^{i} / i\right)=\frac{f(T)}{(1-T)(1-q T)}
$$

with $f \in \mathbf{Z}[T], \quad \operatorname{deg} f=2 g$.

Corollary 3.2.
(i) $N_{1} \leq q+1+2 g \sqrt{q}$.
(ii) When $g=1$,

$$
\zeta_{q}(T)=\frac{1+c_{1} T+q T^{2}}{(1-T)(1-q T)}
$$

Theorem 3.3. (Serre) $N_{1} \leq q+1+g\lfloor 2 \sqrt{q}\rfloor$.
Notation 3.4. $N_{q}(g)=\max N_{1}$, taken over all non-singular curves \mathcal{C} of genus g over \mathbf{F}_{q}.

Example 3.5. For the Klein curve with $q=2$,

$$
\begin{aligned}
& F=X^{3} Y+Y^{3} Z+Z^{3} X, \\
& N_{1}=3, \quad N_{2}-N_{1}=2, \quad N_{3}-N_{1}=21, \\
& f(T)=1+5 T^{3}+8 T^{6}
\end{aligned}
$$

A special case of an important theorem gives other bounds.
Theorem 3.6. (Stöhr-Voloch) For a plane curve of degree n with not all points inflexions and $p \neq 2$,

$$
N_{1} \leq \frac{1}{2} n(n+q-1) .
$$

The case that $q=7, n=4, g=3$ gives

$$
N_{7}(3) \leq 20<23=7+1+3\lfloor 2 \times \sqrt{7}\rfloor
$$

In fact, $N_{7}(3)=20$.

4 - Curves of genus 1

A curve of genus 1, or elliptic curve, can be regarded as a plane non-singular cubic. Plane cubics may be classified up to isomorphism or projective equivalence.

Theorem 4.1. Up to isomorphism, a curve $\mathcal{F}=\mathbf{v}(F)$ of genus 1 over \mathbf{F}_{q}, with $q=p^{h}$, has at least one point of inflexion and the following canonical forms.
(i) When $p \neq 2,3$,

$$
F=Y^{2} Z+X^{3}+c X Z^{2}+d Z^{3}
$$

where $4 c^{3}+27 d^{2} \neq 0$.
(ii) When $p=3$,
(a)

$$
F=Y^{2} Z+X^{3}+b X^{2} Z+d Z^{3}
$$

where $b d \neq 0$;
(b)

$$
F^{\prime}=Y^{2} Z+X^{3}+c X Z^{2}+d Z^{3}
$$

where $c \neq 0$.
(iii) When $p=2$,
(a)

$$
F=Y^{2} Z+X Y Z+X^{3}+b X^{2} Z+d Z^{3}
$$

where $b=0$ or a fixed element of trace 1, and $c \neq 0$;
(b)

$$
F^{\prime}=Y^{2} Z+Y Z^{2}+e X^{3}+c X Z^{2}+d Z^{3}
$$

where $e=1$ when $(q-1,3)=1$ and $e=1, \alpha, \alpha^{2}$ when $(q-1,3)=1$, with α a primitive element of \mathbf{F}_{q}; also, $d=0$ or a particular element of trace 1 .

Canonical forms up to a projectivity exist for cubics with no inflexions; see [7, Chapter 11]. For example, over $\mathbf{F}_{\mathbf{7}}$, let

$$
F=X^{3}+2 Y^{3}+3 Z^{3}
$$

The corresponding curve \mathcal{F} has no inflexion.

ThEOREM 4.2. Let N_{1} be the number of rational points of an elliptic curve over \mathbf{F}_{q}.
(i)

$$
q+1-2 \sqrt{q} \leq N_{1} \leq q+1+2 \sqrt{q}
$$

(ii) The precise number $N_{1}=q+1-t$, with $|t| \leq 2 \sqrt{q}$, of points that can occur is given in Table 1.

Table 1: Values of t

	t	p	h
(1)	$t \not \equiv 0(\bmod p)$		
(2)	$t=0$	$p \not \equiv 1$	$(\bmod 4)$
(3)	$t=0$	$p \not \equiv 1$	$(\bmod 3)$
(4)	$t= \pm \sqrt{q}$		
(5)	$t= \pm 2 \sqrt{q}$	$p=2$	even
(6)	$t= \pm \sqrt{2 q}$		even
(7)	$t= \pm \sqrt{3 q}$		even

Theorem 4.3. If A_{q} and P_{q} are the numbers of distinct elliptic curves up to isomorphism and projective equivalence, then

$$
\begin{aligned}
& A_{q}=2 q+3+\left(\frac{-4}{q}\right)+2\left(\frac{-3}{q}\right) \\
& P_{q}=3 q+2+\left(\frac{-4}{q}\right)+\left(\frac{-3}{q}\right)^{2}+3\left(\frac{-3}{q}\right)
\end{aligned}
$$

Here the bracketed numbers are Legendre and Legendre-Jacobi symbols taking the values $-1,0,1$.

The prime power $q=p^{h}$ is exceptional if h is odd, $h \geq 3$, and p divides $\lfloor 2 \sqrt{q}\rfloor$.
THEOREM 4.4. The actual upper bounds for elliptic curves over \mathbf{F}_{q} are as follows:

$$
N_{q}(1)= \begin{cases}q+\lfloor 2 \sqrt{q}\rfloor, & \text { if } q \text { is exceptional } \\ q+1+\lfloor 2 \sqrt{q}\rfloor, & \text { if } q \text { is non-exceptional; }\end{cases}
$$

Corollary 4.5. The number N_{1} takes every value between $q+1-\lfloor 2 \sqrt{q}\rfloor$ and $q+1+\lfloor 2 \sqrt{q}\rfloor$ if and only if
(a) $q=p$;
(b) $q=p^{2}$ with $p=2$ or $p=3$ or $p \equiv 11(\bmod 12)$.

4.1 - Unsolved problem

Let $m_{3}(2, q)$ be the maximum size of a point set \mathcal{K} in $\mathrm{PG}(2, q)$ such that at most three points of \mathcal{K} lie on a line. Show that

$$
m_{3}(2, q)>N_{q}(1) \quad \text { for } q \neq 4
$$

This is true for $q \leq 13$ as in Table 2.
Table 2: Values of $m_{3}(2, q)$

q	2	3	4	5	7	8	9	11	13
$m_{3}(2, q)$	7	9	9	11	15	15	17	21	23
$N_{q}(1)$	5	7	9	10	13	14	16	18	21

5 - Curves of genus 2

Theorem 5.1. For a curve of genus 2 over \mathbf{F}_{q} with q square,

$$
\begin{aligned}
& N_{q}(2)=q+1+4 \sqrt{q}, \quad \text { if } q \neq 4,9 \\
& N_{4}(2)=10 \\
& N_{9}(2)=20
\end{aligned}
$$

The prime power $q=p^{h}$ is special if (a) or (b) holds:
(a) p divides $\lfloor 2 \sqrt{q}\rfloor$;
(b) there exists m such that $q=m^{2}+1$ or $q=m^{2}+m+1$ or $q=m^{2}+m+2$.

Theorem 5.2. If q is a non-square, with $\{2 \sqrt{q}\}=2 \sqrt{q}-\lfloor 2 \sqrt{q}\rfloor$,

$$
\begin{array}{lr}
N_{q}(2)=q+1+2\lfloor 2 \sqrt{q}\rfloor, & \text { if } q \text { is not special; } \\
N_{q}(2)=q+2\lfloor 2 \sqrt{q}\rfloor, & \text { if } q \text { is special and }\{2 \sqrt{q}\}>\frac{1}{2}(\sqrt{5}-1) ; \\
N_{q}(2)=q-1+2\lfloor 2 \sqrt{q}\rfloor, & \text { if } q \text { is special and }\{2 \sqrt{q}\}<\frac{1}{2}(\sqrt{5}-1) .
\end{array}
$$

6 - Curves of genus 3

From Section 3, there is the following result.
Theorem 6.1.
(i) $N_{q}(3) \leq q+1+3\lfloor 2 \sqrt{q}\rfloor=S_{3}$.
(ii) $N_{q}(3) \leq \begin{cases}28, & q=9 \\ 2(q+3), & q \text { odd, } q \neq 9=V_{3} . \\ 2(q+4), & q \text { even }\end{cases}$

Theorem 6.2. (Lauter) For a curve of genus 3,

$$
\left.\begin{array}{ll}
N_{1} \leq q-1+3\lfloor 2 \sqrt{q}\rfloor & \text { if } q=m^{2}+1 ; \\
N_{1} \leq q-1+3\lfloor 2 \sqrt{q}\rfloor & \text { if } q=m^{2}+2 \text { with } m \geq 2 \text {; } \\
N_{1} \leq q-2+3\lfloor 2 \sqrt{q}\rfloor & \text { if } q=m^{2}+m+1 ; \\
N_{1} \leq q-2+3\lfloor 2 \sqrt{q}\rfloor & \text { if } q=m^{2}+m+3 \text { with } m \geq 3 .
\end{array}\right\}=L_{3}
$$

Theorem 6.3. For a curve of genus 3 , if $N_{1}>2 q+6$ then one of the following holds:
(i) $N_{1}=28, q=9$ and \mathcal{C} is the Hermitian curve;
(ii) $N_{1}=24, q=8$ and \mathcal{C} is the Klein curve.

Table 3 summarises the results for small q.
Table 3: Number of points on curves of genus 3

q	2	3	4	5	7	8	9	11	13	16	17	19	23	25	27
$N_{q}(3)$	7	10	14	16	20	24	28	28	32	38	40	44	48	56	56
S_{3}	9	13	17	18	23	24	28	30	35	41	42	44	51	56	58
V_{3}	10	12	16	16	20	24	28	28	32	40	40	44	52	56	60
L_{3}	7	10		16	20			28	32		40		48		56

Theorem 6.4. (Ibukiyama) For $q=p^{4 m+2}$,

$$
N_{q}(3)=q+1+6 \sqrt{q} .
$$

Theorem 6.5.
(i) When $q<100$, there is equality $N_{q}(3)=S_{3}$ if and only if

$$
q \in\{8,9,19,25,29,41,47,49,53,61,64,67,71,79,81,89,97\}
$$

(ii) When $q \leq 27$, there is equality $N_{q}(3)=V_{3}$ if and only if

$$
q \in\{5,7,11,13,17,19,25\} .
$$

REFERENCES

[1] A. D. Campbell: Plane quartic curves in the Galois fields of order 2^{n}, Tôhoku Math. J. 37 (1933) pp. 88-93.
[2] L. R. A. Casse: Concerning bitangents of irreducible plane quartic curves over $G F\left(2^{h}\right)$, Teorie Combinatorie, vol. II, Accad. Naz. dei Lincei, Rome, 1976, (Rome, 1973), pp. 381-387.
[3] M. J. de Resmini: Sulle quartiche piane sopra un campo di caratteristica due, Ricerche Mat. 19 (1970) pp. 133-160.
[4] L. E. Dickson: Classification of quartic curves, modulo 2, Messenger of Mathematics, 44 (1915), pp. 189-192.
[5] L. E. Dickson: Geometrical and invariantive theory of quartic curves, modulo 2, Amer. J. Math., 37 (1915) pp. 337-354.
[6] L. E. Dickson: Quartic curves, modulo 2, Trans. Amer. Math. Soc., 16 (1915) pp. 111-120.
[7] J. W. P. Hirschfeld: Projective Geometries over Finite Fields, second edition, Oxford University Press, Oxford, 1998, xiv p. 555.
[8] J. W. P. Hirschfeld: Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985, x p. 316.
[9] J. W. P. Hirschfeld - G. Korchmáros - F. Torres: Algebraic Curves over a Finite Field, Princeton University Press, Princeton, 2008, xxii p. 696.
[10] T. Ibukiyama: On rational points of curves of genus 3 over finite fields, Tohoku Math. J., 45 pp. 311-329.
[11] R. H. Jeurissen - C. H. van Os - J. H. Steenbrink: The configuration of the bitangents of the Klein curve, Discrete Math., 132 (1994) pp. 83-96.
[12] K. LaUter: The maximum or minimum number of rational points on genus three curves over finite fields, Compositio Math., 134 (2002) pp. 87-111 (Appendix by J.-P. Serre).
[13] B. Segre: Arithmetical Questions on Algebraic Varieties, The Athlone Press, University of London, London, 1951, p. 55
[14] J. Top: Curves of genus 3 over small finite fields, Indag. Math., 14 pp. 275-283.
Lavoro pervenuto alla redazione il 10 marzo 2010 ed accettato per la pubblicazione il 15 marzo 2010.

Bozze licenziate il 20 aprile 2010

Indirizzo DELL'AUTORE:

J. W. P. Hirschfeld - Department of Mathematics - University of Sussex - Brighton BN1 9RF United Kingdom
Email: jwph@sussex.ac.uk - http://www.maths.sussex.ac.uk/Staff/JWPH/

