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ABSTRACT: Any curve of genus 3 can be represented as a plane quartic curve.
The question of the mazximum number of points on such a curve over a finite field is
discussed.

1 — Questions about curves

(i) What is meant by the ‘number of points’ on a curve?

(ii) What is the number of points on a curve that can occur, given some pa-
rameters such as
q, the size of the field,
g, the genus of the curve,
n, the degree of a plane curve?

(iii) What is the maximum number of points?

(iv) Find curves with certain parameters.

(v) Classify the curves with a set of these parameters.

One such problem is to find the number of rational points over F,; on a non-
singular plane quartic curve, that is, a curve of genus 3.

This article surveys this problem and its background. For contrast, curves
of genus 1 and 2 are also considered.
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2 — Cubic surfaces
Let V = v(Fy,. .., F,) be the variety given by the zeros of the homogeneous
polynomials Fi, ..., F.

THEOREM 2.1. A non-singular surface F3 of degree three over a field K
has at most 27 lines and over the algebraic closure K exactly 27 lines.

THEOREM 2.2.  Over F, there exists an F> with 27 lines if ¢ # 2,3,5.
Equivalently, in PG(2,q), there exists a 6-arc not on a conic if ¢ # 2,3,5.

THEOREM 2.3.
(i) The group Gar of automorphisms of the 27 lines is isomorphic to

PI'U(4,4) = PGO_(6,2) = PGSp(4,3) = PGO(5,3),

and has order 51,840 = 72 x 6!.
(ii) The simple group G, of index two in Gar is isomorphic to PGU(4,4), and
has order 25,920 = 36 x 6!.

2.1- From 27 to 28

THEOREM 2.4. For a point P not on a line of F°, the intersection C® of
F3 and the polar quadric Q% of F3 at P has a double point at P; it projects from
P to a non-singular plane quartic when K has characteristic other than two.

Figure 1
Fin@? =cshe
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PROOF. Let P = (1,0,0,0) and m = v(Xp). Then

F? =v(X{ f1(X1, X2, X3) + X0 fo(X1, X2, X3) + f3(X1, X2, X3)),
Q% = v(2Xo f1(X1, X2, X3) + f1(X1, X2, X3)),

CO =v(X3f1+ Xofa + f3, 2X0f1 + f2)

C* =v(f3 —4f1f3, Xo)

For g even, C* = C%2 UC?, a repeated conic. For ¢ odd, F? is non-singular if and
only if C* is non-singular. 0

THEOREM 2.5. For q odd, ¢ > 9, there exists a non-singular C* with 28
bitangents if and only if there exists F> with 27 lines and P not on the lines.

EXAMPLE 2.6. For ¢ =9, let

F=Xi+X{+ X3
= XoXo + X1 X1 + X2 Xo,

where t — t3 = ¢ is the involutory automorphism of Fg. So F = v(F) is a
Hermitian curve with q,/q+1 = 28 rational points, all of which are undulations;
that is, the tangents have 4-point contact and so are bitangents.

2.2 — Number of points

THEOREM 2.7.

(i) The number of rational points on a non-singular cubic surface F* over F,
is [F3(Fy)| = ¢* + Tq + L.

(a) The 27 lines of F* lie on 45 tritangent planes of which e meet F° in
three concurrent lines.
(b) The number of rational points on the lines is Ny = 27(q — 4) + e.

PROOF.

(i) In the correspondence between F3 and the plane, each line in one half of a
double-six corresponds to a point.

(ii) (b) A triangle contains 3¢ points, whereas a triad of concurrent lines contains
3¢+ 1 points. As each line meets 10 others, a count of points on just one of
the 27 lines plus those on more than one line gives the following:

No =27(q+1—10) +27 x 10/2 +e.
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¢’ +q—5+6(g+1) 45 — e e

2.3-Full 72
DEFINITION 2.8. A cubic surface defined over K is full if its lines contain

all its rational points.

THEOREM 2.8.
(i) There exists a full F> for

q=4,7,8,9,11, 13, 16.
(ii) Canonical forms for the full surfaces are as follows:
E=v(XS+ X} + X3+ X3), ¢q=4,7,13,16;
D=v (X3 +XP+ X3+ X3+ XD X), a=411,16;
D—v (ZXinXk, ZXi) —
C=v(XoX1(Xo+ X1) + XoX3(Xo + X2 + X3)), ¢=8.

(iii) For q=4,7,8, every F3 is full.
(iv) For q¢ > 16, no F3 is full.

2.4— Number of lines and bitangents

THEOREM 2.10.  For a cubic surface F3 and the corresponding C4 over

F,, let n be the number of possible lines on F3 and b the number of possible
bitangents on Cy.

(i) For q odd,
n=27,15,9,7,5,3,2,1,0;
b= 28,16, 10, 8, 6, 4, 3, 2, 1, 0.
(ii) For g =2,
n=159,5,3,2,1,0.
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QUESTION 2.11. What are the possible numbers of lines on a non-singular
cubic over Fon?

THEOREM 2.12. For q even, the possible numbers of bitangents of a non-
singular plane quartic are 7, 3,1, 0. In the case of 7 bitangents they form a
PG(2,2).

EXAMPLE 2.13. (The Klein curve for ¢ = 8)
F=v(XY +Y3Z + Z3X).
The 24 rational points are all inflexions. There are 7 bitangents
v(c*X +cY +Z), ce€Fg\{0},

forming a PG(2,2).

THEOREM 2.14. For an algebraically closed field of characteristic two, the
possible configurations of bitangents are the following :

1) 7 lines forming a PG(2,2);

) 4 lines with 3 concurrent,

) 1 line;

) a pencil plus a line;

) a pencil with one special line.

(
(2
(3
(4
(

5

3 — The number of points on a non-singular curve

For a curve F defined over F, with N; the number of points of F rational
over Fyi, the zeta function is

Co(T) = exp(1 + NiT + NoT?/2 4+ N3T3/3 +---).

THEOREM 3.1. (Hasse-Weil)

y 51
GT) = o (oNT'/1) = =1 a7y

with f € Z[T], degf = 2g.
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COROLLARY 3.2.
(i) N1 <q+1+294.
(ii) When g =1,
14T+ qT?

W= Toha gy

THEOREM 3.3. (Serre) N1 < q+1+g[2\/q].

NoTAaTION 3.4. N,(g9) = max Ny, taken over all non-singular curves C of
genus g over F.

ExampPLE 3.5. For the Klein curve with ¢ = 2,

F=X3Y +Y3Z + 73X,
N1 =3, Ny—N; =2 N3—N; =21,
f(T)=1+5T°+8T°.

A special case of an important theorem gives other bounds.

THEOREM 3.6. (Stohr—Voloch) For a plane curve of degree n with not all
points inflexions and p # 2,

1
Ny < 5”(”"“1_ 1).

The case that ¢ =7,n = 4,9 = 3 gives
N7(3) <20<23=7+1+3[2x V7]

In fact, N7(3) = 20.

4 — Curves of genus 1

A curve of genus 1, or elliptic curve, can be regarded as a plane non-singular
cubic. Plane cubics may be classified up to isomorphism or projective equiva-
lence.

THEOREM 4.1.  Up to isomorphism, a curve F = v(F) of genus 1 over
F,, with ¢ = p", has at least one point of inflexion and the following canonical
forms.
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(i) When p # 2, 3,
F = Y?Z+ X3+ ¢XZ?+dZ3,

where 4c® + 27d? # 0.
(ii) When p =3,

(a)
F=Y?Z+ X34+bX%Z+dZ?,

where bd # 0;
(b)
F' =Y?Z 4+ X3?+eXZ%+dZ3,

where ¢ # 0.
(iil) When p =2,

(a)
F=Y?Z+XYZ+X3+bX?*Z+dZ>,

where b =0 or a fized element of trace 1, and ¢ # 0;
(b)
F' =Y?*Z4+YZ? 4+ eX3+cXZ?+dZ3,

where e = 1 when (¢ —1,3) =1 and e = 1,a,a? when (¢ —1,3) = 1, with a a
primitive element of Fq; also, d = 0 or a particular element of trace 1.

Canonical forms up to a projectivity exist for cubics with no inflexions; see [7,
Chapter 11]. For example, over Fr, let

F=X*42Y3+32°
The corresponding curve F has no inflexion.

THEOREM 4.2. Let N1 be the number of rational points of an elliptic curve
over Fg.

(i)
g+1-2VG< N, < g+1+24.

(ii) The precise number Ny = q+1—t, with |t| < 2,/q, of points that can occur
is given in Table 1.
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TABLE 1: VALUES OF t

t p h
(1) t#0 ( mod p)
(2) t=0 odd
3) t=0 pZ1 (mod 4) even
(4) t==,/q p#1 (mod 3) even
(5) t=+£2,/q even
(6) t=+2q p=2 odd
(7) t = +/3g p=3 odd

THEOREM 4.3. If A, and P, are the numbers of distinct elliptic curves up
to isomorphism and projective equivalence, then

—4 -3
e () 3)

q q

4 —3\2 -3
s (2 (2) s (2),

q q q

Here the bracketed numbers are Legendre and Legendre—Jacobi symbols taking
the values —1,0,1.

The prime power g = p" is exceptional if h is odd, h > 3, and p divides 124/q]-
THEOREM 4.4. The actual upper bounds for elliptic curves over Fy are as

follows:

q+ 24, if q is exceptional
Nq(l) = { \/_

q+1+[2/q], if q is non-exceptional;

COROLLARY 4.5. The number Ny takes every value between q+ 1 — |2,/q]
and ¢+ 14 |2,/q] if and only if

(@) ¢=p;
(b) q=p? withp=2 orp=3 or p=11 (mod 12).
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4.1 - Unsolved problem

Let m3(2, ¢) be the maximum size of a point set K in PG(2, ¢) such that at
most three points of I lie on a line. Show that

m3(2,q) > Ng(1) for g # 4.
This is true for ¢ < 13 as in Table 2.

TABLE 2: VALUES OF m3(2,q)

q 2 3 4 5 7 8 9 11 13
ms(2,q) 7 9 9 11 15 15 17 21 23
N, (1) 5 7 9 10 13 14 16 18 21

5 — Curves of genus 2

THEOREM 5.1.  For a curve of genus 2 over Fy with q square,

No(2) =q+1+4yq, ifq#49;
Ny(2) = 10;
No(2) = 20.

The prime power g = p” is special if (a) or (b) holds:

(a) p divides |2/q];
(b) there exists m such that g =m2?+1org=m?+m+1or ¢ =m?+m+ 2.

THEOREM 5.2. If q is a non-square, with {2,/q} = 2,/q — [2,/q],

Ny(2) =g+ 1+ 2[2/q], if q is not special;
1
Ny(2) = q+2[2\/q], if q is special and {2,/q} > 5(\/5 —1);

Ny(2) =q—1+42(2/q], ifq is special and {2,/q} < %(\/5 —1).
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6 — Curves of genus 3

From Section 3, there is the following result.

THEOREM 6.1.
(i) Ng(3) <g+1+ 3[2\/@ = Ss.
28, q=9

(i) Ng(3) << 2(¢+3), qodd, ¢g#9 =Vs.
2(q+4), q even

THEOREM 6.2. (Lauter) For a curve of genus 3,

N <q-1+3[2y4q) ifq=m’+1;

N <q—1+43(2yq] ifg=m’+2 withm > 2;

Ny <q—-2+3|2yq] ifqg=m>+m+1;

Ny <q¢—2+3[2\/4q] if ¢ =m?* +m + 3 with m > 3.

THEOREM 6.3. For a curve of genus 3, if N1 > 2q + 6 then one of the
following holds:

(i) Ny =28, ¢ =9 and C is the Hermitian curve;
(ii) Ny =24, ¢ =28 and C is the Klein curve.

Table 3 summarises the results for small q.

TABLE 3: NUMBER OF POINTS ON CURVES OF GENUS 3

q 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27
Ng3) 7 10 14 16 20 24 28 28 32 38 40 44 48 56 56
A 9 13 17 18 23 24 28 30 35 41 42 44 51 56 58
Vs 10 12 16 16 20 24 28 28 32 40 40 44 52 56 60
Ls 710 16 20 28 32 40 48 56

THEOREM 6.4. (Ibukiyama) For q = p*™*2,

Ny(3) = g+ 1+ 6/4.
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THEOREM 6.5.
When ¢ < 100, there is equality N,(3) = S3 if and only if

g € {8,9,19,25,29, 41,47, 49, 53,61, 64,67, 71,79, 81,89, 97}
When q < 27, there is equality Ny(3) = V3 if and only if

q € {5,7,11,13,17,19, 25}.
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