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Abstract: In this paper, we use (bi)semicosimplicial language to study the clas-
sical problem of infinitesimal deformations of a closed subscheme in a fixed smooth
variety, defined over an algebraically closed field of characteristic 0. In particular, we
give an explicit description of the differential graded Lie algebra controlling this problem.

– Introduction

In the last fifty years, deformation theory has played an important role in
algebraic and complex geometry. The main goal is the classification of families of
geometric objects in such a way that the classifying space (the so called moduli
space) is a reasonable geometric space. In particular, each point of our moduli
space corresponds to one geometric object (class of isomorphism). The study
of small deformations of the complex structures of complex manifolds started
with the works of K. Kodaira and D.C. Spencer [KoSp58] and M. Kuranishi
[Ku71]. Then, A. Grothendieck [Gr59], M. Schlessinger [Schl68] and M. Artin
[Ar76] formalized this theory translating it into a functorial language. The idea
is that, with a infinitesimal deformations of a geometric object, we can asso-
ciate a deformation functor of Artin rings F : Art → Set. For example, we
can study the functor DefX of infinitesimal deformations of a variety X or the
functor HilbZ

X of infinitesimal deformations of a subvariety Z in a fixed variety
X. The fundamental fact is that, using these functors, we are able to study the
formal neighborhood of the points in the moduli space. In particular, we can
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determine the tangent space or analyze the obstructions (smoothness) problem
[Ma07, Ia07, IM09].

A modern approach to the study of deformation functors, associated with
geometric objects, is via differential graded Lie algebras or, in general, via L∞-
algebras. At this stage, we can think about these structures as a generalization
of differential graded vector spaces in which we also have a bracket, plus some
compatibility conditions between the differential and the bracket. Once we have
a differential graded Lie algebra L, we can define the associated deformation
functor DefL : Art → Set, using the solutions of the Maurer-Cartan equation
up to gauge equivalence.

The guiding principle is the idea due, at least, to P. Deligne, V. Drinfeld,
D. Quillen and M. Kontsevich [Kon03] that “in characteristic zero every defor-
mation problem is controlled by a differential graded Lie algebra”. In other
words, if F is the deformation functor associated with a geometric problem,
then there exists a differential graded Lie algebra L (up to quasi-isomorphism)
such that DefL

∼= F . We point out that it is easier to study a deformation
functor associated with a differential graded Lie algebra but, in general, it is
not an easy task to find the right differential graded Lie algebra (up to quasi-
isomorphism) associated with the problem [Kon94]. A first example, in which
the associated differential graded Lie algebra is well understood, is the case of
deformations of complex manifolds. If X is a complex compact manifold, then
the infinitesimal deformations of X are controlled by its Kodaira-Spencer alge-
bra KSX , see [GM90, Ma04b, Ma09] and [Ia06, Theorem II.7.3]. We recall that
KSX = ⊕iΓ(X,A0,i

X (ΘX)), where A0,i
X (ΘX) is the sheaf of the (0, i)-forms on X,

with values in the holomorphic tangent bundle ΘX .
In general, if we work over an algebraically closed field of characteristic zero,

different from the complex numbers, then we can not use the Kodaira-Spencer
algebra.

A strategy to solve this problem and “produce”differential graded Lie al-
gebras, is via semicosimplicial objects [Hin97, Pr03, FMM08, FIM09]. Actu-
ally, the fundamental idea goes back to K. Kodaira and D.C. Spencer:“a de-
formation of X is regarded as the gluing of the same polydisks via different
identifications”[Kod86, pag. 182]. In other words, a deformation of a geo-
metric object consists in deforming the object locally and then glue back to-
gether these local deformations. Then, from the algebraic point of view, we
have to find the algebraic objects that control locally the deformations and
then glue them together. Thus, we can think at a semicosimplcial object as
a sequence of objects, that controls locally the deformations, and a sequence
of maps, that controls the gluing. For example, let X be a smooth projective
variety, over an algebraically closed field K of characteristic 0, with tangent
sheaf ΘX . Given an affine open cover U = {Ui} of X, we can define the Čech
semicosimplicial Lie algebra ΘX(U), i.e., we have a sequence of Lie algebras
{gk =

∏
i0<···<ik

ΘX(Ui0···ik
)} and a “lot”of maps among them, that are the
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restrictions to open subsets. In particular, g0 =
∏

i ΘX(Ui) and each ΘX(Ui)
controls the infinitesimal deformations of Ui; moreover, the maps controls the
gluing of deformations, see [FMM08] and [IM09, Section 5].

In general, we will have a semicosimplicial differential graded Lie algebra,
gΔ = {gk}k, with g0 that controls the deformations of each open of the cover, as
in the case of deformations of varieties or of coherent sheaves [FIM09, FIM].

Next, once we have a semicosimplicial differential graded Lie algebra gΔ,
we need to find out just one differential graded Lie algebra. Following [NaA87,
FMM08], there is a canonical way to define a differential graded Lie algebra
TotTW (gΔ), using the Thom-Whitney construction. In conclusion, given a geo-
metric deformation problem, if we are able to associate with it a semicosimplicial
differential graded Lie algebra, then we can find out just one differential graded
Lie algebra controlling our problem.

Inspired by these ideas, in this paper we use semicosimplicial language to
study infinitesimal deformations of closed subschemes. More precisely, let X be
a smooth variety, defined over an algebraically closed field K of characteristic 0,
and Z ⊂ X a closed subscheme. Denote by HilbZ

X the functor of infinitesimal

deformations of Z in X and by Hilb′Z
X the subfunctor of locally trivial infinites-

imal deformations. We recall that HilbZ
X = Hilb′Z

X , whenever Z is smooth.
For K = C and Z smooth, the analysis of this problem via differential graded
Lie algebra is due to M. Manetti [Ma07]. Here, we extend his work to all al-
gebraically closed fields K of characteristic 0, using semicosimplicial language;
more precisely, it is convenient to use bisemicosimplial Lie algebras. Indeed, let
ΘX be the tangent sheaf of X and ΘX(− log Z) the sheaf of tangent vectors to
X which are tangent to Z. Denote by χ : ΘX(− log Z) ↪→ ΘX the inclusion of
sheaves of Lie algebras. We can associate with ΘX(− log Z) and ΘX the Čech
semicosimplicial Lie algebra ΘX(− log Z)(U) and ΘX(U), respectively; and so we
can consider the bisemicosimplicial Lie algebra χ� : ΘX(− log Z)(U) → ΘX(U).
Once again, using the Thom-Whitney construction, we can define a differential
graded Lie algebra Tot�

TW (χ�). This algebra controls the deformations of the
closed subscheme Z; more precisely, we prove the following theorem.

Theorem (A). Let X be a smooth variety, defined over an algebraically
closed field K of characteristic 0, and Z ⊂ X a closed subscheme. Then, there

exists an isomorphism of functors DefTot�
T W

(χ�)
∼= Hilb′Z

X . In particular, if

Z ⊂ X is smooth, then DefTot�
T W

(χ�)
∼= HilbZ

X .

In a forthcoming paper, we will use this theorem to study the obstruction to
deformations of Z in X, via the semiregularity map.

The paper goes as follows: the first section is intended for the nonexpert reader
and is devoted to recall the basic notions of differential graded Lie algebras and
their role in deformation theory.
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In Section 2, we introduce semicosimplicial objects and total constructions. In
particular, we review semicosimplicial differential graded Lie algebras, the cor-
responding Thom-Whitney DGLA and the associated deformation functors.
Sections 3 is devoted to bisemicosimplicial objects and, again, to the total con-
structions and the associated deformation functors. In particular, we describe
the bisemicosimplicial Lie algebra χ� : ΘX(− log Z)(U) → ΘX(U), associated
with the inclusion χ : ΘX(− log Z) ↪→ ΘX .
In Section 4, we go back to geometric applications and we prove Theorem A.

Notation. Throughout the paper, we work over an algebraically closed
field K of characteristic zero. All vector spaces, linear maps, tensor products
etc. are intended over K. We denote by Set the category of sets (in a fixed
universe) and by Art the category of local Artinian K-algebras (with residue
field K). If A is an object in Art, then mA denotes its maximal ideal.

1 – Review of differential graded Lie algebras

A differential graded vector space is a pair (V, d), where V = ⊕i∈ZV i is a
Z-graded vector space and d is a differential of degree +1, i.e., d : V i → V i+1

and d ◦ d = 0. For every integer n, we define a new differential graded vector
space V [n], by setting

V [n]i = V n+i and dV [n] = (−1)ndV .

Definition 1.1. A differential graded Lie algebra (DGLA for short) is a
triple (L, [ , ], d), where (L = ⊕i∈ZLi, d) is a differential graded vector space and
[ , ] : L × L → L is a bilinear map of degree zero, called bracket, satisfying the
following conditions:

(1) (graded skewsymmetry) [a, b] = −(−1)deg(a) deg(b)[b, a];
(2) (graded Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]];
(3) (graded Leibniz rule) d[a, b] = [da, b] + (−1)deg(a)[a, db].

Example 1.2. If L = ⊕Li is a DGLA, then L0 is a Lie algebra in the
usual sense; vice-versa, every Lie algebra is a differential graded Lie algebra
concentrated in degree 0 (and differential zero).

Example 1.3. If L is a DGLA and B is a commutative K-algebra, then
L ⊗ B has a natural structure of DGLA, given by

[l ⊗ a, m ⊗ b] = [l, m] ⊗ ab;

d(l ⊗ a) = dl ⊗ a.
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A morphism of differential graded Lie algebras φ:L → M is a linear map
that preserves degrees and commutes with brackets and differentials. A quasi-
isomorphism of DGLAs is a morphism that induces an isomorphism in coho-
mology. Two DGLAs L and M are said to be quasi-isomorphic if they are
equivalent under the equivalence relation generated by: L ∼ M if there exists a
quasi-isomorphism φ : L → M .

1.1 – Deformation functor associated with a DGLA

Definition 1.4. Let L be a DGLA; then, the Maurer-Cartan functor
associated with L is the functor

MCL : Art → Set,

MCL(A) =

{
x ∈ L1 ⊗ mA | dx +

1

2
[x, x] = 0

}
.

Note that in the previous equation we use the DGLA structure on L ⊗ mA

induced by the one on L (see Example 1.3).

Definition 1.5. Two elements x and y ∈ L1 ⊗ mA are gauge equivalent
if there exists a ∈ L0 ⊗ mA such that

y = ea ∗ x := x +
∑

n≥0

[a,−]n

(n + 1)!
([a, x] − da).

The operator ∗ is called the gauge action of the group exp(L0 ⊗mA) on L⊗mA;
indeed, ea ∗ eb ∗ x = ea•b ∗ x, where • is the Baker-Campbell-Hausdorff product

in the nilpotent DGLA L ⊗ mA, i.e., a • b = a + b +
1

2
[a, b] +

1

12
[a, [a, b]] −

1

12
[b, [b, a]] + · · · .

Definition 1.6. The deformation functor associated with a differential
graded Lie algebra L is:

DefL : Art → Set,

DefL(A) =
MCL(A)

gauge
=

{x ∈ L1 ⊗ mA | dx +
1

2
[x, x] = 0}

exp(L0 ⊗ mA)
.
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Remark 1.7. Every morphism of DGLAs induces a natural transformation
of the associated deformation functors. If L and M are quasi-isomorphic DGLAs,
then the associated functor DefL and DefM are isomorphic [SS79, GM88, GM90],
[Ma99, Corollary 3.2], or [Ma04b, Corollary 5.52].

2 – Semicosimplicial objects

Let Δmon be the category whose objects are the finite ordinal sets [n] =
{0, 1, . . . , n}, n = 0, 1, . . . , and whose morphisms are order-preserving injective
maps among them. Every morphism in Δmon, different from the identity, is a
finite composition of coface morphisms:

∂k: [i − 1] → [i], ∂k(p) =

{
p if p < k

p + 1 if k ≤ p
, k = 0, . . . , i.

The relations about compositions of them are generated by

∂l∂k = ∂k+1∂l , for every l ≤ k.

Definition 2.1. According to [EZ50, We94], a semicosimplicial object in
a category C is a covariant functor AΔ: Δmon → C. Equivalently, a semicosim-
plicial object AΔ is a diagram in C:

A0 −→−→A1
−→−→−→A2

−→−→−→−→ · · · ,

where each Ai is in C, and, for each i > 0, there are i + 1 morphisms

∂k:Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.

Example 2.2. Let χ : L → M be a morphism in a category C. Then, we
can consider it as a semicosimplicial object in C, by extension with zero, i.e.,

χΔ : L−→−→M −→−→−→ 0 · · · , ∂0 = χ, ∂1 = 0,

Example 2.3. Let X be a smooth variety, defined over an algebraically
closed field of characteristic 0. Let U = {Ui} be an affine open cover and F a
sheaf of Lie algebras on X. Then, we can define the Čech semicosimplicial Lie
algebra F(U) as the semicosimplicial Lie algebra

F(U) :
∏

i

F(Ui)−→−→
∏

i<j

F(Uij)
−→−→−→

∏

i<j<k

F(Uijk)
−→−→−→−→ · · · ,
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where the coface maps ∂h:
∏

i0<···<ik−1

F(Ui0···ik−1
) →

∏

i0<···<ik

F(Ui0···ik
) are given

by
∂h(x)i0...ik

= x
i0...îh...ik |Ui0···ik

, for h = 0, . . . , k.

2.1 – The total construction

Given a semicosimplicial differential graded vector space

V Δ : V0 −→−→V1
−→−→−→V2

−→−→−→−→ · · · ,

the graded vector space
⊕

n≥0 Vn[−n] has two differentials, i.e.,

d =
∑

n

(−1)ndn, where dn is the differential of Vn,

and
∂ =

∑

i

(−1)i∂i, where ∂i are the coface maps.

More explicitly, if v ∈ V i
n, then the degree of v is i + n and

d(v) = (−1)ndn(v) ∈ V i+1
n , ∂(v) = ∂0(v)−∂1(v)+ · · ·+(−1)n+1∂n+1(v) ∈ V i

n+1.

Since d∂ + ∂d = 0, we define Tot(V Δ) as the graded vector space
⊕

n≥0 Vn[−n],
endowed with the differential D = d + ∂.

Remark 2.4. In Example 2.3, the total complex Tot(F(U)), associated
with the Čech semicosimplicial Lie algebra F(U), is nothing else that the Čech
complex Č(U ,F) of the sheaf F .

There is also another way to associate with a semicosimplicial differential graded
vector space V Δ a differential graded vector space. Namely, let (APL)n be the
differential graded commutative algebra of polynomial differential forms on the
standard n-simplex {(t0, . . . , tn) ∈ Kn+1 | ∑

ti = 1} [FHT01]:

(APL)n =
K[t0, . . . , tn, dt0, . . . , dtn]

(1 − ∑
ti,

∑
dti)

.

For every n, m the tensor product Vn ⊗ (APL)m is a differential graded vector
space and then also

∏
n Vn⊗(APL)n is a differential graded vector space. Denote

by

δk: (APL)n → (APL)n−1, δk(ti) =

⎧
⎪⎨
⎪⎩

ti if 0 ≤ i < k

0 if i = k

ti−1 if k < i

, k = 0, . . . , n,
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the face maps, for every 0 ≤ k ≤ n; then, there are well-defined morphisms of
differential graded vector spaces

Id ⊗ δk:Vn ⊗ (APL)n → Vn ⊗ (APL)n−1,

∂k ⊗ Id:Vn−1 ⊗ (APL)n−1 → Vn ⊗ (APL)n−1.

The Thom-Whitney differential graded vector space TotTW (V Δ) of V Δ is the
differential graded subvector space of

∏
n Vn ⊗ (APL)n, whose elements are the

sequences (xn)n∈N satisfying the equations

(Id ⊗ δk)xn = (∂k ⊗ Id)xn−1, for every 0 ≤ k ≤ n.

Lemma 2.5. The differential graded vector spaces Tot(V Δ) and
TotTW (V Δ) are quasi-isomorphic.

Proof. See [Whi57, Dup76, Dup 78, NaA87, Get04, FMM08, CG08] for
explicit description of the quasi-isomorphism.

Let

gΔ : g0 −→−→ g1
−→−→−→ g2

−→−→−→−→ · · · ,

be a semicosimplicial differential graded Lie algebra. Since, every DGLA is, in
particular, a differential graded vector space, we can consider the associated total
complex Tot(gΔ). Even if all gi are DGLAs, there is no natural DGLA structure
on Tot(gΔ) [FiMa07, IM09]

Example 2.6. Let χ : L → M be a morphism of DGLAs, then, following
Example 2.2, we can associate with it a semicosimplicial DGLA. Its total com-
plex Tot(χΔ) is nothing else than the (suspension of the) mapping cone complex
associated with χ. Even in this simple case, it is not possible to define a canon-
ical DGLA structure on Tot(χΔ), such that the projection Tot(χΔ) → L is a
morphism of DGLAs [IM09, Example 3.1].

However, in the case of semicosimplicial DGLAs, we can apply the Thom-
Whitney construction to gΔ: it turns out that TotTW (gΔ) has a structure of
DGLA [NaA87, FMM08] .

Remark 2.7. Using the homotopy transfer, the DGLA structure of
TotTW (gΔ) induces an L∞-algebra structure T̃ot(gΔ) on the differential graded

vector space Tot(gΔ), such that T̃ot(gΔ) and TotTW (gΔ) are quasi-isomorphic;
see [FiMa07, FMM08] or [IM09, Corollary 3.3].
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2.2 – Deformation functor associated with semicosimplicial DGLAs

Let gΔ be a semicosimplicial DGLA. Applying the Thom-Whitney construc-
tion of the previous section, we can consider the DGLA TotTW (gΔ) and so the
associated deformation functor DefTotT W (gΔ). Beyond this way, there is another
natural, and more geometric, way to define a deformation functor associated
with gΔ, see [Pr03, Definitions 1.4 and 1.6], [FMM08, Section 3] or [FIM09,
Definition 2.1 and 2.2].

More precisely, if gΔ is a semicosimplicial DGLA, we can define the functor

Z1
sc(exp gΔ):Art → Set,

such that, for all A ∈ Art, Z1
sc(exp gΔ)(A) is the set of the pairs (l, m) ∈

(g1
0 ⊗ mA) ⊕ (g0

1 ⊗ mA), satisfying the following conditions:

(1) dl + 1
2 [l, l] = 0;

(2) ∂1l = em ∗ ∂0l;
(3) ∂0m • −∂1m • ∂2m = dn + [∂2∂0l, n], for some n ∈ g−1

2 ⊗ mA.

Moreover, we define the functor

H1
sc(exp gΔ):Art → Set,

such that

H1
sc(exp gΔ)(A) =

Z1
sc(exp gΔ)(A)

∼ ,

where (l0, m0) and (l1, m1) ∈ Z1
sc(exp gΔ)(A) are equivalent under the relation

∼ if and only if there exist elements a ∈ g0
0 ⊗ mA and b ∈ g−1

1 ⊗ mA, such that

(1) ea ∗ l0 = l1;
(2) −m0 • −∂1a • m1 • ∂0a = db + [∂0l0, b].

Example 2.8. Let L be a differential graded Lie algebra, then it can be
considered as a semicosimplicial DGLA LΔ by zero extension, i.e., LΔ

0 = L
and LΔ

i = 0, for all i > 0. In this case, the above functors Z1
sc(expLΔ) and

H1
sc(expLΔ) reduce to MCL and DefL, respectively.

Example 2.9. If χ : L → M is a morphism of DGLAs, then we can
consider it as a simple case of semicosimplicial DGLA χΔ, extending χ by zero
(see Example 2.2).

In this case, the functors Z1
sc(expχΔ) and H1

sc(expχΔ) coincide with the
functors MCχ and Defχ defined in [Ma07, Section 2]. More precisely, we have

Defχ(A) =
MCχ(A)

exp(L0 ⊗ mA) × exp(dM−1 ⊗ mA)
,
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where

MCχ(A)=

{
(x, ea) ∈ (L1 ⊗ mA)×exp(M0 ⊗ mA) |dx +

1

2
[x, x]=0, ea ∗ χ(x)=0

}
,

and the gauge action of exp(L0 ⊗ mA) × exp(dM−1 ⊗ mA) is given by the for-
mula

(el, edm) ∗ (x, ea) = (el ∗ x, edmeae−χ(l)) = (el ∗ x, edm•a•−χ(l)).

In particular, if χ : L → M is an injective morphism of DGLAs, then for every
A ∈ Art, we have

MCχ(A) =
{
ea ∈ exp(M0 ⊗ mA) | e−a ∗ 0 ∈ L1 ⊗ mA

}
.

Under this identification, the gauge action becomes

exp(L0 ⊗ mA) × MCχ(A) → MCχ(A), (em, ea) �→ eae−m,

and then

Defχ(A) =
MCχ(A)

exp(L0 ⊗ mA).

Example 2.10. If all gi = 0, for all i > 1, then the functors Z1
sc(exp gΔ)

and H1
sc(exp gΔ) reduce to the functors MC(∂0,∂1) and Def(∂0,∂1), respectively,

associated with the pair of morphisms of DGLAs ∂0, ∂1 : g0 → g1, introduced in
[Ia08].

Example 2.11. If each gi is concentrated in degree zero, i.e., gΔ is a semi-
cosimplicial Lie algebra, then the functors Z1

sc(exp gΔ) and H1
sc(exp gΔ) reduce

to the one defined in [FMM08, Section 3]. More explicitly, in this case, we have

Z1
sc(exp gΔ)(A) = {x ∈ g1 ⊗ mA | e∂0xe−∂1xe∂2x = 1},

and x ∼ y if and only if there exists a ∈ g0 ⊗ mA, such that e−∂1aexe∂0a = ey.

Therefore, given a semicosimplicial DGLA gΔ, we can define two defor-
mations functor, DefTotT W (gΔ) and H1

sc(exp gΔ). The relation between these
functors is given by the following theorem.

Theorem 2.12. Let gΔ be a semicosimplicial DGLA such that Hk(gi) =
0, for all i and for all k < 0. Then, there exists a natural isomorphism of
deformation functors

DefTotT W (gΔ) � H1
sc(exp gΔ).
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Proof. In the case of semicosimplicial Lie algebra, this theorem was proved
in [FMM08, Theorem 6.8]. For the general case, see [FIMM09, Theorem 7.6].

3 – Bisemicosimplicial objects

In this section, we generalize the notion of semicosimplicial objects, defining
bisemicosimplicial objects.

Definition 3.1. According to [GJ99, Chapter IV], a bisemicosimplicial
object A� in a category C is a covariant functor A�: Δmon×Δmon → C; equiva-
lently, a bisemicosimplicial object in C is a semicosimplicial object in the category
of semicosimplicial object in C. More explicitly, it consists of objects Ai,j, for

all i, j ≥ 0, and morphisms ∂Vi

k and ∂
Hj
s in C, for each i, j > 0, such that

∂Vi

k :Ai,j−1 → Ai,j , k = 0, . . . , j,

∂Hj
s :Ai−1,j → Ai,j , s = 0, . . . , i,

and the following compatibility conditions are satisfied

∂Vi

l ◦ ∂Vi

k = ∂Vi

k+1 ◦ ∂Vi

l , ∀l ≤ k,

∂Hj
s ◦ ∂

Hj

t = ∂
Hj

t+1 ◦ ∂Hj
s , ∀s ≤ t,

∂Hj+1
s ◦ ∂Vi

k = ∂
Vi+1

k ◦ ∂Hj
s , ∀s ≤ i + 1, k ≤ j + 1.

We shall say that the object Ai,j has bidegree (i, j) or precisely horizontal degree

i and vertical degree j, and that ∂
Hj
• and ∂Vi• are horizontal (height j) and vertical

(column i) morphisms, respectively. In particular, for all fixed j, (A•,j , ∂
Hj
• ) is a

(horizontal) semicosimplicial object in C; analogously, for all fixed i, (Ai,•, ∂Vi• )
is a (vertical) semicosimplicial object in C. To sum up, a bisemicosimplicial
object A� looks like a diagram

...

...

...

...,

,

,

,

,

,

,

,

,

,
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where each line and each column is a semicosimplicial object and each square
commutes in a simplicial sense, i.e., for all s, k, i and j, the following diagram
commutes

Ai,j+1 −−−−→
∂Hj+1

s

Ai+1,j+1

∂Vi

k

)⏐⏐⏐
)⏐⏐⏐ ∂

Vi+1

k

Ai,j −−−−→
∂Hj

s

Ai+1,j

Example 3.2. Every semicosimplicial object in a category C can be con-
sidered as a bisemicosimplcial object concentrated in zero (vertical or horizontal)
degree.

Bisemicosimplicial objects naturally arise in simple situation. Indeed, let
F and G be sheaves on a variety X, with value in a category C. Fix an affine
open cover U = {Ui}. Then, as in Example 2.3, we denote by F(U) and G(U)
the associated Čech semicosimplicial objects in C. Next, let ϕ : F → G be a
morphism of sheaves. Since ϕ commutes with restrictions of every open subsets,
it induces a morphism ϕΔ : F(U) → G(U) of semicosimplcial objects. Finally, as
in Example 2.2, we can consider the semicosimplicial extension of ϕΔ (by zero)
to get a bisemicosimplcial object ϕ� : F(U) → G(U) in C. This construction
is commutative, i.e., we can firstly extend ϕ (by zero) to get a semcosimplicial
sheaf of object in C, and then apply the Čech semicosimplicial construction to
all sheaves.

Example 3.3. Let X be a smooth variety, defined over an algebraically
closed field of characteristic 0, and U = {Ui} be an affine open cover. Let
Z ⊂ X be a closed subscheme of X. We denote by ΘX(− log Z) the sheaf of
germs of tangent vectors to X which are tangent to Z [Se06, Section 3.4.4].
We recall that, if I ⊂ OX is the ideal sheaf of Z in X, then Θ(− log Z) =
{f ∈ Der(OX ,OX) | f(I) ⊂ I}. Let χ : ΘX(− log Z) ↪→ ΘX be the inclusion
of sheaves of Lie algebras. Then, we can associate with ΘX(− log Z) and ΘX

the Čech semicosimplicial Lie algebra ΘX(− log Z)(U) and ΘX(U), respectively.
Finally, extending the morphism χ by zero, we get a a bisemicosimplicial Lie
algebra χ� : ΘX(− log Z)(U) → ΘX(U).

More explicitly, we have the following diagram
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−

−

−

Θ

Θ

Θ Θ

Θ

Θ

.

3.1 – The total construction

Let V � = (V ∗
n,m, dn,m)n,m be a bisemicosimplicial differential graded vector

space; in particular, we recall that each line and each column is a semicosimplicial
differential graded vector space. Then, as in Section 2.1, with each horizontal
semicosimplicial differential graded vector space (V Δ

•,m, ∂Hm• ), we can associate

the total complex Tot(V Δ
•,m). We recall that Tot(V Δ

•,m) =
⊕

n≥0

V ∗
n,m[−n] and its

differential is Dm =
∑

n

(−1)ndn,m +
∑

j

(−1)j∂Hm
j . In this way, we construct a

semicosimplicial differential graded vector space TotH,Δ(V �)

•,

•,

•,

�

�

�
.

In particular, we can still apply the total construction to TotH,Δ(V �) to ob-
tain the differential graded vector space Tot(TotH,Δ(V �)). More explicitly,

Tot(TotH,Δ(V �)) =
⊕

m

Tot(V Δ
•,m)[−m] =

⊕

n,m

V ∗
n,m[−n−m] and the differential

is D =
∑

m(−1)mDm+
∑

k(−1)k∂V•
k =

∑
m,n(−1)m+ndn,m+

∑
j,m(−1)j+m∂Hm

j

+
∑

k(−1)k∂V•
k .
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Analogously, given V � = (V ∗
n,m, dn,m)n,m, we can firstly focus our attention on

each vertical semicosimplicial differential graded vector space (V Δ
n,•, ∂

Vn• ). As
before, we can associate with each column its total complex, to get a semicosim-
plicial differential graded vector space TotV,Δ(V �)

Tot(V Δ
0,•)−→−→ Tot(V Δ

1,•)
−→−→−→ Tot(V Δ

2,•)
−→−→−→−→ · · · ,

In this case, Tot(V Δ
n,•) =

⊕

m

V ∗
n,m[−m] and its differential is given by D′

n =

∑
m(−1)mdn,m +

∑
j(−1)j∂Vn

j . Then, applying again the total construction to

TotV,Δ(V �), we get the differential graded vector space Tot(TotV,Δ(V �)). In this

case, we have Tot(TotV,Δ(V �)) =
⊕

n

Tot(V Δ
n,•)[−n] =

⊕

n,m

V ∗
n,m[−n − m] and

the differential is D′ =
∑

n(−1)nD′
n +

∑
k(−1)k∂H•

k =
∑

m,n(−1)n+mdn,m +∑
j,n(−1)j+n∂Vn

j +
∑

k(−1)k∂H•
k .

Moreover, we can also consider the total complex (Tot�(V �), D) associ-
ated with the triple complex (V ∗

n,m, dn,m, ∂V , ∂H). More explicitly, Tot�(V �)i =⊕
n,m Vn,m[−n−m]i−n−m and the differential is given by D = d+∂1 +∂2, where

d =
∑

m,n(−1)m+ndn,m, ∂1 =
∑

j,m(−1)j+m∂Hm
j and ∂2 =

∑
k(−1)k∂V•

k .

Lemma 3.4. Let V � = (V ∗
n,m, dn,m)n,m be a bisemicosimplicial differen-

tial graded vector space. Then, the associated differential graded vector spaces
(Tot�(V �), D), Tot(TotH,Δ(V �)) and Tot(TotV,Δ(V �)) are quasi isomorphic.

Proof. It follows from a standard computation, using spectral sequence.

As in the previous section, we can also apply the Thom-Whitney construc-
tion instead of the total complex construction. Also in this case, we get two
differential graded vector spaces TotTW (TotH,Δ

TW ) and TotTW (TotV,Δ
TW ) depend-

ing, a priori, on the order of the construction. There is also a more direct way,
based on the Thom-Whitney construction, to associate a differential graded vec-
tor space with a bisemicosimplicial differential graded vector space.

Definition 3.5. Let V � = (Vn,m) be a bisemicosimplicial DGLA. The
Thom-Whitney DGLA Tot�

TW (V �) is defined as the sub-differential graded vector
space of

∏
n,m Vn,m⊗(APL)n⊗(APL)m, whose elements are sequences (xn,m)n,m

satisfying the relations:

(∂Hm

k ⊗ Id ⊗ Id)xn,m = (Id ⊗ δk ⊗ Id)xn+1,m, for every 0 ≤ k ≤ n,

and

(∂Vn

k ⊗ Id ⊗ Id)xn,m = (Id ⊗ Id ⊗ δk)xn,m+1, for every 0 ≤ k ≤ m.
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More explicitly, we are considering sequence of elements (xn,m)n,m = xn,m ⊗
αn ⊗ βm ∈ Vn,m ⊗ (APL)n ⊗ (APL)m such that

∂Hm

k xn,m ⊗ αn ⊗ βm = xn+1,m ⊗ δkαn+1 ⊗ βm

and
∂Vn

k xn,m ⊗ αn ⊗ βm = xn,m+1 ⊗ αn ⊗ δkβm+1.

Lemma 3.6. Let V � = (Vn,m) be a bisemicosimplicial differential graded
vector space; then, the Thom-Withney construction does not depend on the order,
i.e., TotTW (TotH,Δ

TW ) ∼= TotTW (TotV,Δ
TW ) ∼= Tot�

TW (V �)

Proof. It follows from the explicit description of the Thom-Withney con-
struction.

If g� is a bisemicosimplicial DGLAs, then, as in the semicosimplicial case,
the differential graded vector space Tot�

TW (g�) inherits a structure of DGLA.

Remark 3.7. As for the semicosimplicial case, the differential graded vector
spaces Tot�

TW (g�) and Tot�(g�) are quasi-isomorphic. In a forthcoming paper,
we will use the DGLA structure of Tot�

TW (g�) and the homotopy transfer to de-

fine a canonical L∞-algebra structure T̃ot
�
(g�) on Tot�(g�), such that T̃ot

�
(g�)

and Tot�
TW (g�) are quasi-isomorphic L∞-algebra.

3.2 – Deformation functors associated with a bisemicosimplicial DGLA

In this section, we will describe how we can associate a deformation functor
with a bisemicosimplicial DGLA. In Section 2.2, we introduced the deformation
functor H1

sc(exp gΔ) associated with a semicosimplicial DGLA gΔ. Moreover,
Theorem 2.12 states that H1

sc(exp gΔ) � DefTotT W (gΔ), whenever Hk(gi) = 0,
for all i and for all k < 0.

Next, let g� be a bisemicosimplicial DGLA. In the previous section, we
associate with g�, the semicosimplicial DGLA TotH,Δ

TW and TotV,Δ
TW . Therefore, we

can naturally associate with g� the two deformations functors H1
sc(exp TotH,Δ

TW )

and H1
sc(exp TotV,Δ

TW ). Moreover, we associate with g� the Thom-Whitney DGLA
Tot�

TW (g�) and its deformation functor DefTot�
T W

(g�). The following theorem
explains the relation between all these functors.

Thorem 3.8. Let g� be a bisemicosimplicial DGLA such that Hk(gi,j) = 0
for all i, j and k < 0. Then, there exist natural isomorphisms of deformation
functors

H1
sc(exp TotH,Δ

TW ) ∼= DefTotT W (TotH,Δ
T W

(V �))
∼=

∼= DefTot�
T W

(g�)
∼= DefTotT W (TotV,Δ

T W
(g�))

∼= H1
sc(exp TotV,Δ

TW ).
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Proof. The cohomological constraint of the hypothesis implies that Hk

(TotH,Δ
TW (g�)m) = Hk(TotV,Δ

TW (g�)n) = 0, for all n, m and for all k < 0. There-
fore, the first and last isomorphisms follow from Theorem 2.12. The remaining
isomorphisms follow from Lemma 3.6.

Example 3.9. (Example 3.3 revisited) Let X be a smooth variety, Z ⊂
X a closed subscheme and U = {Ui}i an affine open cover of X. Denote by
χ : ΘX(− log Z) ↪→ ΘX the inclusion of sheaves of Lie algebras. Following
Example 3.3, we have the bisemicosimplicial Lie algebra χ� : ΘX(− log Z)(U) →
ΘX(U) and so we can consider the associated DGLA Tot�

TW (χ�). Moreover, as
in the the previous construction, we can associate with χ two semicosimplicial
DGLAs. he easiest way is to consider the induced morphism of DGLA χTW :
TotTW (ΘX(− log Z)(U)) → TotTW (ΘX(U)), and view it as a semicosimplcial
DGLA by zero extension (see Example 2.2), i.e.,

χΔ
TW : TotTW (ΘX(− log Z)(U))

0−−−−→−−−−→
χTW

TotTW (ΘX(U))−→−→−→ 0 · · · .

Analogously, if we apply the Thom-Whitney construction firstly on the rows,
then we get the semicosimplcial DGLA TΔ

Θ

Θ

Θ Θ

Θ

Θ−

−

−

− .

In this second case, the vertical maps are the restrictions to open subsets (see
Example 2.3). The previous Theorem 3.8 implies that there exist isomorphisms
of deformation functors

DefχT W
∼= DefTot�

T W
(χ�)

∼= H1
sc(expTΔ).

We recall that the functor DefχT W
is isomorphic to H1

sc(expχΔ
TW ) (see Exam-

ple 2.9). More explicitly, since χ is injective, for all A ∈ Art, the set DefχT W
(A)

is given by

DefχT W
(A) =

MCχT W
(A)

∼ ,
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where
MCχT W

(A) = {a ∈ TotTW (ΘX(U))
0 ⊗ mA)|

e−a ∗ 0 ∈ TotTW (ΘX(− log Z)(U))1 ⊗ mA},

and ea ∼ ea′
if and only if there exist b ∈ TotTW (ΘX(− log Z)(U))

0 ⊗ mA, such
that ea′

= eae−b.

4 – Application: Deformations of subvarieties in a fixed smooth vari-
ety

Let X be a smooth variety, defined over an algebraically closed field K of
characteristic 0, and Z ⊂ X a closed subscheme of X. We recall the definition
of infinitesimal deformations of Z in X fixed, full details can be found in [Se06].

Definition 4.1. Let A ∈ Art. An infinitesimal deformation of Z in X
over Spec(A) is a cartisian diagram

⊂ ×

,

π

where π is a flat map induced by the projection from X × Spec(A) to Spec(A).
The associated infinitesimal deformation functor is

HilbZ
X : Art → Set,

such that

HilbZ
X(A) = {infinitesimal deformations of Z in X over Spec(A)}.

Moreover, we can define the sub-functor

Hilb′Z
X : Art → Set,

where

Hilb′Z
X(A) ={locally trivial infinitesimal deformations of Z in X over Spec(A)}.

We recall that, an infinitesimal deformation ZA of Z in X over Spec(A) is called
locally trivial if, for every point z ∈ Z, there exists an open neighbourhood
Uz ⊂ Z such that



106 DONATELLA IACONO [18]

|

,

is a trivial deformation of Uz. Whenever Z ⊂ X is smooth, then every deforma-

tion of Z in X is locally trivial and so HilbZ
X = Hilb′Z

X .

Next, following Examples 3.3 and 3.9, denote by χ : ΘX(− log Z) ↪→ ΘX ,
the inclusion of sheaves of Lie algebras, and by χ� : ΘX(− log Z)(U) → ΘX(U),
the associated bisemicosimplicial Lie algebra.

Theorem 4.2. Let X be a smooth variety, defined over an algebraically
closed field K of characteristic 0, and Z ⊂ X a closed subscheme. Then, there

exists an isomorphism of functors DefTot�
T W

(χ�)
∼= Hilb′Z

X . In particular, if

Z ⊂ X is smooth, then DefTot�
T W

(χ�)
∼= HilbZ

X .

Proof. For K = C and Z smooth, this theorem was already proved in
[Ma07, Theorem 5.2]ManettiSemireg, without the use of semicosimplicial lan-
guage.

Let U = {Ui}i∈I be an affine open cover of X and V = {Vi = Ui ∩ Z}i∈I

the induced one on Z. Let ZA be a locally trivial deformation of Z in X over
Spec(A). Then, ZA is obtained by gluing the trivial deformations Vi⊗A in Ui⊗A
along the double intersections Vij ⊗ A, such that the induced deformation of X
is trivial. Therefore, it is determined by a sequence {θij}i<j of automorphisms
of the sheaves of A-algebras

θ

,

⊗ ⊗

satisfying the cocycle condition

(1) θjkθ−1
ik θij = IdOZ(Vijk)⊗A, ∀ i < j < k ∈ I,

and such that there exist automorphisms αi of OX(Ui) ⊗ A satisfying

(2) θij = αi
−1αj , ∀i < j.
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Note that Equation (2) implies (1). Since we are in characteristic zero, we can
take the logarithms and write θij = edij , for some dij ∈ ΘX(− log Z)(Uij)⊗mA,
and αi = eai , with ai ∈ ΘX(Ui) ⊗ mA.

Therefore, a locally trivial deformation of Z in X over Spec(A) is equivalent
to the datum of a sequence {ai}i ∈

∏
i ΘX(Ui) ⊗ mA, such that

e−aieaj ∈ exp(ΘX(− log Z)(Uij) ⊗ mA), ∀ i < j ∈ I.

As regards the equivalence relation, let ZA and Z ′
A be two deformations of Z in

X over Spec(A). Denote by θij = edij = e−aieaj and θ′ij = ed′
ij = e−a′

iea′
j the

data associated with ZA and Z ′
A, respectively. The deformations ZA and Z ′

A are
isomorphic if, for every i, there exists an automorphism βi of OZ(Vi) ⊗ A, such
that θij = βi

−1θ′ijβj , for every i < j, and satisfying the compatibility relation
α′

iβi = αi. Taking again logarithms, an isomorphism between ZA and Z ′
A is

equivalent to the existence of a sequence {bi}i ∈
∏

i ΘX(− log Z)(Ui)⊗mA, such

that eai = ea′
iebi .

Next, from the DGLA point of view, we showed in Example 3.9, that
DefTot�

T W
(χ�)

∼= H1
sc(expχ�) ∼= DefχT W

. Therefore, it is enough to prove that

Hilb′Z
X

∼= DefχT W
, with χTW : TotTW (ΘX(− log Z)(U)) ↪→ TotTW (ΘX(U)); and

it follows from the explicit description of DefχT W
. Indeed, MCχT W

(A) is the set

of all a ∈ TotTW (ΘX(U))
0⊗mA, such that e−a ∗0 ∈ TotTW (ΘX(− log Z)(U))1⊗

mA, i.e., a = {ai}i ∈
∏

i ΘX(Ui)⊗mA, such that e−aieaj ∈ exp(ΘX(− log Z)(Uij)

⊗mA). Moreover, a ∼ a′ if and only is there exist b ∈ TotTW (ΘX(− log Z)(U))
0⊗

mA, such that ea′
= eae−b, i.e., b = {bi}i ∈

∏
i ΘX(− log Z)(Ui)⊗mA such that

eai = ea′
iebi .

Remark 4.3. In a forthcoming paper, we will use this theorem to study
the obstructions to the deformations of Z in X, via the semiregularity map.
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