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A Dunkl-classical d-symmetric

d-orthogonal polynomial set

Y. BEN CHEIKH – M. GAIED

Abstract: In this paper, we apply a d-orthogonality preserving operator to the
Humbert polynomials to derive a new Dunkl-classical d-orthogonal polynomials gener-
alizing the Humbert ones. For the resulting polynomials, we state a (d+1)-order recur-
rence relation and a (d + 1)-order differential-difference equation. We also obtain an
explicit expression of the d-dimensional functional vector for which the d-orthogonality
holds. We show that the components of this d-symmetric Dunkl-classical d-orthogonal
polynomial set are classical d-orthogonal.

1 – Introduction

Let P be the linear space of polynomials with complex coefficients. A linear
operator L acting on P is said to be a lowering operator if it fulfills:

L(P) = P, L(1) = 0 and deg(L(xn)) = n− 1, n ∈ N∗ := {1, 2, . . . }.

Some lowering operators were used, in the orthogonal polynomials theory, to
classify orthogonal polynomials according to the following definition:

Definition 1.1. An orthogonal polynomial set {Pn}n≥0 is said to be L-
classical whenever the polynomial set {Qn = LPn+1}n≥0 is also orthogonal.
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Among such lowering operators, we mention the derivative operator D, the
difference operator ∆ and the Hahn operator Hq. In the sequel, for shorter, we
write “classical” instead of “D-classical”.

The literature on these topics is extremely vast. We quote, for instance,
[1], [2], [14], [16], [18]. Notice also that Definition 1.1 was extended by replac-
ing the “orthogonal” property by “d-orthogonal”. The notion of d-orthogonal
polynomials is a generalization of orthogonal polynomials in the sense that the
polynomials satisfy orthogonality conditions with respect to d functionals. That
was introduced in [20], [25].

Recently, we consider a further lowering operator to treat analogue ques-
tions. That is Tµ := D + 2µH−1, µ > −1/2, the Dunkl operator to introduce
the so called Tµ-classical (or Dunkl-classical) polynomials. In [7], we charac-
terize the Tµ-classical symmetric orthogonal polynomials. In [8], we introduce a
Tµ-classical d-symmetric d-orthogonal polynomial family generalizing the Gould-
Hopper ones by solving a characterization problem. In this work, we introduce
a second example of Tµ-classical d-symmetric d-orthogonal polynomial set as
the range of the Humbert polynomials by a suitable d-orthogonality preserving
operator. Notice by the way that Humbert polynomials include many special
cases considered in the literature (see Subsection 2.4). The outline of the pa-
per is as follows. In Section 2, we recall some definitions and results to be
used in the sequel. In Section 3, we introduce a new d-symmetric polynomial
set generalizing the Humbert polynomials. For a restricted condition on d, we
show that these polynomials are Dunkl-classical d-orthogonal and we explicitly
express the d-dimensional functional for which the d-orthogonality holds. In
Section 4, for positive integer d, we derive a (d + 1)-order differential-difference
equation satisfied by the generalized Humbert polynomials. For the components
of these polynomials we state an hypergeometric representation. From which,
we deduce that these components are classical d-orthogonal. Finally, in Sec-
tion 5, we discuss the significance of the generalized Humbert polynomials, the
method how these polynomials were introduced and some questions arising in
the d-orthogonal polynomial theory.

2 – Preliminaries and notations

Throughout this paper, we shall use the following notations, definitions and
formulas.

2.1 – Dunkl-operator

Let µ be a real number with µ > −1/2. The Dunkl operator Tµ is defined
in the linear space of entire functions as follows [13]

(2.1) Tµφ(x) = φ
0
(x) + µ

φ(x)− φ(−x)

x
.

The operator T0 is reduced to the derivative operator D.
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One easily verifies that

(2.2) Tµxn =
∞µ(n)

∞µ(n− 1)
xn−1, n ∈ N∗, Tµ(1) = 0

where ∞µ is defined by

(2.3) ∞µ(2n) :=
22nn! Γ(n + µ + 1/2)

Γ(µ + 1/2)
= (2n)!

Γ(n + µ + 1/2)Γ(1/2)

Γ(n + 1/2)Γ(µ + 1/2)

and

(2.4) ∞µ(2n+1) :=
22n+1n! Γ(n + µ + 3/2)

Γ(µ + 1/2)
= (2n+1)!

Γ(n + µ + 3/2)Γ(1/2)

Γ(n + 3/2)Γ(µ + 1/2)
.

∞µ plays the role of generalized factorial [23], since

∞µ(n + 1) = (n + 1 + 2µθn+1)∞µ(n), n ∈ N := {0, 1, 2, . . . },

where θn is defined to be 0 if n ∈ 2N and 1 if n ∈ (2N + 1).
The associated commutative algebra of Dunkl operator Tµ is intertwined

with the algebra of the standard derivative operator D by a unique linear and
homogeneous isomorphism Vµ in the linear space P of polynomials with complex
coefficients in the sens that:

(i) Vµ(1) = 1;
(ii) Vµ(Pn) = Pn , where Pn denotes the linear subspace of polynomials of

degree at most n;
(iii) TµVµ = VµD.

The expression of Vµ in terms of its action on the canonical basis of P is given
by

(2.6) Vµ(xn) =

µ
1

2

∂

[ n+1
2 ]µ

µ +
1

2

∂

[ n+1
2 ]

xn =
n!

∞µ(n)
xn, n ∈ N,

where, and in what follows, [x] denotes the greatest integer in x and (a)p the

Pochhammer symbol given by (a)p = Γ(a+p)
Γ(a) , p ∈ N.

This amounts to the following integral representation [13]

Vµ(f(x)) =
Γ(µ + 1/2)

Γ(1/2)Γ(µ)

Z 1

−1

f(xt)(1− t)µ−1(1 + t)µdt.
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2.2 – d-orthogonal polynomials

Let P be the vector space of polynomials with coefficients in C and let P 0

be its algebraic dual. We denote by hu, fi the effect of the functional u ∈ P 0 on
the polynomial f ∈ P. A polynomial sequence {Pn}n≥0 is called a polynomial
set (PS, for shorter) if and only if deg Pn = n for all non-negative integer n. The
PS {Pn}n≥0 is called monic if Pn(x) = xn + πn−1(x) with deg πn−1 ≤ n− 1.

Let {Pn}n≥0 be a sequence of monic polynomials. The dual sequence asso-
ciated with {Pn}n≥0 is a sequence of forms {uk}k≥0 such that

huk, Pni = δk,n, n, k ≥ 0.

Throughout this paper, d denotes a positive integer.

Definition 2.1 ([25]). A PS {Pn}n≥0 is called d-orthogonal (d-OPS, for
shorter) with respect to the d-dimensional functional vector Γ = t(Γ0,Γ1, . . . ,
Γd−1) if it satisfies the following orthogonality relations:

(2.7)

Ω hΓk, PrPni = 0, r > nd + k, n ∈ N,

hΓk, PnPnd+ki 6= 0, n ∈ N,

for each integer k belonging to Nd := {0, 1, . . . , d− 1}.
For d = 1, the d-orthogonality is reduced to the orthogonality.
The d-dimensional functional Γ = t(Γ0,Γ1, . . . ,Γd−1) given in this defini-

tion is not unique according to the following result.

Lemma 2.2 ([11]). If a PS {Pn}n≥0 is d-orthogonal with respect to a d-
dimensional functional vector Γ = t(Γ0,Γ1, . . . , Γd−1), then this PS is also d-
orthogonal with respect to the d-dimensional functional vector U =t (u0, u1, . . . ,
ud−1), where the forms u0, u1, . . . , ud−1 are the d first elements of the dual se-
quence {un}n≥0 associated with {Pn}n≥0.

2.3 – d-Symmetric polynomials

Definition 2.3 ([10]). A PS {Pn}n≥0 is called d-symmetric if it fulfills for
all n ∈ N,

(2.8) Pn(wd+1x) = wn
d+1Pn(x)

where wd+1 = exp(2i π
d+1).

For d = 1, w2 = −1, the PS {Pn}n≥0 is symmetric i.e.Pn(−x)=(−1)nPn(x).

Lemma 2.4 ([10]). A PS {Pn}n≥0 is d-symmetric if and only if there exist
(d + 1) sequences {P k

n}n≥0, k ∈ Nd+1, such that P(d+1)n+k(x) = xkP k
n (xd+1),

n ≥ 0.
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The (d + 1) PSs {P k
n}n≥0, k ∈ Nd+1, are called the components of the

d-symmetric PS {Pn}n≥0.

Lemma 2.5 ([10]). Let {Pn}n≥0 be a monic d-OPS. Then {Pn}n≥0 is d-
symmetric if and only if {Pn}n≥0 satisfies the (d + 1)-order recurrence relation:

(2.9)

Ω
Pn(x) = xn, n ∈ Nd+1

Pn+1(x) = xPn(x)− ∞nPn−d(x), n ≥ d

where ∞n 6= 0, n ≥ d.

2.4 – Humbert polynomials

The Humbert polynomials are generated by [15]

(2.10)
°
1− (d + 1)xt + td+1

¢−∫
=
X

n≥0

h∫n,d+1(x) tn

where ∫ > −1
2 and ∫ 6= 0.

The explicit representation of the Humbert polynomials is given by [5]

(2.11) h∫n,d+1(x) =

[ n
d+1 ]X

k=0

(−1)k(∫)n−dk

k!(n− (d + 1)k)!
((d + 1)x)

n−(d+1)k
.

Let us give an overview of some special cases that were investigated in the liter-
ature.

• Gegenbauer polynomials: by letting d = 1 in (2.10), we meet the Gegenbauer
polynomials {C∫

n(x)}n≥0.
• Pincherle type polynomials: for d = 2, the Humbert polynomials are reduced

to the Pincherle type polynomials [22], which, in the limiting case ∫ = −1
2 ,

are reduced to the Pincherle polynomials.
• Chebyshev type d-OPS: by letting ∫ = 1 in (2.10), we meet the Cheby-

shev type d-OPS of the second kind {Un(.; d)}n≥0 studied by Douak and
Maroni [12] and generated by:

(2.12)
°
1 + btd+1 − xt

¢−1
=
X

n≥0

Un(x; d) tn, b 6= 0.

For d = b = 1, these polynomials are reduced to the Chebyshev polynomials
of the second kind {Un(.)}n≥0.

• Legendre type d-OPS: by letting ∫ = 1
2 in (2.10), we meet the d-OPS of

Legendre type {Ln(. ; d)}n≥0 considered by Lamiri and Ouni [17]. This PS
is a natural extension of the Legendre ones.
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• Kinney polynomials: for ∫ = 1
d+1 , the Humbert PS {h∫n,d+1(x)}n≥0 is re-

duced to the Kinney PS {Kn(.; d)}n≥0. That includes as particular cases,
the Legendre polynomials {Ln(x)}n≥0 (d = 1), and the Pincherle type poly-

nomials {P
1
3

n (x)}n≥0 (d = 2).

Lemma 2.6 ([5]). The Humbert polynomials {h∫n}n≥0 are d-symmetric clas-
sical d-orthogonal.

3 – A Dunkl-classical d-symmetric d-orthogonal polynomial set

Replacing the derivative operator in the definition of classical d-OPS, in-
troduced by Douak and Maroni, by the Dunkl operator Tµ, one obtains the
following.

Definition 3.1. A PS {Pn}n≥0 is called Tµ-classical (or Dunkl-classical)
d-orthogonal if and only if both {Pn}n≥0 and {TµPn+1}n≥0 are d-orthogonal.

Next, we introduce and study a Tµ-classical d-OPS.

3.1 – Generalized Humbert polynomials

The generalized Gegenbauer polynomials S
(α,β)
n (x) are orthogonal with re-

spect to the weight function:

|x|2β+1(1− x2)α; −1 ≤ x ≤ 1.

For β = −1/2, these polynomials are reduced to Gegenbauer polynomials.
In [7], we gave the relation linking the generalized Gegenbauer polynomials

{S(α,µ−1/2)
n }n≥0 and the Gegenbauer polynomials {Cα+µ+1/2

n }n≥0. That is

(3.1) Vµ(Cα+µ+1/2
n ) = S(α,µ−1/2)

n

where Vµ is the isomorphism defined by (2.6).
Starting from this identity, we remark that, for this case, the operator Vµ

preserves two main properties of the Gegenbauer polynomials, the symmetry and
the orthogonality, while the “classical” property is replaced by the Tµ-classical
ones. On the other hand, from Lemma 2.6, we notice that these three properties
of the Gegenbauer polynomials have corresponding ones satisfied by the Humbert
polynomials, another generalization of Gegenbauer polynomials. That suggests
us to consider the polynomials:

(3.2) H(∫,µ−1/2)
n,d+1 (x) =

∞µ(n)

n!
Vµ(h∫n,d+1(x)),

in order to introduce a further example of Tµ-classical d-orthogonal polynomial
set. We refer to these polynomials as generalized Humbert polynomials.
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In the sequel, for the sake of simplicity, we will adopt the notation: H∫
n(., d+

1) := H(∫,µ−1/2)
n,d+1 (.), n ∈ N.

Theorem 3.2. The PS {H∫+∞
n (., d+1)}n∈N is a Dunkl-classical d-symmetric

d-OPS if

(3.3)




∞ =

d

d + 1
(2µ + 1),

(µ, d) ∈ {0}× N∗ or (µ, d) ∈ (]− 1/2,+1[) \{0}× (2N + 1).

To prove this result, we need the following.

Lemma 3.3. The generalized Humbert Polynomials {H∫+∞
n (., d + 1)}n∈N

satisfy the (d + 1)-order recurrence relation:

(3.4)





H∫+∞
n+1(x, d + 1) =

(d + 1)(∫ + ∞ + n)

n + 1
xH∫+∞

n (x, d + 1)+

−∞µ(n)(n− d)!(n + (d + 1)∫ + 2µdθn)

(n + 1)!∞µ(n− d)
H∫+∞

n−d(x, d + 1), n ≥ d,

H∫+∞
n (x, d + 1) = xn, n ∈ Nd+1,

where ∞, µ and d satisfies (3.3).

Proof. In order to prove (3.4), we put

H∫+∞
n (x, d + 1) =

[ n
d+1 ]X

k=0

Cn,kxn−(d+1)k.

Taking account of (2.11), (3.2) and (2.6), ones obtains

Cn,k =
(−1)k∞µ(n)(∫ + ∞)n−dk(d + 1)n−(d+1)k

k!n!∞µ(n− (d + 1)k)
.

The coefficient of xn+1−(d+1)k in (d+1)(∫+∞+n)
n+1 xH∫+∞

n (x, d + 1)−H∫+∞
n+1(x, d + 1),

k ∈
n
1, 2, . . . ,

h
n

d+1

io
, is given by

(d + 1)(∫ + ∞ + n)

n + 1
Cn,k − Cn+1,k =

=
(−1)k+1∞µ(n)(∫ + ∞)n−dk(d + 1)n+1−(d+1)k

k!(n + 1)!∞µ(n + 1− (d + 1)k)
×A
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where

A = k(n + (∫ + ∞)(d + 1)− d− 2µdθn+1) + µ(n + ∫ + ∞)(−1)n
≥
1− (−1)(d+1)k

¥
.

Next, we consider the case (3.3). Then

A = k(n + ∫(d + 1) + 2µdθn)

and

(d+1)(∫+∞ + n)

n + 1
Cn,k−Cn+1,k =

∞µ(n)(n− d)!(n + (d + 1)∫ + 2µdθn)

(n + 1)!∞µ(n− d)
Cn−d,k−1.

That leads to (3.4).

Proof of Theorem 3.1. From Lemma 2.5 and Lemma 3.4, we deduce
that {H∫+∞

n (x, d + 1)}n≥0 is a d-symmetric d-OPS.
Now, let Tµ operate on both sides of (3.2). Taking account of Equa-

tion (2.11), using (2.2) and the following transformation

(3.5) (a)i+j = (a)i(a + i)j , i, j ∈ N

one obtains

TµH∫+∞
n (x, d + 1) =

(d + 1)(∫ + ∞)∞µ(n)

n∞µ(n− 1)
H∫+∞+1

n−1 (x, d + 1).

It follows that the PS {H∫+∞
n (., d + 1)}n≥0 is Dunkl-classical.

3.2 – d-dimensional functionals

In this subsection, we express explicitly the d-dimensional functional for
which we have the d-orthogonality of the generalized Humbert polynomials.
Then, we consider some special cases.

According to Lemma 2.2, we will determinate the d first elements of the cor-
responding dual sequence to construct the d forms ensuring the d-orthogonality
of these polynomials. To this end, we follow an approach used by Lamiri and
Ouni [17] based on the inversion formula. We state the following.

Theorem 3.4. With the conditions:

(µ, d) ∈ {0}× N∗ or (µ, d) ∈ (]− 1/2,+1[) \{0}× (2N + 1),
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the generalized Humbert PS {H∫
n(., d + 1)}n≥0, ∫−µ > −1

2 , defined by (3.2) is a

d-OPS with respect to the d-dimensional functional vector U =t (u0, u1, . . ., ud−1)
given by:

(3.6) hur, x
ni = δr,i

Z d
− d

d+1

0

ξn ϕr,d(ξ)dξ,

where n = i + (d + 1)k, k ∈ N, i = 0, 1, . . . , d, r = 0, 1, . . . , d− 1 and

(3.7)

ϕr,d(ξ)=

2rr!
hr
2

i
!(µ+1/2)[ r+1

2 ]

dY

j=1

Γ

µ
∫ + r + j

d

∂

∞µ(r)(d+1)r−1(∫)r

qY

j=1

Γ




hr
2

i
+j

q




qY

j=1

Γ




µ−1/2+

∑
r+1

2

∏
+j

q




× ξ−(r+1)Gd+1,0
d+1, d+1

µ
ddξd+1

ØØØØ
α1, . . . ,αd+1

β1, . . . ,βd+1

∂

where

αj =

( ∫ + r + j

d
, 1 ≤ j ≤ d,

1, j = d + 1

and

βj =





hr
2

i
+ j

q
, 1 ≤ j ≤ d + 1

2
,

µ− 1/2 +

∑
r + 1

2

∏
+ j

q
− 1,

d + 1

2
< j ≤ d + 1

with q = d+1
2 .

Here, Gm, n
p, q , designates the Meijer’s G-function defined by [19, p. 143]:

Gm, n
p, q

µ
z

ØØØØ
(ap)
(bq)

∂
= (2πi)−1

Z

L
zξ

mY

j=1

Γ(bj − ξ)
nY

j=1

Γ(1− aj + ξ)

qY

j=m+1

Γ(1− bj + ξ)

pY

j=n+1

Γ(aj − ξ)

dξ,

where (ap) abbreviates the set {a1, a2, . . . , ap}. We refer to [19, p. 144] for the
details regarding the type of the contour L.
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Proof. Recall first that the inversion formula related to the Humbert poly-

nomial set
n
h∫n,d+1

o
n≥0

is given by [3]:

(3.8) xn =

[ n
d+1 ]X

j=0

(∫ + n− (d + 1)j)

(∫)n+1−j

n!

(d + 1)nj!
h∫n−(d+1)j, d+1(x).

Letting Vµ operate on both sides of (3.8) and using (2.6) and (3.2), we deduce
that the inversion formula related to the generalized Humbert polynomial set
{H∫+∞

n (., d + 1)}n≥0 is given by

(3.9) xn =

[ n
d+1 ]X

j=0

(∫ + n− (d + 1)j)

(∫)n+1−j

∞µ(n)

(d + 1)nj!

(n− (d + 1)j)!

∞µ(n− (d + 1)j)
H∫

n−(d+1)j(x, d+1).

According to the definition of a linear functional vector, we have from (3.9):

(3.10) hur, x
ni = δr,i

(∫ + r)

(d + 1)r+(d+1)k

∞µ(r + (d + 1)k)

k!(∫)r+1+dk

r!

∞µ(r)

where n = i + (d + 1)k, k ∈ N, i = 0, 1, . . . , d, r = 0, 1, . . . , d− 1.

Taking account of (2.3) and (2.4), one obtains, for all n ∈ N,

∞µ(n) = 2n[
n

2
]!(µ + 1/2)[n+1

2 ].

The use of the identities (3.10), (3.5) and the following transformation:

(3.11) (a)m k = mm k
m−1Y

j=0

µ
a + j

m

∂

k

, k = 0, 1, 2, . . . ,

leads, with q = d+1
2 , to

∞µ(r + (d + 1)k) = 2r+(d+1)k
≥hr

2

i
+ qk
¥
!(µ + 1/2)[ r+1

2 ]+qk

= 2r+(d+1)k
hr
2

i
!q(d+1)k

qY

j=1




hr
2

i
+j

q




k

(µ+1/2)[ r+1
2 ]

q−1Y

j=0




µ+1/2+

∑
r+1

2

∏
+j

q




k
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and

hur, x
ni =δr,i

2rr!
hr
2

i
!

qY

j=1




hr
2

i
+j

q




k

(µ+1/2)[ r+1
2 ]

q−1Y

j=0




µ+1/2+

∑
r+1

2

∏
+j

q




k

∞µ(r)(d + 1)r(∫)rddkk!
dY

j=1

µ
∫ + r + j

d

∂

k

=δr,i

2rr!
hr
2

i
!(µ + 1/2)[ r+1

2 ]

dY

j=1

Γ

µ
∫ + r + j

d

∂

∞µ(r)(d+1)r(∫)r

qY

j=1

Γ




hr
2

i
+j

q




qY

j=1

Γ




µ−1/2+

∑
r+1

2

∏
+j

q




·Ak,r

with

Ak,r =

qY

j=1

Γ




hr
2

i
+ j

q
+ k




qY

j=1

Γ




µ− 1/2 +

∑
r + 1

2

∏
+ j

q
+ k




ddkk!
dY

j=1

Γ

µ
∫ + r + j

d
+ k

∂ .

Setting

∞j =





hr
2

i
+ j

q
+ k − 1, 1 ≤ j ≤ d + 1

2
,

µ− 1/2 +

∑
r + 1

2

∏
+ j

q
+ k − 2,

d + 1

2
< j ≤ d + 1,

lj =





∫(d + 1) + (d + 1)r − 2d
hr
2

i
+ (1− d)j

d(d + 1)
, 1 ≤ j ≤ d + 1

2
,

∫(d + 1)+(d + 1)r−2d

∑
r+1

2

∏
+(1− d)j − (2µ− 1)d

d(d + 1)
+1,

d + 1

2
<j≤d,

−1−
µ− 1/2 +

∑
r + 1

2

∏

q
, j = d + 1,
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we obtain

(3.13) Ak,r(d) =
1

ddk

d+1Y

j=1

µ
Γ (∞j + 1)

Γ (∞j + lj + 1)

∂

and
Pd+1

j=1 lj = ∫ − µ + 1/2.

On the other hand, if
Pd+1

j=1 lj > 0, the first author and Douak [6] showed
that

(3.14)

pFq

µ
(ap)
(∞q + lq + 1)

;x

∂
=

qY

i=1

µ
Γ (∞i + 1 + li)

Γ (∞i + 1)

∂

×
Z 1

0

Gq, 0
q, q

µ
t

ØØØØ
(∞q + lq)
(∞q)

∂
pFq

µ
(ap)
(∞q + 1)

;xt

∂
dt,

where the pFq, as usual, denotes the generalized hypergeometric functions defined
by:

(3.15) pFq



α1, . . . , αp

; z
β1, . . . , βq


 =

1X

m=0

(α1)m . . . (αp)m

(β1)m . . . (βq)m

zm

m!
,

• p and q are positive integers or zero (interpreting an empty product as 1);
• z is a complex variable;
• the numerator parameters α1, . . . ,αp and the denominator parameters
β1, . . . ,βq take in complex values. βj ; j ∈ N∗

q+1: being non-negative in-
tegers.

The identity (3.14), for x = 0 and q = d + 1, is reduced to

(3.16)
d+1Y

j=1

µ
Γ (∞j + 1)

Γ (∞j + 1 + lj)

∂
=

Z 1

0

Gd+1, 0
d+1, d+1

µ
t

ØØØØ
(∞d+1 + ld+1)
(∞d+1)

∂
dt.

Thus, for ∫ > −1
2 , the identity (3.13) can be rewritten under the form

Ak,r(d) =
1

ddk

Z 1

0

Gd+1,0
d+1,d+1




t

ØØØØØØØØØØØØØØØ

∫ + r + 1

d
− 1 + k, . . . ,

∫ + r + d

d
− 1 + k, k

hr
2

i
+ 1

q
− 1 + k, . . . ,

hr
2

i
+ q

q
− 1 + k,

µ + 1/2 +

∑
r + 1

2

∏

q
+

+k − 1, . . . ,

µ+1/2+

∑
r + 1

2

∏
+q−1

q + k − 1




dt.
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Then, according to the transformation [[24], p. 46]

(3.17) zkGm,n
p, q

µ
z

ØØØØ
α1, . . . ,αp

β1, . . . ,βq

∂
= Gm,n

p, q

µ
z

ØØØØ
α1 + k, . . . ,αp + k
β1 + k, . . . ,βq + k

∂
,

we get

Ak,r(d) =

Z 1

0

µ
t

dd

∂k

Gd+1,0
d+1, d+1




t

ØØØØØØØØØØØØØØØ

∫ + r + 1

d
− 1, . . . ,

∫ + r + d

d
− 1, 0

hr
2

i
+ 1

q
− 1, . . . ,

hr
2

i
+ q

q
− 1,

µ + 1/2 +

∑
r + 1

2

∏

q
+

−1, . . . ,

µ + 1/2 +

∑
r + 1

2

∏
+ q − 1

q
− 1




dt.

That, upon the change of variables t = ddξ(d+1), leads to

(3.18)

Ak,r(d) =

Z d
− d

d+1

0

ξk(d+1)Gd+1, 0
d+1, d+1·

·
√
ddξd+1

ØØØØØ
∫ + r + 1

d
− 1, . . . ,

∫ + r + d

d
− 1, 0

∞1 − k, . . . , ∞d+1 − k

!
(d+1)ddξddξ.

Substituting (3.18) in (3.12), we obtain

hur, x
ni = δr,i

2rr!
hr
2

i
!(µ + 1/2)[ r+1

2 ]

dY

j=1

Γ

µ
∫ + r + j

d

∂

∞µ(r)(d+1)r−1(∫)r

qY

j=1

Γ




hr
2

i
+j

q




q−1Y

j=0

Γ



µ+1/2+

∑
r+1

2

∏
+j

q




×
Z d

− d
d+1

0

ξr+k(d+1)ξ−(r+1)
°
ddξd+1

¢
Gd+1, 0

d+1, d+1×

×
√

ddξd+1

ØØØØØ
∫ + r + 1

d
− 1, . . . ,

∫ + r + d

d
− 1, 0

∞1 − k, . . . , ∞d+1 − k

!
dξ.

That, by virtue of (3.17), leads to (3.6).
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3.2.1 – Special cases

In this subsection, we consider some particular cases of generalized Humbert
polynomials by specializing the parameters d and µ.

Case 1 (Generalized Gegenbauer polynomials). Letting d = 1 in (3.2), we

meet the generalized Gegenbauer polynomials
n
S

(∫−µ−1/2,µ−1/2)
n (x)

o
n≥0

. In-

deed, from (3.7) with d = 1 and the transformation 24, p. 46]

(3.19)

Gm,n
p, q

µ
z

ØØØØ
α1, . . . ,αp−1,β1

β1, . . . ,βq

∂
=

= Gm−1,n
p−1,q−1

µ
z

ØØØØ
α1, . . . ,αp−1

β2, . . . ,βq

∂
; m,p, q ≥ 1;

we have

ϕ0,1(ξ) =
2Γ (∫ + 1)

Γ

µ
µ +

1

2

∂ ξ−1 G1, 0
1, 1


ξ2
ØØØØØØ

∫ + 1

µ +
1

2


 .

Taking account of the following identity [6]

(3.20) G1, 0
1, 1

µ
x

ØØØØ
α+ β
α

∂
=

1

Γ(β)
(1− x)

β−1
xα,

we obtain

(3.21) ϕ0,1(ξ) =
2Γ(∫ + 1)

Γ

µ
µ +

1

2

∂
Γ

µ
∫ − µ +

1

2

∂ξ2µ
°
1− ξ2

¢∫−µ− 1
2 .

Consequently, the linear functional u0 of the generalized Gegenbauer polynomials
is given by

hu0, x
ni =

Γ(∫ + 1)

Γ

µ
µ +

1

2

∂
Γ

µ
∫ − µ +

1

2

∂
Z 1

−1

ξn|ξ|2µ
°
1− ξ2

¢∫−µ− 1
2 dξ.
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If moreover µ = 0, we meet the Gegenbauer polynomials {C∫
n}n≥0. These poly-

nomials are orthogonal with respect to the well known weight function

ϕ0,1(ξ) =
∫(Γ(∫))2

πΓ(2∫)21−2∫

°
1− ξ2

¢∫− 1
2 , −1 ≤ ξ ≤ 1.

Case 2 (Humbert polynomials). In this case, µ = 0, d ∈ N∗ and

{β1,β2, . . . ,βd+1} =





hr
2

i
+ j

q
, 1 ≤ j ≤ d + 1

2




[

[




−1/2 +

∑
r + 1

2

∏
+ j

q
− 1,

d + 1

2
< j ≤ d + 1





=

Ω
r + 1

d + 1
,
r + 2

d + 1
, . . . ,

r + (d + 1)

d + 1

æ
.

Since r = [ r
2 ] + [ r+1

2 ], then 2r[ r
2 ]!(1/2)[ r+1

2 ] = r! and (3.7) is reduced to

(3.22)

ϕr,d(ξ) =

r!
dY

j=1

Γ

µ
∫ + r + j

d

∂

(d + 1)r−1(∫)r

d+1Y

j=1

Γ

µ
r + j

d + 1

∂×

× ξ−(r+1)Gd+1,0
d+1, d+1


ddξd+1

ØØØØØØØØ

∫ + r + 1

d
, . . . ,

∫ + r + d

d
, 1

r + 1

d + 1
, . . . ,

r + (d + 1)

d + 1


 .

That was obtained by Lamiri and Ouni [17].

4 – Properties of the generalized Humbert polynomials

4.1 – A Tµ-equation

In this subsection, we state a (d + 1)-order differential-difference equation
satisfied by the generalized Humbert polynomials. To this end, we need the
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linear operator Uµ defined on polynomials by means of

(4.1) Uµ(xn) :=
(n + 1)∞µ(n)

∞µ(n + 1)
xn+1,

where ∞µ(n) is defined by (2.3) and (2.4).
We have the following.

Theorem 4.1. The generalized Humbert polynomial H∫
n(., d + 1), n =

0, 1, . . . , satisfy the following (d + 1)-order differential-difference equation:

(4.2)


T d+1

µ −(UµTµ − n)
d−1Y

j=0

(d (UµTµ−n+d+1) + (d + 1)(∫ + n− j − 1))




y = 0, n > d.

Proof. The Humbert polynomials h∫n,d+1, n = 0, 1, . . . , satisfy the following
(d + 1)-order differential equation [5]:

Ln(y) :=


Dd+1 − (xD − n)

d−1Y

j=0

(d (xD − n + d + 1) + (d + 1)(∫ + n− j − 1))




y = 0, n > d.

From the identities (2.5) and (4.1), we deduce that D = V −1
µ TµVµ and UµVµ =

VµX.
Then

Vµ(XD) = UµTµVµ

and

(4.3) Vµ(XD)k = (UµTµ)kVµ.

Put

(4.4) Ln = Dd+1 +
dX

k=0

αn,k(XD)k.

Letting Vµ operate on both sides of (4.4) and using (4.3), we deduce that

VµLn(h∫n,d+1) = fLn(Vµ(h∫n,d+1)) = fLn(H∫
n(., d + 1)) = 0
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where

fLn := T d+1
µ +

dX

k=0

αn,k(UµTµ)k.

Put d = 1 in (4.2), we meet the second-order differential-difference equation

satisfied by the generalized Gegenbauer polynomials {S(α,µ−1/2)
n }n≥0. Indeed,

from (4.2), with d = 1, we have

(4.5)
°
T 2

µ − (UµTµ − n) (UµTµ + n + 2∫)
¢
y = 0, n > 1.

Since, for k = 0, 1, . . . , n and n− k ∈ 2N,

(n− UµTµ) (UµTµ + n + 2∫)xk =

=

µ
−x2T 2

µ − 2(α+ 1)xTµ +
∞µ(n)

∞µ(n− 1)

µ
∞µ(n− 1)

∞µ(n− 2)
+ 2(α+ 1)

∂∂
xk,

with α = ∫ − µ− 1/2, (4.5) becomes [7]

µ
(1−x2)T 2

µ−2(α+ 1)xTµ+
∞µ(n)

∞µ(n− 1)

µ
∞µ(n− 1)

∞µ(n− 2)
+2(α+ 1)

∂∂
S(α,µ−1/2)

n (x)=0.

4.2 – Components of generalized Humbert polynomials

According to Lemma 2.4, the components {H∫,k
n }n≥0, k ∈ Nd+1, of the

generalized Humbert PS {H∫
n}n≥0 are defined by

(4.6) H∫
(d+1)m+k(x, d + 1) =

∞µ(n(d + 1) + k)

(n(d + 1) + k)!
xkH∫,k

m (xd+1, d + 1), k ∈ Nd+1.

With d = 1, the identity (4.6) is reduced to the classical relation between gener-
alized Gegenbauer polynomials and Jacobi polynomials.

Next we give some properties of these components.

Theorem 4.2. The components {H∫,k
n (., d+1)}n≥0, k ∈ Nd+1, are classical

d-orthogonal.

The proof of this theorem, follows from the following three lemmas.
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Lemma 4.3. The components {H∫,k
n (., d + 1)}n≥0, k ∈ Nd+1, are generated

by

(4.7)

1X

n=0

H∫,k
n (x, d + 1) tn =

=
(∫)k

∞µ(k)
(d + 1)

k
(1 + t)−k−∫

d+1Fd

√
∆ (d + 1, k + ∫)
∆∗

µ (d + 1, k + 1)
;

µ
d + 1

1 + t

∂d+1

xt

!

where ∆(n, a) abbreviates the array of n parameters a+j−1
n , j = 1, . . . , n and

∆∗
µ(n, l) :=

Ω
l + j + 2µθl+j

n
; j = 0, 1, . . . , n− 1

æ/nn

n

o
.

Proof. The Humbert polynomials are generated by (2.10), which can be
rewritten in the form

(4.8) (1 + td+1)−∫
1X

n=0

(∫)n

n!

µ
(d + 1)xt

1 + td+1

∂n

=
X

n≥0

h∫n,d+1(x) tn.

Let Π[d+1,k] be the linear operator on formel power series defined by

(4.9) Π[d+1,k]f(z) =
1

d + 1

dX

l=0

w−kl
d+1f(wl

d+1z) , k ∈ Nd+1.

Applying the operator Π[d+1,k], k ∈ Nd+1, to the two members of the identity
(4.8) considered as functions of the variable x, and using the fact that the Hum-
bert polynomials h∫n,d+1(x) are d-symmetric, we obtain

X

n≥0

h∫n(d+1)+k,d+1(x) tn(d+1)+k =

= (1 + td+1)−∫
1X

n=0

(∫)n(d+1)+k

(n(d + 1) + k)!

µ
(d + 1)xt

1 + td+1

∂n(d+1)+k

.

Letting Vµ operate on both sides of the last identity considered as functions of
the variable x and using (2.6) and (3.2), we deduce that the generalized Humbert
polynomial set {H∫

n(x, d + 1)}n≥0 is generated by

X

n≥0

(n(d + 1) + k)!

∞µ(n(d + 1) + k)
H∫

n(d+1)+k(x, d + 1) tn(d+1)+k =

= (1 + td+1)−∫
1X

n=0

(∫)n(d+1)+k

∞µ(n(d + 1) + k)

µ
(d + 1)xt

1 + td+1

∂n(d+1)+k

.
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Notice that

∞µ(n(d + 1) + k)=

n(d+1)+kY

j=1

(j + 2µθj)

=(d + 1)n(d+1)∞µ(k)

n(d+1)Y

j=1

µ
j + k + 2µθj+k

d + 1

∂

=(d+1)n(d+1)∞µ(k)
d+1Y

l=1

n−1Y

j=0

µ
k+l+j(d+1)+2µθk+l+j(d+1)

d + 1

∂
.

Since j(d + 1) is even, for j = 0, 1, . . . , d, we have

∞µ(n(d + 1) + k) =

= (d + 1)n(d+1)∞µ(k) n!
d+1Y

l=1,l+k 6=d+1

µ
k + l + 2µθk+l

d + 1

∂

n

.

Using (3.5) and (3.11), we write

1X

n=0

(n(d + 1) + k)!

∞µ(n(d + 1) + k)
H∫

n(d+1)+k(x, d + 1) tn(d+1)+k =

=(1 + td+1)−∫
1X

n=0

(∫)k

dY

j=0

µ
∫ + k + j

d + 1

∂

n

∞µ(k)n!
d+1Y

l=1,l+k 6=d+1

µ
k+l+2µθk+l

d+1

∂

n

µ
(d + 1)xt

1 + td+1

∂n(d+1)+k

=

=
(∫)k

∞µ(k)
((d+1)xt)

k
(1+td+1)−k−∫

d+1Fd

√
∆ (d + 1, k + ∫)
∆∗

µ (d + 1, k + 1)
;

µ
(d + 1)xt

1 + td+1

∂d+1
!

.

Which, by virtue of (4.6) leads to (4.7).

Lemma 4.4. The components H∫,k
n (., d + 1), k ∈ Nd+1, have the following

hypergeometric representation.

(4.10)

H∫,k
n (x, d + 1) =

=
(∫)k(d + 1)k

∞µ(k)

(−1)n(∫ + k)n

n!
d+1Fd



−n,∆ (d, ∫ + k + n)

∆∗
µ (d + 1, k + 1)

; ddx


 .
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Proof. From (4.7), we have

1X

n=0

H∫,k
n (x, d + 1) tn =

=
1X

l=0

(∫)k

dY

j=0

µ
∫ + k + j

d + 1

∂

l

(d + 1)l(d+1)+k

∞µ(k)l!
d+1Y

j=1,j+k 6=d+1

µ
k + j + 2µθk+j

d + 1

∂

l

(1 + t)
−(k+∫)−l(d+1)

xltl

=
1X

l=0

(∫)k

dY

j=0

µ
∫+k+j

d+1

∂

l

(d + 1)l(d+1)+k

∞µ(k)l!
d+1Y

j=1,j+k 6=d+1

µ
k+j+2µθk+l

d + 1

∂

l

1X

n=0

(−1)n((k + ∫) + l(d + 1))n

n!
tnxltl

=
1X

n=0

nX

l=0

(∫)k

dY

j=0

µ
∫+k+j

d+1

∂

l

(d+1)l(d+1)+k

∞µ(k)l!
d+1Y

j=1,j+k 6=d+1

µ
k+j+2µθk+l

d + 1

∂

l

(−1)n−l(k + ∫ + l(d + 1))n−l

(n− l)!
xltn

=
(∫)k(d + 1)k

∞µ(k)

1X

n=0

(−1)n

n!

nX

l=0

(−n)l(∫ + k)n+dl

l!
d+1Y

j=1,j+k 6=d+1

µ
k + j + 2µθk+l

d + 1

∂

l

xltn

=
(∫)k(d + 1)k

∞µ(k)

1X

n=0

(−1)n(∫ + k)n

n!

nX

l=0

(−n)ld
dl

d−1Y

j=0

µ
∫ + k + n + j

d

∂

l

l!
d+1Y

j=1,j+k 6=d+1

µ
k + j + 2µθk+l

d + 1

∂

l

xltn.

Equaling the coeffitients of tn and using (3.15), we obtain (4.10).

Lemma 4.5 ([17]). The polynomials defined by

d+1Fd

µ
−n,∆ (d, ∫ + k + n)

β1, . . . , βd
;x

∂

are classical d-orthogonal.
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5 – Concluding remarks

In this section, we discuss the significance of the polynomials given by (3.2)
and the method how these polynomials were introduced. As example of a special
function, we show that these polynomials are a generalization of Gegenbauer
polynomials having a property related to an orthogonality notion and as example
of a Tµ-classical d-OPS, we show that these polynomials give negative answers
to two questions arising in the d-orthogonal polynomial theory and suggest an
open one.

5.1 – Generalized Gegenbauer polynomials and some orthogonality notions

The literature on generalizations of Gegenbauer polynomials contains several
references. But only a few ones have a property related to an orthogonality
notion. Let us give an overview of some different generalizations that were
investigated in the literature.

• The Jacobi polynomials {P (α,β)
n }n≥0 are orthogonal with respect to the

weight function:

(1− x)α(1 + x)β ; −1 ≤ x ≤ 1.

For α = β, the Jacobi polynomials {P (α,β)
n }n≥0 becomes the Gegenbauer

polynomial.

• The generalized Gegenbauer polynomials {S(α,β)
n }n≥0 are orthogonal with

respect to the weight function:

|x|2β+1(1− x2)α; −1 ≤ x ≤ 1.

For β = −1/2, these polynomials are reduced to Gegenbauer polynomials.
• The Humbert polynomials {h∫n,d+1}n≥0 generated by (2.10). They are d-

orthogonal with respect to the weights functions ϕr,d, r = 0, 1, . . . , d, given
by (3.22).

• The generalization given by Milovanovic [21]:

πN (z) = 2−nz∫ bP (α,β∫)
n (2z2m − 1), N = 2mn + ∫, n =

∑
N

2m

∏
,

where ∫ ∈ N2m, β∫ = ∞ + (2∫ + 1 − 2m)/(2m), and bP (α,β)
n (x) denotes the

monic Jacobi polynomial.
They are orthogonal relative to the inner product

(f, g) =

Z 1

0

√
2m−1X

s=0

f(x≤s)g(x≤s)

!
w(x)dx,
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where m ∈ N, ≤s = exp(iπs/m), s ∈ N2m, and

w(x) = (1− x2m)αx2m∞ , α > −1, ∞ > − 1

2m
.

That corresponds to an orthogonal polynomial set over the star (OPS/?, for
shorter).

The link between the aforementioned polynomial sets and the obtained polyno-
mials in this paper and defined by (3.2) may be summarized by the following
scheme:

5.2 – The “L-classical” d-symmetric d-OPS and its components

Two general interesting questions may be discussed about a d-symmetric
d-OPS {Pn}n≥0, its components {P k

n}n≥0, k ∈ Nd+1, and L-classical property:

Question 1. If {Pn}n≥0 is L-classical, what about its components?

Question 2. If all the components {P k
n}n≥0, k ∈ Nd+1, are L-classical,

what about {Pn}n≥0?

As far as we know, only a particular case of Question 1, where L is the
derivative operator D, was considered in the literature. Indeed, if {Pn}n≥0 is
classical, Douak and Maroni [10] showed that the first component {P 0

n}n≥0 is
classical and, recently, Blel [9] showed that all the components {P k

n}n≥0, k ∈
Nd+1, are classical. For the converse of this result, one can formulate Question 2
as follows.

Question 2.1. If all the components {P k
n}n≥0, k ∈ Nd+1, are classical, is

{Pn}n≥0 too?

To generalize Blel result, one can formulate Question 1 as follows.

Question 1.1. If {Pn}n≥0 is L-classical, are all the components {P k
n}n≥0,

k ∈ Nd+1, too?
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The example (3.2), introduced and studied in this paper, gives negative
answers to the two last questions. Indeed, from Theorem (3.2) and Theorem
(4.2), we deduce that the PS given by (3.2) is Tµ-classical but its components are
classical. Another example of Tµ-classical d-symmetric d-OPS having classical d-
orthogonal components was treated in [8] where we showed that the components
of the Gould-Hopper type polynomials are of Laguerre type which are classical
d-orthogonal according to Theorem 1 in [4]. These two examples suggest us the
following particular case of Question 1.

Question 1.2. If {Pn}n≥0 is Tµ-classical, are the components {P k
n}n≥0,

k ∈ Nd+1, classical?

This question remains open.

5.3 – About the introduction of a new d-OPS

In this work, we introduce and study a Dunkl-classical d-symmetric d-OPS.
As far as we know, the method used here to introduce new d-OPSs is original. In
fact, most of the known d-OPSs were introduced as solutions of characterization
problems or as components of d-symmetric d-OPSs while this polynomial set
was introduced as a range of another one, the Humbert PS, by a suitable d-
orthogonality preserving operator Vµ.

In a forthcoming investigation we will benefit from the present method to
derive new Dunkl-classical d-symmetric d-OPSs.
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[14] W.Hahn: Über orthogonalpolynome, die q-differenzengleichungen genügen, Math.
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