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ggg-Natural metrics on unit tangent sphere

bundles via a Musso-Tricerri process
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Abstract: E. Musso and F. Tricerri had given a process of construction of Rie-
mannian metrics on tangent bundles and unit tangent bundles, over m-dimensional
Riemannian manifolds (M, g), from some special quadratic forms an OM × IRm and
OM , respectively, where OM is the bundle of orthonormal frames [7]. We prove in
this note that every Riemannian g-natural metric on the unit tangent sphere bundle
over a Riemannian manifold can be constructed by the Musso-Tricerri’s process. As a
corollary, we show that every Riemannian g-natural metric on the unit tangent bundle,
over a two-point homogeneous space, is homogeneous.

Let (M,g) be a Riemannian manifold and TM its tangent bundle. Consid-
ering TM as a vector bundle associated with the bundle of orthonormal frames
OM , E. Musso and F. Tricerri have constructed an interesting class of Rieman-
nian metrics on TM [7]. This construction is not a classification per se, but it is
a construction process of Riemannian metrics on TM from symmetric, positive
semi-definite tensor fields Q of type (2, 0) and rank 2m on OM × IRm, which are
basic for the natural submersion Φ : OM × IRm → TM , Φ(vε) = (x,

P
i ε

evi),
for v = (x; v1, . . . , vm) ∈ OM and ε = (ε1, . . . , εm) ∈ IRm. Recall that Q is basic
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means that Q is O(m)-invariant and Q(X,Y ) = 0, if X is tangent to a fiber of
Φ. The construction can be presented as follows:

Proposition 1 ([7]). Let Q be a symmetric, positive semi-definite tensor
field of type (2, 0) and rank 2m on OM × IRm, which is basic for the natural
submersion Φ : OM × IRm → TM . Then there is a unique Riemannian metric
GQ on TM such that Φ∗(GQ) = Q. It is given by

(1) GQ
(x,u)(X,Y ) = Q(v,ε)(X

0, Y 0),

where (v, ε) belongs to the fiber Φ−1(x, u),X, Y are elements of (TM)(x, u) and
X 0, Y 0 are any tangent vectors to OM × IRm at (v, ε) such that Φ∗(X 0) = X and
Φ∗(Y 0) = Y .

On the other hand, Musso and Tricerri proposed a similar process for con-
structing Riemannian metrics on the unit tangent sphere bundle T1M from sym-
metric, positive semi-definite tensor fields Q̃ of type (2, 0) and rank 2m − 1 on
OM , which are basic for the natural submersion √m : OM → T1M , √m(v) =
(x, vm), for v = (x; v1, . . . , vm) ∈ OM . Recall that Q̃ is basic means that Q̃ is
O(m−1)-invariant and Q̃(X,Y ) = 0, if X is tangent to a fiber of √m. Note that
√m is a submersion whose fibers can be identified with the subgroup O(m− 1)

of O(m) given by the matrices of the form

µ
A 0
0 1

∂
, A ∈ O(m− 1). Then T1M

can be regarded as the quotient space OM/O(m − 1), and √m is the natural
projection. The construction can be stated as follows:

Proposition 2 ([7]). Let Q̃ be a symmetric, positive semi-definite tensor
field of type (2, 0) and rank 2m on OM , which is basic for the natural submersion

√m : OM → T1M . Then there is a unique Riemannian metric G̃Q̃ on T1M such

that √∗
m(G̃Q̃) = Q̃. It is given by

(2) G̃Q̃
(x,u)(X,Y ) = Q̃(v)(X

0, Y 0),

where v belongs to the fiber √−1
m (x, u),X, Y are elements of (T1M)(x, u) and

X 0, Y 0 are any tangent vectors to OM at v such that (√m)∗(X 0) = X and
(√m)∗(Y 0) = Y .

The Musso-Tricerri processes described by Propositions 1 and 2, respec-
tively, are compatible in the following sense:

Proposition 3. If a Riemannian metric G on TM is induced from a
bilinear form Q on OM × IRm by the Musso-Tricerri process described in Propo-
sition 1, i.e., Φ∗(G) = Q, then the induced metric G̃ := i∗(G) on T1M , where i:
T1M → TM is the canonical injection, can be obtained from the bilinear form
Q̃ := i∗(Q) on OM by the Musso-Tricerri process described in Proposition 2.
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Proof. Denote by im the map OM → OM×IRm, v 7→ (v, 0, . . . , 0, 1). Then
the following diagram

(3)
OM

im→ OM × IRm

√m ↓ ↓ Φ

T1M
i
↪→ TM

commutes. If we consider Q̃ := i∗mQ, then Q̃ is a symmetric, semi-positive
definite, tensor field of type (0, 2) on OM . We can prove by a bit longer routine
computation that is basic for √m and it is of rank 2m − 1. Furthermore, we
have, by virtue of (3), that √∗

m(G̃) = √∗
m(i∗(G)) = (i ◦ √m)∗(G) = i∗m(Φ∗(G)) =

i∗m(Q) = Q̃.

Now we shall prove that every Riemannian g-natural metric on the unit
tangent sphere bundle T1M of a Riemannian manifold (M,g) can be constructed
by the Musso-Tricerri’s scheme, given by Proposition 2. For this, let us recall
some basic definition.

Let∇ the Levi-Civita connection of g. Then the tangent space of TM at any
point (x, u) ∈ TM split into the horizontal and vertical subspaces with respect
to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

If (x, u) ∈ TM is given then, for any vector X ∈Mx, there exists a unique vector
Xh ∈ H(x,u) such that p∗Xh = X, p : TM → M is the natural projection. We

call Xh the horizontal lift of X to the point (x, u) ∈ TM . The vertical lift of a
vector X ∈Mx to (x, u) ∈ TM is a vector Xv ∈ V(x,u) such that Xv(df) = Mf ,
for all functions f on M . Here we consider 1-forms df on M as functions on
TM (i.e., (df)(x, u) = uf). Note that the map X → Xh is an isomorphism
between the vector spaces Mx and H(x,u). Similarly, the map X → Xv is an
isomorphism between the vector spaces Mx and V(x,v). Obviously, each tangent

vector eZ ∈ (TM)(x,u) can be written in the form eZ = Xh + Y v, where X,
Y ∈Mx are uniquely determined vectors.

In an obvious way we can define horizontal and vertical lifts of vector fields
on M .

If we fix an F -metric ξ on M , i.e., a mapping TM ⊕TM ⊕TM → IR which
is linear in the second and the third argument and smooth in the first argument,
then there are three distinguished constructions of metrics on the tangent bundle
TM , which are given as follows [5]:

(a) If we suppose that ξ is symmetric with respect to the last two arguments,
then the Sasaki lift ξs of ξ is defined as follows:

(
ξs(x,u)(X

h, Y h) = ξ(u;X,Y ),

ξs(x,u)(X
v, Y h) = 0,

(
ξs(x,u)(X

h, Y v) = 0,

ξs(x,u)(X
v, Y v) = ξ(u;X,Y ),
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for all X, Y ∈Mx. If ξ is non degenerate and positive definite with respect
to the last two arguments for each fixed u, then ξs is a Riemannian metric
on TM .

(b) The horizontal lift ξh of ξ is a pseudo-Riemannian metric on TM which is
given by:

(
ξh(x,u)(X

h, Y h) = 0,

ξh(x,u)(X
v, Y h) = ξ(u;X,Y ),

(
ξh(x,u)(X

h, Y v) = ξ(u;X,Y ),

ξh(x,u)(X
v, Y v) = 0,

for all X, Y ∈ Mx. If ξ is positive definite with respect to the last two
arguments, then ξs is of signature (m,m).

(c) The vertical lift ξv of ξ is a degenerate metric on TM which is given by:

(
ξv(x,u)(X

h, Y h) = ξ(u;X,Y ),

ξv(x,u)(X
v, Y h) = 0,

(
ξv(x,u)(X

h, Y v) = 0,

ξv(x,u)(X
v, Y v) = 0,

for all X, Y ∈Mx. For each fixed u, the rank of ξv is exactly that of ξ.

If ξ = g is a Riemannian metric on M , then the three lifts of ξ just constructed
coincide with the three well-known classical lifts of the metric g to TM .

Let (M,g) be non-oriented. Then it is known that all natural F -metrics are
of the form

F (u;X,Y ) = α(kuk2)g(X,Y ) + β(kuk2)g(X,u)g(Y, u),

where α(t), β(t) are smooth functions on [0,+1) and kuk =
p

g(u, u) (see [4]
and [2]). The three lifts above of natural F -metrics generate the class of g-
natural metrics on TM (cf. [5] and [2] for the classification and the definition of
g-natural metrics and [4] for the general definition of naturality).

More precisely, we have

Proposition 4. Let (M,g) be a Riemannian manifold. Every g-natural
metric G on TM is given by

(4) G = (α1g + β1k)s + (α2g + β2k)h + (α3g + β3k)v,

where αi, βi, i = 1, 2, 3, are smooth functions on [0,+1), and k is the natural
F -metric on M defined by

(5) k(u;X,Y ) = g(u,X)g(u, Y ), for all (u, x, Y ) ∈ TM ⊕ TM ⊕ TM.
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If we restrict an arbitrary g-natural metric (4) to a tangent sphere bundle

TrM(r> 0), then we obtain the metric eG of the form

(6) eG = a · egd + b ·fgh + c · egv + d ·fkv,

where a = α1(r
2), b = α2(r

2), c = α3(r
2), d = β3(r

2) and egs, fgh, egv and fkv are
the metrics on TrM induced by gs, gh, gv and kv, respectively. We call such
metrics on TrM , induced by g-natural metrics, g-natural metrics on TrM .

Riemannian g-natural metrics on tangent sphere bundles are characterized
by

Proposition 5 ([1]). Let r > 0 and (M,g) be a Riemannian manifold.

Then every Riemannian g-natural metric eG on Trm induced form a (possibly
degenerate) g-natural G on TM , is of the form (6), where a, b, c and d are
constants satisfying the inequalities a > 0, a(a+ c)− b2 > 0 and a+ c+ dr2 > 0.

Let θ = (θ1, . . . , θm) denote the canonical 1-form on OM , and let π denote

the natural projection OM
π→M . Then

dπv(X) =
X

i

θi(X)vi, v = (x; v1, . . . , vm).

If we denote with ω = (ωi
j) the connection form on OM , then we find that the

forms

π∗1θ
i, i = 1, . . . ,m; π∗1ω

i
j , 1 ≤ i ≤ j ≤ m; dεi, i = 1, . . . ,m,

where π1 : OM × IRm → OM denotes the first natural projection, determine an
absolute parallelism on OM × IRm. We consider the 1-forms ∇εi on OM × IRm

defined by

(7) ∇εi = dεi +
X

j

εjπ∗1ω
i
j .

The first author an M. Sarih have proved the following

Proposition 6 ([2]). Every g-natural metric on the tangent bundle TM
of a Riemannian manifold (M,g) can be constructed by the Musso-Tricerri’s
generalized scheme, given by Proposition 1.
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More precisely, and arbitrary g-natural metric G on TM , which is of the
form (4) by Proposition 4, is induced by the symmetric tensor field Q of type
(2, 0) on OM × IRm given by

(8)

Q = (α1 + α3)(r
2)
X

i

(π∗1θ
i)2 + (β1 + β3)(r

2)

√X

i

εiπ∗1θ
i

!2

+

+ α1(r
2)
X

i

(Dεi)2 + β1(r
2)

√X

i

εiDεi

!2

+

+ 2α2(r
2)
X

i

π∗i θ
iDεi + 2β2(r

2)

√X

i

εiπ∗1θ
i

!√X

i

εiDεi

!
,

where r2 =
P

i(ε
i)2.

Note that (8) is exactly the expression (3.4) of [2] with the abuse of notation
θ = π∗1θ (cf. [2, p. 8, line 7 from below]).

Let us mention that in the proof of this result in [2], there occurred a little
misprint which did not influence the correctness of the statement.

Combining this last proposition with Proposition 3, we obtain

Theorem 1. Every Riemannian g-natural metric on the unit tangent sphere
bundle T1M of a Riemannian manifold (M,g) can be constructed by the Musso-
Tricerri’s scheme, given by Proposition 2.

More precisely, if eG = a· egs+b ·fgh+c · egv +d ·fkv, is an arbitrary Riemannian
g-natural metric on T1M , then eG is induced, via the Musso-Tricerri process, by
the (0, 2)-tensor field eQ = (a+c)

Pm−1
i=1 (θi)2+(a+c+d)(θm)2+a

Pm−1
i=1 (ωi

m)2+

2b
Pm−1

i=1 θ
iωi

m on OM .

Proof. By Proposition 5, every Riemannian g-natural metric on T1M is

of the form eG = a · egs + b ·fgh + c · egv + d ·fkv,where a, b, c and d are constants
such that a > 0, a(a + c) − b2 > 0 and a + c + d > 0. Such a metric on T1M
is obviously induced by the g-natural metric G = a · gs + b · gh + c · gv + d · kv

on TM . If we consider, in Proposition 6, constant functions αi, βi; i = 1, 2, 3,
such that α1 = a, α2 = b, α3 = c, β3 = d and β1 = β2 = 0, then our G is
induced by the symmetric tensor filed Q of type (2, 0) on OM × IRm given by
Q = (a + c)

Pm
i=1(π

∗
1θ

i)2 + d(
Pm

i=1 ε
iπ∗1θ

i)2 + a
Pm

i=1(∇εi)2 + 2b
Pm

i=1 π
∗
1θ

i∇εi,
where r2 =

Pm
i=1(ε

i)2. From Proposition 3, G is induced, via the Musso-Tricerri
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process, by the bilinear form eQ = (im) ∗Q on OM , i.e., by the form

(9)

eQ = (a + c)
mX

i=1

((π1 ◦ im)∗θi)2 + d

√
mX

i=1

(εi ◦ im

!
(π1 ◦ im)∗θi)2+

+ a
mX

i=1

((im)∗∇εi)2 + 2b
X

i=1

((π1 ◦ im)∗θi)((im)∗∇εi).

But, it is easy to check that εi ◦ im = δim, where (δij) denote the Kronecker
symbols. Then

(10) r2 ◦ im =
mX

i=1

(εi ◦ im)2 = 1 and (im)∗(dεi) = 0,

and it follows from (7) that

(11) (im)∗(∇εi) = i∗m(π∗1ω
i
m) = ωi

m,

and we have also

(12) i∗m(π∗1θ
i) = θi,

since π1 ◦ im = IdOM . Hence, substituting from (10)-(12) into (9) and using

the fact that ωm
m = 0 by the skew-symmetry of (ωi

j), we obtain eQ = (a +

c)
Pm−1

i=1 (θi)2 + (a + c + d)(θm)2 + a
Pm−1

i=1 (ωi
m)2 + 2b

Pm−1
i=1 θ

iωi
m.

Remark 1. Theorem 1 is a kind of weak generalization of the Main theorem
in [1], where the base manifold (M,g) was a round sphere Sm. In our weaker
analogy, the base manifold (M,g) is arbitrary. (Cf. [1], Section 4 and the
formulas (3.1), (3.2)).

Now, we prove that any Riemannian g-natural metric on the unit tangent
bundle of a two-point homogeneous space is homogeneous. This will generalize
a theorem proved in [7, p. 10] for the induced Sasaki metric.

Theorem 2. Let (M,g) be a two-point homogeneous space and let eG be a

Riemannian g-natural metric on T1M . Then (T1M, eG) is a homogeneous Rie-
mannian space.
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Proof. Let I(M,g) denote the group of isometries of (M,g). Then there
is a natural left action of I(M,g) on T1M and OM , respectively, defined by the
formulas

Lf (x, u) = (f(x), f∗u),(13)

Lf (v) = (f(x), f∗u1, . . . , f∗um),(14)

where f ∈ I(M,g), (x, u) ∈ T1M and v := (x, u1, . . . , um) ∈ OM .

We claim that eG is I(M,g)-invariant with respect to the action (13). It is
well-known that the canonical 1-form theta and the Levi-Civita connection form
ω are I(M,g)-invariant, i.e.,

L∗
f (θi) = θi,(15)

L∗
f (ωi

j) = ωi
j .(16)

Now, eG is induced by the (0,2)-tensor filed eQ from Theorem 1. By using (15)

and (16) we obtain that L∗
f ( eQ) = eQ. Moreover, eQ = √∗

m( eG) holds by the proof
of Proposition 3.

We deduce that √∗
m( eG) = L∗

f (√∗
m( eG)) = (√m ◦ Lf )∗( eG). But it is straight-

forward, form (13) and (14), that √m ◦ Lf = Lf ◦ √m. It follows then that

√∗
m(eg) = (Lf ◦ √m)∗( eG) = √∗

m(L∗
f (eg)). Since √m is a submersion, then L∗

f (eg) =
eG, for all f ∈ I(M,g). This proves our claim.

Next, it is classical that I(M,g) is transitive on T1M if and only if (M,g) is
a two-point homogeneous space (cf. [9], p. 289). Hence if (M,g) is a two-point
homogeneous space, then I(M,g) acts transitively on T1,M , as an isometry

group. Consequently, (T1M, eG) is a homogeneous Riemannian space.
For an alternative proof of Theorem 2 see [6].
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