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Trigonometric approach to convolution

formulae of Bernoulli and Euler numbers

WENCHANG CHU – CHENYING WANG

Abstract: Summation formulae involving Bernoulli and Euler numbers as well
as their convolutions are systematically reviewed by applying four classically elementary
trigonometric identities.

The Bernoulli and Euler numbers are important classical numbers and have
wide applications in mathematics and physics. They can be defined, respectively,
through the following trigonometric generating functions (see [12, Section 3.1.4],
[14, Section 7.58] and [15, Section 2.5] for example)

x cotx =
1X

n=0

(−1)n (2x)2n

(2n)!
B2n,(1)

secx =
1X

n=0

(−1)n x2n

(2n)!
E2n.(2)

According to the two elementary trigonometric relations

tanx = cotx− 2 cot(2x) and cscx = cotx + tan
x
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the following two power series expansions can easily be shown

x tanx =
1X

n=1

(−1)n (2x)2n

(2n)!
B0

2n,(3)

x cscx =
1X

n=0

(−1)n x2n

(2n)!
B00

2n;(4)

where B0
2n and B00

2n denote, respectively, the two variants of Bernoulli numbers
B0

2n := (1− 4n)B2n and B00
2n := (2− 4n)B2n in order to shorten lengthy expres-

sions.
It is well-known that the sum of nth powers of the first m natural numbers

can be expressed in terms of Bernoulli numbers (cf. [5, Section 3.9] and [8,
Section 6.5]):

mX

k=1

kn =
m + 1

n + 1

nX

i=0

(m + 1)i

µ
n + 1

i + 1

∂
Bn−i.

Similar relations have recently been found by Liu and Luo [10] for the first m
odd positive integers, which motivated the authors [3] to work out four classes
of arithmetic identities involving Bernoulli and Euler numbers.

Observe that the above mentioned arithmetic identities have been accom-
plished entirely by manipulating elementary trigonometric sums. This encour-
ages the authors to explore thoroughly the trigonometric approach to the arith-
metic sums involving Bernoulli and Euler numbers as well as their convolutions.
Our investigation will be carried out by employing exclusively four basic trigono-
metric sum identities. In fact, the rest of the paper will be structured into four
sections according to these trigonometric relations with each of them having five
different reformulations, that result logically in further division of each section
into five subsections. Each subsection will prove a general theorem of arithmetic
convolution sum involving Bernoulli and/or Euler numbers, followed by several
concrete identities.

Throughout the paper, we shall assume δ = 0, 1 and m,n ∈ N0. In addition,
the following Taylor series for sine and cosine functions

(5) sinx =
1X

n=0

(−1)n x2n+1

(2n + 1)!
and cosx =

1X

n=0

(−1)n x2n

(2n)!

will frequently be appealed without explanation.
Apart from the arithmetic formulae treated in this paper, there exist vast

mathematical literature dealing with different approaches and identities for Ber-
noulli and Euler numbers as well as polynomials. The interested reader may
consult, for instance, [1], [3], [4], [6] for convolution formulae, [7], [11] for Miki-
type identities and [2], [13] for Bernoulli and Euler polynomials, as well as the
handbook by Hansen [9, Section 50 and Section 51].
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1 – Trigonometric sum concerning cos(2k + ∞)x

According to the following well-known formula

2 sinα cosβ = sin(α+ β)− sin(β − α)

we can evaluate via telescoping method the trigonometric sum

(6) 2 sinx
mX

k=1

cos(2k + ∞)x = sin(2m + ∞ + 1)x− sin(∞ + 1)x.

By means of five different reformulations of this identity, this section will inves-
tigate arithmetic sums involving Bernoulli and Euler numbers as well as their
convolutions.

1.1 – Firstly, it is obvious that (6) is equivalent to the equation

2
mX

k=1

cos(2k + ∞)x = cscx sin(2m + ∞ + 1)x− cscx sin(∞ + 1)x.

Applying (4) and (5), we get the following power series expansion

2
1X

n=0

mX

k=1

(−1)n (2k + ∞)2n

(2n)!
x2n =

1X

i=0

1X

j=0

(−1)i+j (2m + ∞ + 1)2j+1

(2i)!(2j + 1)!
B00

2ix
2i+2j+

−
1X

i=0

1X

j=0

(−1)i+j (∞ + 1)2j+1

(2i)!(2j + 1)!
B00

2ix
2i+2j .

Comparing the coefficients of x2n, we find immediately the following identity.

Theorem 1 (m ≥ 0 and n ≥ 0).

mX

k=1

(2k + ∞)2n =
(2m + ∞ + 1)2n+1

2(2n + 1)

nX

i=0

µ
2n + 1

2i

∂
B00

2i

(2m + ∞ + 1)2i
+

− (∞ + 1)2n+1

2(2n + 1)

nX

i=0

µ
2n + 1

2i

∂
B00

2i

(∞ + 1)2i
.

This general theorem contains several interesting identities as special cases.

Corollary 2 (m = 1 and ∞ = −1 in Theorem 1: Liu and Luo [10,
Equation 8]).

nX

k=0

4n

4k

µ
2n + 1

2k

∂
B00

2k = 2n + 1.
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Corollary 3 (m = 1 and ∞ = −2 in Theorem 1: Liu–Luo [10, Equa-
tion 5]).

nX

k=0

µ
2n + 1

2k

∂
B00

2k = 0 where n > 0.

According to (2), (4) and (5), extracting the coefficients of x2n across the trigono-
metric equation 2 sinx csc 2x = secx, we recover another similar identity.

Lemma 4 (Chu–Wang [3, Equation 19a]).

nX

i=0

4i

µ
2n + 1

2i

∂
B00

2i = (2n + 1)E2n.

In Theorem 1, letting ∞ = −δ − 1/2 with δ = 0, 1 and then simplifying the
resulting equation through the last identity, we get the following transformation
formula.

Proposition 5 (δ = 0, 1 and m,n ≥ 0).

(1− 2δ)(n + 1/2)

4n(2m− δ + 1/2)2n+1
E2n =

nX

i=0

µ
2n + 1

2i

∂
B00

2i

(2m− δ + 1/2)2i

− 2(2n + 1)

(2m− δ + 1/2)2n+1

mX

k=1

(2k − δ − 1/2)2n.

When δ = 0 and m = 1, 2, this proposition yields the following two identities

nX

k=0

µ
2n + 1

2k

∂≥2

5

¥2k

B00
2k =

2n + 1

52n+1
E2n + 4

2n + 1

52n+1
32n,

nX

k=0

µ
2n + 1

2k

∂≥2

9

¥2k

B00
2k =

2n + 1

92n+1

n
E2n + 4 · 32n + 4 · 72n

o
.

Instead for δ = 1 and m = 1, 2, we get similarly two other identities

nX

k=0

µ
2n + 1

2k

∂≥2

3

¥2k

B00
2k =

2n + 1

32n+1
(4−E2n),

nX

k=0

µ
2n + 1

2k

∂≥2

7

¥2k

B00
2k =

2n + 1

72n+1

n
4(1 + 52n)−E2n

o
.
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1.2 – Secondly, the identity (6) may equivalently be restated as

2 csc(2m + ∞ + 1)x
mX

k=1

cos(2k + ∞)x

= cscx− cscx sin(∞ + 1)x csc(2m + ∞ + 1)x.

By means of (4) and (5), extracting the coefficients of x2n−1 from the last equa-
tion leads us to the following transformation theorem.

Theorem 6 (m ≥ 0 and n ≥ 0).

B00
2n

2(2m + ∞ + 1)2n−1
−

mX

k=1

nX

i=0

µ
2n

2i

∂
(2k + ∞)2i

(2m + ∞ + 1)2i
B00

2n−2i

=
(∞ + 1)2n+1

2(2n + 1)(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
(2m+∞+1)2j

(∞ + 1)2i+2j
B00

2iB
00
2j .

Several interesting identities follow immediately from this theorem.

Corollary 7 (m = 1 and ∞ = −1 in Theorem 6: Liu–Luo [10, Equa-
tion 13]).

nX

k=0

4k

µ
2n

2k

∂
B00

2k = B00
2n.

Next letting m = ∞ = 0 in Theorem 6 gives directly the formula

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
B00

2iB
00
2j = (2n + 1)B00

2n.

In fact, combining the series rearrangement with Corollary 3 we can show the
following more general result.

Corollary 8 (W 6= 0).

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
B00

2iB
00
2j

W 2n−2i
= (2n + 1)B00

2n.
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Finally, letting ∞ = δ − 1/2 in Theorem 6 and then applying Lemma 4, we find
the following transformation formula.

Proposition 9 (δ = 0, 1 and m,n ≥ 0).

B00
2n

(2m− δ + 1/2)2n−1
= 2

nX

i=0

mX

k=1

µ
2n

2i

∂≥ 2k − δ − 1/2

2m− δ + 1/2

¥2i

B00
2n−2i

− (δ − 1/2)
nX

i=0

µ
2n

2i

∂
E2iB

00
2n−2i

(4m− 2δ + 1)2i
.

For δ = 0 and m = 0, 1, 2, this proposition reduces to the following three identi-
ties

nX

k=0

µ
2n

2k

∂
B00

2kE2n−2k = 4nB00
2n,

nX

k=0

µ
2n

2k

∂
B00

2n−2k

52k

n
32k +

E2k

4

o
=

22n−2

52n−1
B00

2n,

nX

k=0

µ
2n

2k

∂
B00

2n−2k

92k

n
32k + 72k +

E2k

4

o
=

22n−2

92n−1
B00

2n.

Similarly, when δ = 1 and m = 1, 2, we have two further formulae

nX

k=0

µ
2n

2k

∂
B00

2n−2k

32k

n
1− E2k

4

o
=

22n−2

32n−1
B00

2n,

nX

k=0

µ
2n

2k

∂
B00

2n−2k

72k

n
1 + 52k − E2k

4

o
=

22n−2

72n−1
B00

2n.

1.3 – Thirdly, rewrite (6) equivalently in the following manner

2 csc(2m + ∞ + 1)x
mX

k=1

cosx cos(2k + ∞)x

= cotx− cotx sin(∞ + 1)x csc(2m + ∞ + 1)x

and then recall the relation

(11) 2 cosx cos(2k + ∞)x = cos(2k + ∞ + 1)x + cos(2k + ∞ − 1)x.

In view of (1), (4) and (5), equating the coefficients of x2n−1 across the penulti-
mate equation gives rise to the following identity.
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Theorem 10 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

µ
2n

2i

∂
(2m + ∞ + 1)2i−1

(∞ + 1)2n+1
B00

2i

Ω
(2k + ∞ + 1)2n−2i

+(2k + ∞ − 1)2n−2i

æ

=
4nB2n

(∞ + 1)2n+1
−

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
4i(2m + ∞ + 1)2j−1

(2n + 1)(∞ + 1)2i+2j
B2iB

00
2j .

As special cases of this theorem, three identities are displayed below. First letting
m = ∞ = 0 in Theorem 10, we have

X

0≤i+j≤n

4i

µ
2n + 1

2i, 2j

∂
B2iB

00
2j = (2n + 1)4nB2n.

However, considering Corollary 3, we can show the following more general result.

Corollary 11 (W 6= 0).

X

0≤i+j≤n

4i

µ
2n + 1

2i, 2j

∂
B2iB

00
2j

W 2n−2i
= (2n + 1)4nB2n.

Corollary 12 (m = 1 and ∞ = −1 in Theorem 10: Chu-Wang [3, Equa-
tion 9a]).

nX

k=0

µ
2n

2k

∂
B00

2k = 4nB2n.

Corollary 13 (m = 1 and ∞ = −3 in Theorem 10: n > 0).

nX

k=0

µ
2n + 1

2k

∂
B2k = n +

1

2
.

1.4 – Fourthly, the identity (6) may equivalently be expressed as

2 cot(2m + ∞ + 1)x
mX

k=1

cos(2k + ∞)x =

= cscx cos(2m + ∞ + 1)x− cscx sin(∞ + 1)x cot(2m + ∞ + 1)x.
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On account of (1), (4) and (5), equating the coefficients of x2n−1 across the last
equation results in the following transformation theorem.

Theorem 14 (m ≥ 0 and n ≥ 0).

nX

i=0

µ
2n

2i

∂
(2m + ∞ + 1)2n−2iB00

2i

= 2
mX

k=1

nX

i=0

4i

µ
2n

2i

∂
(2m + ∞ + 1)2i−1(2k + ∞)2n−2iB2i

+
X

0≤i+j≤n

4j

µ
2n + 1

2i, 2j

∂
(2m+∞+1)2j−1 (∞ + 1)2n+1−2i−2j

2n + 1
B00

2iB2j .

When m = 1 and ∞ = −1, Theorem 14 reduces to the following equality

nX

k=0

4n

4k

µ
2n

2k

∂
B00

2k =
nX

`=0

16`
µ

2n

2`

∂
B2`.

By extracting the coefficients of x2n−1 across the following equation

cscx cos 2x = 2 cot 2x cosx = cscx− 2 sinx

we derive the two identities together.

Corollary 15 (m = 1 and ∞ = −1 in Theorem 14: Chu-Wang [3, Equa-
tion 10a]).

nX

k=0

4n

4k

µ
2n

2k

∂
B00

2k =
nX

`=0

16`
µ

2n

2`

∂
B2` = B00

2n + 4n.

1.5 – Finally, reformulate (6) equivalently as the following equality

2 cot(2m + ∞ + 1)x
mX

k=1

cosx cos(2k + ∞)x

= cotx cos(2m + ∞ + 1)x− cotx sin(∞ + 1)x cot(2m + ∞ + 1)x.

With the help of (1), (5) and (11), extracting the coefficients of x2n−1 across this
equation, we get the following identity.
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Theorem 16 (m ≥ 0 and n ≥ 0).
nX

k=0

4k

µ
2n

2k

∂
(2m + ∞ + 1)2n−2kB2k

=
mX

k=1

nX

i=0

4i

µ
2n

2i

∂
(2m + ∞ + 1)2i−1B2i

Ω
(2k + ∞ + 1)2n−2i

+(2k + ∞ − 1)2n−2i

æ

+
X

0≤i+j≤n

4i+j

µ
2n + 1

2i, 2j

∂
B2iB2j

2n + 1
(2m + ∞ + 1)2j−1(∞ + 1)2n−2i−2j+1.

First letting m = ∞ = 0 in Theorem 16 results in the following relation

X

0≤i+j≤n

4i+j

µ
2n + 1

2i, 2j

∂
B2iB2j

2n + 1
=

nX

k=0

4k

µ
2n

2k

∂
B2k

which can also be verified by applying the following lemma.

Lamma 17.
nX

k=0

4k

µ
2n + 1

2k

∂
B2k = 2n + 1.

This identity follows easily by equating the coefficients of x2n across the trigono-
metric equation sinx cotx = cosx. Instead, by extracting the coefficients of
x2n−1 across the equalities

cot2 x sinx = cosx cotx = cscx− sinx

we get the following closed formulae.

Corollary 18 (m = ∞ = 0 in Theorem 16).

X

0≤i+j≤n

4i+j

µ
2n + 1

2i, 2j

∂
B2iB2j

2n + 1
=

nX

k=0

4k

µ
2n

2k

∂
B2k = B00

2n + 2n.

Finally we examine the case of Theorem 16 with m = 1 and ∞ = −1

2
nX

k=0

µ
2n

2k

∂
B2k = 4nB2n +

nX

i=0

4i

µ
2n

2i

∂
B2i.

Recalling Corollary 18, we find another similar closed formula.

Corollary 19 (m = 1 and ∞ = −1 in Theorem 16).
nX

k=0

µ
2n

2k

∂
B2k = n + B2n.
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2 – Trigonometric sum concerning sin(2k + ∞)x

By means of the trigonometric relation

2 sinα sinβ = cos(α− β)− cos(α+ β)

it is not hard to compute the finite sum

(12) 2 sinx
mX

k=1

sin(2k + ∞)x = cos(∞ + 1)x− cos(2m + ∞ + 1)x.

According to five different reformulations of this identity, this section will inves-
tigate summation formulae involving Bernoulli and Euler numbers.

2.1 – Firstly, it is obvious that (12) is equivalent to the equation

2
mX

k=1

sin(2k + ∞)x = cscx cos(∞ + 1)x− cscx cos(2m + ∞ + 1)x.

Applying (4) and (5), we have the power series expansion

2
1X

n=0

mX

k=1

(−1)n (2k + ∞)2n+1

(2n + 1)!
x2n+1 =

1X

i=0

1X

j=0

(−1)i+j(∞ + 1)2j

(2i)!(2j)!
B00

2ix
2i+2j−1

−
1X

i=0

1X

j=0

(−1)i+j(2m+∞+1)2j

(2i)!(2j)!
B00

2ix
2i+2j−1.

Extracting the coefficients of x2n−1 from both sides of the last equation and then
simplifying the result, we derive the following formula.

Theorem 20 (m ≥ 0 and n ≥ 1).

mX

k=1

(2k + ∞)2n−1 =
nX

i=0

B00
2i

4n

µ
2n

2i

∂
(2m + ∞ + 1)2n

(2m + ∞ + 1)2i
−

nX

i=0

B00
2i

4n

µ
2n

2i

∂
(∞ + 1)2n

(∞ + 1)2i
.

According to Corollary 7, letting ∞ = −δ−1/2 in this theorem yields the formula.

Proposition 21 (δ = 0, 1 and m, n ≥ 0).

nX

i=0

µ
2n

2i

∂
B00

2i

(2m− δ + 1/2)2i
= 4n

mX

k=1

(2k − δ − 1/2)2n−1

(2m− δ + 1/2)2n
+

B00
2n

(4m− 2δ + 1)2n
.
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For δ = 0 and m = 1, 2, the last theorem reduces to the following two identities

nX

k=0

µ
2n

2k

∂≥2

5

¥2k

B00
2k =

1

52n

©
8n · 32n−1 + B00

2n

™
,

nX

k=0

µ
2n

2k

∂≥2

9

¥2k

B00
2k =

1

92n

©
8n(32n−1 + 72n−1) + B00

2n

™
.

Similarly, when δ = 1 and m = 1, 2, we get from Theorem 20 two further
interesting identities

nX

k=0

µ
2n

2k

∂≥2

3

¥2k

B00
2k =

1

32n

n
8n + B00

2n

o
,

nX

k=0

µ
2n

2k

∂≥2

7

¥2k

B00
2k =

1

72n

n
8n(1 + 52n−1) + B00

2n

o
.

2.2 – Secondly, the identity (12) may equivalently be restated as

2 sec(2m + ∞ + 1)x
mX

k=1

sin(2k + ∞)x =

= cscx cos(∞ + 1)x sec(2m + ∞ + 1)x− cscx.

By means of (2), (4) and (5), extracting the coefficients of x2n−1 across this
equation yields the following identity.

Theorem 22 (m ≥ 0 and n ≥ 1).

B00
2n

4n(2m + ∞ + 1)2n
−

mX

k=1

nX

i=1

µ
2n− 1

2i− 1

∂
(2k + ∞)2i−1

(2m + ∞ + 1)2i
E2n−2i

=
(∞ + 1)2n

4n(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n

2i, 2j

∂
(2m + ∞ + 1)2j

(∞ + 1)2i+2j
B00

2iE2j .

Letting m = ∞ = 0, Theorem 22 gives directly the formula

X

0≤i+j≤n

µ
2n

2i, 2j

∂
B00

2iE2j = B00
2n.

In fact, applying Corollary 45, we can show the following more general result.

Corollary 23 (W 6= 0).

X

0≤i+j≤n

µ
2n

2i, 2j

∂
B00

2iE2j

W 2n−2i
= B00

2n.
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Taking ∞ = δ− 1/2 in Theorem 22 and then appealing to Corollary 7, we derive
the following transformation.

Proposition 24 (δ = 0, and m ≥ 0, n ≥ 1).

mX

k=1

nX

i=1

µ
2n− 1

2i− 1

∂
(2k − δ − 1/2)2i−1

(2m− δ + 1/2)2i
E2n−2i

=
B00

2n

4n(2m− δ + 1/2)2n
− 1

4n

nX

i=0

µ
2n

2i

∂
B00

2iE2n−2i

4i(2m− δ + 1/2)2i
.

2.3 – Thirdly, rewrite (12) equivalently in the following manner

2 sec(2m + ∞ + 1)x
mX

k=1

cosx sin(2k + ∞)x

= cotx cos(∞ + 1)x sec(2m + ∞ + 1)x− cotx

and then recall the trigonometric relation

(15) 2 cosx sin(2k + ∞)x = sin(2k + ∞ + 1)x + sin(2k + ∞ − 1)x.

In view of (1), (2) and (5), extracting the coefficients of x2n+1 from the penulti-
mate equation and then simplifying the result, we derive the following arithmetic
formula.

Theorem 25 (m ≥ 0 and n ≥ 0).

X

0≤i+j≤n+1

4i

µ
2n + 2

2i, 2j

∂
(2m + ∞ + 1)2j (∞ + 1)2n+2−2i−2j

2n + 2
B2iE2j

=4n+1 B2n+2

2n + 2
−

mX

k=1

nX

i=0

µ
2n + 1

2i

∂
(2m + ∞ + 1)2iE2i

Ω
(2k + ∞ + 1)2n+1−2i

+(2k + ∞ − 1)2n+1−2i

æ
.

Two examples of this theorem are given below as applications.
Taking m = ∞ = 0 in Theorem 25, we have directly the formula

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B2iE2j = 4nB2n.

In fact, by means of Corollary 45, we can show the following more general result.

Corollary 26 (W 6= 0).

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B2iE2j

W 2n−2i
= 4nB2n.
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Letting m = 1 and ∞ = −1 in Theorem 10, we have the following transformation

X

i+j=n+1

µ
2 + 2n

2i, 2j

∂
B2iE2j = B2n+2 − (n + 1)

nX

i=0

µ
2n + 1

2i

∂
E2i.

Evaluating the last sum by Corollary 34 and then replacing n by n− 1, we get
the following convolution formula between Bernoulli and Euler numbers.

Corollary 27.

nX

k=0

µ
2n

2k

∂
B2kE2n−2k = B2n

n
1 + 22n−1 − 24n−1

o
.

This can also be verified by equating the coefficients x2n−1 across the following
trigonometric equation

secx cot x
2 = tan x

2 + cot x
2 .

2.4 – Fourthly, the identity (12) may equivalently be expressed as

2 tan(2m + ∞ + 1)x
mX

k=1

sin(2k + ∞)x

= − cscx sin(2m + ∞ + 1)x + cscx cos(∞ + 1)x tan(2m + ∞ + 1)x.

On account of (3), (4) and (5), we can equate the coefficients of x2n across the
last equation and obtain the following arithmetic formula.

Theorem 28 (m ≥ 0 and n ≥ 0).

2
mX

k=1

nX

i=0

4i

µ
2n + 1

2i

∂
(2m + ∞ + 1)2i−1(2k + ∞)2n+1−2iB0

2i

= −
X

0≤i+j≤n+1

4i

µ
2n + 2

2i, 2j

∂
(2m + ∞ + 1)2i−1 (∞ + 1)2n+2−2i−2j

2n + 2
B0

2iB
00
2j

−
nX

i=0

µ
2n + 1

2i

∂
(2m + ∞ + 1)2n+1−2iB00

2i.
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Letting m = ∞ = 0 in this theorem and then keeping in mind of Corollary 3, we
find the following strange-looking identity.

Corollary 29 (n > 1).

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B0

2iB
00
2j = 0.

2.5 – Finally, reformulate (6) equivalently as the following equality

2 tan(2m + ∞ + 1)x
mX

k=1

cosx sin(2k + ∞)x =

= cotx cos(∞ + 1)x tan(2m + ∞ + 1)x− cotx sin(2m + ∞ + 1)x.

With the help of the trigonometric relation (15), we can extract, according to
(1), (3) and (5), the coefficients of x2n across the last equation and establish the
following formula.

Theorem 30 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

4i

µ
2n + 1

2i

∂
(2m + ∞ + 1)2i−1B0

2i

Ω
(2k + ∞ + 1)2n+1−2i

+(2k + ∞ − 1)2n+1−2i

æ

= −
nX

i=0

4i

µ
2n + 1

2i

∂
(2m + ∞ + 1)2n−2i+1B2i

−
X

0≤i+j≤n+1

4i+j

µ
2n + 2

2i, 2j

∂
B2iB

0
2j

2n + 2
(2m + ∞ + 1)2j−1(∞ + 1)2n+2−2i−2j .

When m = ∞ = 0, the last expression yields the following transformation

X

0≤i+j≤n+1

4i+j

µ
2n + 2

2i, 2j

∂
B2iB

0
2j = −(2n + 2)

nX

i=0

4i

µ
2n + 1

2i

∂
B2i.

Evaluating the last sum by Lemma 17 and then replacing n by n− 1, we get the
following convolution formula for Bernoulli numbers.

Corollary 31.

X

0≤i+j≤n

4i+j

µ
2n

2i, 2j

∂
B2iB

0
2j = 2n(1− 2n).
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This can also be proved by equating the coefficients x2n−2 across the following
trigonometric equation

cosx tanx cotx = cosx.

3 – Alternating sum concerning sin(2k + ∞)x

Recalling the trigonometric formula

2 sinα cosβ = sin(α+ β) + sin(α− β)

we have the finite trigonometric sum

(16) 2 cosx
mX

k=1

(−1)k sin(2k + ∞)x = (−1)m sin(2m + ∞ + 1)x− sin(∞ + 1)x.

By means of five different reformulations of this identity, this section will inves-
tigate convolution formulae involving Bernoulli and Euler numbers.

3.1 – Firstly, it is obvious that (16) is equivalent to the equation

2
mX

k=1

(−1)k sin(2k + ∞)x = (−1)m secx sin(2m + ∞ + 1)x− secx sin(∞ + 1)x.

According to (2) and (5), equating the coefficients of x2n+1 across the last equa-
tion, we find the following formula.

Theorem 32 (m ≥ 0 and n ≥ 0).

2
mX

k=1

(−1)k(2k + ∞)2n+1 = (−1)m
nX

i=0

µ
2n + 1

2i + 1

∂
(2m + ∞ + 1)2i+1E2n−2i

−
nX

i=0

µ
2n + 1

2i + 1

∂
(∞ + 1)2i+1E2n−2i.

Two known identities can be recovered directly from this theorem.

Corollary 33 (m = 1 and ∞ = −1 in Theorem 32: Chu-Wang [3, Equa-
tion 17a]).

nX

i=0

4n

4i

µ
2n + 1

2i

∂
E2i = 1.
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Comparing the case ∞ = −δ of this theorem with the identity due to Chu and
Wang [3, Theorem 7], we recover another formula.

Corollary 34 (Hansen [9, Equation 51.1.2] and Chu-Wang [3, Equa-
tion 16a: n > 0]).

nX

i=0

µ
2n− 1

2i

∂
E2i = −4n B0

2n

2n
.

Letting m = 1, 2 in this theorem, we get respectively the following two identities

nX

k=0

µ
2n + 1

2k + 1

∂n
(∞ + 1)2k+1 + (∞ + 3)2k+1

o
E2n−2k = 2(∞ + 2)2n+1,

nX

k=0

µ
2n + 1

2k + 1

∂n
(∞+5)2k+1−(∞ + 1)2k+1

o
E2n−2k =2

n
(∞+4)2n+1−(∞ + 2)2n+1

o
.

3.2 – Secondly, the identity (16) may equivalently be restated as

2 csc(2m + ∞ + 1)x
mX

k=1

(−1)k sin(2k + ∞)x

= (−1)m secx− secx sin(∞ + 1)x csc(2m + ∞ + 1)x.

By means of (2), (4) and (5), equating the coefficients of x2n across this equation
and then simplifying the result, we get the following identity.

Theorem 35 (m ≥ 0 and n ≥ 0).

(−1)m(2n + 1)

(2m + ∞ + 1)2n−1
E2n − 2

mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i + 1

∂
(2k + ∞)2i+1

(2m + ∞ + 1)2i
B00

2n−2i

=
(∞ + 1)2n+1

(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
(2m + ∞ + 1)2i

(∞ + 1)2i+2j
B00

2iE2j .

Letting m = ∞ = 0 in Theorem 35 gives directly the formula

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
B00

2iE2j = (2n + 1)E2n.

In fact, applying Corollary 3, we can prove the following more general result.
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Corollary 36 (W 6= 0).

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
B00

2iE2j

W 2n−2j
= (2n + 1)E2n.

3.3 – Thirdly, rewrite (16) equivalently in the following manner

2 csc(2m + ∞ + 1)x
mX

k=1

(−1)k sinx sin(2k + ∞)x

= (−1)m tanx− tanx sin(∞ + 1)x csc(2m + ∞ + 1)x

and recall the trigonometric relation

2 sinx sin(2k + ∞)x = cos(2k + ∞ − 1)x− cos(2k + ∞ + 1)x.

In view of (3), (4) and (5), extracting the coefficient of x2n−1 across the penul-
timate equation, we get the identity.

Theorem 37 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n

2i

∂
(2m + ∞ + 1)2i−1

(∞ + 1)2n+1
B00

2i

Ω
(2k + ∞ − 1)2n−2i

−(2k + ∞ + 1)2n−2i

æ

= (−1)m 4nB0
2n

(∞ + 1)2n+1
−

X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
4i(2m + ∞ + 1)2j−1

(2n + 1)(∞ + 1)2i+2j
B0

2iB
00
2j .

When m = ∞ = 0, Theorem 37 yields the following identity

X

0≤i+j≤n

4i

µ
2n + 1

2i, 2j

∂
B0

2iB
00
2j = (2n + 1)4nB0

2n.

This identity can also be shown by equating the coefficients x2n−1 across the
following trigonometric equation

tanx cscx sinx = tanx.

Furthermore, we can verify through Corollary 3, the following more general re-
sult.

corollary 38 (W 6= 0).

X

0≤i+j≤n

4i

µ
2n + 1

2i, 2j

∂
B0

2iB
00
2j

W 2n−2i
= (2n + 1)4nB0

2n.
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Corollary 39 (m = 1 and m = −3 in Theorem 37: n > 0).

nX

i=0

µ
2n + 1

2i

∂
B0

2i = −n− 1/2.

We remark that this identity is also the linear combination of Corollary 13 and
Lemma 17.

3.4 – Fourthly, the identity (16) may equivalently be expressed as

2 cot(2m + ∞ + 1)x
mX

k=1

(−1)k sin(2k + ∞)x =

= (−1)m secx cos(2m + ∞ + 1)x− secx sin(∞ + 1)x cot(2m + ∞ + 1)x.

On account of (1), (2) and (5), equating the coefficients of x2n across this equa-
tion and then simplifying the result, we get the following identity.

Theorem 40 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i

∂
22i+1(2m + ∞ + 1)2i−1(2k + ∞)2n+1−2iB2i

= (2n + 1)
nX

i=0

(−1)m

µ
2n

2i

∂
(2m + ∞ + 1)2n−2iE2i

−
X

0≤i+j≤n

4j

µ
2n + 1

2i, 2j

∂
(2m + ∞ + 1)2j−1(∞ + 1)2n+1−2i−2jE2iB2j .

When m = ∞ = 0, it yields the following expression

X

0≤i+j≤n

4j

µ
2n + 1

2i, 2j

∂
E2iB2j = (2n + 1)

nX

i=0

µ
2n

2i

∂
E2i.

According to Corollary 45, this gives rise to the following formula.

Corollary 41 (n > 0).

X

0≤i+j≤n

4i

µ
2n + 1

2i, 2j

∂
B2iE2j = 0.
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3.5 – Finally, reformulate (16) equivalently as the following equality

2 cot(2m + ∞ + 1)x
mX

k=1

(−1)k sinx sin(2k + ∞)x

= (−1)m tanx cos(2m + ∞ + 1)x + tanx sin(∞ + 1)x cot(2m + ∞ + 1)x.

With the help of (1), (3) and (5), extracting the coefficient of x2n−1 across the
last equation leads us to the following identity.

Theorem 42 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n

2i

∂
4i(2m + ∞ + 1)2i−1

(∞ + 1)2n+1
B2i

Ω
(2k + ∞ − 1)2n−2i

−(2k + ∞ + 1)2n−2i

æ

=
nX

i=0

(−1)m

µ
2n

2i

∂
4i(2m + ∞ + 1)2n−2i

(∞ + 1)2n+1
B0

2i

−
X

0≤i+j≤n

µ
2n + 1

2i, 2j

∂
4i+j(2m + ∞ + 1)2j−1

(2n + 1)(∞ + 1)2i+2j
B0

2iB2j .

When m = ∞ = 0, it yields the following transformation

X

0≤i+j≤n

4i+j

µ
2n + 1

2i, 2j

∂
B0

2iB2j

2n + 1
=

nX

i=0

4i

µ
2n

2i

∂
B0

2i.

By extracting the coefficients of x2n−1 across the expansion of the trigonometric
relation

tanx cotx sinx = cosx tanx = sinx,

we can show further the following two closed formulae.

Corollary 43.

X

0≤i+j≤n

4i+j

µ
2n + 1

2i, 2j

∂
B0

2iB2j

2n + 1
=

nX

i=0

4i

µ
2n

2i

∂
B0

2i = −2n.
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4 – Alternating sum concerning cos(2k + ∞)x

In view of the following trigonometric relation

2 cosα cosβ = cos(α+ β) + cos(α− β)

it is almost trivial to derive that

(18) 2 cosx
mX

k=1

(−1)k cos(2k + ∞)x = (−1)m cos(2m + ∞ + 1)x− cos(∞ + 1)x.

According to five different reformulations of this identity, this section will inves-
tigate convolution identities involving Bernoulli and Euler numbers.

4.1 – Firstly, it is obvious that (18) is equivalent to the equation

2
mX

k=1

(−1)k cos(2k + ∞)x = (−1)m secx cos(2m + ∞ + 1)x− secx cos(∞ + 1)x.

According to (2) and (5), we have the following power series expansions

2
mX

k=1

1X

n=0

(−1)n+k (2k + ∞)2n

(2n)!
x2n +

X

i,j≥0

(−1)i+j (∞ + 1)2j

(2i)!(2j)!
E2ix

2i+2j

=
X

i,j≥0

(−1)m+i+j (2m + ∞ + 1)2j

(2i)!(2j)!
E2ix

2i+2j .

Equating the coefficients of x2n across this equation, we find the transformation.

Theorem 44 (m ≥ 0 and n ≥ 0).

2
mX

k=1

(−1)k(2k + ∞)2n = (−1)m
nX

i=0

µ
2n

2i

∂
(2m + ∞ + 1)2n−2iE2i

−
nX

i=0

µ
2n

2i

∂
(∞ + 1)2n−2iE2i.

Comparing the case ∞ = −δ of this theorem with the identity due to Chu and
Wang [3, Theorem 10], we recover the following well-known identity.
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Corollary 45 (Stromberg [14, Section 7.58]: n > 0).

nX

i=0

µ
2n

2i

∂
E2i = 0.

For m = 1 and ∞ = −3, the last theorem recovers another interesting identity.

Corollary 46 (m = 1 and ∞ = −3 in Theorem 44: Chu-Wang [3, Equa-
tion 23a]).

nX

i=0

4n

4i

µ
2n

2i

∂
E2i = 2−E2n.

4.2 – Secondly, the identity (18) may equivalently be restated as

2 sec(2m + ∞ + 1)x
mX

k=1

(−1)k cos(2k + ∞)x

= (−1)m secx− secx sec(2m + ∞ + 1)x cos(∞ + 1)x.

By means of (2), (4) and (5), equating the coefficients of x2n across this equation
yields the following identity.

Theorem 47 (m ≥ 1 and n ≥ 0).

(−1)mE2n

(2m + ∞ + 1)2n
− 2

mX

k=1

nX

i=0

(−1)k

µ
2n

2i

∂
(2k + ∞)2i

(2m + ∞ + 1)2i
E2n−2i

=
(∞ + 1)2n

(2m + ∞ + 1)2n

X

0≤i+j≤n

µ
2n

2i, 2j

∂
(2m + ∞ + 1)2i

(∞ + 1)2i+2j
E2iE2j .

When m = ∞ = 0, it reduces to the following identity

X

0≤i+j≤n

µ
2n

2i, 2j

∂
E2iE2j = E2n.

By exchanging the summation order and then applying Corollary 45, we can
show the following more general result.

Corollary 48 (W 6= 0).

X

0≤i+j≤n

µ
2n

2i, 2j

∂
E2iE2j

W 2n−2i
= E2n.
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4.3 – Thirdly, rewrite (18) equivalently in the following manner

2 sec(2m + ∞ + 1)x
mX

k=1

(−1)k sinx cos(2k + ∞)x

= (−1)m tanx− tanx sec(2m + ∞ + 1)x cos(∞ + 1)x

and recall to the trigonometric relation

(19) 2 sinx cos(2k + ∞)x = sin(2k + ∞ + 1)x− sin(2k + ∞ − 1)x.

In view of (2), (3) and (5), extracting the coefficients of x2n+1 across the penul-
timate equation results in the following general transformation.

Theorem 49 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i

∂
(2m + ∞ + 1)2i

(∞ + 1)2n+2
E2i

Ω
(2k + ∞ + 1)2n−2i+1

−(2k + ∞ − 1)2n−2i+1

æ

=
(−1)m+122n+1

(n + 1)(∞ + 1)2n+2
B0

2n+2+
X

0≤i+j≤n+1

µ
2n + 2

2i, 2j

∂
4i(2m + ∞ + 1)2j

(2n + 2)(∞ + 1)2i+2j
B0

2iE2j .

Three identities can be derived from this theorem as consequences.
Firstly, when m = ∞ = 0, the theorem yields the following identity

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B0

2iE2j = 4nB0
2n.

Applying Corollary 45, this can be generalized to the following general formula.

Corollary 50 (W 6= 0).

X

0≤i+j≤n

4i

µ
2n

2i, 2j

∂
B0

2iE2j

W 2n−2i
= 4nB0

2n.

Secondly, taking m = 1 and ∞ = −1, we have the transformation expression

n+1X

i=0

µ
2n + 2

2i

∂
B0

2iE2n+2−2i = −B0
2n+2 − (n + 1)

nX

i=0

µ
2n + 1

2i

∂
E2i.

Evaluating the last sum by Corollary 34 and then replacing n by n− 1, we get
the following interesting convolution formula.

Corollary 51.
nX

i=0

µ
2n

2i

∂
B0

2iE2n−2i = (22n−1 − 1)B0
2n.
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This can also be verified by equating the coefficients of x2n−1 across the following
trigonometric equation

tanx secx = tanx− tan
x

2
.

Finally, letting m = 1 and ∞ = −3, we find another closed formula, which is , in
fact, also a linear combination of Corollary 18 and Corollary 19.

Corollary 52 (m = 1 and ∞ = −3 in Theorem 49).

nX

i=0

µ
2n

2i

∂
B0

2i = −n−B0
2n.

4.4 – Fourthly, the identity (18) may equivalently be expressed as

2 tan(2m + ∞ + 1)x
mX

k=1

(−1)k cos(2k + ∞)x

= (−1)m secx sin(2m + ∞ + 1)x− secx tan(2m + ∞ + 1)x cos(∞ + 1)x.

On account of (19), we can extract, via (2), (3) and (5), the coefficients of x2n−1

across this equation. Simplifying the result gives the following identity.

Theorem 53 (m ≥ 0 and n ≥ 0).

2
mX

k=1

n+1X

i=0

(−1)k

µ
2n + 2

2i

∂
4i(2m + ∞ + 1)2i−1(2k + ∞)2n+2−2iB0

2i

= (2n + 2)
nX

i=0

(−1)m+1

µ
2n + 1

2i

∂
(2m + ∞ + 1)2n+1−2iE2i

−
X

0≤i+j≤n+1

4i

µ
2n + 2

2i, 2j

∂
(2m + ∞ + 1)2i−1(∞ + 1)2n+2−2i−2jB0

2iE2j .

When m = −∞ = 1, this theorem reduced a simplified transformation.

Corollary 54 (m = 1 and ∞ = −1 in Theorem 53).

nX

i=0

42i

µ
2n

2i

∂
B0

2iE2n−2i = 8n + 2
nX

i=0

42i

µ
2n

2i

∂
B0

2i.
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4.5 – Finally, reformulate (18) equivalently as the following equality

2 tan(2m + ∞ + 1)x
mX

k=1

(−1)k sinx cos(2k + ∞)x

= (−1)m tanx sin(2m + ∞ + 1)x + tanx tan(2m + ∞ + 1)x cos(∞ + 1)x.

Similarly with the help of (3) and (5), extracting the coefficient of x2n across the
last equation, we establish the following identity.

Theorem 55 (m ≥ 0 and n ≥ 0).

mX

k=1

nX

i=0

(−1)k

µ
2n + 1

2i

∂
4i (2m + ∞ + 1)2i−1

(∞ + 1)2n+2
B0

2i

Ω
(2k + ∞ + 1)2n−2i+1

−(2k + ∞ − 1)2n−2i+1

æ

=
nX

i=0

(−1)m

µ
2n + 1

2i

∂
4i (2m + ∞ + 1)2n−2i+1

(∞ + 1)2n+2
B0

2i

+
X

0≤i+j≤n+1

4i+j

µ
2n + 2

2i, 2j

∂
(2m + ∞ + 1)2j−1

(2n + 2)(∞ + 1)2i+2j
B0

2iB
0
2j .

When m = ∞ = 0, it yields the following strange identity

X

0≤i+j≤n+1

4i+j

µ
2n + 2

2i, 2j

∂
B0

2iB
0
2j = −(2n + 2)

nX

i=0

4i

µ
2n + 1

2i

∂
B0

2i.

By extracting the coefficients of x2n across the expansion of the trigonometric
relation

tan2 x cosx = tanx sinx = secx− cosx,

we have the following two convolution formulae.

Corollary 56.

nX

i=0

4i

µ
2n + 1

2i

∂
B0

2i = (2n + 1)(E2n − 1).

Corollary 57 (n > 0).

X

0≤i+j≤n

4i+j

µ
2n

2i, 2j

∂
B0

2iB
0
2j = 2n(2n− 1)(1−E2n−2).
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Taking m = −∞ = 1 in Theorem 55 and then replacing n by n− 1, we have the
transformation formula

nX

i=0

4n

4i

µ
2n

2i

∂
B0

2iB
0
2n−2i = n

nX

i=0

µ
2n− 1

2i

∂
(2− 4i)B0

2i.

Evaluating the last sum by Corollary 39 and Corollary 56, we derive further the
following convolution identity.

Corollary 58 (m = 1 and m = −1 in Theorem 55: n > 1).

nX

i=0

4n

4i

µ
2n

2i

∂
B0

2iB
0
2n−2i = n(1− 2n)E2n−2.
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