Regularity results for planar quasilinear equations

GABRIELLA ZECCA

Abstract: We study the Dirichlet problem for the quasilinear elliptic equation

$$
-\operatorname{div} A(x, \nabla v)=f
$$

in a planar domain Ω, when f belongs to the Zygmund space $L(\log L)^{\frac{1}{2}}(\log \log L)^{\frac{1}{2}}(\Omega)$. We prove that the gradient of the variational solution $v \in W_{0}^{1,2}(\Omega)$ belongs to the Zygmund space $L^{2} \log \log L(\Omega)$.

1 - Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open set with C^{1}-boundary. We consider the following Dirichlet problem

$$
\begin{cases}-\operatorname{div} A(x, \nabla v)=f & \text { in } \Omega \tag{1.1}\\ v \in W_{0}^{1,2}(\Omega) & \end{cases}
$$

where $A: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a mapping such that:

$$
\begin{equation*}
x \rightarrow A(x, \xi) \quad \text { is measurable for any } \xi \in \mathbb{R}^{2} \tag{1,2}
\end{equation*}
$$

(1.3) $\quad \xi \rightarrow A(x, \xi) \quad$ is continuous for almost every $x \in \Omega$.

Key Words and Phrases: Elliptic equations - Zygmund spaces - Gradient regularity A.M.S. Classification: 35B65, 46E30.

Moreover we assume that there exists $K \geqslant 1$ such that for almost every $x \in \Omega$ we have
(1.5) $\quad|\xi-\eta|^{2} \leqslant K\langle A(x, \xi)-A(x, \eta), \xi-\eta\rangle \quad$ (strong monotonicity)

$$
\begin{equation*}
A(x, 0)=0 \tag{1.6}
\end{equation*}
$$

for any vectors ξ and η in \mathbb{R}^{2} (see [18]).
In [9] an existence and uniqueness theorem for the Dirichlet problem for the equation $\operatorname{div} A(x, \nabla v)=f$ is proved where $f \in L^{1}(\Omega)$ and the solution v belongs to the so called grand Sobolev space $W_{0}^{1,2)}(\Omega)$ i.e. the space of function $v \in W_{0}^{1,1}(\Omega)$ whose gradient $|\nabla v|$ satisfies

$$
\sup _{1<s<2}\left[(2-s) \int_{\Omega}|\nabla v|^{s} d x\right]^{\frac{1}{s}}=\|v\|_{W_{0}^{1,2)}}<\infty .
$$

Note that the space of such functions $W_{0}^{1,2)}(\Omega)$ is slightly larger than $W_{0}^{1,2}(\Omega)$ and this is the appropriate space when the right-hand side f is assumed to be only L^{1}-integrable (see [9], [11] for more details).

In this paper we study cases where the solution v is the variational $W_{0}^{1,2}(\Omega)-$ solution, under the assumption

$$
\begin{equation*}
f \in L(\log L)^{\frac{1}{2}}(\log \log L)^{\frac{1}{2}}(\Omega) \subset L(\log L)^{\frac{1}{2}}(\Omega) \tag{1.7}
\end{equation*}
$$

Let us observe that by the Sobolev-Trudinger imbedding in the plane

$$
\begin{equation*}
W_{0}^{1,2}(\Omega) \hookrightarrow E X P_{2}(\Omega) \tag{1.8}
\end{equation*}
$$

hypothesis (1.7) guarantees that f belongs to the dual space of $W_{0}^{1,2}(\Omega)$ and then, at least in the linear case $A(x, \xi)=\mathcal{A}(x) \xi$ the Lax-Milgram Theorem ensure that there exists a unique solution $v \in W_{0}^{1,2}(\Omega)$.

The case where f belongs to the Zygmund space

$$
\begin{equation*}
f \in L(\log L)^{\delta}(\Omega) \subset L^{1}(\Omega), \quad \text { for } \frac{1}{2} \leqslant \delta \leqslant 1 \tag{1.9}
\end{equation*}
$$

is treated in [3] (see also [2], [21] for the case $\delta=1$) where e.g. the authors prove that under the assumption (1.9), there is a unique solution $v \in W_{0}^{1,2}(\Omega)$ to the Dirichlet problem (1.1) with $\nabla v \in L^{2}(\log L)^{2 \delta-1}$ and

$$
\begin{equation*}
\|\nabla v\|_{L^{2}(\log L)^{2 \delta-1}(\Omega)} \leqslant c(K)\|f\|_{L(\log L)^{\delta}(\Omega)} \tag{1.10}
\end{equation*}
$$

where $c(K)>0$ depends only on K.

We prove the following
Theorem 1.1. Let $A=A(x, \xi)$ satisfy conditions (1.2)-(1.6) and let $f \in$ $L(\log L)^{\frac{1}{2}}(\log \log L)^{\frac{1}{2}}(\Omega)$. Then, there exists an unique $v \in W_{0}^{1,2}(\Omega)$ solution to

$$
\left\{\begin{array}{l}
-\operatorname{div} A(x, \nabla v)=f \quad \text { in } \Omega \tag{1.11}\\
v \in W_{0}^{1,2}(\Omega),
\end{array}\right.
$$

such that $\nabla v \in L^{2}(\log \log L)(\Omega)$ and

$$
\|\nabla v\|_{L^{2}(\log \log L)(\Omega)} \leqslant C(K)\|f\|_{L(\log L)^{\frac{1}{2}}(\log \log L)^{\frac{1}{2}}(\Omega)}
$$

Note that by imbedding theorems for Orlicz-Sobolev spaces, (see [5]) we obtain in particular that the solution v in Theorem 1.1 belongs to the Orlicz space $L^{\Lambda}(\Omega)$ generated by the Young function $\Lambda(t)=\exp \left\{t^{2} \log (e+t)\right\}-1$.

It is worth to point out that under the assumptions of Theorem 1.1 we cannot expect the boundedness of the solution u. In fact in [2] is proved that $f \in L \log L(\Omega)$ is a sufficient condition for the boundedness (and continuity) of the solution u and in [3] there are examples where $f \in L \log ^{\delta} L(\Omega), \delta \in\left[\frac{1}{2}, 1[\right.$, and the solution u is not bounded.

In Section 5 we prove that also approaching $L \log L(\Omega)$ in the scale of spaces $L \log L(\log \log L)^{\alpha}, \quad L \log L(\log \log \log L)^{\alpha}(\Omega), \quad L \log L(\log \log \log \ldots \log L)^{\alpha}(\Omega)$, $\alpha<0$, we cannot obtain the boundedness of the solution.

The case $n \geqslant 3$ is extensively treated for the n-harmonic equations in the recent papers [14] and [12].

2 - Young's functions and Orlicz spaces

Let $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ be a Young's function, i.e. a convex function of type $\Phi(t)=\int_{0}^{t} \varphi(s) d s, t>0$, where $\varphi:[0, \infty[\rightarrow \mathbb{R}$ is nondecreasing, rightcontinuous and such that

$$
\begin{equation*}
\varphi(s)>0 \quad \forall s>0, \quad \varphi(0)=0, \quad \lim _{s \rightarrow \infty} \varphi(s)=+\infty \tag{2.1}
\end{equation*}
$$

The Young's function $\tilde{\Phi}(t)$, complementary to $\Phi(t)$, is defined by $\tilde{\Phi}(t)=$ $\sup \{s t-\Phi(s): s>0\}$ and it is easy to see that $\tilde{\tilde{\Phi}}=\Phi$.

In the sequel we will deal with a particular class of Young functions Φ verifying a suitable sub-homogeneity property at infinity called Δ_{2}-condition. Namely,

Definition 1. A young function Φ satisfies the Δ_{2}-condition (we will write $\Phi \in \Delta_{2}$) if there exists a constant $l>0$ such that

$$
\begin{equation*}
\Phi(\lambda t) \leqslant \lambda^{l} \Phi(t), \quad \forall \lambda \geqslant 1, \quad \forall t \geqslant t_{0}, \tag{2.2}
\end{equation*}
$$

where $t_{0} \geqslant 0$ is a suitable large constant.
Let Ω be an open and bounded set in $\mathbb{R}^{n}, n \geqslant 1$. The Orlicz class $\Lambda^{\Phi}(\Omega)$ is the set of all measurable functions $u: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\int_{\Omega} \Phi(|u(x)|) d x<\infty
$$

The Orlicz Space $L^{\Phi}=L^{\Phi}(\Omega)$ is the linear hull of $\Lambda^{\Phi}(\Omega)$ and the equality $L^{\Phi}(\Omega) \equiv \Lambda^{\Phi}(\Omega)$ holds if and only if $\Phi \in \Delta_{2}$.

Define the functional $\|u\|_{L^{\Phi}(\Omega)}: L^{\Phi}(\Omega) \rightarrow[0,+\infty[$ by

$$
\begin{equation*}
\|u\|_{L^{\Phi}(\Omega)}=\inf \left\{K>0: \int_{\Omega} \Phi\left(\frac{|u(x)|}{K}\right) d x \leqslant 1\right\} . \tag{2.3}
\end{equation*}
$$

It is a norm, called the Luxemburg norm, and $L^{\Phi}(\Omega)$ is a Banach space when endowed with it. When no confusion arise we will simply write $\|u\|_{L^{\Phi}}$ or $\|u\|_{\Phi}$ instead of $\|u\|_{L^{\Phi}(\Omega)}$.

We recall that:
i) If $\Phi(t)=t^{p}$ and $1 \leqslant p<\infty$ then $L^{\Phi}(\Omega)=L^{p}(\Omega)$, the classical Lebesgue space and $\|\cdot\|_{L^{\Phi}(\Omega)}=\|\cdot\|_{L^{p}}$.
ii) If $\Phi(t)=t^{p}(\log (e+t))^{q}$ where either $p>1$ and $-\infty<q<\infty$ or $p=1$ and $q \geqslant 0$, then the Orlicz space $L^{\Phi}(\Omega)$ is the Zygmund space $L^{p}(\log L)^{q}(\Omega)$, and the norm (2.3) is equivalent to the quantity (see [16])

$$
\begin{equation*}
[v]_{L^{p}(\log L)^{q}(\Omega)}=\left[\int_{\Omega|v|^{p} \log ^{q}}\left(e+\frac{|v|}{\left(\chi_{\Omega}|v|^{p} d x\right)^{\frac{1}{p}}}\right) d x\right]^{\frac{1}{p}} \tag{2.4}
\end{equation*}
$$

where, for all Lebesgue measurable set E with positive measure, we denote by $\chi_{E} f d x$ the mean value of f taken over the set E, i.e. $\chi_{E} f d x=f_{E}=$ $\frac{1}{|E|} \int_{E} f d x$, where $|E|$ denotes the Lebesgue measure of E.
iii) If $\Phi(t)=e^{t^{a}}-1, a>0$, then the Orlicz space $L^{\Phi}(\Omega)$ reproduces the space of exponentially integrable functions $\operatorname{EXP}(\Omega)$ when $a=1$ and $E X P_{a}(\Omega)$ otherwise.
iv) If $\Phi(t)=t^{p}\left(\log \log \left(e^{e}+t\right)\right)^{q}$ where either $p>1$ and $-\infty<q<\infty$ or $p=1$ and $q \geqslant 0$, then the Orlicz space $L^{\Phi}(\Omega)$ is the space $L^{p}(\log \log L)^{q}(\Omega)$.
The closure of $C_{0}^{\infty}(\Omega)$ in $L^{\Phi}(\Omega)$ is denoted by $E^{\Phi}(\Omega)$ and the inclusions

$$
\begin{equation*}
E^{\Phi}(\Omega) \subseteq \Lambda^{\Phi}(\Omega) \subseteq L^{\Phi}(\Omega) \tag{2.5}
\end{equation*}
$$

are trivial with equality holding if and only if $\Phi \in \Delta_{2}$.
The Orlicz-Sobolev space $W^{1, \Phi}(\Omega)$ is defined as

$$
W^{1, \Phi}(\Omega)=\left\{u \in W^{1,1}(\Omega) \cap L^{\Phi}(\Omega):|D u| \in L^{\Phi}(\Omega)\right\}
$$

and, equipped with the norm

$$
\|u\|_{W^{1, \Phi}}=\|u\|_{\Phi}+\|D u\|_{\Phi}
$$

it is a Banach space.
By $W_{0}^{1, \Phi}(\Omega)$ we denote the subspace of $W^{1, \Phi}(\Omega)$ of those functions whose continuation by 0 outside Ω belongs to $W^{1, \Phi}\left(\mathbb{R}^{n}\right)$. Properties of Orlicz-Sobolev spaces are presented in [7], [20].

The Orlicz space $L^{\Phi}(\Omega)$ is isometrically isomorphic to the dual space of $E^{\tilde{\Phi}}(\Omega)$ (see $\left.[17],[20]\right)$ and $\left[L^{\Phi}(\Omega)\right]^{\prime} \simeq L^{\tilde{\Phi}}(\Omega)$ if and only if $\Phi \in \Delta_{2}$. In particular the space $L^{\Phi}(\Omega)$ is reflexive if and only if both Φ and $\tilde{\Phi}$ belong to class Δ_{2}.

Here below we recall the explicit expression of the dual spaces of some Orlicz space (see [4] and [8]) which will be useful in the sequel
i) for any $1<p<\infty$ and $-\infty<q<\infty$ it is

$$
\left(L^{p}(\log L)^{q}(\Omega)\right)^{\prime} \cong \frac{L^{p^{\prime}}}{(\log L)^{\frac{q}{p-1}}}(\Omega)
$$

where p^{\prime} is the conjugate exponent of p, i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$
ii) for any $1<p<\infty$ and $-\infty<q<\infty$ it is

$$
\left(L^{p}(\log \log L)^{q}(\Omega)\right)^{\prime} \cong \frac{L^{p^{\prime}}}{(\log \log L)^{\frac{q}{p-1}}}(\Omega
$$

iii) for $p=1$ and $q>0$ it is

$$
\begin{equation*}
\left(L(\log L)^{q}(\Omega)\right)^{\prime} \cong E X P_{\frac{1}{q}}(\Omega) \tag{2.6}
\end{equation*}
$$

The following partial ordering relation between functions is involved in imbedding theorems between Orlicz spaces associated with different Young functions.

Definition 2. The function Ψ is said to dominate the function Φ globally (respectively near infinity) if there exists $c>0$ such that

$$
\begin{equation*}
\Phi(t) \leqslant \Psi(c t) \tag{2.7}
\end{equation*}
$$

for any $t \geqslant 0$ (respectively for any t greater than some positive number).
The functions Φ and Ψ are called equivalent globally (respectively near infinity) if each dominates the other globally (respectively near infinity).

Lemma 2.1. Let $\Theta(t)=\exp \left\{\frac{t^{2}}{\log (e+t)}\right\}-1$. Then the conjugate Young function $\tilde{\Theta}(t)$ of Θ is equivalent, near infinity, to the function

$$
\Psi(t)=t \log ^{\frac{1}{2}}(e+t)(\log \log (e+t))^{\frac{1}{2}}
$$

Proof. Let us start the proof by observing that the derivative function of Θ

$$
\theta(t)=\Theta^{\prime}(t)=\exp \left\{\frac{t^{2}}{\log t}\right\} \frac{2 t \log t-t}{\log ^{2} t}
$$

is equivalent near infinity to Θ. In fact, for any t sufficiently large we have

$$
\theta(t) \cong \exp \left\{\frac{t^{2}}{\log t}\right\} \frac{2 t}{\log t}
$$

and

$$
\exp \left\{\frac{t^{2}}{\log t}\right\} \leqslant \exp \left\{\frac{t^{2}}{\log t}\right\} \frac{2 t}{\log t} \leqslant \exp \left\{\frac{(c t)^{2}}{\log c t}\right\}
$$

for some constant $c>1$. On the other hand it is not hard to see that the inverse function θ^{-1} of θ is equivalent near infinity to the function

$$
\psi(s)=\frac{1}{\sqrt{2}} \log ^{\frac{1}{2}} s(\log \log s)^{\frac{1}{2}}
$$

Hence, near infinity we have

$$
\tilde{\Theta}(y)=\int_{0}^{y} \theta^{-1}(s) d s \cong y \log ^{\frac{1}{2}} y(\log \log y)^{\frac{1}{2}}
$$

as we claimed.
THEOREM 2.1. The continuous imbedding $L^{\Psi}(\Omega) \rightarrow L^{\Phi}(\Omega)$ holds if and only if either Ψ dominates Φ globally or $|\Omega|<\infty$ and Ψ dominates Φ near infinity.

In particular, for any Young function $\Psi=\Psi(t)$ which is dominated (near infinity) by the Young function

$$
\Theta(t)=\exp \left\{\frac{t^{2}}{\log (e+t)}\right\}-1
$$

by Theorem 2.1 we have

$$
\begin{equation*}
E X P_{2}(\Omega) \rightarrow L^{\Theta}(\Omega) \rightarrow L^{\Psi}(\Omega) \tag{2.8}
\end{equation*}
$$

Moreover, for any $0<\varepsilon<p<\infty$ and $-\infty<a<b<\infty$ the following imbedding are obvious

$$
\begin{gathered}
L^{p+\varepsilon}(\Omega) \rightarrow L^{p}(\log L)^{b}(\Omega) \rightarrow L^{p}(\log L)^{a}(\Omega) \rightarrow L^{p-\varepsilon}(\Omega) \\
L^{p}(\log L)^{\varepsilon}(\Omega) \rightarrow L^{p}(\Omega) \rightarrow L^{p}(\log L)^{-\varepsilon}(\Omega) .
\end{gathered}
$$

The following Sobolev-Trudinger type embedding holds

$$
\begin{equation*}
W_{0} \frac{L^{2}}{(\log L)^{a}}(\Omega) \hookrightarrow E X P_{\frac{2}{1+a}}(\Omega) \quad \text { for } a<1 \tag{2.9}
\end{equation*}
$$

(see [22], [10], [5]), where we denote by $W_{0} \frac{L^{2}}{(\log L)^{a}}(\Omega)$ the space $W_{0}^{1, \Phi}(\Omega)$ where $\Phi(t)=t^{2} \log ^{-a}(e+t)$. It is worth to point out that in case $a=0$ imbedding (1.8) follows.

We will finish this section by recalling the following result (see [5], Example 2 pag. 43)

Lemma 2.2. Let $\Omega \subset \mathbb{R}^{2}$ be an open bounded set with C^{1}-boundary. If we consider Young functions $\Phi(t)$ which are equivalent to $t^{p}(\log \log (e+t))^{q}$ near infinity, where either $p>1$ and $q \in \mathbb{R}$ or $p=1$ and $q \geqslant 0$, then

$$
W^{1, \Phi}(\Omega) \rightarrow C_{b}(\Omega)
$$

if $p>2$ and

$$
\begin{equation*}
W^{1, \Phi}(\Omega) \rightarrow L^{\Phi_{2}}(\Omega) \tag{2.10}
\end{equation*}
$$

otherwise, where Φ_{2} is equivalent near infinity to

$$
\begin{cases}t^{\frac{2 p}{2-p}}(\log \log (t))^{\frac{2 q}{2-q}} & \text { if } 1 \leqslant p<2 \\ e^{t^{2}(\log (t))^{q}} & \text { if } p=2\end{cases}
$$

(Here $C_{b}(\Omega)$ denotes the space of continuous bounded functions on Ω).
For more details and proofs of results about Young function and Orlicz spaces we refer the reader to [1], [5], [6], [17], [20], [23].

3 - Preliminaries

The results we are going to obtain in this section are true in all dimensions. Hence, here we assume $A=A(x, \xi)$ to be defined on $\Omega \times \mathbb{R}^{n}$, where conditions (1.2)-(1.6) hold for $x \in \Omega \subset \mathbb{R}^{n}$ and $\xi, \eta \in \mathbb{R}^{n}$. Let us recall the following regularity result for the solution to quasilinear elliptic problem with the righthand side in divergence form (see Theorem 3.2 of [3]).

Theorem 3.1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with C^{1}-boundary and let $A=A(x, \xi)$ be as before. Then for $\psi_{1}, \psi_{2} \in \frac{L^{2}}{(\log L)^{a}}\left(\Omega ; \mathbb{R}^{n}\right)$ with $0 \leqslant a \leqslant 1$, each of the two problems

$$
\begin{aligned}
& \begin{cases}\operatorname{div} A\left(x, \nabla \varphi_{1}\right)=\operatorname{div} \psi_{1} & \text { in } \Omega \\
\varphi_{1} \in W_{0}^{1,1}(\Omega)\end{cases} \\
& \begin{cases}\operatorname{div} A\left(x, \nabla \varphi_{2}\right)=\operatorname{div} \psi_{2} \\
\varphi_{2} \in W_{0}^{1,1}(\Omega) & \text { in } \Omega\end{cases}
\end{aligned}
$$

has a unique solution and

$$
\begin{equation*}
\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{\frac{L^{2}}{(\log L)^{a}}(\Omega)} \leqslant c(K)\left\|\psi_{1}-\psi_{2}\right\|_{\frac{L^{2}}{(\log L)^{a}}(\Omega)} \tag{3.1}
\end{equation*}
$$

where $c(K)>0$ depends only on K.
We prove the following
3.2. Let $A=A(x, \xi)$ satisfy hypotheses (1.2)-(1.6). Then for $\psi_{1}, \psi_{2} \in$ $\frac{L^{2}}{\log \log L}(\Omega)$ each of the two problems

$$
\begin{align*}
& \begin{cases}\operatorname{div} A\left(x, \nabla \varphi_{1}\right)=\operatorname{div} \psi_{1} & \text { in } \Omega \\
\varphi_{1} \in W_{0}^{1,1}(\Omega)\end{cases} \tag{3.2}\\
& \begin{cases}\operatorname{div} A\left(x, \nabla \varphi_{2}\right)=\operatorname{div} \psi_{2} \\
\varphi_{2} \in W_{0}^{1,1}(\Omega)\end{cases}
\end{align*}
$$

has a unique solution and

$$
\begin{equation*}
\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{\frac{L^{2}}{\log \log L}(\Omega)} \leqslant c(K)\left\|\psi_{1}-\psi_{2}\right\|_{\frac{L^{2}}{\log \log L}(\Omega)} \tag{3.3}
\end{equation*}
$$

Proof. For $i=1,2$ let $\psi_{i} \in \frac{L^{2}}{\log \log L}(\Omega)$. Then obviously ψ_{i} belong to $\frac{L^{2}}{(\log L)^{a}}(\Omega), 0<a \leqslant 1$. Hence, by Theorem 3.1, there exists a unique solution φ_{i} to the Dirichlet Problem (3.2) and the estimate

$$
\begin{equation*}
\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{\frac{L^{2}}{(\log L)^{a}}(\Omega)} \leq c(K)\left\|\psi_{1}-\psi_{2}\right\|_{\frac{L^{2}}{(\log L)^{\alpha}}(\Omega)} \tag{3.4}
\end{equation*}
$$

holds uniformly with respect to $a \in] 0,1]$.
Now we claim that the following inequality holds true:

$$
\begin{align*}
\left(1-\frac{1}{e}\right) \int_{\Omega} \frac{k(x)^{2}}{\log \log \left(k(x)+e^{e}\right)} d x & \leqslant \int_{0}^{1} d a \int_{\Omega} \frac{k(x)^{2}}{\log ^{a}\left(k(x)+e^{e}\right)} d x \leqslant \tag{3.5}\\
& \leqslant \int_{\Omega} \frac{k(x)^{2}}{\log \log \left(k(x)+e^{e}\right)} d x
\end{align*}
$$

Indeed by

$$
\int_{0}^{1} \frac{1}{\log ^{a}\left(e^{e}+k(x)\right)} d a=\left[1-\frac{1}{\log \left(k(x)+e^{e}\right)}\right] \frac{1}{\log \log \left(k(x)+e^{e}\right)}
$$

we have

$$
\left(1-\frac{1}{e}\right) \frac{1}{\log \log \left(k(x)+e^{e}\right)} \leqslant \int_{0}^{1} \frac{1}{\log ^{a}\left(e^{e}+k(x)\right)} d a \leqslant \frac{1}{\log \log \left(k(x)+e^{e}\right)}
$$

so that Inequality (3.5) follows.
Integrating both sides of (3.4) with respect to $0 \leqslant a \leqslant 1$ and using suitably (2.4) and (3.5) with $k(x)=\left|\nabla \varphi_{1}-\nabla \varphi_{2}\right|$ and $k(x)=\left|\psi_{1}-\psi_{2}\right|$ the thesis follows.

4 - The main result

In this Section we will give the proof of Theorem 1.1. Here and below we assume

$$
\Phi(t)=t \log ^{\frac{1}{2}}(e+t)(\log \log (e+t))^{\frac{1}{2}}
$$

Proof of Theorem 1.1. We start the proof by using the linearization procedure contained in [15] (see also [3]) which we report for the convenience of the reader. So, let $v \in W_{0}^{1,2)}(\Omega)$ be the solution to quasilinear problem

$$
\begin{cases}-\operatorname{div} A(x, \nabla v)=f & \text { in } \Omega \tag{4.1}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

which exists and is unique because $f \in L^{\Phi}(\Omega) \subset L^{1}(\Omega)$ (see [9], [15]). We will determine a symmetric measurable matrix valued function $\mathcal{A}=\mathcal{A}(x)$ such that v satisfies the linear problem

$$
\begin{cases}-\operatorname{div} \mathcal{A}(x) \nabla v=f & \text { in } \Omega \tag{4.2}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

and \mathcal{A} verifying

$$
\begin{equation*}
\frac{|\xi|^{2}}{C(K)} \leqslant\langle\mathcal{A}(x) \xi, \xi\rangle \leqslant C(K)|\xi|^{2}, \tag{4.3}
\end{equation*}
$$

for any $\xi \in \mathbb{R}^{2}$, a.e. $x \in \Omega$, and where $C(K)$ is a constant depending only upon K.

Setting

$$
\begin{equation*}
B=A(x, \nabla v(x)), \quad E=\nabla v(x) . \tag{4.4}
\end{equation*}
$$

one obtain, by assumptions (1.4)-(1.6)

$$
|B| \leqslant K|E|, \quad|E|^{2} \leqslant K|\langle B, E\rangle|
$$

Moreover if we set,

$$
\lambda=\frac{\langle B, E\rangle}{|E|^{2}}, \quad \Lambda=\frac{|B|}{|E|} \quad(|E|>0)
$$

by (4.5) we have

$$
\begin{equation*}
\frac{1}{K} \leqslant \lambda \leqslant \Lambda \leqslant K \quad \text { and } \quad \frac{|B|^{2}+|E|^{2}}{\langle B, E\rangle}=\frac{1+\Lambda^{2}}{\lambda} \tag{4.6}
\end{equation*}
$$

Define $H \geqslant 1$ by solving the equation

$$
H+\frac{1}{H}=\frac{1+\Lambda^{2}}{\lambda}
$$

that is,

$$
H=\frac{1}{2}\left[\frac{1+\Lambda^{2}}{\lambda}+\sqrt{\left(\frac{1+\Lambda^{2}}{\lambda}-4\right)^{2}}\right]
$$

Then, consider the 2×2 matrix defined by

$$
\mathcal{A}=H I_{d}+\left(\frac{1}{H}-H\right) \frac{B-H E}{|B-H E|} \otimes \frac{B-H E}{|B-H E|},
$$

where for $z=(x, t)$, we have used the shorthand notation

$$
z \otimes z=\left(\begin{array}{ll}
x^{2} & x t \\
x t & t^{2}
\end{array}\right)
$$

and $I_{d}=\left(\delta_{i j}\right)$ is identical matrix. It holds (see [15])

$$
\begin{equation*}
\mathcal{A} E=B \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{|\xi|^{2}}{H} \leqslant\langle\mathcal{A}(x) \xi, \xi\rangle \leqslant H|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{2} \tag{4.8}
\end{equation*}
$$

By (4.4) and (4.8), we have

$$
\mathcal{A}(x) \nabla v(x)=B
$$

which implies (4.2). Finally, by (4.8) and observing that it holds

$$
H(x) \leqslant C(K)
$$

(4.3) follows, with

$$
C(K)=\frac{1}{2}\left[\left(K+K^{3}\right)+\sqrt{\left(K+K^{3}\right)^{2}-4}\right] .
$$

Now, let

$$
L \cdot=-\operatorname{div} \mathcal{A}(x) \nabla \cdot .
$$

Since $f \in L^{\Phi}(\Omega)$ then v is the variational solution in $W_{0}^{1,2}(\Omega)$ to the equation $L v=f$. Hence we have

$$
\int_{\Omega}\langle\mathcal{A}(x) \nabla v, \nabla \varphi\rangle d x=\int_{\Omega} \varphi f d x
$$

for any $\varphi \in W_{0}^{1,2}(\Omega)$.
Now, let us fix $\psi \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right)$ with

$$
\begin{equation*}
\|\psi\|_{\frac{L^{2}}{(\log \log L)}(\Omega)} \leqslant 1 \tag{4.9}
\end{equation*}
$$

and let φ be the (unique) solution to the Dirichlet problem

$$
\begin{cases}L \varphi=\operatorname{div} \psi & \text { in } \Omega \\ \varphi=0 & \text { on } \partial \Omega\end{cases}
$$

given by Theorem 3.2. Note that φ verifies

$$
\begin{equation*}
\|\nabla \varphi\|_{\frac{L^{2}}{(\log \log L)}\left(\Omega ; \mathbb{R}^{2}\right)} \leqslant c(K)\|\psi\|_{\frac{L^{2}}{(\log \log L)}\left(\Omega ; \mathbb{R}^{2}\right)} \leqslant c(K) . \tag{4.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
|\langle\nabla v, \psi\rangle|=\left|\int_{\Omega}\langle\mathcal{A}(x) \nabla v, \nabla \varphi\rangle d x\right|=\left|\int_{\Omega} \varphi f d x\right| . \tag{4.11}
\end{equation*}
$$

On the other hand, using Lemma 2.2 with $p=2$ and $q=-1$, the Orlicz-Sobolev imbedding

$$
W_{0}^{1,} \frac{L^{2}}{\log \log L}(\Omega) \rightarrow L^{\Theta}(\Omega) \quad \text { where } \quad \Theta(t)=\exp \frac{t^{2}}{\log (e+t)}-1
$$

holds. Moreover, by Lemma 2.1 the conjugate Young function $\tilde{\Theta}$ of Θ is equivalent (near infinity) to the Young function Φ and then

$$
\begin{equation*}
L^{\tilde{\Theta}}(\Omega)=L^{\Phi}(\Omega) \tag{4.12}
\end{equation*}
$$

Thus, for any $\psi \in \mathcal{C}^{1}\left(\bar{\Omega}, \mathbb{R}^{2}\right)$ verifying (4.9), by (4.11) and using Hölder inequality between associated Orlicz spaces (see for example [1]), we obtain

$$
\begin{equation*}
|\langle\nabla v, \psi\rangle| \leqslant c\|\varphi\|_{L^{\ominus}(\Omega)}\|f\|_{L^{\Phi}(\Omega)} \tag{4.13}
\end{equation*}
$$

Taking the supremum under conditions $\psi \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right)$ and $\|\psi\|_{\frac{L^{2}}{(\log \log L)}(\Omega)} \leqslant 1$, the estimates (4.10) and (4.13) give

$$
\sup \left\{|\langle\nabla v, \psi\rangle|: \psi \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right) \text { and }\|\psi\|_{\frac{L^{2}}{(\log \log L)}(\Omega)} \leqslant 1\right\} \leqslant c(K,|\Omega|)\|f\|_{L^{\Phi}(\Omega)}
$$

and the thesis follows. In fact it is now sufficient to observe that

$$
\|\nabla v\|_{L^{2}(\log \log L)(\Omega)}=\sup _{\|\psi\|_{\frac{L^{2}}{(\log \log L)}(\Omega)} \leqslant 1}|\langle\nabla v, \psi\rangle| .
$$

and that by (2.5) the space $C^{1}(\bar{\Omega})$ is dense in $\frac{L^{2}}{\log \log L}(\Omega)$.
Remark 4.1 It is evident that the thesis of Theorem 1.1 remains invaried whenever $f \in L^{\Psi}(\Omega), \Psi$ any Young function verifying

$$
\Psi(t) \geqslant t \log ^{\frac{1}{2}}(e+t)(\log \log (e+t))^{\frac{1}{2}}
$$

for any $t>0$ sufficiently large.

5 - On the boundedness of the solution

In this section we show with an example that we cannot expect the boundedness of the solution under the assumptions of Theorem 1.1 (see also [3], [14]).

Example 1. Let

$$
u(x)=\log \log \log \frac{1}{|x|}
$$

and let $\Omega=\left\{x \in \mathbb{R}^{2}:|x|<e^{-e}\right\}$. Then, the unbounded function u verifies $|\nabla u| \in L^{2} \log \log L(\Omega)$ and solves the Dirichlet problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{5.1}\\ u \in W_{0}^{1,2}(\Omega), & \end{cases}
$$

where
$f:=\frac{1}{|x|^{2} \log ^{2} \frac{1}{|x|} \log \log \frac{1}{|x|}}\left(1+\frac{1}{\log \log \frac{1}{|x|}}\right) \in L(\log L)(\log \log L)^{\alpha}(\Omega), \quad \forall \alpha<0$.
Proof. We have

$$
\nabla u(x)=\frac{-x}{|x|^{2} \log \frac{1}{|x|} \log \log \frac{1}{|x|}}, \quad \forall x \neq 0
$$

so that

$$
|\Delta u(x)|=|\operatorname{div} \nabla u(x)|=\frac{1}{|x|^{2}\left(\log \frac{1}{|x|}\right)^{2} \log \log \frac{1}{|x|}}\left(1+\frac{1}{\log \log \frac{1}{|x|}}\right)
$$

Hence, by $|f|=|\Delta u|$ we have, for any $\alpha<0$,

$$
\begin{aligned}
\int_{\Omega}|f| \log (|f|)(\log \log |f|)^{\alpha} d x & \leqslant \\
& \leqslant c \int_{\Omega} \frac{1}{|x|^{2} \log \frac{1}{|x|}\left(\log \log \frac{1}{|x|}\right)^{1-\alpha}} d x= \\
& =c \int_{0}^{e^{-e}} \frac{1}{\rho \log \frac{1}{\rho}\left(\log \log \frac{1}{\rho}\right)^{1-\alpha}} d \rho= \\
& =\frac{c}{-\alpha}\left[\left(\log \log \frac{1}{\rho}\right)^{\alpha}\right]_{0}^{e^{-e}}<\infty
\end{aligned}
$$

so that f belongs to $L \log L(\log \log L)^{\alpha}(\Omega)$ for any $\alpha<0$. Note that for $\alpha=0$ first integral in last inequality is infinite.

In a similar way we have the following
Example 2. Let

$$
u(x)=\log \log \log \log \frac{1}{|x|}
$$

and let $\Omega=\left\{x \in \mathbb{R}^{2}:|x|<e^{-e^{e}}\right\}$. Then, the unbounded function u verifies $\nabla u \in L^{2} \log \log L(\Omega)$ and solves the Dirichlet problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{5.2}\\ v \in W_{0}^{1,2}(\Omega), & \end{cases}
$$

where
$f:=\frac{1}{|x|^{2} \log ^{2} \frac{1}{|x|} \log \log \frac{1}{|x|} \log \log \log \frac{1}{|x|}}\left(1+\frac{1}{\log \log \frac{1}{|x|}}+\frac{1}{\log \log \frac{1}{|x|} \log \log \log \frac{1}{|x|}}\right)$
and holds

$$
f \in L(\log L)(\log \log \log L)^{\alpha}(\Omega), \quad \forall \alpha<0
$$

By continuing in the same way, we can conclude that if by one hand $f \in L \log L$ is a sufficient condition to obtain the boundedness of the solution u (see [2]) by the other hand slightly weaker condition $f \in L \log L(\log \log \log \ldots \log L)^{\alpha}(\Omega)$, $\alpha<0$, is insufficient.

Acknowledgements

The author wishes to express her thanks to Prof. A. Cianchi and to Prof. A. Verde for the helpful suggestions during the preparation of the paper.

REFERENCES

[1] R. A. Adams: Sobolev Spaces, Academic Press, New York, 1975.
[2] A. Alberico, V. Ferone: Regularity properties of solutions of elliptic equations in \mathbb{R}^{2} in limit cases, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl., 6 (1995), 237-250.
[3] A. Alberico, T. Alberico, C. Sbordone: Regularity results for planar quasilinear equations with right hand side in $L(\log L)^{\delta}$, (2010) to appear.
[4] C. Bennett, K. Rudnick: On Lorentz-Zygmund spaces, Dissert. Math. 175 (1980), 1-67.
[5] A. Cianchi: A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics J., 45 (1996), 39-65.
[6] A. Cianchi: Continuity Properties of Functions from Orlicz-Sobolev Spaces and Embedding Theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), 575-608.
[7] T. K. Donaldson, N. S. Trudinger: Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8 (1971), 52-75.
[8] D. E. Edmunds, H. Triebel: Function spaces, entropy numbers, differential operators, Cambridge University Press, Cambridge, 1996.
[9] A. Fiorenza, C. Sbordone: Existence and uniqueness results for solutions of nonlinear equations with right hand side in L^{1}, Studia Mathematica 127 (1998), 223-231.
[10] N. Fusco, P. L. Lions, C.Sbordone: Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc. 124 (1996), 561-565.
[11] L. Greco: A remark on the equality det $D f=\operatorname{Det} D f$, Diff. Int. Eq. 6 (1993), 1089-1100.
[12] N. Ioku: Brezis-Merle type inequality for a weak solution to the N-Laplace equation in Lorentz-Zygmund spaces, Diff. Int. Eq., n. 5-6 22 (2009), 495-518.
[13] T. Iwaniec, G. Martin: Geometric function theory and nonlinear analysis, Oxford Math. Monographs (2001).
[14] T. Iwaniec, J. Onninen: Continuity Estimates for n-harmonic Equations, Indiana Univ. Math. J., 56 (2007), 805-824.
[15] T. Iwaniec, C. Sbordone: Quasiharmonic Fields, Ann. Inst. Poincaré Anal. Non Linéaire 18, 5 (2001), 519-572.
[16] T. Iwaniec, A. Verde: On the operator $\mathcal{L}(f)=f \log |f|$,, J. Funct. Anal., 169 (1999), 391-420.
[17] M. A. Krasnosel'skǐ̌, Ya. B. RutickiǏ: Convex Functions and Orlicz Spaces., Noordhoff, Groningen, 1961.
[18] J. Leray, J. L. Lions: Quelques résultats de Vis̆ik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
[19] A. Passarelli di Napoli, C. Sbordone: Elliptic equations with right-hand side in $L(\log L)^{\alpha}$, Rend. Accad. Sci. Fis. Mat. Napoli (4), 62 (1995), 301-314.
[20] M. Rao, Z. D. Ren: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics 146 Marcel Dekker, Inc., New York, 1991.
[21] G. Stampacchia: Some limit cases of L^{p}-estimates for solutions of second order elliptic equations, Comm. Pure Appl. Math. 16 (1963), 505-510.
[22] N. S. Trudinger: On imbeddings into Orlicz spaces and applications, J. Math. Mech. 17 (1967), 473-483.
[23] A. Verde, G. Zecca: On the higher integrability for certain nonlinear problems, Differential and Integral Equations, 21(2008), 247-263

Lavoro pervenuto alla redazione il 20 luglio 2010 ed accettato per la pubblicazione il 28 ottobre 2010. Bozze licenziate il 26 novembre 2010

INDIRIZZO DELL'AUTORE:

Gabriella Zecca - Dipartimento di Matematica e Applicazioni "R. Caccioppoli" - Università degli Studi di Napoli "Federico II" - Via Cintia - Complesso Universitario Monte S. Angelo 80126 Napoli - Italy
E-mail: g.zecca@unina.it

