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Regularity results for planar quasilinear equations

GABRIELLA ZECCA

Abstract: We study the Dirichlet problem for the quasilinear elliptic equation

−div A(x,∇v) = f

in a planar domain ≠, when f belongs to the Zygmund space L(log L)
1
2 (log log L)

1
2 (≠).

We prove that the gradient of the variational solution v ∈ W 1,2
0 (≠) belongs to the

Zygmund space L2 log log L(≠).

1 – Introduction

Let ≠ ⊂ R2 be a bounded open set with C1-boundary. We consider the
following Dirichlet problem

(1.1)

Ω −div A(x,∇v) = f in ≠

v ∈W 1,2
0 (≠),

where A : ≠× R2 → R2 is a mapping such that:

x→ A(x, ξ) is measurable for any ξ ∈ R2;(1,2)

ξ → A(x, ξ) is continuous for almost every x ∈ ≠.(1.3)

Key Words and Phrases: Elliptic equations – Zygmund spaces – Gradient regularity
A.M.S. Classification: 35B65, 46E30.
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Moreover we assume that there exists K > 1 such that for almost every
x ∈ ≠ we have

|A(x, ξ)−A(x, η)| 6 K|ξ − η| (Lipschitz continuity)(1.4)

|ξ − η|2 6 KhA(x, ξ)−A(x, η), ξ − ηi (strong monotonicity)(1.5)

A(x, 0) = 0(1.6)

for any vectors ξ and η in R2 (see [18]).
In [9] an existence and uniqueness theorem for the Dirichlet problem for

the equation div A(x,∇v) = f is proved where f ∈ L1(≠) and the solution v

belongs to the so called grand Sobolev space W
1,2)
0 (≠) i.e. the space of function

v ∈W 1,1
0 (≠) whose gradient |∇v| satisfies

sup
1<s<2

∑
(2− s)

Z

≠

|∇v|sdx

∏ 1
s

= kvk
W

1,2)
0

<1.

Note that the space of such functions W
1,2)
0 (≠) is slightly larger than W 1,2

0 (≠)
and this is the appropriate space when the right-hand side f is assumed to be
only L1−integrable (see [9], [11] for more details).

In this paper we study cases where the solution v is the variational W 1,2
0 (≠)-

solution, under the assumption

(1.7) f ∈ L(log L)
1
2 (log log L)

1
2 (≠) ⊂ L(log L)

1
2 (≠).

Let us observe that by the Sobolev-Trudinger imbedding in the plane

(1.8) W 1,2
0 (≠) ↪→ EXP2(≠),

hypothesis (1.7) guarantees that f belongs to the dual space of W 1,2
0 (≠) and

then, at least in the linear case A(x, ξ) = A(x)ξ the Lax-Milgram Theorem
ensure that there exists a unique solution v ∈W 1,2

0 (≠).
The case where f belongs to the Zygmund space

(1.9) f ∈ L(log L)δ(≠) ⊂ L1(≠), for
1

2
6 δ 6 1

is treated in [3] (see also [2], [21] for the case δ = 1) where e.g. the authors prove
that under the assumption (1.9), there is a unique solution v ∈ W 1,2

0 (≠) to the
Dirichlet problem (1.1) with ∇v ∈ L2(log L)2δ−1 and

(1.10) k∇vkL2(log L)2δ−1(≠) 6 c(K) kfkL(log L)δ(≠) ,

where c(K) > 0 depends only on K.
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We prove the following

Theorem 1.1. Let A = A(x, ξ) satisfy conditions (1.2)-(1.6) and let f ∈
L(log L)

1
2 (log log L)

1
2 (≠). Then, there exists an unique v ∈W 1,2

0 (≠) solution to

(1.11)

Ω −div A(x,∇v) = f in ≠

v ∈W 1,2
0 (≠),

such that ∇v ∈ L2(log log L)(≠) and

k∇vkL2(log log L)(≠) 6 C(K) kfk
L(log L)

1
2 (log log L)

1
2 (≠)

.

Note that by imbedding theorems for Orlicz-Sobolev spaces, (see [5]) we
obtain in particular that the solution v in Theorem 1.1 belongs to the Orlicz
space LΛ(≠) generated by the Young function Λ(t) = exp

©
t2 log(e + t)

™
− 1.

It is worth to point out that under the assumptions of Theorem 1.1 we
cannot expect the boundedness of the solution u. In fact in [2] is proved that
f ∈ L log L(≠) is a sufficient condition for the boundedness (and continuity) of
the solution u and in [3] there are examples where f ∈ L logδ L(≠), δ ∈ [12 , 1[,
and the solution u is not bounded.

In Section 5 we prove that also approaching L log L(≠) in the scale of spaces
L log L(log log L)α, L log L(log log log L)α(≠), L log L(log log log ... log L)α(≠),
α < 0, we cannot obtain the boundedness of the solution.

The case n > 3 is extensively treated for the n-harmonic equations in the
recent papers [14] and [12].

2 – Young’s functions and Orlicz spaces

Let Φ : [0,+1) → [0,+1) be a Young’s function, i.e. a convex function

of type Φ(t) =
R t

0
ϕ(s)ds, t > 0, where ϕ : [0,1[→ R is nondecreasing, right-

continuous and such that

(2.1) ϕ(s) > 0 ∀s > 0, ϕ(0) = 0, lim
s→1

ϕ(s) = +1.

The Young’s function Φ̃(t), complementary to Φ(t), is defined by Φ̃(t) =

sup {st− Φ(s) : s > 0} and it is easy to see that ˜̃Φ = Φ.
In the sequel we will deal with a particular class of Young functions Φ

verifying a suitable sub-homogeneity property at infinity called ∆2-condition.
Namely,
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Definition 1. A young function Φ satisfies the ∆2-condition (we will write
Φ ∈ ∆2) if there exists a constant l > 0 such that

(2.2) Φ(∏t) 6 ∏lΦ(t), ∀∏ > 1, ∀t > t0,

where t0 > 0 is a suitable large constant.

Let ≠ be an open and bounded set in Rn, n > 1. The Orlicz class ΛΦ(≠) is
the set of all measurable functions u : ≠ → R satisfying

Z

≠

Φ(|u(x)|)dx <1

The Orlicz Space LΦ = LΦ(≠) is the linear hull of ΛΦ(≠) and the equality
LΦ(≠) ≡ ΛΦ(≠) holds if and only if Φ ∈ ∆2.

Define the functional kukLΦ(≠) : LΦ(≠)→ [0,+1[ by

(2.3) kukLΦ(≠) = inf

Ω
K > 0 :

Z

≠

Φ

µ |u(x)|
K

∂
dx 6 1

æ
.

It is a norm, called the Luxemburg norm, and LΦ(≠) is a Banach space when
endowed with it. When no confusion arise we will simply write kukLΦ or kukΦ
instead of kukLΦ(≠).

We recall that:

i) If Φ(t) = tp and 1 6 p < 1 then LΦ(≠) = Lp(≠), the classical Lebesgue
space and k · kLΦ(≠) = k · kLp .

ii) If Φ(t) = tp(log(e + t))q where either p > 1 and −1 < q <1 or p = 1 and
q > 0, then the Orlicz space LΦ(≠) is the Zygmund space Lp(log L)q(≠),
and the norm (2.3) is equivalent to the quantity (see [16])

(2.4) [v]Lp(log L)q(≠) =




Z
\ ≠|v|p logq


e +

|v|
µZ

\ ≠|v|pdx

∂ 1
p


 dx




1
p

where, for all Lebesgue measurable set E with positive measure, we denote

by

Z
\ Efdx the mean value of f taken over the set E, i.e.

Z
\ Efdx = fE =

1

|E|

Z

E

fdx, where |E| denotes the Lebesgue measure of E.

iii) If Φ(t) = eta−1, a > 0, then the Orlicz space LΦ(≠) reproduces the space
of exponentially integrable functions EXP (≠) when a = 1 and EXPa(≠)
otherwise.
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iv) If Φ(t) = tp(log log(ee + t))q where either p > 1 and −1 < q < 1 or
p = 1 and q > 0, then the Orlicz space LΦ(≠) is the space Lp(log log L)q(≠).

The closure of C1
0 (≠) in LΦ(≠) is denoted by EΦ(≠) and the inclusions

(2.5) EΦ(≠) ⊆ ΛΦ(≠) ⊆ LΦ(≠)

are trivial with equality holding if and only if Φ ∈ ∆2.
The Orlicz-Sobolev space W 1,Φ(≠) is defined as

W 1,Φ(≠) =
©
u ∈W 1,1(≠) ∩ LΦ(≠) : |Du| ∈ LΦ(≠)

™
,

and, equipped with the norm

kukW 1,Φ = kukΦ + kDukΦ

it is a Banach space.
By W 1,Φ

0 (≠) we denote the subspace of W 1,Φ(≠) of those functions whose
continuation by 0 outside ≠ belongs to W 1,Φ(Rn). Properties of Orlicz-Sobolev
spaces are presented in [7], [20].

The Orlicz space LΦ(≠) is isometrically isomorphic to the dual space of

EΦ̃(≠) (see [17], [20]) and [LΦ(≠)]0 ' LΦ̃(≠) if and only if Φ ∈ ∆2. In particular
the space LΦ(≠) is reflexive if and only if both Φ and Φ̃ belong to class ∆2.

Here below we recall the explicit expression of the dual spaces of some Orlicz
space (see [4] and [8]) which will be useful in the sequel

i) for any 1 < p <1 and −1 < q <1 it is

(Lp(log L)q(≠))0 ∼= Lp0

(log L)
q

p−1

(≠)

where p0 is the conjugate exponent of p, i.e. 1
p + 1

p0 = 1

ii) for any 1 < p <1 and −1 < q <1 it is

(Lp(log log L)q(≠))0 ∼= Lp0

(log log L)
q

p−1

(≠)

iii) for p = 1 and q > 0 it is

(2.6) (L(log L)q(≠))0 ∼= EXP 1
q
(≠)

The following partial ordering relation between functions is involved in
imbedding theorems between Orlicz spaces associated with different Young func-
tions.
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Definition 2. The function ™ is said to dominate the function Φ globally
(respectively near infinity) if there exists c > 0 such that

(2.7) Φ(t) 6 ™(ct)

for any t > 0 (respectively for any t greater than some positive number).
The functions Φ and ™ are called equivalent globally (respectively near

infinity) if each dominates the other globally (respectively near infinity).

Lemma 2.1. Let Θ(t) = exp
n

t2

log(e+t)

o
− 1. Then the conjugate Young

function Θ̃(t) of Θ is equivalent, near infinity, to the function

™(t) = t log
1
2 (e + t)(log log(e + t))

1
2 .

Proof. Let us start the proof by observing that the derivative function of
Θ

θ(t) = Θ0(t) = exp

Ω
t2

log t

æ
2t log t− t

log2 t

is equivalent near infinity to Θ. In fact, for any t sufficiently large we have

θ(t) ∼= exp

Ω
t2

log t

æ
2t

log t

and

exp

Ω
t2

log t

æ
6 exp

Ω
t2

log t

æ
2t

log t
6 exp

Ω
(ct)2

log ct

æ
,

for some constant c > 1. On the other hand it is not hard to see that the inverse
function θ−1 of θ is equivalent near infinity to the function

√(s) =
1√
2

log
1
2 s(log log s)

1
2 .

Hence, near infinity we have

Θ̃(y) =

Z y

0

θ−1(s)ds ∼= y log
1
2 y(log log y)

1
2

as we claimed.

Theorem 2.1. The continuous imbedding L™(≠) → LΦ(≠) holds if and
only if either ™ dominates Φ globally or |≠| < 1 and ™ dominates Φ near
infinity.
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In particular, for any Young function ™ = ™(t) which is dominated (near
infinity) by the Young function

Θ(t) = exp

Ω
t2

log(e + t)

æ
− 1,

by Theorem 2.1 we have

(2.8) EXP2(≠)→ LΘ(≠)→ L™(≠).

Moreover, for any 0 < ε < p <1 and −1 < a < b <1 the following imbedding
are obvious

Lp+ε(≠)→ Lp(log L)b(≠)→ Lp(log L)a(≠)→ Lp−ε(≠)

Lp(log L)ε(≠)→ Lp(≠)→ Lp(log L)−ε(≠).

The following Sobolev-Trudinger type embedding holds

(2.9) W0
L2

(log L)a
(≠) ↪→ EXP 2

1+a
(≠) for a < 1,

(see [22], [10], [5]), where we denote by W0
L2

(log L)a (≠) the space W 1,Φ
0 (≠) where

Φ(t) = t2 log−a(e+ t). It is worth to point out that in case a = 0 imbedding (1.8)
follows.

We will finish this section by recalling the following result (see [5], Example
2 pag. 43 )

Lemma 2.2. Let ≠ ⊂ R2 be an open bounded set with C1-boundary. If we
consider Young functions Φ(t) which are equivalent to tp(log log(e + t))q near
infinity, where either p > 1 and q ∈ R or p = 1 and q > 0, then

W 1,Φ(≠)→ Cb(≠)

if p > 2 and

(2.10) W 1,Φ(≠)→ LΦ2(≠)

otherwise, where Φ2 is equivalent near infinity to

(
t

2p
2−p (log log(t))

2q
2−q if 1 6 p < 2

et2(log(t))q

if p = 2
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(Here Cb(≠) denotes the space of continuous bounded functions on ≠).
For more details and proofs of results about Young function and Orlicz

spaces we refer the reader to [1], [5], [6], [17], [20], [23].

3 – Preliminaries

The results we are going to obtain in this section are true in all dimensions.
Hence, here we assume A = A(x, ξ) to be defined on ≠ × Rn, where conditions
(1.2)–(1.6) hold for x ∈ ≠ ⊂ Rn and ξ, η ∈ Rn. Let us recall the following
regularity result for the solution to quasilinear elliptic problem with the right-
hand side in divergence form (see Theorem 3.2 of [3]).

Theorem 3.1. Let ≠ ⊂ Rn be a bounded open set with C1-boundary and

let A = A(x, ξ) be as before. Then for √1, √2 ∈ L2

(log L)a (≠; Rn) with 0 6 a 6 1,

each of the two problems
Ω

div A(x,∇ϕ1) = div √1 in ≠

ϕ1 ∈W 1,1
0 (≠)Ω

div A(x,∇ϕ2) = div √2 in ≠

ϕ2 ∈W 1,1
0 (≠)

has a unique solution and

(3.1) k∇ϕ1 −∇ϕ2k L2

(log L)a (≠)
6 c(K)k√1 − √2k L2

(log L)a (≠)

where c(K) > 0 depends only on K.

We prove the following

3.2. Let A = A(x, ξ) satisfy hypotheses (1.2)–(1.6). Then for √1, √2 ∈
L2

log log L (≠) each of the two problems

(3.2)

Ω
div A(x,∇ϕ1) = div √1 in ≠

ϕ1 ∈W 1,1
0 (≠)

Ω
div A(x,∇ϕ2) = div √2 in ≠

ϕ2 ∈W 1,1
0 (≠)

has a unique solution and

(3.3) k∇ϕ1 −∇ϕ2k L2

log log L (≠)
6 c(K)k√1 − √2k L2

log log L (≠)
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Proof. For i = 1, 2 let √i ∈ L2

log log L (≠). Then obviously √i belong to
L2

(log L)a (≠), 0 < a 6 1. Hence, by Theorem 3.1, there exists a unique solution ϕi

to the Dirichlet Problem (3.2) and the estimate

(3.4) k∇ϕ1 −∇ϕ2k L2

(log L)a (≠)
≤ c(K)k√1 − √2k L2

(log L)a (≠)

holds uniformly with respect to a ∈ ]0, 1].
Now we claim that the following inequality holds true:

(3.5)

µ
1− 1

e

∂Z

≠

k(x)2

log log(k(x) + ee)
dx 6

Z 1

0

da

Z

≠

k(x)2

loga(k(x) + ee)
dx 6

6
Z

≠

k(x)2

log log(k(x) + ee)
dx.

Indeed by

Z 1

0

1

loga(ee + k(x))
da =

∑
1− 1

log(k(x) + ee)

∏
1

log log(k(x) + ee)
,

we have

µ
1− 1

e

∂
1

log log(k(x) + ee)
6
Z 1

0

1

loga(ee + k(x))
da 6 1

log log(k(x) + ee)

so that Inequality (3.5) follows.
Integrating both sides of (3.4) with respect to 0 6 a 6 1 and using suitably

(2.4) and (3.5) with k(x) = |∇ϕ1−∇ϕ2| and k(x) = |√1−√2| the thesis follows.

4 – The main result

In this Section we will give the proof of Theorem 1.1. Here and below we
assume

Φ(t) = t log
1
2 (e + t)(log log(e + t))

1
2 .

Proof of Theorem 1.1. We start the proof by using the linearization
procedure contained in [15] (see also [3]) which we report for the convenience of

the reader. So, let v ∈W
1,2)
0 (≠) be the solution to quasilinear problem

(4.1)

Ω −div A(x,∇v) = f in ≠

v = 0 on @≠,
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which exists and is unique because f ∈ LΦ(≠) ⊂ L1(≠) (see [9], [15]). We will
determine a symmetric measurable matrix valued function A = A(x) such that
v satisfies the linear problem

(4.2)

Ω −div A(x)∇v = f in ≠

v = 0 on @≠,

and A verifying

(4.3)
|ξ|2

C(K)
6 hA(x)ξ, ξi 6 C(K)|ξ|2,

for any ξ ∈ R2, a.e.x ∈ ≠, and where C(K) is a constant depending only upon
K.

Setting

(4.4) B = A(x,∇v(x)), E = ∇v(x).

one obtain, by assumptions (1.4)-(1.6)

(4.5) |B| 6 K|E|, |E|2 6 K|hB,Ei|.

Moreover if we set,

∏ =
hB,Ei
|E|2 , Λ =

|B|
|E| (|E| > 0)

by (4.5) we have

(4.6)
1

K
6 ∏ 6 Λ 6 K and

|B|2 + |E|2
hB,Ei =

1 + Λ2

∏
.

Define H > 1 by solving the equation

H +
1

H
=

1 + Λ2

∏

that is,

H =
1

2


1 + Λ2

∏
+

sµ
1 + Λ2

∏
− 4

∂2

 .

Then, consider the 2× 2 matrix defined by

A = HId +

µ
1

H
−H

∂
B −HE

|B −HE| ⊗
B −HE

|B −HE| ,
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where for z = (x, t), we have used the shorthand notation

z ⊗ z =

µ
x2 xt
xt t2

∂

and Id = (δij) is identical matrix. It holds (see [15])

(4.7) AE = B

and

(4.8)
|ξ|2
H

6 hA(x)ξ, ξi 6 H|ξ|2, ∀ξ ∈ R2.

By (4.4) and (4.8), we have

A(x)∇v(x) = B

which implies (4.2). Finally, by (4.8) and observing that it holds

H(x) 6 C(K),

(4.3) follows, with

C(K) =
1

2

h
(K + K3) +

p
(K + K3)2 − 4

i
.

Now, let
L· = −div A(x)∇ · .

Since f ∈ LΦ(≠) then v is the variational solution in W 1,2
0 (≠) to the equation

Lv = f . Hence we have

Z

≠

hA(x)∇v,∇ϕidx =

Z

≠

ϕfdx

for any ϕ ∈W 1,2
0 (≠).

Now, let us fix √ ∈ C1(≠̄; R2) with

(4.9) k√k L2

(log log L)
(≠)

6 1

and let ϕ be the (unique) solution to the Dirichlet problem

Ω
Lϕ = div √ in ≠

ϕ = 0 on @≠.
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given by Theorem 3.2. Note that ϕ verifies

(4.10) k∇ϕk L2

(log log L)
(≠;R2)

6 c(K)k√k L2

(log log L)
(≠;R2)

6 c(K).

We have

(4.11) |h∇v, √i| =

ØØØØ
Z

≠

hA(x)∇v,∇ϕi dx

ØØØØ =
ØØØØ
Z

≠

ϕfdx

ØØØØ .

On the other hand, using Lemma 2.2 with p = 2 and q = −1, the Orlicz-Sobolev
imbedding

W 1,
0

L2

log log L
(≠)→ LΘ(≠) where Θ(t) = exp

t2

log(e + t)
− 1

holds. Moreover, by Lemma 2.1 the conjugate Young function Θ̃ of Θ is equiva-
lent (near infinity) to the Young function Φ and then

(4.12) LΘ̃(≠) = LΦ(≠).

Thus, for any √ ∈ C1(≠̄, R2) verifying (4.9), by (4.11) and using Hölder inequality
between associated Orlicz spaces (see for example [1]), we obtain

(4.13) |h∇v, √i| 6 ckϕkLΘ(≠)kfkLΦ(≠)

Taking the supremum under conditions √ ∈ C1(≠̄; R2) and k√k L2

(log log L)
(≠)

6 1,

the estimates (4.10) and (4.13) give

sup

Ω
|h∇v, √i| : √ ∈ C1(≠̄; R2) and k√k L2

(log log L)
(≠)

6 1

æ
6 c(K, |≠|)kfkLΦ(≠)

and the thesis follows. In fact it is now sufficient to observe that

k∇vkL2(log log L)(≠) = sup
k√k L2

(log log L)
(≠)

61

|h∇v, √i|.

and that by (2.5) the space C1(≠̄) is dense in L2

log log L (≠).

Remark 4.1 It is evident that the thesis of Theorem 1.1 remains invaried
whenever f ∈ L™(≠), ™ any Young function verifying

™(t) > t log
1
2 (e + t)(log log(e + t))

1
2

for any t > 0 sufficiently large.
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5 – On the boundedness of the solution

In this section we show with an example that we cannot expect the bound-
edness of the solution under the assumptions of Theorem 1.1 (see also [3], [14]).

Example 1. Let

u(x) = log log log
1

|x|
and let ≠ =

©
x ∈ R2 : |x| < e−e

™
. Then, the unbounded function u verifies

|∇u| ∈ L2 log log L(≠) and solves the Dirichlet problem

(5.1)

Ω −∆u = f in ≠

u ∈W 1,2
0 (≠),

where

f :=
1

|x|2 log2 1
|x| log log 1

|x|

√
1 +

1

log log 1
|x|

!
∈ L(log L)(log log L)α(≠), ∀α < 0.

Proof. We have

∇u(x) =
−x

|x|2 log 1
|x| log log 1

|x|
, ∀x 6= 0,

so that

|∆u(x)| = |div ∇u(x)| =
1

|x|2
≥
log 1

|x|

¥2

log log 1
|x|

√
1 +

1

log log 1
|x|

!
.

Hence, by |f | = |∆u| we have, for any α < 0,
Z

≠

|f | log(|f |) (log log |f |)α dx 6

6 c

Z

≠

1

|x|2 log 1
|x|

≥
log log 1

|x|

¥1−α dx =

= c

Z e−e

0

1

ρ log 1
ρ (log log 1

ρ )1−α
dρ =

=
c

−α

∑µ
log log

1

ρ

∂α∏e−e

0

<1,

so that f belongs to L log L(log log L)α(≠) for any α < 0. Note that for α = 0
first integral in last inequality is infinite.
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In a similar way we have the following

Example 2. Let

u(x) = log log log log
1

|x|
and let ≠ =

©
x ∈ R2 : |x| < e−ee™

. Then, the unbounded function u verifies
∇u ∈ L2 log log L(≠) and solves the Dirichlet problem

(5.2)

Ω −∆u = f in ≠

v ∈W 1,2
0 (≠),

where

f :=
1

|x|2 log2 1
|x| log log 1

|x| log log log 1
|x|

√
1+

1

log log 1
|x|

+
1

log log 1
|x| log log log 1

|x|

!

and holds
f ∈ L(log L)(log log log L)α(≠), ∀α < 0.

By continuing in the same way, we can conclude that if by one hand f ∈ L log L
is a sufficient condition to obtain the boundedness of the solution u (see [2])
by the other hand slightly weaker condition f ∈ L log L(log log log ... log L)α(≠),
α < 0, is insufficient.
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