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Regularity results for planar quasilinear equations

GABRIELLA ZECCA

ABSTRACT: We study the Dirichlet problem for the quasilinear elliptic equation
—div A(z, Vo) = f

in a planar domain Q, when f belongs to the Zygmund space L(log L)% (log log L)% (Q2).
We prove that the gradient of the variational solution v € WOM(Q) belongs to the
Zygmund space L*loglog L(Q).

1 — Introduction

Let Q C R? be a bounded open set with C'-boundary. We consider the
following Dirichlet problem

(11) { —div A(z,Vv) = f in

v e W, 2(Q),

where A : Q x R?2 — R? is a mapping such that:

(1,2) x — A(x,€) is measurable for any ¢ € R?;
(1.3) & — A(z,€) is continuous for almost every = € Q.
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A .M.S. CLASSIFICATION: 35B65, 46E30.
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Moreover we assume that there exists K > 1 such that for almost every
z €  we have

(1.4)  JA(z,§) — A(x,n)| < K| — 1 (Lipschitz continuity)
(1.5) |6 —nf* < K(A(z, &) — A(z,n),& —1) (strong monotonicity)
(1.6) A(x,0)=0

for any vectors £ and 7 in R? (see [18]).

In [9] an existence and uniqueness theorem for the Dirichlet problem for
the equation div A(x, Vo) = f is proved where f € L'(Q) and the solution v
belongs to the so called grand Sobolev space WOI’Q)(Q) i.e. the space of function
v € Wy (R2) whose gradient |Vo| satisfies

sup [(2 - s)/ |Vv|sdx} - [V]] 1.2 < o0
Q

1<s<2 0

Note that the space of such functions W()1’2)(Q) is slightly larger than Wol’Q(Q)
and this is the appropriate space when the right-hand side f is assumed to be
only L!—integrable (see [9], [11] for more details).

In this paper we study cases where the solution v is the variational WO1 ’Q(Q)-
solution, under the assumption

(1.7) f € L(log L) (loglog L)? () C L(log L) ().
Let us observe that by the Sobolev-Trudinger imbedding in the plane
(1.8) Wy2(Q) = EXPy(Q),

hypothesis (1.7) guarantees that f belongs to the dual space of Wy*(€2) and
then, at least in the linear case A(z,£) = A(x)¢ the Lax-Milgram Theorem
ensure that there exists a unique solution v € W7 ().

The case where f belongs to the Zygmund space

(1.9) f e LlogL)’(Q) c LY(Q), for % <0<1

is treated in [3] (see also [2], [21] for the case § = 1) where e.g. the authors prove
that under the assumption (1.9), there is a unique solution v € Wy?(Q) to the
Dirichlet problem (1.1) with Vv € L2(log L)*~! and

(1.10) ||VUHL2(1OgL)25—1(Q) < ¢(K) Hf||L(10gL)6(Q) )

where ¢(K) > 0 depends only on K.
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We prove the following

THEOREM 1.1. Let A = A(x,&) satisfy conditions (1.2)-(1.6) and let f €

L(log L)% (loglog L)2 (Q). Then, there exists an unique v € Wy'2(Q) solution to

—div A(z, Vv) = in

(111) { iv 1(2510 v)=f in
v e Wy (Q),

such that Vv € L?(loglog L)(Q) and

||VU||L2 (loglog L)(2) ( ) Hf” L(log L) 2(10g10gL)2( ) .

Note that by imbedding theorems for Orlicz-Sobolev spaces, (see [5]) we
obtain in particular that the solution v in Theorem 1.1 belongs to the Orlicz
space L"(€2) generated by the Young function A(t) = exp {t*log(e +t)} — 1.

It is worth to point out that under the assumptions of Theorem 1.1 we
cannot expect the boundedness of the solution w. In fact in [2] is proved that
f € Llog L(Q) is a sufficient condition for the boundedness (and continuity) of
the solution u and in [3] there are examples where f € Llog’ L(Q), § € [1,1],
and the solution u is not bounded.

In Section 5 we prove that also approaching L log L(f2) in the scale of spaces
Llog L(loglog L)*, Llog L(loglog log L)*(R2), Llog L(logloglog...log L)*(2),
a < 0, we cannot obtain the boundedness of the solution.

The case n > 3 is extensively treated for the n-harmonic equations in the
recent papers [14] and [12].

2 — Young’s functions and Orlicz spaces

Let @ : [0 +oo) [0,4+00) be a Young’s function, i.e. a convex function
of type ®(t fo o(s)ds, t > 0, where ¢ : [0,00[— R is nondecreasing, right-
contlnuous and such that
(2.1) o(s) >0 Vs > 0, ©(0) =0, lim ¢(s) = +oo.

S§—00

The Young’s function ®(t), complementary to ®(t), is defined by ®(t) =
sup {st — ®(s) : s > 0} and it is easy to see that ® = .

In the sequel we will deal with a particular class of Young functions ®
verifying a suitable sub-homogeneity property at infinity called As-condition.
Namely,
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DEFINITION 1. A young function ® satisfies the Ag-condition (we will write
® € A,) if there exists a constant [ > 0 such that

(2.2) D) < ND(H), VA=1, Vt>t,

where £y > 0 is a suitable large constant.

Let Q be an open and bounded set in R™, n > 1. The Orlicz class A®(Q) is
the set of all measurable functions u : 0 — R satisfying

/ B(|u(z)|)dz < o0
Q

The Orlicz Space L* = L*() is the linear hull of A®(Q2) and the equality
L%(Q) = A®(Q) holds if and only if ® € A,.
Define the functional [|ul| e @) : L*(22) — [0, +00] by

(2.3) [ul| L () = inf {K >0: /Qcp ('“f;)') do < 1} .

It is a norm, called the Luzemburg norm, and L*®(2) is a Banach space when
endowed with it. When no confusion arise we will simply write ||ul|ps or ||u|le
instead of [[ul| L+ (q)-

We recall that:

i) If ®(t) = t? and 1 < p < oo then L®(Q) = LP(Q), the classical Lebesgue
space and || - [[Leq) = || - |-

il) If ®(¢t) =t (log(e + t))? where either p > 1 and —oco < ¢ < oo or p =1 and
q > 0, then the Orlicz space L®(f2) is the Zygmund space LP(log L)?(Q),
and the norm (2.3) is equivalent to the quantity (see [16])

=

vl i

(fore

where, for all Lebesgue measurable set E with positive measure, we denote

(2.4) [V] Lo (log £ys () = XQMplogq e+

by XEfdx the mean value of f taken over the set F, i.e. XEfdm = fg =

1
3 / fdx, where |E| denotes the Lebesgue measure of E.
E

iii) If ®(t) = e!" —1, a > 0, then the Orlicz space L® () reproduces the space
of exponentially integrable functions EX P(€2) when a = 1 and EX P, ()
otherwise.
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iv) If ®(t) = t?(loglog(e® + t))? where either p > 1 and —oco < ¢ < 0o or
p=1and g > 0, then the Orlicz space L®(f2) is the space L?(loglog L)?(£2).

The closure of C§°(Q) in L(Q) is denoted by E®(£2) and the inclusions
(2.5) E®(Q) CAT(Q) C L*(Q)

are trivial with equality holding if and only if ® € As.
The Orlicz-Sobolev space W1®(Q) is defined as

wh?(Q) ={ue WHH(Q)NL*(Q) : |Du| € L*(Q)},
and, equipped with the norm
[ullwre = [[ulle + [[Dulle

it is a Banach space.

By Wol’q)(Q) we denote the subspace of W1 ®(Q) of those functions whose
continuation by 0 outside 2 belongs to W1 ®(R™). Properties of Orlicz-Sobolev
spaces are presented in [7], [20].

The Orlicz space L®(f2) is isometrically isomorphic to the dual space of
E2(Q) (see [17], [20]) and [L®(Q2))' ~ L®(Q) if and only if ® € A,. In particular
the space L®(€) is reflexive if and only if both ® and ® belong to class Aj.

Here below we recall the explicit expression of the dual spaces of some Orlicz
space (see [4] and [8]) which will be useful in the sequel
i) for any 1 < p < oo and —o0 < ¢ < 0 it is

’

Lp

(LP(log L)1(Q))" = m

()

where p’ is the conjugate exponent of p, i.e. % + ]% =1
ii) for any 1 < p < oo and —oo < ¢ < o0 it is

’

p q =] L
(1P loglog LY"(@) = o ()
iii) forp=1and ¢ > 01itis
(2.6) (L(log L)1(2))" = EXP%(Q)

The following partial ordering relation between functions is involved in
imbedding theorems between Orlicz spaces associated with different Young func-
tions.



334 GABRIELLA ZECCA [6]

DEFINITION 2. The function ¥ is said to dominate the function ® globally
(respectively near infinity) if there exists ¢ > 0 such that

(2.7) B(t) < U(ct)

for any ¢ > 0 (respectively for any ¢ greater than some positive number).
The functions ® and ¥ are called equivalent globally (respectively near
infinity) if each dominates the other globally (respectively near infinity).

LEMMA 2.1. Let ©(t) = exp{@} — 1. Then the conjugate Young

function (:)(t) of © is equivalent, near infinity, to the function

U(t) = tlog% (e + t)(loglog(e + 1))=.

PROOF. Let us start the proof by observing that the derivative function of
O]

0(t) =0'(t) = exp {

is equivalent near infinity to ©. In fact, for any ¢ sufficiently large we have

) 2
0(t) = —
®) eXp{logt}logt

. t2 <o t? 2t _ . (ct)?
X X X — — X €X —_— s
P logt P logt | logt P log ct

for some constant ¢ > 1. On the other hand it is not hard to see that the inverse
function 01 of @ is equivalent near infinity to the function

1
V2

t2 }Qtlogt—t

log t ]og2 t

and

U(s) = log% s(loglog s)%.

Hence, near infinity we have
Y
O(y) = / 6" (s)ds = ylog? y(loglog y)*
0

as we claimed. |

THEOREM 2.1. The continuous imbedding LY () — L®(Q) holds if and
only if either ¥ dominates ® globally or |Q] < oo and U dominates ® near
infinity.
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In particular, for any Young function ¥ = ¥(¢) which is dominated (near
infinity) by the Young function

t2
o(t) = — 0 —1
®) eXp{log(e+t)} ’
by Theorem 2.1 we have
(2.8) EXPy(Q) — L°(Q) — LY(Q).

Moreover, for any 0 < ¢ < p < oo and —00 < a < b < oo the following imbedding
are obvious

Lp-‘rE(Q) — LP(IOgL)b(Q) — LP(log L)*(2) — LP~5(Q)
LP(log L)*(Q) — LP(Q) — LP(log L) ().

The following Sobolev-Trudinger type embedding holds

(2.9)

L2
WQW(Q)QEXI‘Z?FG(Q) fOI'G/<17

(see [22], [10], [5]), where we denote by Woﬁ(ﬂ) the space Wy ®(Q) where

®(t) = t? log~*(e+1). It is worth to point out that in case a = 0 imbedding (1.8)
follows.

We will finish this section by recalling the following result (see [5], Example
2 pag. 43)

LEMMA 2.2. Let Q C R? be an open bounded set with C'-boundary. If we
consider Young functions ®(t) which are equivalent to t?(loglog(e + t))? near
infinity, where either p>1 and g € R or p=1 and q > 0, then

Wh®(Q) — Cy(Q)
ifp>2 and
(2.10) Wh*(Q) — L*2(Q)

otherwise, where ®o is equivalent near infinity to

t;Tpp(log log(t));qu if1<p<2
et” (log (1)) ifp=2
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(Here Cp(£2) denotes the space of continuous bounded functions on ).
For more details and proofs of results about Young function and Orlicz
spaces we refer the reader to [1], [5], [6], [17], [20], [23].

3 — Preliminaries

The results we are going to obtain in this section are true in all dimensions.
Hence, here we assume A = A(x, ) to be defined on  x R™, where conditions
(1.2)-(1.6) hold for z € @ C R™ and &, € R™. Let us recall the following
regularity result for the solution to quasilinear elliptic problem with the right-
hand side in divergence form (see Theorem 3.2 of [3]).

THEOREM 3.1. Let Q C R™ be a bounded open set with C'-boundary and
let A= A(x,&) be as before. Then for 1,19 € ﬁ(ﬂ;ﬂ%”) with0 < a <1
each of the two problems

)

{ div A(z, Vgol) = div in Q

Y1 € Wo (Q)

{ div A(z, V) = div 1o in Q
P2 € Wy ()

has a unique solution and

(3.1) V1 — Va| -

s oy SN =l a2 g

where c¢(K) > 0 depends only on K.
We prove the following

3.2. Let A = A(x,§) satisfy hypotheses (1.2)-(1.6). Then for 1,1 €

ﬁ(&)) each of the two problems

div A(x, V) = div ¢ in Q
{ p1 € Wy (Q)
(3.2)
div A(z, Vo) = div s in Q
{ 02 € Wy ()

has a unique solution and

(3'3) HVSOI - V<;02” L2 < C(K)”¢1 - '(/)2 L2
loglogL(Q) 1
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PROOF. For i = 1,2 let ¢; € ﬁm). Then obviously v¥; belong to

ﬁ(ﬂ) 0 < a < 1. Hence, by Theorem 3.1, there exists a unique solution ¢;
to the Dirichlet Problem (3.2) and the estimate

Q) < C(K)H% ¢2|| T

(34) V61 = Viall_sz

)@

L2 ()

holds uniformly with respect to a € ]0,1].
Now we claim that the following inequality holds true:

1 E(x) k(z)?
1—- <
< e) /Q log log(k( ) + €°) / da/ log k(z) + ee)dx

(3.5) (2)?
S / log log<k( T+ e ™
Indeed by
! 1 1 1
/0 log*(e® + k(z)) do= [1 ~ log(k(x) + ee)} loglog(k(x) + €°)’
we have

1 1 ! 1 1
— — < <
(1 e> Tog log(k(@) + ) /0 log® (e - k(@) ™ S Toglog(k(z) T )

so that Inequality (3.5) follows.
Integrating both sides of (3.4) with respect to 0 < a < 1 and using suitably
(2.4) and (3.5) with k(x) = |Vp1 — Vipa| and k(x) = [th1 — 12| the thesis follows.
0

4 — The main result

In this Section we will give the proof of Theorem 1.1. Here and below we
assume ) .
O(t) =tlog? (e + t)(loglog(e + t))=.

PrOOF OF THEOREM 1.1.  We start the proof by using the linearization
procedure contained in [15] (see also [3]) which we report for the convenience of

the reader. So, let v € W, ’2)(9) be the solution to quasilinear problem

(41) { —div A(z, Vv) = f in Q

v=20 on 0f),
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which exists and is unique because f € L*(Q) C L'(Q) (see [9], [15]). We will
determine a symmetric measurable matrix valued function A = A(x) such that
v satisfies the linear problem

(4.2) —div A(z)Vov = f in
v=20 on 01},
and A verifying
j€1?

(4.3) < {A@)€,€) < CK)IEP,

C(K)

for any ¢ € R?, a.e.x € Q, and where C(K) is a constant depending only upon
K.
Setting

(4.4) B = A(z, Vu(z)), E =Vu(x).
one obtain, by assumptions (1.4)-(1.6)

(4.5) |B| < K|EJ, |E]? < K|(B,E)].
Moreover if we set,

B, E) Bl

yod

s A= (I£] > 0)
|EJ? |E|
by (4.5) we have
1 |BI>+ |E|*> 1+ A2
4.6 — <AKALK d - ,
(4.6) K o (B,E) X\
Define H > 1 by solving the equation
1 1+A2
H — =
TET TN
that is,
1[1+A2 14 A2 2
H=- —4
2|t ( \ )

Then, consider the 2 x 2 matrix defined by

1 ) B-HE B-HE

—HIj+ (= —-H
A d+(H B—HE| " [B—HE|
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where for z = (z,t), we have used the shorthand notation

2
e at
z®z_<m ﬁ)

and I; = (d;5) is identical matrix. It holds (see [15])

(4.7) AE =B
and
2
(4.8) B < (e < it vE € RZ.

By (4.4) and (4.8), we have
A(x)Vu(xz) = B

which implies (4.2). Finally, by (4.8) and observing that it holds
H(z) < C(K),

(4.3) follows, with

C(K) == |(K + K* + /(K + K3)2 —4} .

| =

Now, let
L- = —div A(2)V -.

Since f € L®() then v is the variational solution in W,*(Q) to the equation
Lv = f. Hence we have

/ (A(x)Vv,Vy)dr = / ofdx
Q Q
for any ¢ € W, 2(9).

Now, let us fix ¢ € C1(Q; R?) with

(4.9) <1

WHW;L)(Q)
and let ¢ be the (unique) solution to the Dirichlet problem

Lo =divy in
=0 on 0f.
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given by Theorem 3.2. Note that ¢ verifies

4100 IVl r e < BN sz (g < (K.

(loglog L) (loglog L)
/ pfdz
Q

On the other hand, using Lemma 2.2 with p = 2 and ¢ = —1, the Orlicz-Sobolev
imbedding

‘We have

(4.11) [(Vo,9)| =

/Q (A(x)Vv, V) dx

2
© — _
(Q) — L7(Q) where O(t) = exp Tog(e £ 1) 1

, L
Y Joglog L

holds. Moreover, by Lemma 2.1 the conjugate Young function © of © is equiva-
lent (near infinity) to the Young function ® and then

(4.12) Lo(Q) = L?(Q).

Thus, for any ¢ € C!(Q, R?) verifying (4.9), by (4.11) and using Hélder inequality
between associated Orlicz spaces (see for example [1]), we obtain

(4.13) [(Vv, )| < cllelle@ I fll e @)

Taking the supremum under conditions ¢ € C*(€;R?) and ||¢|| .2
(loglog L)
the estimates (4.10) and (4.13) give

@ S b

(Tog log L)

sup {I(70. 0016 € CHURY) and 0]z ) < 1} < e 91200

and the thesis follows. In fact it is now sufficient to observe that

||VU||L2(1oglogL)(Q) = sup [(Vv, ).
H"/’” L2 <1
(loglog L) ()
and that by (2.5) the space C1({2) is dense in ﬁ(()). 0

REMARK 4.1 It is evident that the thesis of Theorem 1.1 remains invaried
whenever f € LY(Q2), ¥ any Young function verifying

V() >t log? (e + t)(loglog(e + t))?

for any t > 0 sufficiently large.
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5 — On the boundedness of the solution

In this section we show with an example that we cannot expect the bound-
edness of the solution under the assumptions of Theorem 1.1 (see also [3], [14]).

EXAMPLE 1. Let 1
u(z) = logloglog —
||
and let @ = {z €R?:|z| <e °}. Then, the unbounded function u verifies
|Vu| € L? loglog L(£2) and solves the Dirichlet problem

—Au= in
(5.1) { ot
u € Wy (),
where
! 14— ) e Log L)(loglog L)*(Q), Va <0
= o oglo , Ya <.
|x|2log2ﬁloglog‘%l loglogﬁ & 608
Proor. We have
—x

\Y = , v 0,
u(@) |x|2logﬁloglogi z 7

|]

so that

|Au(z)| = |div Vu(z)| =

1
()
|z|? (log ﬁ) log log ‘71| 08108 [
Hence, by |f| = |Au| we have, for any a < 0,

/Q |Fog(1]) (log log | /1) dz <

N

1
c/ o dr =
Q |m|210gﬁ <loglog \71|)

—e

¢ 1
=cC
/0 plog ;(loglog ;)1 =

are °
c 1
= — [<loglog—) } < 00,
o p o

so that f belongs to Llog L(loglog L)*(2) for any o < 0. Note that for « = 0
first integral in last inequality is infinite. 0

dp =
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In a similar way we have the following

EXAMPLE 2. Let .
u(z) = loglogloglog —

]

and let @ = {z € R?: |z| <e®}. Then, the unbounded function u verifies
Vu € L?loglog L(Q) and solves the Dirichlet problem

52) { —Au=f in 0

v e Wy?(9Q),

where

1 1 1
= 1+ +
! |z|2 log? ‘71| log log ﬁ log log log \71| ( log log ﬁ log log ‘71| log log log I%)

and holds
f € L(log L)(logloglog L)*(2), Va < 0.

By continuing in the same way, we can conclude that if by one hand f € Llog L
is a sufficient condition to obtain the boundedness of the solution u (see [2])
by the other hand slightly weaker condition f € Llog L(logloglog ... log L)*(f2),
a < 0, is insufficient.
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