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A length type functional for curves

in probability spaces

EDUARDO PASCALI

Abstract:We propose a new length-type functional defined on (set-valued) curves
in probability spaces and we give, under suitable conditions, an integral representation
formula.

1 – Introduction

The aim of this paper is to study a type of functional length for (set-valued)
curves in probability spaces. Such a definition is motivated from recent results
on the definition of length of curves ([2], [3], [6]) and from a well-know formula

in probability spaces, the conditional probability: p(B|A) = p(A∩B)
p(A) .

A (set-valued) curve ψ defined on the interval [a, b] such that ψ(a) = A and
ψ(b) = B can be interpreted as a particular procedure to prove that A ⇒ B, so
the given definition can be considered as the cost to derive B from A with the
procedure ψ.

We remark that p(B|A) = p(A∩B)
p(A) , as function of the pair (A,B), is not

symmetric, non negative, it does not satisfy, in general, a triangle inequality and

p(A|A) = p(A∩A)
p(A) = 1.

The proposed functional seem to be new and we can consider for it the usual
problems of the Calculus of Variations.

The plan of the paper is the following. In Section 2, we consider, with a sim-
plified condition on the curve, the main idea about the functional and we give the
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main property. Section 3 is devoted to studying, in a very general situation, two
different functionals length’s type for (set-valued) curves in probability spaces.
For the functionals we establish some properties and relations. In Section 4, we
give an integral representation formula for one of the functional of Section 3. To
obtain this formula a suitable definition of derivative for (set-valued) curves in
probability space is necessary. Finally we point out some problems which seem
to be of interest, also in the spirit of the Calculus of Variation.

2 – A particular situation

In this section we consider particular curves in probability spaces.
Let (Ω, p,Θ) be a probability space; then Ω is non empty set, Θ is a

σ−algebra and p a probability defined on Θ.
Now, let ψ : [a, b] −→ Θ be a set-valued curve, such that:

∀t ∈ [a, b] : p(ψ(t)) > 0;(2.1)

∃ε0 > 0 : ∀h ∈ [0, ε0[⇒ p(ψ(t+ h) ∩ ψ(t)) > 0;(2.2)

∃δ0 > 0 : (t1 < t2 < t3, t3 − t1 < δ0 ⇒(2.3)

p(ψ(t3)|ψ(t1)) ≥ p(ψ(t2)|ψ(t1))p(ψ(t3)|ψ(t2))).
Condition (2.3) can be interpreted as a “triangular inequality” here considered
only as a technical tool, relaxed in the following sections.

Let σ = {a = t0 < t2 < . . . < tn = b} with ti+1 − ti < min{δ0, ε0} (i =
0, 1, . . . , n − 1), be a partition of the interval [a, b]; then we can consider the
following product:

Λ+(σ,ψ, [a, b], p) = Πn−1
0 p(ψ(ti+1)|ψ(ti)).

We remark that: Λ+(σ,ψ, [a, b], p) > 0. Furthemore, from (2.3), we can consider,
also:

(2.4) L+
0 (ψ, [a, b], p) = inf

{
Λ+(σ,ψ, [a, b], p)|σ

}
(= inf

σ
Λ+(σ,ψ, [a, b], p)).

The non-negative number L+
0 (ψ, [a, b], p) exists certainly and:

0 ≤ L+
0 (ψ, [a, b], p) ≤ 1;(2.5)

[c, d] ⊆ [a, b] ⇒ L+
0 (ψ, [a, b], p) ≤ L+

0 (ψ, [c, d], p).(2.6)

To prove (2.6), we consider σn = {c = tn0 < tn1 < . . . < tnm = d} such that:
limn Λ

+(σn, [c, d],ψ, p) = L+
0 (ψ, [c, d], p). Then if we consider the partition of

[a, b] given by σ∗
n = σn ∪ {a, b} , we have:

L+
0 (ψ, [a, b], p)≤Λ+(σ∗

n,ψ, [a, b], p)=p(ψ(c)|ψ(a))Λ+(σn,ψ, [c, d], p)p(ψ(b)|ψ(d))
≤Λ+(σn,ψ, [c, d], p);

hence inequality (2.6) is true.
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Now, we shall call L+
0 (ψ, [a, b], p) the probabilistic cost of the curve ψ from

a to b, with respect to p.
The cost L+

0 (ψ, [a, b], p) is “productive” with the meaning given in the fol-
lowing theorem.

Theorem 1. Let ψ1 : [a, b] −→ Θ and ψ2 : [b, c] −→ Θ be two set-valued
curves such that ψ1(b) = ψ2(b); assume also that conditions (2.1), (2.2), and
(2.3) hold for both ψ1 and ψ2 and define the set-valued curve ψ3 : [a, c] −→ Θ as
follows:

(2.7) ψ3(t) =

{
ψ1(t), if t ∈ [a, b]

ψ2(t), if t ∈ [b, c]

}

assume that, also, ψ3 satisfies conditions (2.1), (2.2) and (2.3), then:

(2.8) L+
0 (ψ3, [a, c], p) = L+

0 (ψ1, [a, b], p)L
+
0 (ψ2, [b, c], p).

Proof. First of all we point out that:

L+
0 (ψ1, [a, b], p)L

+
0 (ψ2, [b, c], p) =

= inf
{
Λ+(σ,ψ1, [a, b], p)|σ = {t0 = a < t1 < · · · < tn = b}

}
=

= inf
{
Λ+(σ∗,ψ2, [b, c], p)|σ∗ = {s0 = b < s1 < · · · < sm = c}

}
=

= inf
{
Λ+(σ,ψ1, [a, b], p)Λ

+(σ∗,ψ2, [b, c], p)|σ ∪ σ∗} ≥
≥ inf

{
Λ+(σ,ψ3, [a, c], p)|σ = {r0 = a < r1 < · · · < rq = c}

}
= L+

0 (ψ3, [a, c], p).

Hence:

(2.9) L+
0 (ψ3, [a, c], p) ≤ L+

0 (ψ1, [a, b], p)L
+
0 (ψ2, [b, c], p).

Consider, now, a sequence (σn) with σn = {tn0 = a < tn1 < · · · < tnm = c} for wich:
L+
0 (ψ3, [a, c], p) = lim

n→+∞
Λ+(σn,ψ3, [a, c], p).

We consider σ∗
n = σn ∪ {b} and j such that tj ≤ b < tj+1; we remark that, again

by (2.3):

Λ+(σn,ψ3, [a, c], p) ≥ Λ+(σ∗
n,ψ3, [a, c], p) =

= Π+
i≤j−1p(ψ3(ti+1)|ψ3(ti))p(ψ3(b)|ψ3(tj))p(ψ3(tj+1)|ψ3(b))·

·Π+
i≥j+1p(ψ3(ti+1)|ψ3(ti)) =

= Π+
i≤j−1p(ψ1(ti+1)|ψ1(ti))p(ψ1(b)|ψ1(tj))][p(ψ2(tj+1)|ψ2(b))·

·Π+
i≥j+1p(ψ2(ti+1)|ψ2(ti))] ≥

≥ L+
0 (ψ1, [a, b], p)L

+
0 (ψ2, [b, c], p).

Then, passing to the limit n → ∞, the proof is complete.
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We can notice that condition (2.3) is satisfied in a very particular situation
and is, in general, not fullfilled. Then we should proceed in a different way, as
in the following section.

3 – A more general situation

In this section we consider a different way to introduce the cost when (2.3)
is not assumed; the procedure is directly related in the spirit to [2], [3], [6].

Let (Ω, p,Θ) be a probability space; then Ω is a non empty set, Θ is a
σ−algebra and p a probability defined on Θ. Now, let ψ : [a, b] −→ Θ be a
set-valued curve, such that only conditions (2.1) and (2.2) hold.

If we denote a partition by σ = {t0 = a < t1 < . . . tn = b} , with ti+1−ti < ε0
(i = 0, 1, . . . , n− 1), we can consider:

(3.1) Λ+
1 (ψ,[a,b], p)=sup

{
Πn−1

0 p(ψ(ti+1)|ψ(ti))|σ
}
(=sup

σ
Πn−1

0 p(ψ(ti+1)|ψ(ti)));

if we denote Γ = {T0 = a < T1 < . . . < Tm = b} , we can also consider:

(3.2)
L+
1 (ψ, [a, b], p) = inf

{
Πm−1

0 (Λ+
1 (ψ, [Ti, Ti+1], p))|Γ

}
·

· (= inf
Γ

Πm−1
0 (Λ+

1 (ψ, [Ti, Ti+1], p))).

Whenever we consider a partition σ, we can always assume that

|σ| = max
i

|ti+1 − ti| < ε0.

For L+
1 (ψ, [a, b], p) we have a “productive”’ property as in the following result.

Theorem 2. Let ψ1 : [a, b] −→ Θ and ψ2 : [b, c] −→ Θ be set-valued curves
such that ψ1(b) = ψ2(b); assume also conditions (2.1), (2.2) for both curves and
define the set-valued curve ψ3 : [a, c] −→ Θ as follows:

ψ3(t) =

{
ψ1(t), if t ∈ [a, b]

ψ2(t), if t ∈ [b, c]

and assume that ψ3 satisfies conditions (2.1) and (2.2), then:

(3.4) L+
1 (ψ3, [a, c], p) = L+

1 (ψ1, [a, b], p)L
+
1 (ψ2, [b, c], p).
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Proof. From:

L+
1 (ψ1, [a, b], p)L

+
1 (ψ2, [b, c], p) =

= inf
{
Πm−1

0 (Λ+
1 (ψ1, [Ti, Ti+1], p))|T0 = a < . . . < Tm = b

}
=

= inf
{
Πk−1

0 (Λ+
1 (ψ2, [Sj , Sj+1], p))|S0 = b < . . . < Sk = c

}
=

= inf
{
[Πm−1

0 (Λ+
1 (ψ, [Ti, Ti+1], p))][Π

k−1
0 (Λ+

1 (ψ2, [Sj , Sj+1], p))]|

T0 = a < . . . < Tm = b = S0 < . . . < Sk = c
}
≥

≥ inf
{
Πh−1

0 (Λ+
1 (ψ3, [Rj , Rj+1], p))|R0 = a < . . . < Rh = c

}
= L+

1 (ψ3, [a, c], p).

Hence:

(3.5) L+
1 (ψ3, [a, c], p) ≤ L+

1 (ψ1, [a, b], p)L
+
1 (ψ2, [b, c], p).

Moreover, let (σn) such that σn = {Tn
0 = a < . . . Tn

m = c} and:

lim
n

Πm−1
0 (Λ+

1 (ψ3, [T
n
i , T

n
i+1], p)) = L+

1 (ψ3, [a, c], p);

consider j = jn such that: Tn
j ≤ b < Tn

j+1.
Then, we have the following equality:

Πm−1
0 (Λ+

1 (ψ3, [T
n
i , T

n
i+1], p)) =

= [Πi≤j−1(Λ
+
1 (ψ2, [T

n
i , T

n
i+1], p))][Πi≥j−1(Λ

+
1 (ψ2, [T

n
i , T

n
i+1], p))]·

· Λ+
1 (ψ3, [T

n
j , T

n
j+1], p) =

= [Πi≤j−1(Λ
+
1 (ψ2, [T

n
i , T

n
i+1], p))Λ

+
1 (ψ1, [T

n
j , b], p)]·

· [Λ+
1 (ψ2, [b, T

n
j+1], p)Πi≥j−1(Λ

+
1 (ψ2, [T

n
i , T

n
i+1], p))]·

·
Λ+
1 (ψ3, [T

n
j , T

n
j+1], p)

Λ+
1 (ψ1, [Tn

j , b], p)Λ
+
1 (ψ2, [Tn

i , T
n
i+1], p)

.

But, by (3.1), we have

(3.6)
Λ+
1 (ψ3, [T

n
j , T

n
j+1], p)

Λ+
1 (ψ1, [Tn

j , b], p)Λ
+
1 (ψ2, [Tn

i , T
n
i+1], p)

≥ 1

hence:
Πm−1

0 (Λ+
1 (ψ3, [T

n
i , T

n
i+1], p)) ≥

≥ [Πi≤j−1(Λ
+
1 (ψ2, [T

n
i , T

n
i+1], p))Λ

+
1 (ψ1, [T

n
j , b], p)]·

· [Λ+
1 (ψ2, [b, T

n
j+1], p)Πi≥j−1(Λ

+
1 (ψ2, [T

n
i , T

n
i+1], p))],
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and the following inequality is true:

(3.7) L+
1 (ψ3, [a, c], p) ≥ L+

1 (ψ1, [a, b], p)L
+
1 (ψ2, [b, c], p),

so the thesis is achieved.

We remark that, in general, the following inequality holds:

L+
0 (ψ1, [a, b], p) ≤ L+

1 (ψ1, [a, b], p).

Strictly related to L+
0 (ψ1, [a, b], p), as proved in the sequel, is the following more

interesting definition that generated still a “productive” function of ψ.

With the same conditions (2.1), (2.2), we can consider (see also (2.4)):

(3.8)
Λ+
2 (ψ, [a, b], p) = inf

{
Πn−1

0 p(ψ(ti+1|ψ(ti))|σ
}
·

· [= inf
{
Λ+(σ,ψ, [a, b], p)|σ

}
= L+

0 (ψ, [a, b], p)],

where σ = {t0 = a < t1 < . . . tn = b} (|σ| < ε0) and

(3.9) L+
2 (ψ, [a, b], p) = sup

{
Πm−1

0 (Λ+
2 (ψ, [Ti, Ti+1], p))|Γ

}
,

where Γ = {T0 = a < T1 < . . . < Tm = b} .
We remark that:Λ+

2 (ψ, [a, b], p)≤Λ+
1 (ψ, [a, b], p); moreover for L+

2 (ψ, [a, b], p)
we have also a “productive” result.

Theorem 3. Let ψ1 : [a, b] −→ Θ and ψ2 : [b, c] −→ Θ be set-valued curves
such that ψ1(b) = ψ2(b); assume also conditions (2.1), (2.2) for both curves and
define the set-valued curve ψ3 : [a, c] −→ Θ as follows:

(3.10) ψ3(t) =

{
ψ1(t) if t ∈ [a, b]

ψ2(t) if t ∈ [b, c]

and assume that ψ3 satisfies conditions (2.1), (2.2), then:

(3.11) L+
2 (ψ3, [a, c], p) = L+

2 (ψ1, [a, b], p)L
+
2 (ψ2, [b, c], p).
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The proof of the theorem is similar to the proof of previous theorem; in particular
one can prove at first step that:

L+
2 (ψ3, [a, c], p) ≥ L+

2 (ψ1, [a, b], p)L
+
2 (ψ2, [b, c], p).

The reverse inequality is obtained arguing as in the second step of the proof of
the Theorem 2.

It is easy, whenever L+
0 is defined, to show the equality:

(3.12) L+
2 (ψ, [a, b], p) = L+

0 (ψ, [a, b], p).

We remark, indeed, that for every [c, d] ⊆ [a, b]:

L+
0 (ψ, [c, d], p) = inf

{
Λ+(σ,ψ, [c, d], p)|σ

}
= Λ+

2 (ψ, [c, d], p);

hence for every T = {T0 = a < T1 < . . . < Tm = b} we have, by the “productiv-
ity”:

L+
0 (ψ, [a, b], p) = Πm−1

0 L+
0 (ψ, [Ti, Ti+1], p) = Πm−1

0 (Πn−1
2 (ψ, [Tj , Tj+1], p))

and so equality follows.
For such equality we shall call L+

2 (ψ, [a, b], p) the probabilistic cost of the
curve ψ from a to b, with respect to p.

For the function �L+
i (ψ, [c, d], p) we have the following general result:

(3.13) [a, c] ⊆ [a, b] ⇒ L+
i (ψ, [a, b], p) ≤ L+

i (ψ, [a, c], p) ∀i = 1, 2.

Moreover, for i = 1, 2:

(3.14) L+
i (ψ, [a, b], p) ≤ inf

{
L+
i (ψ, [a, c], p);L

+
i (ψ, [c, b], p)|c ∈ [a, b]

}

and

(3.15)
[a, c] ⊆ [a, b] ⇒ 0 ≤ L+

i (ψ, [a, c], p)− L+
i (ψ, [a, b], p) =

= L+
i (ψ, [a, c], p)(1− L+

i (ψ, [c, b], p)).

By (3.15), with i = 2, we deduce that:

0 ≤ L+
2 (ψ, [a, c], p)− L+

2 (ψ, [a, b], p) = L+
2 (ψ, [a, c], p)(1− L+

2 (ψ, [c, b], p)) =

= L+
2 (ψ, [a, c], p)

(
1− sup

Γ
Πm−1

0 (Λ+
2 (ψ, [Ti, Ti+1], p))

)
;

and assuming Γ = {c, b} we have:

0 ≤ L+
2 (ψ, [a, c], p)− L+

2 (ψ, [a, b], p) ≤ L+
2 (ψ, [a, c], p)(1− p(ψ(b)|ψ(c))).
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Hence we can also prove the following inequality:

(3.16)
[c, d] ⊆ [a, b] ⇒ 0 ≤ L+

2 (ψ, [c, d], p)− L+
2 (ψ, [a, b], p) ≤

≤ L+
2 (ψ, [a, c], p)(1− p(ψ(c)|ψ(a))p(ψ(b)|ψ(d))).

The previous formula can be interpreted as a “Lagrange formula” for the cost.
Finally we point out that by considering conditions (2.1), (2.2) and there

exists δ0 > 0 such that

(3.17) t3 − t1 < δ0 ⇒ p(ψ(t1)|ψ(t3)) ≥ p(ψ(t2)|ψ(t3))p(ψ(t1)|ψ(t2))),

one can define:
Λ−(σ,ψ, [a, b], p) = Πn−1

0 p(ψ(ti)|ψ(ti+1))

and so we can define L−
0 (ψ, [a, b], p), L

−
i (ψ, [a, b], p) i = 1, 2, obtaining similar

results of “productivity” for these new objects.

4 – An integral representation formula

The aim of this section is to give an integral representation formula for
L+
2 (ψ1, [a, b], p); for this an appropriate definition of derivative occurs. Consider,

as usual, (Ω, p,Θ) a probability space and let ψ : [a, b] → Θ be a set valued curve
for which conditions (2.1), (2.2) hold. For t ∈ [a, b[ assume that the limit:

(4.1) lim
h→0+

1− p(ψ(t+ h)|ψ(t))
h

≡ ψ̇+
p (t) ∈ R

exists.
We remark that:

ψ̇+
p (t) = lim

h→0+

p(ψ(t) \ ψ(t+ h))

hp(ψ(t))
= lim

1− p(ψ(t+ h) ∩ ψ(t))

p(ψ(t))

h
;

then, when ψ̇+
p (t) exists finite:

lim
h→0+

[p(ψ(t)− ψ(t+ h))] = 0, lim
h→0+

[p(ψ(t+ h) ∩ ψ(t)] = p(ψ(t)).

Moreover if ψ is non decreasing (with respect the inclusion), we have: ψ̇+
p (t) = 0.

Assuming some condition on ψ̇+
p (t) and ψ, we can give an integral formula for

L+
2 (ψ, [a, b], p) as in the following theorem which can be considered the analogous

of the integral representation for the length of C1-path in Rn (see concluding
remarks).
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Theorem 4. Let ψ : [a, b] −→ Θ be a set-valued curve such that condition
(2.1) and (2.2) is satisfied. Assume also that:

∀t ∈ [a, b[ ∃ψ̇+
p (t) ∈ R;(4.2)

t ∈ [a, b[→ ψ̇+
p (t) is a continuous function;(4.3)

lim
h→0+

[p(ψ(t+ h)|ψ(t))] = 1, uniformly in [a, b[.(4.4)

Then we have:

(4.5) ∀c ∈ [a, b[ : L+
2 (ψ, [a, c], p) = e

−
∫ c

a
ψ̇+

p (t)dt
.

Proof. We remark that, by definition:

L+
2 (ψ, [a, c], p) = sup

{
Πm−1

0 (inf
{
Πn−1

0 ψ((ηj+1)|ψ(ηj))|σ
}
)|Γ

}
;

hence, due to the continuity of log function:

log[L+
2 (ψ, [a, c], p)] = sup

{
m−1∑

0

log(inf
{
Πn−1

0 ψ((ηj+1)|ψ(ηj))|σ
}
)|Γ

}
=

= sup

{
m−1∑

0

(
inf

{
n−1∑

0

log(ψ((ηj+1)|ψ(ηj)))|σ
})

|Γ
}
.

Now, by the “productivity” of L+
2 (ψ, [a, c], p), we can assume that Ti+1 − Ti

is as small as possible; in fact L+
2 (ψ, [a, c], p) = Πn−1

0 L+
2 (ψ, [Ti, Ti+1], p) and so

proceed. If we consider conditions (4.3), (4.4), we have that for every ε > 0 there
exists δ > 0:

0 ≤ h < δ ⇒ ∀t ∈ [a, c] 1− p(ψ(t+ h)|ψ(t)) < ε, |ψ̇+
p (t+ h)− ψ̇+

p (t)| < ε.

Consider a partition of the following type:

T0 = a = η0 < η0,1 < . . . η0,n0 = T1 = η1,0 < η1,1 < . . . η1,n1 = T2 < . . .

< . . . Tm−1 = ηm−1,0 < . . . < ηm−1,nm−1 = Tm = c.

and remark (in the sequel we consider simplified indices) that:

log[p(ψ(ηj+1|ψ(ηj))] =

=
log(1− (1− p(ψ(ηj+1)|ψ(ηj))))

(1− p(ψ(ηj+1)|ψ(ηj)))
(1− p(ψ(ηj+1)|ψ(ηj)))

ηj+1 − ηj
[ηj+1 − ηj ].
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Then, if the partition (Tr) is well chosen, we can assume:

−1− ε <
log(1− (1− p(ψ(ηj+1)|ψ(ηj))))

(1− p(ψ(ηj+1)|ψ(ηj)))
< −1 + ε;

ψ̇+
p (ηj)− ε <

(1− p(ψ(ηj+1)|ψ(ηj)))
ηj+1 − ηj

< ψ̇+
p (ηj) + ε.

Hence:

(−1− ε)(ψ̇+
p (ηj) + ε)[ηj+1 − ηj ] ≤ log[p(ψ(ηj+1|ψ(ηj))] ≤

≤ (−1 + ε)(ψ̇+
p (ηj)− ε)[ηj+1 − ηj ].

Moreover:

(−1− ε)

[∫ ηj+1

ηj

ψ̇+
p (η)dη + 2ε(ηj+1 − ηj)

]
≤ log[p(ψ(ηj+1|ψ(ηj))] ≤

≤ (−1 + ε)

[∫ ηj+1

ηj

ψ̇+
p (η)dη − 2ε(ηj+1 − ηj)

]
.

Then we have:

(−1− ε)

[∫ Ti+1

Ti

ψ̇+
p (η)dη + 2ε(Ti+1 − Ti)

]
≤

∑
log[p(ψ(ηj+1|ψ(ηj))] ≤

≤ (−1 + ε)

[∫ Ti+1

Ti

ψ̇+
p (η)dη − 2ε(Ti+1 − Ti)

]
.

Finally, by considering a sequence of partition (Tn), (ηn) such that previous con-
sideration hold and such that:

log[L+
2 (ψ, [a, c], p)] = lim

n

∑

Tn

∑

ηn

log p(ψ(ηj+1)|ψ(ηj)),

we conclude that:

log[L+
2 (ψ, [a, c], p)] ≤ (−1 + ε)

[∫ c

a

ψ̇+
p (η)dη − 2ε(c− a)

]
.

We have, by the arbitrarity of ε, the inequality:

L+
2 (ψ, [a, c], p) ≤ e

−
∫ c

a
ψ̇+

p (η)dη
.
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For the reverse inequality we proceed as follows. Consider a sequence of parti-
tions Tn such that Tn

i+1 − Tn
i is as small as possible for i = 0, 1, . . . ,mn and for

which, with the obvious meaning of the symbols:

log[L+
2 (ψ, [a, c], p)] = lim

n

mn−1∑

0

inf
{∑

log p(ψ(ηj+1)|ψ(ηj))|σ
}
.

For a fixed ε > 0 we can consider ν > 0 such that, for n > ν:

∑
inf

{∑
log p(ψ(ηj+1)|ψ(ηj))|σ

}
− ε <

< log[L+
2 (ψ, [a, c], p)] <

∑
inf

{∑
log p(ψ(ηj+1)|ψ(ηj))|σ

}
+ ε.

Now, we consider, for every [Tn
i , T

n
i+1] a partition σn such that:

inf
{∑

log p(ψ(ηj+1)|ψ(ηj))|σ
}
≤

≤
∑

log p(ψ(ηnj+1)|ψ(ηnj )) ≤ inf
{∑

log p(ψ(ηj+1)|ψ(ηj))|σ
}
+

ε

mn
.

Hence, from the previous consideration:

log[p(ψ(ηj+1)|ψ(ηj))] ≥ (−1− ε)(ψ̇+
p (ηj) + ε)[ηj+1 − ηj ],

we have:

inf
{∑

log p(ψ(ηj+1)|ψ(ηj))|σ
}
≥

∑
log p(ψ(ηj+1)|ψ(ηj))−

ε

mn
≥

≥
∑

[(−1− ε)(ψ̇+
p (η

n
j ) + ε)(ηj+1 − ηj)]−

ε

mn
=

= (−1− ε)[

∫ Tn
i+1

Tn
i

ψ̇+
p (η

n
j )dη + ε(Tn

i+1 − Tn
i )]−

ε

mn
.

Hence:

mn−1∑

0

inf
{∑

log p(ψ(ηj+1)|ψ(ηj))|σ
}
≥

≥
mn−1∑

0

[
(−1− ε)

(∫ Tn
i+1

Tn
i

ψ̇+
p (η)dη + 2ε(Tn

i+1 − Tn
i )

)
− ε

mn

]
=

= (−1− ε)

[∫ c

a

ψ̇+
p (η)dη + 2ε(c− a)

]
− ε.
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Finally, passing to limit for ε → 0:

log[L+
2 (ψ, [a, c], p)] ≥ (−1− ε)

[∫ c

a

ψ̇+
p (η)dη + 2ε(c− a)

]
− ε;

then we have, by the arbitrarity of ε:

log[L+
2 (ψ, [a, c], p)] ≥ e

−
∫ c

a
ψ̇+

p (η)dη
.

Hence the thesis is achieved.
In the situation of previuous theorem, we can define in a natural way:

L+
2 (ψ, [a, b], p) = lim

c→b
e
−
∫ c

a
ψ̇+

p (η)dη
.

Remark. We now consider some particular situations where an explicit
computation of ψ̇+

p (.) is given. In the following examples, we consider subsets of
R orR2, p as the Lebesgue measure normalized with respect to a fixed measurable
bounded subset Z containing the values of the considered set-valued function and
Θ is the family of the Lebesgue measurable set in Z.

1. Let ψ : [0, 12 ] → Θ be given by: ψ(t) = [t, 1− t]. In such a situation we have:

p(ψ(t)) = 1− 2t; ψ̇+
p (t) =

2

1− 2t
.

We remark that the usual derivative of p(ψ(t)) is −2, but:

ψ̇+
p (t) = − d

dt
log p(ψ(t)).

2. Let ψ(t) = B(0, r− t), t ∈ [0, r] be the ball centered at the origin of R2 with
radius r − t. Hence:

p(ψ(t)) = π(r − t)2; ψ̇+
p (t) =

2

r − t
.

We have: ψ̇+
p (t) = − d

dt log p(ψ(t)).
3. Let ψ(t) = [t, 1 + t]× [0, 1], we have:

p(ψ(t)) = 1; ψ̇+
p (t) = 1.

In this situation it turns out that: 1 = ψ̇+
p (t) �= − d

dt log p(ψ(t)) = 0.
4. Let ψ(t) = [0, 1 + t]× [0, 1− t], we have:

p(ψ(t)) = (1− t2); ψ̇+
p (t) =

1

1− t
.

In this situation we still have: ψ̇+
p (t) �= − d

dt log p(ψ(t)).
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5. Let ψ(t) = [0, 1 + t]× [0, 1− t2], then:

p(ψ(t)) = (1 + t)(1− t2); ψ̇+
p (t) =

2t

1− t2
.

Moreover: ψ̇+
p (t) �= − d

dt log p(ψ(t)) =
3t−1
1−t2 .

6. Let ψ(t) = [0, 1 + tp]× [0, 1− tq], pq > 1, then:

p(ψ(t)) = (1 + tp)(1− tq); ψ̇+
p (t) = q

tq−1

1− tq
.

In such situation there still holds: ψ̇+
p (t) �= − d

dt log p(ψ(t)) = −p tp−1

1+tp +

q tq−1

1−tq .

5 – Concluding remarks

Many questions are still open; we consider some of them which seem to be
interesting:

– Consider algebraic properties of ψ̇+
p .

– Obtain the integral representation formula given in Theorem 4 with weaker
hypotheses than (4.3) and/or (4.4).

– Obtain an integral representation formula for L+
1 (ψ, [a, b], p).

– Having in mind the introduction, we wish to obtain results on the up-

per/lower semicontinuity of L
+/−
1 (ψ, [a, b], p) and/or L

+/−
2 (ψ, [a, b], p) with

respect to some appropriate convergence of the sequence (p(ψn(.))). Then
we can consider some natural questions of the calculus of the variation as
the existence of a curve connecting A and B and with maximal cost (if at
least a curve exists connecting A to B and verifying conditions (2.1), (2.2)).
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