
Rendiconti di Matematica, Serie VII
Volume 32, Roma (2012), 1 – 15

Approximation of classes of analytic functions
by de la Vallée Poussin sums in uniform metric

A. S. SERDYUK – IE. YU. OVSII – A. P. MUSIENKO

Abstract: In this paper asymptotic equalities are found for the least upper bounds of
deviations in the uniform metric of de la Vallée Poussin sums on classes of 2π-periodic
(ψ,β)-differentiable functions admitting an analytic continuation into the given strip of
the complex plane. As a consequence, asymptotic equalities are obtained on classes of
convolutions of periodic functions generated by the Neumann kernel and the polyharmonic
Poisson kernel.

Let Ls, 1 � s < ∞, be the space of sth power summable 2π-periodic functions

f with the norm ‖f‖s := ‖f‖Ls =

(∫ 2π

0
|f(t)|s dt

)1/s

, let L∞ be the space of

measurable essentially bounded 2π-periodic functions f with the norm ‖f‖∞ :=
‖f‖L∞ = ess supt |f(t)| and let C be the space of continuous 2π-periodic functions
f with the norm ‖f‖C = maxt |f(t)|.

Suppose that f ∈ L1 and

S[f ] :=
a0(f)

2
+

∞∑

k=1

(ak(f) cos kx+ bk(f) sin kx)

is the Fourier series of f . If a sequence of real numbers ψ(k), k ∈ N and a real
number β (β ∈ R) are such that there exists a function ϕ ∈ L1 with Fourier series

S[ϕ] =
∞∑

k=1

1

ψ(k)

(
ak(f) cos

(
kx+

βπ

2

)
+ bk(f) sin

(
kx+

βπ

2

))
,
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then this function ϕ is called (see [13, p. 120]) the (ψ,β)-derivative of the function

f(·) and is denoted by fψ
β (·). If f

ψ
β ∈ N ⊂ L1, then we write f ∈ Lψ

βN. Moreover,

we set Cψ
β N = C ∩ Lψ

βN.
By Dq we denote the set of sequences ψ(k) > 0, k ∈ N, such that

lim
k→∞

ψ(k + 1)

ψ(k)
= q, q ∈ (0, 1). (1)

It is known [13, p. 130] that the class Cψ
β N with ψ ∈ Dq consists of 2π-periodic

functions that admit an analytic continuation into the strip |Im z| � ln 1/q of the
complex plane.

As follows from proposition 8.3 [13, p. 127], if ψ ∈ Dq, q ∈ (0, 1), β ∈ R and

N ⊂ Ls, 1 � s � ∞, then Cψ
β N is the class of functions f(x) representable at each

point x ∈ R by the equality

f(x) =
a0(f)

2
+

1

π

∫ π

−π

fψ
β (x− t)Ψβ(t) dt, (2)

where

Ψβ(t) =
∞∑

k=1

ψ(k) cos
(
kt− βπ

2

)
. (3)

An example of the class Cψ
β N for which ψ ∈ Dq, q ∈ (0, 1), is the class of Poisson

integrals, i.e. a class consisting of functions of the form

f(x) = A0 +
1

π

∫ π

−π

ϕ(x− t)Pq,β(t) dt, A0 ∈ R, ϕ ∈ N, (4)

where

Pq,β(t) =
∞∑

k=1

qk cos
(
kt− βπ

2

)
, q ∈ (0, 1), β ∈ R,

is the Poisson kernel with parameters q and β. In this case the class Cψ
β N we will

denote by Cq
βN.

In the current paper we take as N the sets

U0
s = {ϕ ∈ Ls : ‖ϕ‖s � 1, ϕ ⊥ 1}, 1 � s � ∞,

and
Hω = {ϕ ∈ C : ω(ϕ; t) � ω(t), t � 0},

where ω(ϕ; t) is the modulus of continuity of ϕ and ω(t) is a fixed majorant of the
modulus of continuity type. In what follows, we use the notation:

Cψ
β,s = Cψ

β U
0
s , Cq

β,s = Cq
βU

0
s .



[3] Approximation of classes of analytic functions. . . 3

Denote by Vn,p(f ; ·) the de la Vallée Poussin sums [16] of the function f ∈ L1 :

Vn,p(f ;x) =
1

p

n−1∑

k=n−p

Sk(f ;x), (5)

where Sk(f ;x) is the kth partial sum of the Fourier series of f , and p = p(n) is a
given natural parameter, p � n.

The aim of the present work is to obtain the asymptotic equalities as n− p → ∞
for the quantity

E(Cψ
β N;Vn,p) = sup

f∈Cψ
β N

‖f(·)− Vn,p(f ; ·)‖C , (6)

where ψ ∈ Dq, q ∈ (0, 1), and N = U0
s , 1 � s � ∞, or N = Hω.

This paper is nearly related to works [2, 3, 5, 6, 7, 9, 10] and [14]. In [10] the

asymptotic equalities were obtained for E(Cψ
β,s;Vn,p), 1 � s � ∞ and E(Cψ

β Hω;Vn,p)
in the case where the sequence ψ(k), that defines the classes, satisfies the condition

lim
k→∞

ψ(k + 1)

ψ(k)
= 0 (ψ ∈ D0).

This restriction on ψ implies Cψ
β,s and Cψ

β Hω are the classes of entire functions.
The case ψ ∈ Dq, q ∈ (0, 1) also hasn’t been omitted. The solution of the problem
under consideration for ψ ∈ Dq, q ∈ (0, 1), and p = 1 (Vn,1(f ; ·) = Sn−1(f ; ·))
was found in [6] and [14]. The main idea of paper [14] (see, also, [13, Chapt. 5,
Sect. 20]) consists of reduction of the problem of obtaining asymptotic equalities

for E(Cψ
β N;Sn−1) to solving an analogous problem for the quantity E(Cq

βN;Sn−1)
by means of the next equalities:

E(Cψ
β,s;Sn−1) = ψ(n)

(
q−nE(Cq

β,s;Sn−1) +O(1)
εn

(1− q)2

)
, 1 � s � ∞, (7)

E(Cψ
β Hω;Sn−1) = ψ(n)

(
q−nE(Cq

βHω;Sn−1) +O(1)
εnω(1/n)

(1− q)2

)
, (8)

where εn := supk�n

∣∣ψ(k+1)
ψ(k) − q

∣∣, and O(1) are the quantities uniformly bounded

in n, s, q, ψ(k) and β. Since the asymptotic equalities for E(Cq
β,s;Sn−1) and

E(Cq
βHω;Sn−1) are known (see, for example, [13, p. 295, 310], [6, p. 1278]), formu-

las (7) and (8) allow us to obtain the asymptotic equalities for E(Cψ
β,s;Sn−1) and

E(Cψ
β Hω;Sn−1), respectively, with arbitrary β ∈ R and ψ ∈ Dq, q ∈ (0, 1).
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As for the general case p = 1, 2, . . . , n, the analogs of (7) (with s = ∞) and (8)
were derived in [2] and have the form

E(Cψ
β,∞;Vn,p)=ψ(n−p+1)

(E(Cq
β,∞;Vn,p)

qn−p+1
+O(1)

εn−p+1

(1− q)4

)
, (9)

E(Cψ
β Hω;Vn,p)=ψ(n−p+1)

(E(Cq
βHω;Vn,p)

qn−p+1
+O(1)ω

( 1

n−p+1

) εn−p+1

(1−q)4

)
, (10)

where ψ ∈ Dq, q ∈ (0, 1), β ∈ R,

εn−p+1 := sup
k�n−p+1

∣∣∣ψ(k + 1)

ψ(k)
− q

∣∣∣, (11)

ω(t) is an arbitrary modulus of continuity and O(1) are the quantities uniformly
bounded in n, p, q, ψ and β.

By using the known asymptotic equalities as n − p → ∞ of the quantities
E(Cq

β,∞;Vn,p) and E(Cq
βHω;Vn,p) (see [2] and [3]), V. I. Rukasov obtained from

(9) and (10) the next formulas that make up the main result of paper [2]:

E(Cψ
β,∞;Vn,p)=

ψ(n− p+ 1)

p

(
4

π(1− q2)

+O(1)
( qp−1

(1− q2)
+

1

(1− q)3(n− p)
+

pεn−p

(1− q)4

))
,

(12)

E(Cψ
β Hω;Vn,p)=

ψ(n− p+ 1)

p

(
2θω

π(1− q2)

∫ π/2

0

ω
( 2t

n− p

)
sin t dt

+O(1)ω
( 1

n−p

)( qp−1

(1− q2)
+

1

(1−q)3(n−p)
+

pεn−p

(1−q)4

))
,

(13)

where ψ ∈ Dq, q ∈ (0, 1), β ∈ R, εn−p = supk�n−p

∣∣ψ(k+1)
ψ(k) − q

∣∣, θω ∈ [1/2, 1]

(θω = 1 if ω(t) is a convex (upwards) modulus of continuity) and the quantities
O(1) are uniformly bounded in n, p, q, ψ and β.

Formula (12), as well as formula (13) in the case of convexity of modulus of
continuity ω(t), is an asymptotic equality as n − p → ∞ only if the additional
conditions

lim
n→∞

p = ∞, (14)

lim
n→∞

pεn−p = 0, (15)

are fulfilled.



[5] Approximation of classes of analytic functions. . . 5

In the present work we have been able to do away with restrictions (14) and

(15); this means that the strong asymptotic as n − p → ∞ of E(Cψ
β,s;Vn,p) and

E(Cψ
β Hω;Vn,p) is obtained for arbitrary ψ ∈ Dq, q ∈ (0, 1), 1 � s � ∞, β ∈ R

even in the case where at least one of (14) or (15) isn’t carried out. It’s essential
to note that reasoning from relations (9) and (10), restrictions (14) and (15) can’t
be removed in principle. Thus, for the final solution of our problem, it needs to
improve formulas (9) and (10), which we shall do finding more refined estimates of
the remainder terms with subsequent generalization of (9) to the case of arbitrary
s ∈ [1,∞]. The sought-for relations are provided by the following assertion, which
plays a key role in this paper.

Theorem 1. Let ψ ∈ Dq, q ∈ (0, 1), 1 � s � ∞, n, p ∈ N, p � n, β ∈ R and let
ω(t) be an arbitrary modulus of continuity. Then, as n− p → ∞,

E(Cψ
β,s;Vn,p)=

ψ(n−p+1)

p

(
pE(Cq

β,s;Vn,p)

qn−p+1
+O(1)

εn−p+1

(1− q)2
min

{
p,

1

1−q

})
, (16)

E(Cψ
β Hω;Vn,p)=

ψ(n− p+ 1)

p

(
pE(Cq

βHω;Vn,p)

qn−p+1

+O(1)ω
( 1

n− p+ 1

) εn−p+1

(1− q)2
min

{
p,

1

1− q

})
,

(17)

where εn−p+1 is defined by (11) and O(1) are the quantities uniformly bounded in
n, p, q, s, ψ, β and ω.

Proof. Let f ∈ Cψ
β N, ψ ∈ Dq, q ∈ (0, 1) and N = U0

s , 1 � s � ∞, or N = Hω.
By (2) and (5), the deviation

ρn,p(f ;x) := f(x)− Vn,p(f ;x),

satisfies at each point x ∈ R the equality

ρn,p(f ;x) =
1

π

∫ π

−π

fψ
β (x− t)

∞∑

k=n−p+1

τn,p(k)ψ(k) cos
(
kt− βπ

2

)
dt, fψ

β ∈ N, (18)

where

τn,p(k) =




1− n− k

p
, n− p+ 1 � k � n− 1,

1, k � n.
(19)

Setting

rn,p(t) :=
∞∑

k=n−p+2

τn,p(k)

(
ψ(k)

ψ(n− p+ 1)
− qk

qn−p+1

)
cos

(
kt− βπ

2

)
, (20)
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we rewrite (18) thus:

ρn,p(f ;x)=ψ(n−p+1)

(
qp−n−1

π

∫ π

−π

fψ
β (x−t)

∞∑

k=n−p+1

τn,p(k)q
k cos

(
kt− βπ

2

)
dt

+
1

π

∫ π

−π

fψ
β (x− t)rn,p(t) dt

)
.

(21)

Since, by virtue of (18),

E(Cq
βN;Vn,p) := sup

f∈Cq
βN

‖ρn,p(f ; ·)‖C

= sup
ϕ∈N

∥∥∥∥
1

π

∫ π

−π

ϕ(·− t)
∞∑

k=n−p+1

τn,p(k)q
k cos

(
kt− βπ

2

)
dt

∥∥∥∥
C

, N ⊂ L1,
(22)

it follows from (21) and (22) that

E(Cψ
β N;Vn,p)=ψ(n−p+1)

(E(Cq
βN;Vn,p)

qn−p+1
+O(1) sup

ϕ∈N

∥∥∥∥
∫ π

−π

ϕ(·−t)rn,p(t) dt
∥∥∥∥
C

)
. (23)

If N = U0
s , 1 � s � ∞, we get from the Hölder inequality (see, e.g., [1, p. 410])

sup
ϕ∈U0

s

∣∣∣∣
∫ π

−π

ϕ(x− t)rn,p(t) dt

∣∣∣∣ � ‖rn,p(·)‖s′ ,
1

s
+

1

s′
= 1. (24)

If N = Hω, then considering that the function rn,p(t) (see (20)) and a random
trigonometric polynomial Tn−p(·) of order not more than n− p are orthogonal, we
can write

sup
ϕ∈Hω

∣∣∣∣
∫ π

−π

ϕ(x− t)rn,p(t) dt

∣∣∣∣=sup
ϕ∈Hω

∣∣∣∣
∫ π

−π

(ϕ(x− t)− Tn−p(x− t))rn,p(t) dt

∣∣∣∣

� sup
ϕ∈Hω

‖ϕ(·)− Tn−p(·)‖C‖rn,p(·)‖1.
(25)

Let T ∗
n−p(·) be the polynomial of best uniform approximation of the function ϕ ∈ Hω

by means of trigonometric polynomials of order � n− p :

‖ϕ(·)− T ∗
n−p(·)‖C = inf

Tn−p

‖ϕ(·)− Tn−p(·)‖C =: En−p+1(ϕ).

Then, by choosing T ∗
n−p(·) as the polynomial Tn−p(·) in (25) and using the well-

known Jackson inequality (see, for example, [1, p. 266])

En−p+1(ϕ) � Kω
(
ϕ,

1

n− p+ 1

)
, K = const,
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we get from (25) the estimate

sup
ϕ∈Hω

∣∣∣∣
∫ π

−π

ϕ(x− t)rn,p(t) dt

∣∣∣∣ = O(1)ω
( 1

n− p+ 1

)
‖rn,p(·)‖1. (26)

We show that

rn,p(t) = O(1)
εn−p+1

(1− q)2
min

{
1,

1

p(1− q)

}
, n− p → ∞, (27)

where O(1) is the quantity uniformly bounded in t, n, p, q, ψ and β.
To do this we first rewrite (20) in the form

rn,p(t) =
∞∑

k=n−p+2

τn,p(k)

( k−n+p−2∏

l=0

ψ(n− p+ 2 + l)

ψ(n− p+ 1 + l)
− qk

qn−p+1

)
cos

(
kt− βπ

2

)
.

Since τn,p(k) > 0,

|rn,p(t)| �
∞∑

k=1

τn,p(n− p+ 1 + k)

∣∣∣∣
k−1∏

l=0

ψ(n− p+ 2 + l)

ψ(n− p+ 1 + l)
− qk

∣∣∣∣.

By the estimate

∣∣∣∣
k−1∏

l=0

ψ(m+ l + 1)

ψ(m+ l)
− qk

∣∣∣∣ � (q + εm)k − qk, m ∈ N, (28)

proved in [14, p. 438], this implies that

|rn,p(t)| �
∞∑

k=1

τn,p(n− p+ 1 + k)
(
(q + εn−p+1)

k − qk
)
. (29)

The sequence εm tends monotonically to zero. Hence, for sufficiently large n−p+1,

εn−p+1 <
1− q

2
. (30)

Therefore, taking into account the fact that τn,p(k) � 1 and using the formula

∞∑

k=1

xk =
x

1− x
, 0 < x < 1, (31)
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from (29) we have

|rn,p(t)| �
εn−p+1

(1− q)(1− q − εn−p+1)
< 2

εn−p+1

(1− q)2
. (32)

On the other hand, from (29) and (19) we obtain

|rn,p(t)| �
∞∑

k=1

τn,p(n− p+ 1 + k)
(
(q + εn−p+1)

k − qk
)

=

p−2∑

k=1

k + 1

p

(
(q + εn−p+1)

k − qk
)
+

∞∑

k=p−1

(
(q + εn−p+1)

k − qk
)

<
∞∑

k=1

k + 1

p

(
(q + εn−p+1)

k − qk
)
.

(33)

Estimate (33) together with the equality

∞∑

k=1

kxk =
x

(1− x)2
, 0 < x < 1

and (30) imply that for sufficiently large n− p+ 1

|rn,p(t)| < 2
εn−p+1

p

(
1− q − εn−p+1

2

)

(1− q)2(1− q − εn−p+1)2
<

8

p

εn−p+1

(1− q)3
.

In combination with (32) this yields estimate (27).
Gathering together (23), (24), (26) and (27) we obtain Theorem 1. �
The quantity pq−(n−p+1)E(Cq

β,s;Vn,p) is bounded above and below by some pos-
itive numbers, possibly depending only on q and s. Indeed, on the strength of
(22),

E(Cq
β,s;Vn,p) = sup

ϕ∈U0
s

∥∥∥∥
1

π

∫ π

−π

ϕ(·− t)
∞∑

k=n−p+1

τn,p(k)q
k cos

(
kt− βπ

2

)
dt

∥∥∥∥
C

� C(1)
s

∥∥∥∥
∞∑

k=n−p+1

τn,p(k)q
k cos

(
kt− βπ

2

)∥∥∥∥
s′
.

Since ∞∑

k=n−p+1

τn,p(k)q
k <

1

p

∞∑

k=1

kqk+n−p =
1

p

qn−p+1

(1− q)2
(34)
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by (19), we conclude that

pq−(n−p+1)E(Cq
β,s;Vn,p) �

C
(1)
s

(1− q)2
.

To find a lower estimate of the quantity pq−(n−p+1)E(Cq
β,s;Vn,p), it is sufficient to

consider the function

fn−p+1(x) = qn−p+1‖ sin t‖−1
s sin

(
(n− p+ 1)x+

βπ

2

)
.

The function fn−p+1(x) belongs to Cq
β,s and so

pq−(n−p+1)E(Cq
β,s;Vn,p) � pq−(n−p+1)‖ρn,p(fn−p+1; ·)‖C =

‖ sin t‖C
‖ sin t‖s

= C(2)
s > 0.

Thus,

C(1)
s � pq−(n−p+1)E(Cq

β,s;Vn,p) � C(2)
s

1

(1− q)2
, C(i)

s > 0, i = 1, 2. (35)

An analogous estimate also holds for pq−(n−p+1)E(Cq
βHω;Vn,p) :

C(1)
s ω

( 1

n− p+ 1

)
� pq−(n−p+1)E(Cq

βHω;Vn,p) �
C

(2)
s

(1− q)2
ω
( 1

n− p+ 1

)
, (36)

where C
(i)
s > 0, i = 1, 2.

Indeed, since the function
∑∞

k=n−p+1 τn,p(k)q
k cos

(
kt − βπ

2

)
is orthogonal to

every trigonometric polynomial Tn−p(·) of order � n− p, from (22) we have

E(Cq
βHω;Vn,p)�C(1)

s sup
ϕ∈Hω

‖ϕ(·)−Tn−p(·)‖C
∥∥∥∥

∞∑

k=n−p+1

τn,p(k)q
kcos

(
kt− βπ

2

)∥∥∥∥
1

. (37)

Choosing the polynomial of best approximation of the function ϕ ∈ Hω as Tn−p(·)
in (37) and applying the Jackson inequality and (34), we obtain

pq−(n−p+1)E(Cq
βHω;Vn,p) �

C
(1)
s

(1− q)2
ω
( 1

n− p+ 1

)
. (38)

On the other hand,

pq−(n−p+1)E(Cq
βHω;Vn,p) � q−(n−p+1)E(Cq

βHω;Vn,p)

� q−(n−p+1)En−p+1(C
q
βHω),

(39)
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where En−p+1(C
q
βHω) = supf∈Cq

βHω
infTn−p ‖f(·)− Tn−p(·)‖C . As follows from for-

mula (8) in [12], the next estimate holds for the quantity En−p+1(C
q
βHω) :

En−p+1(C
q
βHω) � C(2)

s qn−p+1ω
( 1

n− p+ 1

)
. (40)

Comparing (38)–(40), we get (36).
Since εn−p+1 → 0 as n − p → ∞, in view of (35) and (36) we conclude that in

all cases where the asymptotic equalities for E(Cq
β,s;Vn,p) and E(Cq

βHω;Vn,p) are
known, relations (16) and (17) let us write the analogous equalities for the quantities

E(Cψ
β,s;Vn,p) and E(Cψ

β Hω;Vn,p), respectively, for any ψ ∈ Dq, q ∈ (0, 1).
This fact enables us to give some important corollaries from Theorem 1. With

this aim, we cite one of the results from [7, p. 1943], where it was shown that for
q ∈ (0, 1), β ∈ R, 1 � s � ∞ and n, p ∈ N, p � n, the following asymptotic equality
holds as n− p → ∞ :

E(Cq
β,s;Vn,p) =

qn−p+1

p

(‖ cos t‖s′
π1+1/s′

Kq,p(s
′) +

O(1)

(n− p+ 1)(1− q)σ(s′,p)

)
, (41)

in which

Kq,p(s
′) := 2−1/s′

∥∥∥∥
√
1− 2qp cos pt+ q2p

1− 2q cos t+ q2

∥∥∥∥
s′
, s′ =

s

s− 1
, (42)

σ(s′, p) =





1, s′ = 1, p = 1,

2, 1 < s′ � ∞, p = 1,

3, 1 � s′ � ∞, p ∈ N \ {1},
(43)

and O(1) is the quantity uniformly bounded in n, p, q, β and s.
For s = ∞ asymptotic equality (41) was obtained in [5].
Combining (16) and (41), we have.

Theorem 2. Let ψ ∈ Dq, q ∈ (0, 1), 1 � s � ∞, β ∈ R, n, p ∈ N, p � n. Then
the following asymptotic equality holds as n− p → ∞ :

E(Cψ
β,s;Vn,p)=

ψ(n−p+1)

p

(
‖ cos t‖s′
π1+1/s′

Kq,p(s
′)

+O(1)

(
1

(n−p+1)(1−q)σ(s′,p)
+

εn−p+1

(1− q)2
min

{
p,

1

1− q

}))
,

(44)

where Kq,p(s
′) and σ(s′, p) are defined by (42) and (43), respectively, s′ = s

s−1 ,

εn−p+1 = supk�n−p+1

∣∣ψ(k+1)
ψ(k) − q

∣∣, and O(1) is the quantity uniformly bounded in

n, p, q, s, ψ and β.
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Note that in the case where p = 1 and s ∈ [1,∞], equality (44) was established
in [6, p. 1289].

From the obvious relations

1− qp �
√
1− 2qp cos pt+ q2p � 1 + qp

we can write that for s = ∞

Kq,p(s
′) = Kq,p(1) =

∫ π

0

√
1− 2qp cos pt+ q2p

1− 2q cos t+ q2
dt =

1

1− q2
(π +O(1)qp). (45)

Thus, from (44) and (45) we obtain the next asymptotic equality as n−p → ∞ and
p → ∞ :

E(Cψ
β,∞;Vn,p) =

ψ(n− p+ 1)

p

(
4

π(1− q2)

+O(1)

(
qp

1− q
+

1

(n− p+ 1)(1− q)σ(1,p)
+

εn−p+1

(1− q)3

))
,

(46)

where ψ ∈ Dq, q ∈ (0, 1), β ∈ R, σ(1, p) is defined by (43) and O(1) is the quantity
uniformly bounded in n, p, q,ψ and β. Equality (46) improves (12) at the cost of
more precise estimate of the remainder term, it still remains asymptotic even though
restriction (15) doesn’t hold.

In the case of arbitrary p = 1, 2, . . . , n the behavior of the constant Kq,p(1) could
be inferred by the next identity, proved in [4, p. 215]:

Kq,p(1) = 2
1− q2p

1− q2
K(qp), (47)

where K(ρ) =
∫ π/2

0
dt√

1−ρ2 sin2 t
is the complete elliptic integral of the first kind.

Taking (44) and (47) together, we get that for any ψ ∈ Dq, q ∈ (0, 1), β ∈ R and
n, p ∈ N the asymptotic equality

E(Cψ
β,∞;Vn,p)=

ψ(n− p+ 1)

p

(
8

π2

1− q2p

1− q2
K(qp)

+O(1)

(
1

(n−p+1)(1−q)σ(1,p)
+

εn−p+1

(1− q)2
min

{
p,

1

1−q

})) (48)

is true as n− p → ∞.
In the case p = 1 equality (48) was proved in [14, p. 443].
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An analog of (48) can be obtained for the class Cψ
β Hω given by convex modulus

of continuity ω(t). To this end, we use the following equality (see [9, p. 5])

E(Cq
βHω;Vn,p) =

qn−p+1

p

(
4

π2

1− q2p

1− q2
K(qp)

∫ π/2

0

ω
( 2t

n− p+ 1

)
sin t dt

+
O(1)ω(π)

(1− q)γ(p)(n− p+ 1)

)
, n− p → ∞,

(49)

valid for every q ∈ (0, 1), β ∈ R and every convex modulus of continuity ω(t), in
which

γ(p) =

{
2, p = 1,

3, p = 2, 3, . . . , n,
(50)

and the quantity O(1) is uniformly bounded in n, p, q, β and ω.
Noting that (49) is an asymptotic equality if and only if ω(t) satisfies the con-

dition

lim
t→0

ω(t)

t
= ∞, (51)

on the basis of (17) and (49) we arrive at the following assertion.

Theorem 3. Let ψ ∈ Dq, q ∈ (0, 1), n, p ∈ N, p � n and let ω(t) be a convex
modulus of continuity satisfying condition (51). Then, as n− p → ∞,

E(Cψ
β Hω;Vn,p)=

ψ(n−p+1)

p

(
4

π2

1−q2p

1−q2
K(qp)

∫ π/2

0

ω

(
2t

n−p+1

)
sin t dt

+O(1)

(
ω(π)

(1−q)γ(p)(n−p+1)
+

εn−p+1

(1− q)2
min

{
p,

1

1− q

}
ω
( 1

n− p+ 1

)))
,

(52)

where K(ρ) is the complete elliptic integral of the first kind, γ(p) is defined by (50),

εn−p+1 = supk�n−p+1

∣∣ψ(k+1)
ψ(k) − q

∣∣, and O(1) is the quantity uniformly bounded in

n, p, q, ω and β.

Examples of convex moduli of continuity ω(t) satisfying condition (51) are the
functions ω(t) = tα, α ∈ (0, 1), ω(t) = lnβ(t+1), β ∈ (0, 1) and others. If ω(t) = tα,
α ∈ (0, 1), the class Hω turns into the well-known Hölder class Hα. In this case
equality (52) has the form:

E(Cψ
β H

α;Vn,p) =
ψ(n− p+ 1)

p(n− p+ 1)α

(
22+α

π2

1− q2p

1− q2
K(qp)

∫ π/2

0

tα sin t dt

+O(1)

(
1

(1− q)γ(p)(n− p+ 1)1−α
+

εn−p+1

(1− q)2
min

{
p,

1

1− q

}))
, n− p → ∞.
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Along with the Poisson kernel Pq,β(t), the important examples of the kernels Ψβ(t)
(see (3)) whose coefficients ψ(k) belong to Dq, q ∈ (0, 1), are the Neumann kernel

Nq,β(t) =
∞∑

k=1

qk

k
cos

(
kt− βπ

2

)
, q ∈ (0, 1), β ∈ R (53)

and the polyharmonic Poisson kernel [15, p. 256, 257]

Pq,β(m, t) =
∞∑

k=1

ψm(k) cos
(
kt− βπ

2

)
, β ∈ R, (54)

where

ψm(k) = qk
(
1 +

m−1∑

j=1

(1− q2)j

j!2j

j−1∏

l=0

(k + 2l)

)
, m ∈ N, q ∈ (0, 1).

It’s easy to verify that for the coefficients ψ(k) = qk

k of the Neumann kernel Nq,β(t)
the equality

εn−p+1 = sup
k�n−p+1

q

k + 1
=

q

n− p+ 2
, (55)

holds. As shown in [11, p. 180] (see, also, [8, p. 132]), in the case where ψ(k) are
the coefficients ψm(k) of the polyharmonic Poisson kernel Pq,β(m, t),

εn−p+1 � (2m− 3)q

n− p+ 1
, m = 2, 3, . . . (56)

(if m = 1, then ψm(k) = ψ1(k) = qk and so εn−p+1 = 0).
Thus from Theorem 2 and Theorem 3 we obtain the next assertions.

Corollary 4. Let Cψ
β,s, 1 � s � ∞, and Cψ

β Hω be the classes generated by

the coefficients ψ(k) = qk/k of the Neumann kernel Nq,β(t), n, p ∈ N, p � n, and
a convex modulus of continuity ω(t) satisfies condition (51). Then the following
asymptotic equalities hold as n− p → ∞

E(Cψ
β,s;Vn,p) =

qn−p+1

p(n− p+ 1)

(
‖ cos t‖s′
π1+1/s′

Kq,p(s
′)

+
O(1)

(n− p+ 1)

(
1

(1− q)σ(s′,p)
+

q

(1− q)2
min

{
p,

1

1− q

}))
,

E(Cψ
β Hω;Vn,p) =

qn−p+1

p(n− p+ 1)

(
4

π2

1− q2p

1− q2
K(qp)

∫ π/2

0

ω

(
2t

n− p+ 1

)
sin t dt

+
O(1)

n− p+ 1

(
ω(π)

(1− q)γ(p)
+

q

(1− q)2
min

{
p,

1

1− q

}
ω
( 1

n− p+ 1

)))
,
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where Kq,p(s
′), σ(s′, p) and γ(p) are defined by (42), (43) and (50), respectively,

s′ = s
s−1 , and the quantities O(1) are uniformly bounded in n, p, q, s, ω and β.

Corollary 5. Let Cψ
β,s, 1 � s � ∞, and Cψ

β Hω be the classes generated by the
coefficients ψ(k) = ψm(k) of the polyharmonic Poisson kernel Pq,β(m, t), m ∈ N,
n, p ∈ N, p � n, and a convex modulus of continuity ω(t) satisfies condition (51).
Then the following asymptotic equalities hold as n− p → ∞

E(Cψ
β,s;Vn,p)

=
qn−p+1

p

(
1 +

m−1∑

j=1

(1− q2)j

j!2j

j−1∏

l=0

(n− p+ 1 + 2l)

)(‖ cos t‖s′
π1+1/s′

Kq,p(s
′)

+
O(1)

(n− p+ 1)

(
1

(1− q)σ(s′,p)
+

mq

(1− q)2
min

{
p,

1

1− q

}))
,

E(Cψ
β Hω;Vn,p) =

qn−p+1

p

(
1 +

m−1∑

j=1

(1− q2)j

j!2j

j−1∏

l=0

(n− p+ 1 + 2l)

)

×
(

4

π2

1− q2p

1− q2
K(qp)

∫ π/2

0

ω

(
2t

n− p+ 1

)
sin t dt

+
O(1)

n− p+ 1

(
ω(π)

(1− q)γ(p)
+

mq

(1− q)2
min

{
p,

1

1− q

}
ω
( 1

n− p+ 1

)))
,

where Kq,p(s
′), σ(s′, p) and γ(p) are defined by (42), (43) and (50), respectively,

s′ = s
s−1 , and the quantities O(1) are uniformly bounded in n, p, q, m, s, ω and β.
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