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An analytical study of a model
for the actin-based movement of bacteria

STEFANIA MELILLO – EUGENIO MONTEFUSCO

Abstract: In this work we studied a system of two partial differential type modeling the
motion of some bacteria, which use an Actin-based propulsion mechanism. The resulting
system is composed by two equation (a porous-media equation and a linear hyperbolic one)
coupled with two moving boundaries. We proved the local (in time) well posedness for the
Cauchy problem.

1 – Introduction

In recent years the interest in mathematical and computational study of biological
phenomena has rapidly increased. Models for this kind of processes are spreading
in many branches of biology like oncology, epidemiology, natural pattern forma-
tion, ecology and morphogenesis. Between many challenging problems proposed
by the biological modeling, cell and microorganism movement and direction pro-
cess is a very interesting subject: cells and microorganisms direct their movement
through chemotaxis processes, i.e. according to the presence and the concentration
of specific chemical agents in their environment. Obviously it is impossible to give
an exhaustive list of references, anyway we refer to [10, 14, 20] and [9] (and the
references therein) for an introduction in the topic and in its applications.

The definition of models for the description of cell motility is still at the be-
ginning. Essentially cell motion is divided into three different phases and relevant
processes: protrusion, adhesion and contraction. More in detail, firstly the cell pulls
out the front, then it adheres at the surface tightly by the leading edge and weakly
by the rear one and finally it develops a contraction that pulls up the rear, complet-
ing the motile cycle (for further information see [17] and [18]). In particular, cell
motion is mostly due to the use of the so called lamellipodia as motile appendages.
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These processes are generally described by evolution and transport equations. In
particular we suggest to the reader the models introduced in [1] [9], [20] and [21].

Lamellipodia are structures very similar to the tails of a peculiar protein, the
actin, that bacteria like Lysteria Monicytogenes, Shigella Flexenari and Rickettsia
Rickettsii use for their motion inside host cells. The characterization of the move-
ment of these microorganisms is easier than the one of the cells; for this reason,
modeling the motion of these organisms can be a first step in the modeling of the
protrusion at the leading edge.

Actin tail is composed by a large number of cross-linked actin filaments. As every
protein the actin can polymerize and the process of polymerization drives protrusive
forces generation in the motion. The mechanism by which the movement occurs is
still not well understood (see for example [6, 12] and [17]). In literature there are
two different ways of modeling the actin based movement. The first approach [6]
considers all the actin filaments attached to the surface of the bacterium or of the
cell and it assumes that the polymerization process produces a compression in the
filaments. So, there are some filaments under compression and some other under
tension. The opposition between these two classes of filaments makes the bacterium
moving.

The other approach is based on the observation that, after a short period of
time, the filaments detach from the bacterium and their place is taken from new
ones. The detachment of filaments causes a compression in the tail which pushes
the bacterium in the opposite direction. In this kind of model, (see for example [19]
and [7]), the motion is due to the opposition between the force of pushing filaments
and a frictional force resulting from the hydrodynamic drag and/or the resisting
force that is necessary to break the link between the filaments and the surface.
Models obtained by this approach are the so called Brownian and tethered ratched
models.

In this work we have studied a 1-dimensional brownian and tethered ratched
model from an analytical and a numerical point of view. The model describes the
spatio-temporal evolution of two physical quantities of the actin tail in bacteria
movement. In particular we have studied the evolution of the density and of the
number of filaments per unit volume of the tail, which we denote respectively by ρ
and u. The model is a modification of the one introduced in [2] and it is a system
of two partial differential equations with two moving boundaries. The equation for
u is a porous media parabolic equation, while ρ evolves following a linear transport
equation with the flux velocity and the source that both depend from spatial and
time variables. The main purpose of this work is to prove the local well posedness of
the Cauchy problem for the system composed by the two coupled partial differential
equations for u and ρ and the two ordinary differential equations related to the
moving boundaries (the extrema of the actin tail).

The paper is organized as follows. In the first section we describe the model
introduced in [2] and a generalization we have introduced for better describe some
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physical properties of the actin tail. The second section is devoted to prove the
local existence and uniqueness theorem for the model.

In order to prove the theorem we have transformed the moving domain in a
fixed one. In the new domain the equation for the evolution of u is transformed
from a porous media to a nonlinear degenerate parabolic equation with coefficients
depending on the spatial and temporal variables. We show that, if the initial data
verify some conditions (see hypotheses (3.2)-(3.10) of Theorem 3.2) then a solution
for the problem exists and is unique. Moreover, we show that u ∈ C2,1 and that ρ
is a continuous function.

The strategy we will use is to freeze the moving boundaries and solve the evo-
lution system for the functions u and ρ, from which obtain new boundaries for the
actin tail. So the local existence theorem for our system becomes a fixed point
problem for the functions describing the extrema of the actin tail. Our principal
inspiration has been the work [23].

2 – The model

Listeria Monocytogenes, Shigella Flexenari and Rickettsia Rickettsii, are particular
bacteria that may cause a lot of serious diseases, such as meningitis, typhus and
Rocky Mountain fever. Their virulence is strictly connected to the high speed of
their movement inside a single host cell and their ability to spread out, infecting
many other cells. Unlike many bacteria, they don’t move using flagella, but they
exploit a cytosol protein: the actin.

As a protein, actin can polymerize, and as a consequence of this process, several
actin monomers aggregate in a chain. In particular, actin polymers look like gelati-
nous and elastic filaments. Their peculiarity is their polar structure; monomers can
only attach to one end of a filament while they can only detach from the other.
Polymerization and depolymerization processes are the cause of the movement of
Listeria moncytogenes, Shigella Flexenari and Rickettsia Rickettsii.

On the outer membranes of these bacteria, there is an enzyme, which attracts
actin causing its polymerization. Polymerization ends of actin filaments tie at the
bacterium enzyme site. Monomers addiction compresses the filament, until it leaves
the bacterium. This makes the bacterium and the filament move in opposite direc-
tions. New filaments now tie to the bacterium while the detached filament com-
pletely depolymerizes after several chemical reactions until it vanishes. During these
processes, detached actin monomers are free to polymerize again, creating new fila-
ments. Our model is a generalization of the one introduced by Bazaliy, Bazaliy and
Friedman in [2]. For the reader’s convenience we first describe their model, then we
will explain our changes.

The original model. In [2] it is assumed that at any point of the tail, the physi-
cal quantities like density (that is number of filaments for unit volume), velocity,
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filaments length and so on, depend only on the distance of that point from the
bacterium. Let x denote the spatial variable and t the temporal one. We assume
that the motion happens in the x-axis negative direction. So, since the tail and the
bacterium movement directions are opposite, the actin tail moves in the direction
of increasing x. Moreover we assume that at time t = 0, the bacterium position is
x = 0.

In [2], the following variables are introduced:

• w(x, t) velocity of the tail;
• u(x, t) numerical filaments density of the tail;
• lf (x, t) length of filaments;
• ρ(x, t) actin density of the tail, and

ρ(x, t) = Cρlf (x, t)u(x, t) (2.1)

with Cρ positive real constant;
• p(x, t) pressure of the tail;
• l(t) left end of the tail;
• r(t) right end of the tail;
• V (t) velocity of the bacterium;

we will define our problem in the region occupied by the actin gel, Ω(t) = (l(t), r(t)).
So, we have the bacterium which moves with velocity V (t) together with the

attached filaments, and the tail, composed by the detached filaments that moves
in the opposite direction with velocity w(x, t). We remark that, in our notation,
l(t) is the end of the tail in touch with the bacterium, so V (t) is the speed of the
front l(t) or easily dl

dt = V (t). It must be noted that V (t) is different from w(l(t), t);
in fact, V (t) denotes the velocity at which the front is moving, while w(l(t), t)
denotes the velocity at which the part of the tail in l(t) moves. In the above the
tail is considered as the set of detached filaments, so w(l(t), t) and V (t) identify,
respectively, the velocity of detached and of attached filaments.

From a physical point of view this problem can be regarded as a motion in a
viscous fluid. In particular, in [2] the authors assume that:

• the motion happens for low Reynolds number, so that it is laminar;
• each filament motion doesn’t affect the motion of the other filaments;
• a deformation of a piece of gel is only due to a change in the numerical fila-
ments density. As a consequence, the pressure of the tail verifies the following
constitutive law:

p(x, t) = p0(t) +E(u− u0) (2.2)

where u0 is the numerical filaments density at the bacterium surface, E is a
positive constant and p0(t) is the pressure at the bacterium surface which is
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defined as follows:

p0(t) = β − α (w(l(t), t) + V (t)) (2.3)

with α and β positive constants;
• the viscosity coefficients for the bacterium and the actin tail, denoted respectively
by µ and b, are both positive.

Note that under these assumptions, the balance between the force that pushes the
gel and the drag force can be written as follows:

bw = −∂p

∂x
= −E

∂u

∂x

and so:

w(x, t) = −E

b

∂u

∂x
. (2.4)

As we said previously:
dl

dt
= V (t)

and since the motion is laminar:

V (t) = −p0(t)

µ
. (2.5)

So, from (2.3):

V (t) = − 1

µ
[β − α (w(l(t), t) + V (t))]

where we assume that
µ > α

and then:

V (t) =
α

µ− α
w(l(t), t)− β

µ− α
.

Replacing V (t) by dl/dt and using (2.4) we obtain the following evolution equation
for l(t):

dl

dt
= −E

α

µ− α
ux(l(t), t)−

β

µ− α
. (2.6)

With regard to the evolution of r(t) we assume, as in [2], that at x = r(t) the

average distance between the tail filaments is proportional both to u(x, t)−
1
3 and to

lf (x, t). So there exists a constant C such that:

u(r(t), t)−
1
3 = Clf (r(t), t)
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and from (2.1):

u(r(t), t)
2
3 = CCρ(r(t), t).

Set:
ρd(t) = du(r(t), t)

2
3

with d > 0.
Following [2]:

dr

dt
= w(r(t), t)− ν

ρ(r(t), t)− ρd(t)

and so:
dr

dt
= −Eux(r(t), t)−

ν

ρ(r(t), t)− ρd(t)
. (2.7)

As far as the boundary data is concerned

u(l(t), t) = u0 > 0. (2.8)

Due to the disintegration of the tail at x = r(t), in [2] it is assumed that p(r(t), t) =
0. So, from equation (2.2):

p(r(t), t) = p0(t) +E(u(r(t), t)− u0) = −µ
dl

dt
+E(u(r(t), t)− u0) = 0

where last equation is derived using (2.5).
Then:

u(r(t), t) = u0 +
µ

E

dl

dt
. (2.9)

Also for ρ in [2] a boundary condition is given:

ρ(l(t), t) = ρ0 > 0. (2.10)

Let’s now turn to the derivation of the system of partial differential equations for
u and ρ. In order to study the evolution of u we write down the conservation law
for the numerical density of the filaments in the following way:

∂u

∂t
+

∂

∂x
(wu) = 0 ∀x ∈ Ω(t), t > 0 (2.11)

and replacing w by (2.4), we find:

∂u

∂t
− E

b

∂

∂x
(uxu) = 0 ∀x ∈ Ω(t), t > 0

that is:
∂u

∂t
− E

2b

∂2

∂x2
(u2) = 0 ∀x ∈ Ω(t), t > 0.
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[2] assumes that the filaments length decreases with a constant rate K as the fila-
ments distance from the bacterium increases. So they have the following equation
for lf (x, t)

∂lf
∂t

+ w
∂lf
∂x

= −K ∀x ∈ Ω(t), t > 0. (2.12)

Using (2.1), they obtain the following conservation law for ρ:

∂ρ

∂t
+

∂

∂x
(wρ) = −CρKu. (2.13)

In fact, from (2.1):

∂ρ

∂t
= C

(
∂lf
∂t

u+
∂u

∂t
lf

)
and

∂ρ

∂x
= C

(
∂lf
∂x

u+
∂u

∂x
lf

)
.

So

∂ρ

∂t
+

∂(wρ)

∂x
= Cρ

[(
∂lf
∂t

+ w
∂lf
∂x

)
u+

(
∂u

∂t
+

∂(wu)

∂x

)
lf

]

= Cρ

(
∂lf
∂t

+ w
∂lf
∂x

)
u = −CKu.

Finally they define an initial data for the problem. That is:
{
u(x, 0) = ũ0(x) x ∈ (l(t), r(t))

ρ(x, 0) = ρ̃0(x) x ∈ (l(t), r(t))
(2.14)

with ũ0(l(t)) = u0 and ρ̃0(l(t)) = ρ0
From (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.13) and (2.14) the original model

could be summarized as follows:



ut −

E

2
(u2)xx = 0 x ∈ (l(t), r(t)), t > 0

ρt −E(uxρ)x = −K2u x ∈ (l(t), r(t)), t > 0
(Mo)

subject to the following initial conditions:

{
u(x, 0) = ũ0(x) x ∈ (0, r0)

ρ(x, 0) = ρ̃0(x) x ∈ (0, r0)
(I)

and to the boundaries conditions:




u(l(t), t) = u0

u(r(t), t) = u0 +
µ

bE

dl

dt
ρ(l(t), t) = ρ0

(B)
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with the following equations for the evolution of the two moving boundaries:





dl

dt
= −E

α

µ− α
ux(l(t), t)−

β

µ− α
l(0) = 0

dr

dt
= −Eux(r(t), t)−

ν

ρ(r(t), t)− du(r(t), t)
2
3

r(0) = r0 > 0.
(LR)

Moreover, in order to ensure that the problem is well-posed and consistent from a
physical point of view, u and ρ have to verify the following conditions:

u(x, t), ρ(x, t) > 0 ∀x ∈ (l(t), r(t)), t > 0 (2.15)

ρ(r(t), t)− du(r(t), t)
2
3 > 0 ∀t > 0 (2.16)

r(t)− l(t) > 0 ∀t > 0 (2.17)

where E = E/b and K2 = CK.

Changes to the model. Let’s describe how we have changed the model. Roughy
speaking, in [2], the filament length decreases at a constant rate as the distance
between the rear side of the bacterium and the filament increases. So the filament
elongation due to the polymerization process is not taken into account. In order
to consider also this aspect, we assume that the variation of the filaments length is
controlled by a nonincreasing function, that is positive in a small interval near the
bacterium and negative far from it.

This means that the filaments length increases for x = l(t) while it decreases
for all x sufficiently far from l(t). In fact, the limit of the model introduced in
[2], is that the filaments length can only decrease. We introduced the following C2

function, K(x, t) such that

K(x, t) =





K1 x ∈ (l(t), l(t) + δl), t > 0

decreasing x ∈ (l(t) + δl, l(t) + δr), t > 0

−K2 x ∈ (l(t) + δr, r(t))

with K1 and K2 positive constants and 0 ≤ δl ≤ δr. Moreover, since the filaments
length increases only for x = l(t), we assume that δl and δr are small enough and
in particular we assume that:

0 < δl � δr.
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Then we derive the following evolution equation for lf (x, t):

∂lf
∂t

+ w
∂lf
∂x

= −K(x, t) ∀x ∈ Ω(t), t > 0. (2.18)

As in the original method we derive the equation for the evolution of ρ using (2.1).
So, in our case the equation for ρ becomes:

∂ρ

∂t
+

∂(wρ)

∂x
= −K(x, t)u. (2.19)

From (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.19) and (2.14) we can write the new
model as: 



ut −

E

2
(u2)xx = 0 x ∈ (l(t), r(t)), t > 0

ρt −E(uxρ)x = K(x, t)u x ∈ (l(t), r(t)), t > 0
(M)

K(x, t) = CK(x, t) =





K1 x ∈ (l(t), l(t) + δl), t > 0

C2 and decreasing x ∈ (l(t) + δl, l(t) + δr), t > 0

−K2 x ∈ (l(t) + δr, r(t))

(2.20)

subject (I), (B), (LR) and also conditions (2.15)-(2.17).

As we said previously, the model is a system of two parabolic/hyperbolic differ-
ential equations with two moving boundaries.

Remark 2.1. We want to emphasize that model (Mo) can be obtained from
model (M) simply setting K1 = −K2, δl = δr = 0. In fact, with these choices of
the parameters the two intervals (l(t), l(t) + δl) and (l(t) + δl, l(t) + δr) are empty
and on x = l(t), K(x, t) = −K2. So K(x, t) ≡ −K2 for all x ∈ Ω(t), t > 0. So, all
the results we show in next sections for (M) also hold for (Mo).

3 – Theoretical results

This chapter is focused on the study of system (M) with (I), (B), (LR) and (2.15)-
(2.17), from a theoretical point of view.

In particular we will show the following local existence theorem:
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Theorem 3.1. Let r0 be a positive constant and let ũ0(x) ∈ C4+α[0, r0] and
ρ̃0(x) ∈ C[0, r0] such that :

ũ0(x) and ρ̃0(x) > 0 ∀x ∈ [0, r0] (3.1)

ρ̃0(r0)− dũ0(r0)
2
3 > 0 (3.2)

(ũ0)x < 0 ∀x ∈ [0, r0] (3.3)

(ũ0)x(0) > − 1

E

β

α
(3.4)

(ũ0)x(r0) > − 1

E

ν

ρ̃0(r0)− dũ0(r0)
2
3

(3.5)

ũ0(l(t)) = u0 (3.6)

ũ0(r(t)) = u0 +
µ

bE
l′(0) (3.7)

0 =

[
(Eũ0(ũ0)x)x + l′(0)(ũ0)x

]

x=0

(3.8)

µ

b

α

µ− α
[E(ũ0(ũ0)x)xx + l′(0)(ũ0)xx] = −

[
E(ũ0(ũ0)y)y + r′(0)(ũ0)y

]

y=r0

(3.9)

0 = E2(ũ0(ũ0(ũ0)x)x)xx + 2El′(0)(ũ0(ũ0)x)xx + l′(0)2(ũ0)xx + l′′(0)(ũ0)x (3.10)

where l′(t) and r′(t) are defined in (LR) and

l′′(t) = −E
α

µ− α

[
r0

r(t)− l(t)
uyt(0, t)− r0

r′(t)− l′(t)
(r(t)− l(t))2

uy(0, t)

]
.

Then there exists T > 0 such that system (M) with (I), (B), (LR) and (2.15))-(2.17)
has a unique solution for all (x, t) ∈ ΩT (t) = ∪t∈[0,T ] ((l(t), r(t))× {t}).

Moreover it results u ∈ C2,1(ΩT (t)) and ρ ∈ C(ΩT (t)).

The hypotheses of this theorem guarantee the solvability of system (M), with
(B), (I), (LR) and (2.15)-(2.17) for all (x, t) ∈ [0, T ]. In fact:

• hypotheses (3.1) and (3.2) together with the positivity of r0 imply that the initial
data verify conditions (2.15)-(2.17);

• hypotheses (3.3)-(3.5) guarantee, as we will show in the proof of the theorem,
that the equation for ρ together with its boundary value at x = l(t) is well posed;

• hypotheses (3.6)-(3.10) are the compatibility conditions for the parabolic equa-
tion for u. They are needed to make u ∈ C2,1 and ρ ∈ C.

The scheme of the proof of Theorem 3.1 follows the one in [2] for the local existence
and uniqueness of the solution for the original model, (Mo).
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In the first part of the proof, we fix two functions l(t), r(t) : R → R such that:

l(t) ∈ C2 such that l(0) = 0 and l′(0) < 0
r(t) ∈ C1 such that r(0) = r0 > 0 and r′(0) < 0.

(3.11)

These two functions are used to define a change of the spatial variable x into y, which
transform the moving domain Ω(t) = (l(t), r(t)) in the fixed domain Q = (0, r0).

System (M) is transformed in a new system in the variable y and for this new
system the existence and the uniqueness of the solution is proved. We denote by
(ulr, ρlr) this solution, where the subscript lr indicates that the solution is strictly
dependent on l(t) and r(t).

Theorem 3.1 is then proved using a fixed point argument. More in detail, two
functions, l̂(t) and r̂(t) verifying equations (LR) with (u, ρ) substituted by (ulr, ρlr).

So, l̂ and r̂ depend on l, r and t. Finally we define a map Γ such that:

Γ(l, r)(t) = (l̂(t), r̂(t))

and for this map we will show that it exists a unique fixed point.
In the following sections we will describe our proof of Theorem 3.1. In particular

we will first show the following theorem:

Theorem 3.2. Let r0 be a positive constant and let ũ0(x) ∈ C4+α[0, r0] and
ρ̃0(x) ∈ C[0, r0] such that hypotheses (3.1)-(3.10) are verified.

Assume, moreover, that l(t) ∈ C2 and r(t) ∈ C1 such that l(0) = 0 and r(0) =
r0 > 0.

Then there exists T > 0 such that system (M) with (I), (B), (LR) and (2.15)-
(2.17) has a unique solution for all (x, t) ∈ ΩT (t).

Moreover u ∈ C2,1(ΩT (t)) and ρ ∈ C(ΩT (t)).

The Theorem 3.1 depends on an subtile use of the Contraction theorem, the
strategy we adopt is inspired by [23]. The proof relies on several lemmas we will
prove in the following subsections.

3.1 – The model in a fixed domain

As we have said at the end of the previous section, in this first part of the proof we
fix two functions l(t) and r(t) verifying (3.11).

Note that this assumption implies that:

• there exists Tl > 0 such that

∀t ∈ [0, Tl] l′(t) < 0 and l(t) < 0
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• there exists Tr > 0 such that

∀t ∈ [0, Tr] r′(t) < 0 and r(t) < r0 (3.12)

• there exists Tr−l > 0 such that

∀t ∈ [0, Tr−l] r(t)− l(t) > 0. (3.13)

We define T = min{Tl, Tr, Tr−l} and we study the existence of the solution of system
(M) with (I), (B), (LR) and (2.15)-(2.17) in the interval t ∈ (0, T ).

In order to transform the moving domain Ω(t) = (l(t), r(t)) in the fixed one
Q = (0, r0), one can choose among several change of the spatial variable.

In particular, in [2] the following transformation is used:

x = y +R(y, t) (3.14)

with
R(y, t) = l(t)χ(y) + (r(t)− r0)χ(y − r0) (3.15)

and χ(z) ∈ C∞ such that:

χ(z) =

{
0 |z| > δ0/4

1 |z| < δ0/8

with δ0 < r0/2. Moreover χ(z) increases for z ∈ (−δ0/4,−δ0/8) and it decreases in
(δ0/8, δ0/4).

From (3.14):

dx

dy
=





1 + l(t)χ′(y) y ∈ (δ0/8, δ0/4)

1 + (r(t)− r0)χ
′(y − r0) y ∈ (r0 − δ0/4, r0 − δ0/8)

1 otherwise

x(y) is invertible if and only if it is monotone and we have that it is monotone if:

l(t)χ′(y) > 0 ∀y ∈ (δ0/8, δ0/4) (3.16)

and
(r(t)− r0)χ

′(y − r0) > 0 ∀y ∈ (r0 − δ0/4, r0 − δ0/8). (3.17)

Our choice of T ensures that l(t)< 0 and since χ′(y) is decreasing for y ∈ (δ0/8, δ0/4)
then:

l(t)χ′(y) > 0 ∀y ∈ (δ0/8, δ0/4)

and so (3.16) holds.
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On the other hand, r(t) < r0 and χ(y−r0) is increasing for all y ∈ (r0−δ0/4, r0−
δ0/8). So

(r(t)− r0)χ
′(y − r0) < 0 ∀y ∈ (r0 − δ0/4, r0 − δ0/8)

and in order to ensure (3.17) we should add some hypotheses on χ(z).

For this reason we have chosen the following change of the spatial variable x:

y = r0
x− l(t)

r(t)− l(t)
. (3.18)

That is linear and invertible for all t such that r(t)−l(t) > 0, and so for all t ∈ (0, T ).

The equations of the system in the moving domain are easier than in the fixed
one. In fact, since:

∂y

∂x
=

r0
(r(t)− l(t))

and

∂y

∂t
= − l′(t)(r0 − y) + r′(t)y

r(t)− l(t)

system (M) in the fixed domain becomes:





ut−
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
uy −

E

2

r20
(r(t)− l(t))2

(u2)yy = 0 (y, t) ∈ QT

ρt−
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
ρy −E

r20
(r(t)− l(t))2

(uyρ)y = K(y, t)u(y, t)

(MF )

where QT = Q × [0, T ]. Moreover, K(y, t) is the C2 function corresponding to
K(x, t). That is:

K(y, t) =





K1 y ∈
(
0,

r0
r(t)− l(t)

δl

)

is decreasing y ∈
(

r0
r(t)− l(t)

δl,
r0

r(t)− l(t)
δr

)

K2 y ∈
(

r0
r(t)− l(t)

δr, r0

)
(3.19)
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(MF ) is subject to the same initial and boundary conditions of system (M):

{
u(y, 0) = ũ0(y) y ∈ (0, r0)

ρ(y, 0) = ρ̃0(y) y ∈ (0, r0)
(IF )





u(0, t) = u0

u(r0, t) = u0 +
µ

bE

dl

dt
ρ(0, t) = ρ0

(BF )

and to the following evolution equations for l(t) and r(t):





dl

dt
= −E

α

µ− α

r0
r(t)− l(t)

uy(0, t)−
β

µ− α
l(0) = 0

dr

dt
= −E

r0
r(t)− l(t)

uy(r0, t)−
ν

ρ(r0, t)− du(r0, t)
2
3

r(0) = r0.
(LRF )

Note that l(t) and r(t) lose their meaning of moving boundary positions. However
their computation at every time is needed to define the coefficients of system (MF ).

Moreover we want the solution to satisfy:

u, ρ > 0 ∀(y, t) ∈ QT . (3.20)

3.2 – Local existence and uniqueness of the solution

Since ΩT (0) = Ω(0) the hypotheses (3.1)-(3.10) of Theorem 3.2 are not affected by
the change of variable (3.18), provided they are related to the variable y instead
of x. For the sake of simplicity, in the following we will refer to them without
specifying at which variable they are related, except when it will not be clear from
the context.

So, with this change of variables, Theorem 3.2 is equivalent to the following one:

Theorem 3.3. Let r0 be a positive constant, ũ0 ∈ C4+α([0, r0]) and ρ̃0 ∈
C([0, r0]) functions such that the hypotheses (3.1)-(3.10) of Theorem 3.2 are veri-
fied. Moreover, let suppose that there exist l(t) and r(t) defined as in the hypotheses
of Theorem 3.1. Then there exists T > 0 such that system (MF ) with (IF ), (BF )
and (LRF ) has a unique solution for all (y, t) ∈ QT = (0, r0)× [0, T ].

Moreover u ∈ C2,1(QT ) and ρ ∈ C(QT ) are positive functions.

In order to study the existence and the uniqueness of the solution for (MF ) with
(IF ), (BF ) and (LRF ) we split system (MF ) in two easier coupled systems and then
we will show the existence and the uniqueness of the solution of both systems.
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In particular, we split the system in the two following ones:




ut − (a(t, u)uy)y − b(y, t)uy = 0 (y, t) ∈ QT

u(y, 0) = ũ0(y) y ∈ (0, r0)

u(0, t) = u0 t ∈ (0, T ]

u(r0, t) = u0 +
µ

bE
l′(t) t ∈ (0, T ]

(Su)





ρt − (a(t, u)uyρ)y − b(y, t)ρy = K(y, t)u (y, t) ∈ QT

ρ(y, 0) = ρ̃0(y) y ∈ [0, r0]

ρ(0, t) = ρ0 t ∈ (0, T ]

(Sρ)

where:

a(t, u) = E
r20

(r(t)− l(t))2
u = a1(t)a2(u) (3.21)

with

a1(t) = E
r20

(r(t)− l(t))2
and a2(u) = u (3.22)

b(y, t) =
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
(3.23)

and K(y, t) is defined in (3.19).

Existence and uniqueness for (Sρ). The partial differential equation of system (Sρ)
is of transport type with a flux velocity and a source term depending on y, t and u.

ρt − a(t)(uyρ)y − b(y, t)ρy = K(y, t)u ∀(y, t) ∈ QT

Following [11], we can determine its solution using the method of characteristics.
In particular, the characteristic curves are defined in the following way:




s = t
dy

dt
= −a(t)uy − b(y, t) y(0) = y0.

(3.24)

Since the boundary data for ρ is defined on y = 0, (Sρ) is well posed if:

dy

dt
= −a(t)uy − b(y, t) > 0

and for the definition of a(t), (3.21), and b(y, t), (3.23), at t = 0:

dy

dt
(0) = −a(0)uy − b(y, 0) = −E(ũ0)y −

l′(0)(r0 − y) + r′(0)y
r0
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and this quantity is positive. In fact from (3.3) (ũ0)y < 0 and, from (LRF ), hy-
potheses (3.4) and (3.5) imply that l′(0) and r′(0) are also negative. So, for t = 0
(Sρ) is well posed and for the assumptions on the regularity of l(t) and r(t), there ex-
ists Tux , such that it is well posed for all t ∈ [0, Tux ]. So, setting T = min{Tlr, Tux}
the problem for ρ is well posed and r(t)− l(t) > 0 for all t ∈ [0, T ].

Along the characteristics ρ verifies:

dρ

dt
= a(t)uyy(y(t), t)ρ(y(t), t) +K(y(t))u(y(t), t) t ∈ (0, T ]. (3.25)

Then, along that curves:

ρ(t) = eA(t) (ρ0(y0) +B(t)) (3.26)

where:

A(s) =

∫ s

0

a(s′)uyy(y(s
′), s′)ds′ (3.27)

and

B(s) =

∫ s

0

e−A(s′)K(y(s′), s′)u(y(s′), s′)ds′. (3.28)

This prove the existence of the solution for (Sρ) for all (y, t) ∈ QT .
Moreover, this solution is a positive and continuous function.
In fact, let δ0(t) : [0, T ] → [0, r0] such that:

K(δ0(t), t) = 0 ∀t ∈ [0, T ].

Then, since ρt − (a(t, u)ρ)y − b(y, t)ρy = K(y, t)u, for every fixed t ∈ [0, T ], ρ(y, t)
is increasing where K(y, t) is positive and decreasing otherwise. So:

ρ(y, t) ≥
{
ρ0 y ∈ [0, δ0(t)]

ρ(r0, t) y ∈ [δ0(t), r0]

that is, for all t ∈ [0, T ], ρ(y, t) ≥ min{ρ0, ρ(r0, t)}.
As a consequence ρ0 > 0 and ρ(r0) > 0 are sufficient conditions for the positivity

of ρ. From hypothesis (3.1), ρ0 > 0. Moreover, from the regularity of u, there exists

a T ′ > 0 such that for all t ∈ [0, T ′], ρ(r0)−du(r0)
2
3 > 0. Then, ρ(r0) > du(r0)

2
3 > 0.

Setting T = min{T, T ′} we have that for all t ∈ [0, T ] the problem for ρ is well

posed, r(t)− l(t) > 0 and ρ(r0, t)− du(r0)
2
3 > 0 hold.

As far as the regularity of ρ is concerned, we note that from Theorem 3.2, u is a
C2,1 function and this is a sufficient condition for the continuity of ρ. We summarize
the result obtained in this section as follows:

Theorem 3.4. Let r0 be a positive constant, ũ0 ∈ C4+α([0, r0]) and ρ̃0 ∈
C([0, r0]) functions such that the hypotheses (3.1)-(3.10) of Theorem 3.2 are veri-
fied. Let l(t) and r(t) be defined as in the hypotheses of Theorem 3.2. Then there
exists T > 0 such that (Sρ) has a unique solution which is positive and continuous.
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Existence and uniqueness for (Su). The study of the existence and the uniqueness
of system (Su) is more difficult. This is due on one hand to the degeneracy of the
equation and on the other to the time dependent coefficients of the equation.

There is a wide literature about porous media equations (see for example [22]
and the references therein) and quasilinear parabolic degenerate equations ([4, 5] or
[8]). But the general case for coefficients depending on y, t, u and uy is not treated.
A masterpiece in the literature about quasilinear parabolic equation is [13] and it
will be our main reference in the following.

In order to prove the existence and the uniqueness of the solution for (Su), we
will study the following more general system:





ut − (g(t, u)uy)y − b(y, t)uy = 0 y ∈ (η1, η2), t > 0

u(y, 0) = ũ0(y) ≥ 0 y ∈ (η1, η2)

u(η1, t) = ψ1(t) t > 0

u(η2, t) = ψ2(t) t > 0

(ψ1)t = a(t)(uuy)y + b(y, t)(u)y for (y, t) = (η1, 0)

(ψ2)t = a(t)(uuy)y + b(y, t)(u)y for (y, t) = (η2, 0)

(3.29)

where, ψ1(t) and ψ2(t) are C1 functions and

g(t, u) = g1(t)g2(u).

Moreover, we will assume that the following conditions hold:

0 < λ1 ≤ g1(t) ≤ Λ1 ∀t ∈ (0, T ] (3.30)





g2(u) ∈ C1

g2(0) = 0 and g′2(s) > 0 ∀s > 0

ug2(u) is a locally Holder continue function

(3.31)

and
b(y, t), by(y, t) ∈ L∞(QT ). (3.32)

In particular, we will prove the following local existence theorem:

Theorem 3.5. Let ũ0 ∈ C2[0, r0] a positive function, let g1 : [0, T ] → R+ and
g2 : R+ → R be C1 functions and let λ,Λ be positive constants such that conditions
(3.30)-(3.32) are verified. Then (3.29) has at least one weak solution.

We remark that in (3.29) conditions

{
u(η1, t) = ψ1(t) t > 0

u(η2, t) = ψ2(t) t > 0
(3.33)
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are the so called, compatibility conditions of zero order and
{
(ψ1)t = g(t)(uuy)y + b(y, t)(u)y for (y, t) = (η1, 0)

(ψ2)t = g(t)(uuy)y + b(y, t)(u)y for (y, t) = (η2, 0)
(3.34)

are those of the first order. From classical theory about parabolic equation, see [13],
these conditions are needed to have u ∈ C2,1.

First of all we note if ũ0(y) verifies the hypotheses (3.1)-(3.10) of Theorem 3.2,
then (Su) with (BF ) and (LRF ) is the special case of (3.29) obtained setting:





η1 = 0

η2 = r0

g(t, u) = E
r20

(r(t)− l(t))
u

ψ1(t) = u0

ψ2(t) = u0 +
µε

b
l′(t)

where a(t, u) is defined in (3.21).
Setting g(t, u) = a(t, u) conditions (3.31)-(3.32) are also satisfied. In fact, since

for all t ∈ [0, T ], r(t)− l(t) is a positive and continuous function, setting:

m = min
t∈[0,T ]

r(t)− l(t) and M = max
t∈[0,T ]

r(t)− l(t)

and

λ = E
r20
M

and Λ = E
r20
m

we have that λ ≤ a1(t) ≤ Λ where a1(t) is defined in (3.22). Moreover a2(u) = u
verifies (3.31). Finally:

b(y, t) =
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
and by(y, t) =

−l′(t) + r′(t)
r(t)− l(t)

are continuous functions and so they are bounded on QT . Then, hypothesis (3.32)
is also satisfied.

Hypotheses (3.6)-(3.9) correspond to the compatibility conditions of zero and
first order for (Su) and they are verified, since ũ0(0) = u0 and ũ0(r0) = u0 +
µεl′(0)/b. So {

ψ1(0) = u0(0)

ψ2(0) = u0(r0).

With regard to the first order compatibility condition in y = 0, from (3.34):

ψ1t(0) = |(a(t, u)(uuy)y + b(y, t)uy)|y=0,t=0 .
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Since ψ1(t) = u0 then ψ1t = 0 and

∣∣∣(a(t, u)(uuy)y + b(y, t)uy)
∣∣∣
y=0,t=0

= a(0, u0)(u0(u0)y)y + b(0, 0)(u0)y

= E(u0(u0)y)y + l′(0)(u0)y.

So hypothesis (3.8) implies that this compatibility condition holds.
In y = r0, the first compatibility condition is:

ψ2t(0) = |(a(t, u)(uuy)y + b(y, t)uy)|y=r0,t=0 .

From the definition of ψ2(t) we obtain that:

ψ2t(t) =
µ

bE
l′′(t)

and deriving l′(t), defined in (LRF ), we can write l′′(t) as follows:

l′′(t) = E
α

µ− α

[
r0(r

′(t)− l′(t))
(r(t)− l(t))2

uy −
r0

r(t)− l(t)
uyt

]

y=0

= E
α

µ− α

r0
r(t)− l(t)

[
r′(t)− l′(t)
r(t)− l(t)

uy −
r0

r(t)− l(t)
(ut)y

]

y=0

and

(ut)y =

[
E

r20
(r(t)− l(t))2

(uuy)y +
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
uy

]

y

=

[
E

r20
(r(t)− l(t))2

(uuy)yy +
r′(t)− l′(t)
r(t)− l(t)

uy +
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
uyy

]
.

Then

l′′(t) = E
α

µ− α

r0
r(t)− l(t)

[
r′(t)− l′(t)
r(t)− l(t)

(
1− r0

r(t)− l(t)

)
uy

−E
r30

(r(t)− l(t))3
(uuy)yy − r0

l′(t)(r0 − y) + r′(t)y
r(t)− l(t)

uyy

]

y=0

= E
α

µ− α

r0
r(t)− l(t)

[
r′(t)− l′(t)
r(t)− l(t)

(
1− r0

r(t)− l(t)

)
uy(0, t)

−E
r30

(r(t)− l(t))3
(uuy)yy(0, t)−

r20
(r(t)− l(t))2

l′(t)uyy(0, t)

]
.

So
l′′(0) = −E

α

µ− α
[E(ũ0(ũ0)y)yy + l′(0)(ũ0)yy] (3.35)
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and replacing l′′ in the first order compatibility condition we obtain:

− µ

b

α

µ− α
[E(u0(u0)y)yy + l′(0)(u0)yy]

=

[
E

r20
(r(t)− l(t))2

(u0(u0)y)y +
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
(u0)y

]

y=r0,t=0

= [E(ũ0(ũ0)y)y + r′(0)(ũ0)y]

that is hypothesis (3.9).
This proves that (Su) is a special case of system (3.29) and it verifies hypotheses

of Theorem 3.2. So Theorem 3.5 is a generalization of Theorem 3.2.

Proof of Existence of solutions to (3.29). First of all we have to give the following
definition to explain what we mean for a weak solution of (3.29).

Definition 3.6. A function u defined in [η1, η2]× [0, T ] is a weak solution for
(3.29), if:

1. u is real, non negative and continuous;

2.





u(y, 0) = ũ0(y) x ∈ [η1, η2]

u(η1, t) = ψ1(t) t ∈ [0, T ]

u(η2, t) = ψ2(t) t ∈ [0, T ]

3. G2(u(y, t)) =
(∫ u(y,t)

0
g2(s)ds

)
is of class C2,1 and its derivative with respect

to y is a square integrable function;
4. u verifies the following identity:

∫ T

0

∫ η2

η1

[utϕ− g1(t)(g2(u)u)yϕy − (b(y, t)ϕ)yu]dydt

= −
∫ η2

η1

ũ0(y)ϕ(y, 0)dydt

(3.36)

for all ϕ ∈ C2 such that ϕ(η1, t) = ϕ(η2, t) = 0 for any t ∈ (0, T ] and ϕ(y, T ) =
0 for any y ∈ (η1, η2).

Remark 3.7. In the literature about first boundary problems for degenerate
parabolic equations, this special case is not treated in detail. Among others we
point out the article of Gilding [8] and the one of Bertsch and Kamin [3]. In
particular, in [8] the first boundary problem for equations of the following type are
treated:

ut = (a(u)uy)y + b(u)uy (3.37)

while in [3]:
ut = (a(t, u)uy)y + b(y, t, u). (3.38)

Our equation doesn’t belong neither to (3.37) nor to (3.38).
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The independence of b(y, t, u) from uy in the equation (3.38) as well as the
independence of the coefficients from y, t and uy in the equations (3.37) nor to (3.38),
makes the study of said equations easier then the study of our model. Indeed, since
in our equation for u a(t, u) = a1(t)a2(u), we can follow the proof of the existence
for (3.37).

The idea of the proof of Theorem 3.5 is to show that if, for all y ∈ [0, r0], ũ(y) > 0,
then there exists a sequence of functions {u0,k} which uniformly converges to ũ0 for
k → ∞. Then we show that for all k, the system (3.29) with initial datum u0,k has
a unique solution, uk. Finally we prove that setting

u(y, t) = lim
k→∞

uk(y, t)

then u is a weak solution for system 3.29. In the next section we will show that this
solution is also unique.

For the proof we need the following four lemma.

Lemma 3.8. Let f ∈ C1(0,∞). Then given any M positive real constant there
exists a function ϑ ∈ C2[0,M ] and a positive constant C such that for s ∈ (0,M ]:

1. C ≥ |ϑ(s)| ≥ 1
C ;

2. ϑ′′(s)ϑ(s) < 0;
3. |f ′(s)ϑ(s) + 2f(s)ϑ′(s)| ≤ −Cϑ′′(s)ϑ(s);
4. f2(s) ≤ −Cϑ′′ϑ;

if and only if F (s) = s|f ′(s)| ∈ L1(0,M).

The proof of this lemma follows from [8, Lemma 3], simply replacing b(s) with
a constant.

Lemma 3.9. Let ε,α ∈ (0, 1] and M > 0 be fixed arbitrary constants.

Let be QT = (η1, η2)× (0, T ], with −∞ < η1 < η2 < ∞.

Suppose that ũ0(y) ∈ C2+α[0, r0] and that ψ1(t), ψ2(t) are C1+α[0, T ] functions
such that:





ε ≤ ũ0(y) ≤ M y ∈ [η1, η2]
ε ≤ ψ1(t),ψ2(t) ≤ M t ∈ [0, T ]
ψi(0) = ũ0(ηi) i = 1, 2
ψ′
i(0) = (g(0, ũ0)(ũ0)y)y + b(y, 0)ũ0(y)y i = 1, 2.

(3.39)
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Then, if g1(t), g2(u) and b(y, t) verify respectively conditions (3.30), (3.31) and
(3.32) there exists a unique function u(y, t) such that:

1. u(y, t) ∈ C2,1(QT );

2. G2(u) =

∫ u(y,t)

0

g2(r)dr is such that G2(u) ∈ C2,1(Q) and its derivative with

respect to y is a square integrable function;
3. ε ≤ u ≤ M , ∀(y, t) ∈ QT ;
4. ut = (g(t, u)uy)y + b(y, t)uy, ∀(y, t) ∈ QT ;

5.

{
u(y, 0) = ũ0(y)

u(ηi, t) = ψi(t) ∀t ∈ [0, T ], i = 1, 2.

The proof of this Lemma uses Lemma 3.8 and some properties of the non degenerate
parabolic equations. In particular, since g(t, u) has a continuous derivative with
respect to u and verifies conditions (3.30) and (3.31), then there exists h(u) such
that: {

h(s) = g2(s) ε ≤ u ≤ M

h′(s) = 0 otherwise.

Then there exist γ ∈ (0, 1) and a function u ∈ C2+γ,1(QT ) which satisfies (BF ) and
equation

ut − g1(t)(h(u)uy)y − b(y, t)uy = 0 for all (y, t) ∈ QT (3.40)

moreover u is the unique solution of the problem above.
In fact, g1(t)h(u) and b(y, t) verifies the hypotheses of the existence Theorem 6.1

(of [13, pag. 452 ]), for parabolic non degenerate equation. In particular, writing
equation (3.40) as follows:

ut − (g1(t)h(u))uyy − b(y, t)uy = 0 for all (y, t) ∈ QT

we have that:

g1(t)h(u)ξ
2 = E

r20
(r(t)− l(t))2

uξ2 ≥ λεξ2 > 0

and
(g1(t)h(u) + b(y, t))uy|uy=0 = 0 > −c1u

2 − c2

for all c1 and c2 positive constants.
Then to prove the Lemma, we have only to show that G2(u) has a generalized

square integrable derivative. This can be shown setting v = G2(u) and noting that
v verifies:

vt = g1(t)h(u)vyy + b(y, t)vy in QT .

The required regularity is then obtained noting that u ∈ C2,1(QT ) and using stan-
dard theory on parabolic equations, for further detail see [13].
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Lemma 3.10. Let the assumptions of Lemma 3.9 hold and let u(y, t) be the func-
tion exhibited in the same Lemma. Suppose that

|G′
2(ũ0)| ≤ K0 ∀y ∈

[
η1 +

δ

2
, η2 −

δ

2

]

with K0 and δ positive constants.
Then if

sg′2(s) ∈ L1(0, 1)

there exists a constant K = K(K0, δ,M) such that:

|G2(u(y1, t1))−G2(u(y2, t2))| ≤ K
[
|y1 − y2|2 + |t1 − t2|

] 1
2

∀(y1, t1), (y2, t2) ∈ Qδ =
[
η1 +

1
2δ, η2 − 1

2δ
]
× [0, T ].

Proof. sg′2(s) ∈ L1(0, 1), so

F (s) = s|g′2(s)| ∈ L1(0,M).

Then, for Lemma 3.8, there exists a function ϑ(s) ∈ C2[0,M ] such that:

1. C ≥ |ϑ(s)| ≥ 1
C ;

2. ϑ′′(s)ϑ(s) < 0;
3. |g′2(s)ϑ(s) + 2g2(s)ϑ

′(s)| ≤ −Cϑ′′(s)ϑ(s);
4. g22(s) ≤ −Cϑ′′ϑ.

Set

w(y, t) =

∫ u(y,t)

0

g2(s)ϑ
−1(s)ds.

The proof of the lemma needs some properties of w(y, t).

wt =
g2(u)

ϑ(u)
ut and wy =

g2(u)

ϑ(u)
uy

and

wyy =
g2(u)

ϑ(u)
uyy +

[
g′2(u)
ϑ(u)

− g2(u)
ϑ′(u)
ϑ2(u)

]
u2
y. (3.41)

Since ut = (g(t, u)uy)y + b(y, t)uy, then:

wt =
g2(u)

ϑ(u)

[
g1(t)g2(u)uyy + g1(t)g

′
2(u)u

2
y + b(y, t)uy

]

= g1(t)g2(u)

[
wyy +

(
g2(u)

ϑ′(u)
ϑ2(u)

− g′2(u)
ϑ(u)

)
u2
y

]
+g1(t)g2(u)

g′2(u)
ϑ(u)

u2
y + b(y, t)wy

= g(t, u)wyy + g1(t)ϑ
′(u)w2

y + b(y, t)wy.
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We differentiate this equation with respect to y and multiply it for wy. So, we
obtain:

wywyt = g1(t)g2(u)wywyyy +

[
g1(t)

g2(u)
g′2(u)ϑ(u) + 2g1(t)ϑ

′(u)

]
w2

ywyy

+
g1(t)

g2(u)
ϑ(u)ϑ′′(u)(wy)

4 + by(y, t)w
2
y + b(y, t)wywyy.

Setting p = wy the previous equation becomes:

1

2
(p2)t = g1(t)g2(u)ppyy +

[
g1(t)

g2(u)
g′2(u)ϑ(u) + 2g1(t)ϑ

′(u)

]
p2py

+
g1(t)

g2(u)
ϑ(u)ϑ′′(u)p4 + by(y, t)p

2 + b(y, t)ppy.

(3.42)

Let’s define z(y, t) in the following way:

z(y, t) = ζ2(y)p2(y, t) (3.43)

where ζ ∈ C2[η1, η2] is a cut-off function such that:

ζ(y) =





1 y ∈
[
η1 +

3

4
δ, η2 −

3

4
δ

]

0 y ∈
[
η1, η1 +

1

2
δ

]
∪
[
η2 −

1

2
δ, η2

] (3.44)

and ∀y ∈ [η1, η2] 0 ≤ ζ(y) ≤ 1.
If z(y, t) has a maximum point in QT , then at this point:

zy = zt = 0 and zyy < 0

or, since g(t, u) is positive,

zy = 0 and g(t, u)zyy − zt = 0.

From (3.43):

zt = 2ζ2(y)ppt (3.45)

zy = 2ζp(ζ ′p+ ζpy) (3.46)
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and

zyy = 2[ζ ′p+ ζpy]
2 + 2ζp[ζ ′′p+ 2ζ ′py + ζpyy] (3.47)

zy = 0 implies:

ζ ′p = −ζpy (3.48)

and at this point g(t, u)zyy − zt becomes:

g(t, u)zyy − zt =2g(t, u)ζp[ζ ′′p+ 2ζ ′py + ζpyy]− 2ζ2ppt

=2[ζ2(g(t, u)ppyy − ppt) + g(t, u)ζζ ′′p2 − 2g(t, u)p2(ζ ′)2]

and so g(t, u)zyy − zt < 0 if and only if:

ζ2
(
1

2
(p2)t − g(t, u)ppyy

)
≥ g(t, u)p2(ζζ ′′ − 2(ζ ′)2) (3.49)

and using equation (3.42):

ζ2

(
1

2
(p2)t − g(t, u)ppyy

)

= ζ2
[
g1(t)

g2(u)
ϑϑ′′p4 +

(
g1(t)

g2(u)
g′2ϑ+ 2g1(t)ϑ

′
)
p2py + byp

2 + bppy

]

= ζ2p2
[
g1(t)

g2(u)
ϑϑ′′p2 +

(
g1(t)

g2(u)
g′2ϑ+ 2g1(t)ϑ

′
)
py + by

]
− bζζ ′p2

where in the last equation we have used (3.48). So equation (3.49) is equivalent to:

ζ2
[
g1(t)

g2(u)
ϑϑ′′p2 +

(
g1(t)

g2(u)
g′2ϑ+ 2g1(t)ϑ

′
)
py + by

]
− bζζ ′ ≥ g(t, u)(ζζ ′′ − 2(ζ ′)2).

That is:

− g1(t)

g2(u)
ϑϑ′′ζ2p2 ≤ ζ2py

(
g1
g2

g′2ϑ+ 2g1ϑ
′
)
+ byζ

2 − bζζ ′′ + g(t, u)(2ζ ′ − ζζ ′′)

= −ζζ ′p

(
g1
g2

g′2ϑ+ 2g1ϑ
′
)
+ byζ

2 − bζζ ′′ + g(t, u)(2ζ ′ − ζζ ′′).
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So, since for Lemma 3.8, ϑϑ′′ < 0 and g1(t), g2(u) > 0:

ζ2p2 ≤ ζζ ′

ϑϑ′′ p(g
′
2ϑ+ 2g2ϑ) +

g22
ϑϑ′′ (ζζ

′′ − 2ζ ′)− g2
g1

by
ϑϑ′′ ζ

2 +
g2
g1

b

ϑϑ′′ ζζ
′

≤
∣∣∣∣
ζζ ′

ϑϑ′′ p(g
′
2ϑ+ 2g2ϑ)

∣∣∣∣+
∣∣∣∣
g22
ϑϑ′′ (ζζ

′′ − 2ζ ′)

∣∣∣∣+
∣∣∣∣
g2
g1

by
ϑϑ′′ ζ

2

∣∣∣∣+
∣∣∣∣
g2
g1

b

ϑϑ′′ ζζ
′
∣∣∣∣

and again from Lemma 3.8

∣∣∣∣
g′2ϑ+ 2g2ϑ

′

ϑϑ′′

∣∣∣∣ ≤ C and

∣∣∣∣
g22
ϑϑ′′

∣∣∣∣ ≤ C.

Moreover, since g′2 ≥ 0 in [0,M ] and ϑ > 0 we have

∣∣∣∣
2g2ϑ

′

ϑϑ′′

∣∣∣∣ ≤
∣∣∣∣
g′2ϑ+ 2g2ϑ

′

ϑϑ′′

∣∣∣∣ ≤ C

and then ∣∣∣ g2
ϑϑ′′

∣∣∣ ≤ 1

2

C

ϑ′ .

From Lemma 3.8, ϑ′′ < 0 and so ϑ′ is a decreasing function. Then

∣∣∣ g2
ϑϑ′′

∣∣∣ ≤ 1

2

C

ϑ′(M)
= C′.

Using these inequalities we obtain the following upper bound for ζ2p2:

ζ2p2 ≤ C

[
|ζζ ′p|+ |ζζ ′′ − 2ζ ′|+ 1

|ϑ′(M)|

∣∣∣∣
b

g1
ζζ ′

∣∣∣∣+
1

|ϑ′(M)|

∣∣∣∣
by
g1

ζ2
∣∣∣∣
]
. (3.50)

Since b and by are bounded functions and g1 is positive and continuous in QT , b/g1
and by/g1 are also bounded. Let Cb and Cby their respectively upper bounds.

Set

C′ =
1

|ϑ′(M)| max{Cb, Cby}

then equation (3.50) becomes:

ζ2p2 ≤ C
[
|ζζ ′p|+ |ζζ ′′ − 2ζ ′|+ C′|ζζ ′|+ C′|ζ2|

]
.
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Using Young’s inequality:

Cζζ ′p ≤ ζ2p2

2
+

C2(ζ ′)2

2
≤ ζ2p2

2
+ C2(ζ ′)2

and so
1

2
z =

1

2
ζ2p2 ≤ C

[
C(ζ ′)2 + |ζζ ′′ − 2ζ ′|+ C′|ζζ ′|+ C′|ζ2|

]
. (3.51)

On the other hand if the maximum value of z is not an interior point of QT it has
to be on the lower bound of QT and by definition:

z(y, 0) =ζ2(y)p2(y, 0) = ζ2(y)(wy(y, 0))
2 = ζ2(y)

[(∫ u

0

(y, 0)g2(s)ϑ
−1(s)ds

)

y

]2

=ζ2(y)(uy(y, 0))
2g22(u(y, 0))ϑ

−2(u(y, 0)) = ζ2(y) ((G2)
′(u0))

2
ϑ−2

|ζ| ≤ 1 for its definition, (3.44), and since for Lemma 3.8:

ϑ−1(s) ≥ 1

C

and for the hypothesis of the lemma:

|(G2)
′(ũ0)| ≤ K0 for y ∈

[
η1 +

1

2
δ, η2 −

1

2
δ

]

then
z(y, 0) ≤ C2K2

0 . (3.52)

From equations (3.51) and (3.52) we have that

sup
Qδ

|wy| ≤ C1 = C1(K0,M, δ)

and since wy =
1

ϑ
(G2(u))y it follows supQδ

|(G2(u))y| ≤ CC1.

Now setting v(y, t) = G2(y, t), then:

vt = g(t, u)vyy + b(y, t)vy

and
|v(y1, t)− v(y2, t)| ≤ CC1|y1 − y2| ∀(y1, t), (y2, t) ∈ Qδ. (3.53)

Moreover v has a bound which depends only on M .
Then there exists C2 such that:

|v(y, t1)− v(y, t2)| ≤ C2|t1 − t2|
1
2 . (3.54)
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From equations (3.53) and (3.54) the theorem is proved. In fact:

|v(y1, t1)− v(y2, t2)| ≤ |v(y1, t1)− v(y1, t2)|+ |v(y1, t2)− v(y2, t2)|

≤ C2|t1 − t2|
1
2 + CC1|y1 − y2| ≤ K

(
|y1 − y2|2 + |t1 − t2|

) 1
2 .

Then:

|G2(y1, t1)−G2(y2, t2)| ≤ K(|y1 − y2|2 + |t1 − t2|)
1
2 ∀(y1, t1), (y2, t2) ∈ Qδ. �

Lemma 3.11. Let the assumptions of Lemma 3.9 hold and let u(y, t) the function
exhibited in the same Lemma. Suppose that there exist two positive constants, K0

and K′
0 such that:

|(G2(ũ0))
′| ≤ K0 ∀y ∈

[
η1 +

1

2
δ, η2 −

1

2
δ

]

and ∫ T

0

|(G2(ψi))
′|dot ≤ K′

0 i = 1, 2.

Then, if sag′(s) ∈ L1(0,M), there exists a positive constant L = L(K0,K
′
0,M, δ, T )

such that: ∫∫

Q\Qδ

((G2(u)y))
2
dydt ≤ L.

Proof. We will only prove that

∫ T

0

∫ η1+
1
2 δ

η1

(G2(u)y)
2dydt ≤ 1

2
L.

The proof is the same for

∫ T

0

∫ η2

η2− 1
2 δ

(G2(u)y)
2dydt ≤ 1

2
L.

Set:

χ(y, t) =
1

g1(t)
[G2(u(y, t))−G2(ψ1(t))]

then, since ut − (g(t, u)uy)y − b(y, t)uy = 0:

∫ T

0

∫ η1+
1
2 δ

η1

[ut − (g1(t)g2(u)uy)y − b(y, t)uy]χ(y, t)dydt = 0. (3.55)
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Noting that:

(g2(u)uy)y = (G2(u))yy.

Equation (3.55) is equivalent to:

0 =

∫ T

0

∫ η1+
1
2 δ

η1

[ut − (g1(t)g2(u)uy)y − b(y, t)uy]χ(y, t)dydt

=

∫ T

0

∫ η1+
1
2 δ

η1

ut
G2(u(y, t))

g1(t)
dydt−

∫ T

0

∫ η1+
1
2 δ

η1

ut
G2(ψ1(t))

g1(t)
dydt

−
∫ T

0

∫ η1+
1
2 δ

η1

(G2(u))yy[G2(u)−G2(ψ1)]dydt−
∫ T

0

∫ η1+
1
2 δ

η1

b(y, t)uχ(y, t)dydt.

But

∫ T

0

∫ η1+
1
2 δ

η1

(G2(u))yy[G2(u)−G2(ψ1)]dydt

=

∫ T

0

[G2(u)y(G2(u)−G2(ψ1))]
η1+

1
2 δ

η1 dot−
∫ T

0

∫ η1+
1
2 δ

η1

(G2(u)y)
2
dydt

=

∫ T

0

[
G2

(
u

(
η1 +

1

2
δ, t

))

y

(G2(u)−G2(ψ1))

](
η1 +

1

2
δ, t

)
dot

−
∫ T

0

∫ η1+
1
2 δ

η1

(G2(u)y)
2
dydt

∫ T

0

∫ η1+
1
2 δ

η1

b(y, t)uyχ(y, t)dydt

=

∫ T

0

∫ η1+
1
2 δ

η1

[b(y, t)u]yχ(y, t)−
∫ T

0

∫ η1+
1
2 δ

η1

by(y, t)uχ(y, t)dydt

and

∫ T

0

∫ η1+
1
2 δ

η1

[b(y, t)u]yχ(y, t)dydt

=

∫ T

0

[b(y, t)u(y, t)χ(y, t)]
η1+

1
2 δ

η1 dot−
∫ T

0

∫ η1+
1
2 δ

η1

b(y, t)u(y, t)
G2(u)x
g1(t)

dydt.
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So, equation (3.55) implies:

∫ T

0

∫ η1+
1
2 δ

η1

(G2(u)y)
2
dydt = −

∫ T

0

∫ η1+
1
2 δ

η1

ut
G2(u)−G2(ψ1)

g1(t)
dydt

−
∫ T

0

∫ η1+
1
2 δ

η1

b(y, t)u(y, t)
G2(u)y
g1(t)

dydt−
∫ T

0

∫ η1+
1
2 δ

η1

by(y, t)uχ(y, t)dydt

+

∫ T

0

[(
G2(u)y −

b(y, t)

g1(t)
u(y, t)

)
(G2(u)−G2(ψ1))

]
(η1 +

1

2
δ, t)dot.

(3.56)

Denote the four integrals on the right hand side by I1, I2, I3, I4 respectively. We
estimate them in turn.

Let C1 and Cg1 be positive constants such that:

0 < Cg1 ≤ inf
t∈[0,T ]

g1(t)

and

C1 ≥ sup
s∈(0,M ]

G2(s), sup
s∈(0,M ]

∫ s

0

G2(r)dr

C1 ≥ sup
y,t∈[η1,η1+

1
2 δ]×[0,T ]

∣∣∣∣
b(y, t)

g1(t)
u(y, t)

∣∣∣∣ , sup
y,t∈[η1,η1+

1
2 δ]×[0,T ]

∣∣∣∣
by(y, t)

g1(t)
u(y, t)

∣∣∣∣ .

Since for Lemma 3.10 there exists K = K(K0,M, δ) such that ∀t ∈ (0, T ] and
∀u ∈ (0,M ]: ∣∣∣∣G2(u)y

(
η1 +

1

2
δ, t

)∣∣∣∣ ≤ K ∀t ∈ [0, T ]

then:

I1=

∫ T

0

[(
G2(u)y −

b(y, t)

g1(t)
u(y, t)

)
(G2(u)−G2(ψ1))

](
η1 +

1

2
δ, t

)
dot

≤
∫ T

0

(∣∣∣∣∣

(
G2

(
u

(
η1 +

1

2
δ

)
, t

))

y

∣∣∣∣∣+ C1

)
2C1dt

= 2C1

[∫ T

0

∣∣∣∣∣

(
G2

(
u

(
η1 +

1

2
δ

)
, t

))

y

∣∣∣∣∣+ C1T

]
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and so I1 ≤ 2C1T (K + C1).

I2=

∫ T

0

∫ η1+
1
2 δ

η1

b(y, t)u(y, t)
G2(u)y
g1(t)

dydt

≤ C1

∫ T

0

∫ η1+
1
2 δ

η1

G2(u)ydydt = C1

∫ T

0

[|G2(u)|]η1+
1
2 δ

η1 dot ≤ 2C2
1T

I3=

∫ T

0

∫ η1+
1
2 δ

η1

by(y, t)uχ(y, t)dydt≤
∫ T

0

∫ η1+
1
2 δ

η1

C1|G2(u)−G2(ψ1)|dydt ≤ 2C2
1T δ

I4 =

∫ T

0

∫ η1+
1
2 δ

η1

ut
G2(u)−G2(ψ1)

g1(t)
dydt

=

∫ T

0

∫ η1+
1
2 δ

η1

ut
G2(u)

g1(t)
dydt−

∫ T

0

∫ η1+
1
2 δ

η1

ut
G2(ψ1)

g1(t)
dydt

≤ 1

Cg1

[∣∣∣∣
∫ T

0

∫ η1+
1
2 δ

η1

utG2(u)dydt

∣∣∣∣+
∣∣∣∣
∫ T

0

∫ η1+
1
2 δ

η1

utG2(ψ1)dydt

∣∣∣∣

]

=
1

Cg1

[∣∣∣∣
∫ T

0

∫ η1+
1
2 δ

η1

∂

∂t

(∫ u

0

G2(s)d.s.

)
dydt

∣∣∣∣+

+

∣∣∣∣
∫ η1+

1
2 δ

η1

[uG2(ψ1)]
T
0 dx−

∫ T

0

∫ η1+
1
2 δ

η1

u(G2(ψ1(t))
′)dydt

∣∣∣∣

]

then from the hypotheses of the lemma
∫ T

0
|G(ψ1(t))|dot ≤ K′

0

I4 ≤ 1

Cg1

[∫ η1+
1
2 δ

η1

∣∣∣∣
(∫ u

0

G2(s)d.s.

)T

0

∣∣∣∣+
∫ η1+

1
2 δ

η1

2MC1 +

∫ η1+
1
2 δ

η1

MK′
0

]

≤ 1

Cg1

[2C1δ + 2MC1δ +MK′
0δ] .

These estimates of I1, I2, I3 and I4 make
∫ T

0

∫ η1+
1
2 δ

η1
(A2(u)x)

2dxdt bounded.
In fact, setting:

1

2
L = 2C1T (K + C1) + 2C2

1T + 2C2
1T δ +

δ

Ca1

[2C1 + 2MC1 +MK′
0]

and substituting this estimate in equation (3.56), we obtain:

∫ T

0

∫ η1+
1
2 δ

η1

(G2(u)y)
2
dydt ≤ 1

2
L (3.57)

and L = L(K,K′
0,M, δ) but it doesn’t depend on ε. �
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Proof of Theorem 3.5. As in [8], we can choose positive constants M and
K′

0, sequences of positive constants {εk}∞k=1, {αk}∞k=1 and sequences of functions
{u0,k}∞k=0, {ψ1,k}∞k=1 and {ψ2,k}∞k=1 such that:

1. εk,αk ∈ (0, 1] ∀k;
2. u0,k ∈ C2+αk [η1, η2] ∀k;
3. ψ1,k,ψ2,k ∈ C1+αk [0, T ] ∀k;
4. εk ≤ u0,k(y) ≤ M ∀y ∈ [η1, η2],∀k

εk ≤ ψ1,k(t),ψ2,k(t) ≤ M ∀t ∈ [0, T ],∀k;
5. u0,k+1(y) ≤ u0,k(y) ∀x ∈ [η1, η2],∀k

ψ1,k+1(t) ≤ ψ1,k(t) ∀t ∈ [0, T ],∀k
ψ2,k+1(t) ≤ ψ2,k(t) ∀t ∈ [0, T ],∀k;

6. ψ1,k(0) = u0,k(η1) and ψ2,k(0) = u0,k(η2).
Moreover:

7. (ψi,k)
′(0) = (g(t, u0,k)(u0,k)y)y(ηi) + b(y, t)(u0,k)y(ηi) for i = 1, 2;

8. ∀δ ∈ (0, 1) there exists a constant K0(δ) such that:

|(G2(u0,k))
′(y)| ≤ K0(δ) ∀y ∈ (η1 + δ, η2 − δ) ∀k;

9.
∫ T

0
G2(ψ1,k(t))dt,

∫ T

0
G2(ψ2,k(t))dt ≤ K′

0 ∀k;
10. u0,k → u0(y) for k → ∞ uniformly ∀y ∈ [η1, η2];
11. ψ1,k → ψ1 and ψ2,k → ψ2 for k → ∞ uniformly ∀t ∈ [0, T ];
12. εk → 0 as k → ∞.

So, for Lemma 3.9 there exists a unique function uk(y, t) such that:

1. (A2(uy))y ∈ C2,1(R);
2. εk ≤ uk(y, t) ≤ M ∀(y, t) ∈ QT ;
3. (uk)t − (g(t, uk)(uk)y)y − b(y, t)(uk)y = 0 ∀(y, t) ∈ QT ;
4. uk(y, 0) = ũ0(y) ∀y ∈ [η1, η2];
5. uk(η1, t) = ψ1,k ∀t ∈ [0, T ];
6. uk(η2, t) = ψ2,k ∀t ∈ [0, T ].

In view of the monotonicity conditions on {u0,k}∞k=1, {ψ1,k}∞k=1 and on {ψ2,k}∞k=1

we can define a real non negative bounded function

u(y, t) = lim
k→∞

uk(y, t).

As in [8] we can prove that this is a weak solution for system (3.29).
Moreover, as in [8], thanks to Lemma 3.10 and Lemma 3.11, we can prove the

continuity of u in the interior of Q and that the operator G2(u) has a generalized
square integrable derivative.

So, we have only to prove the continuity of u(y, t) for y = η1, η2. We will show
the continuity only in y = η1. For y = η2 it can be shown in a similar way.
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In order to prove the continuity of u(y, t) in y = η1, it’s enough to prove that
∀t0 ∈ [0, T ]:

lim sup
(y,t)→(η1,t0)

u(y, t) ≤ ψ1(t0) (3.58)

and
lim inf

(y,t)→(η1,t0)
u(y, t) ≥ ψ1(t0). (3.59)

Equation (3.58) can be proven as follows:

u(y, t) ≤ uk(y, t) ∀(y, t) ∈ QT ∀k.

Then:
lim sup

(y,t)→(η1,t0)

u(y, t) ≤ lim sup
(y,t)→(η1,t0)

uk(y, t) = ψ1.k(t0)

and equation (3.58) is obtained letting k → ∞.
In order to prove equation (3.59) we will show that for any ε ∈ (0,ψ1(t0)), we

can define a function w(y, t) such that:

lim inf
(y,t)→(η1,t0)

w(y, t) = ψ1(t0)− ε

and
uk(y, t) ≥ w(y, t) for k � 1 and ∀(y, t) ∈ QT . (3.60)

If ψ1(t0) = 0 then trivially equation (3.59) is verified. In fact:

lim inf
(y,t)→(η1,t0)

u(y, t) ≥ 0

then we focused on ψ(t0) > 0.
Let ε be a constant such that ε ∈ (0,ψ1(t0)). Set

β = 1 +M sup
(y,t)∈QT

b(y, t).

Then we can define the following functions:

ρ(c) =

∫ M

0

a(t, r)(cr + b(y, t)r + β)−1dr (3.61)

and

λ(c) = t0 −
1

c

∫ ψ1(t0)−ε

0

a(t, r)(cr + b(y, t)r + β)−1dr. (3.62)

We note that:
lim
c→∞

c(t0 − λ(c)) = 0+.
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If t0 > 0 then we choose and fix c so large that:





λ(c) > 0

c(t0 − λ(c)) ≤ η2 − η1

ψ1(t) ≥ ψ1(t0)−
ε

2
∀t ∈ [λ(c), t0]

(3.63)

and set t1 = λ(c).
We choose and fix c so large that:

{
−cλ(c) = c(t0 − λ(c)) < η2 − η1

u0(y) ≥ u0(0)−
ε

2
= ψ1(t0)−

ε

2
∀y ∈ [η1, η1 − cλ(c)]

(3.64)

and set t1 = t0. Now we define an increasing function h : [0, ρ(c)] → [0,M ] as
follows:

η =

∫ h(η)

0

g(t, r)(cr + b(y, t)r + β)−1dr.

This expression identify a bijection between [0, ρ(c)] and [0,M ]. In particular, if we
define G(t, u) as follows:

G(t, u) =

∫ u

0

g(t, r)dr

we find that:

(G(t, h(η)))η = g(t, h)h′ = ch+ b(y, t)h+ β on [0, ρ(c)]

and

(G(t, h(η)))ηη = h′(c+ b(y, t)) on [0, ρ(c)]. (3.65)

We remark that, by definition

h(c(t0 − λ(c))) = ψ1(t0)− ε. (3.66)

If t0 < T then from (3.63), (3.64) and (3.66) we can choose t2 such that:

t0 < t2 ≤ T
c(t2 − λ(c)) < η2 − η1

h(c(t2 − λ(c))) < ψ1(t0)−
ε

2
ψ1(t) ≥ ψ1(t0)−

ε

2
∀t ∈ [t0, t2]

else we set t2 = T = t0.
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Let m so large that εk < ψ1(t0) − ε for all k ≥ m and for each m we define a
point σk such that h(σk) = εk. We set:

Ωk = {(y, t) : t1 < t ≤ t2, η1 < y < η1 − σk − c(t− λ(c))}

and
Γk = {(y, t) : t1 < t ≤ t2, y = η1 − σk − c(t− λ(c))}.

Set Ω = ∪kΩk. Since σk tends to 0 as εk tends to 0, then

Ω = {(y, t) : t1 < t ≤ t2, η1 < y < η1 + c(t− λ(c))}

and since, by definition c(t − λ(c)) < η2 − η1, then Ω ⊂ Q. Now, we define the
function w(y, t) in the following way:

w(y, t) =

{
h(η1 − y + c(t− λ(c))) (y, t) ∈ Ω

0 (y, t) ∈ Q \ Ω.

In particular:

lim inf
(y,t)→(η1,t0),(y,t)∈R

w(y, t) = lim inf
(y,t)→(η1,t0),(y,t)∈Ω

w(y, t) = w(η1, t0) = ψ1(t0)− ε.

So, in order to prove the theorem we had only to show that equation (3.60) holds.
That is for any (y, t) ∈ Ωk \Ωk and for any k ≥ m it holds uk(y, t) > w(y, t). In
fact, if t ∈ [t1, t2] then:

uk(η1, t) = ψ1,k(t) ≥ ψ1(t) ≥ ψ1(t)−
ε

2
> h(c(t2−λ(c))) > h(c(t−λ(c))) = w(η1, t)

and if (y, t) ∈ Γk then:

uk(y, t) ≥ εk = h(σk) = w(y, t).

Moreover, if t1 = 0 then for y ∈ [η1, η1 − cλ(c)]:

uk(y, t) = u0,k(y) ≥ u0(y) ≥ u0(0)−
ε

2
= ψ1(t0)−

ε

2
> h(c(t2 − λ(c))) > h(−cλ(c)) > h(η1 − x− cλ(c)) = w(y, 0).

Now, we use the maximum principle to prove that inequality (3.60) holds in Ωk.
From (3.65), we observe that w(y, t) is a classical solution of (3.29) in Ωk. So,

w(y, t) is bounded away from 0 in Ωk, by εk.
Then, ∀(y, t) ∈ Ωk:

uk(y, t) ≥ w(y, t).

Moreover, for any (y, t) ∈ Q \Ωk it holds uk(y, t) ≥ εk = h(σk) ≥ w(y, t), and so it
follows uk(y, t) ≥ w(y, t) ∀(y, t) ∈ Q and this proves the theorem.



110 STEFANIA MELILLO – EUGENIO MONTEFUSCO [36]

Uniqueness of the solution of (3.29). In order to prove the uniqueness of the solution
of (3.29), we follow the proof of a similar result in [24].

Theorem 3.12. Assume u0(y) ∈ L∞(η1, η2) and g1(t), g2(u) and b(y, t) verify
conditions (3.30), (3.31) and (3.32). Then problem (3.29) has at most one weak
solution.

Proof. Suppose that there exists two separate weak solutions of (3.29), u1(y, t)
and u2(y, t). By the definition of weak solution, u1 and u2 verify:

∫ T

0

∫ η2

η1

[(u1 − u2)ϕt − g1(t)(G2(u1)−G2(u2))yϕy]dydt

−
∫ T

0

∫ η2

η1

[b(y, t)(u1 − u2)ϕy − by(y, t)(u1 − u2)ϕ]dydt = 0

(3.67)

∀ϕ ∈ C∞ such that ϕ(η1, t) = ϕ(η2, t) = 0 for any t ∈ [0, T ] and ϕ(y, T ) = 0 for
any y ∈ [η1, η2]. Equation (3.67) can be written as follows:

∫ T

0

∫ η2

η1

(u1 − u2)[ϕt − b(y, t)ϕy − by(y, t)ϕ]dydt

=

∫ T

0

∫ η2

η1

g1(t)(G2(u1)−G2(u2))yϕydydt

(3.68)

and integrating by parts with respect to y, the second integral of the previous
equation, we obtain:
∫ T

0

∫ η2

η1

g1(t)(G2(u1)−G2(u2))gϕgdydt=−
∫ T

0

∫ η2

η1

g1(t)(G2(u1)−G2(u2))ϕyydydt.

Set:

G(u1, u2) =

∫ 1

0

g1(t)G2(ϑu1 + (1− ϑ)u2)dϑ

then
G2(u1)−G2(u2) = (u1 − u2)G(u1, u2).

So equation (3.68) becomes:
∫ T

0

∫ η2

η1

(u1 − u2)[ϕt +Gϕyy − b(y, t)ϕy − by(y, t)ϕ]dydt = 0.

So, if we show that ∀f ∈ C∞
0 there exists a solution of the following problem





ϕt +Gϕy − b(y, t)ϕy − by(y, t)ϕ = f y ∈ [η1, η2], t ∈ (0, T ]

ϕ(η1, t) = ϕ(η2, t) = 0 ∀t ∈ (0, T ]

ϕ(y, T ) = 0 ∀y ∈ [η1, η2]

(3.69)

then u1 − u2 = 0 and the theorem is shown.
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Since G is merely bounded, it’s not easy to study the solvability of (3.69). So,
we approximate the operator G as follows, for sufficiently small η, δ > 0 we define:

λδ
η =





b(y, t)

η +G
|u1 − u2| > δ

0 otherwise.

Since G2(s) is a strictly increasing function and u1, u2 ∈ L∞(Q) there exists L =
L(δ, T ) and K = K(δ, T ) such that:

G = g1(t)
G2(u1)−G2(u2)

u1 − u2
≥ L(δ), |λδ

η| ≤ K(δ) if |u1 − u2| > δ.

Then there exists a sequence {Gε} such that:

lim
ε→0

Gε = G and |Gε| ≤ C

where C is a positive constant.

Then for given f ∈ C∞
0 (Q) the approximated system:





ϕt + (η +Gε)ϕyy − b(y, t)ϕy − by(y, t)ϕ = f y ∈ [η1, η2], t ∈ (0, T ]

ϕ(η1, t) = ϕ(η2, t) = 0 ∀t ∈ (0, T ]

ϕ(y, T ) = 0 ∀y ∈ [η1, η2]

(3.70)

has a unique solution following the standard theory of parabolic linear equations.

From [24, Lemma 13.3.1], the solution of system (3.70) satisfies the following
inequalities:

sup
Q

|ϕ(y, t)| ≤ C

∫∫

Q

(η +Gε)

(
∂2ϕ

∂y2

)2

dydt ≤ K(δ)

η

∫∫

Q

(
∂ϕ

∂y

)2

dydt ≤ K(δ)

η
.

From [24, Theorem 13.3.1] we know that:

lim
ε→0

∫∫

Q

(
∂ϕ

∂y

)2

dydt ≤ K(δ)

η
= 0

and it’s enough to prove our theorem. �
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Proof of Theorem 3.1. The proof of Theorem 3.1 uses Theorem 3.2 and the
Contraction fixed point theorem.

In particular, Theorem 3.2 is shown by Lemma 3.9 and Theorem 3.4. More
in detail, we are looking for a solution of system (M) with (I), (B), (LR) and
(2.15)-(2.17), with positive initial data.

In order to apply Lemma 3.9 at (Su), we have to verify that ψ1(t) and ψ2(t) are
C1 functions. This is trivial for ψ1(t) = u0, since it is a constant function. While,

since ψ2(t) = u0 +
µ

bE
l′(t), then it is in C1 if and only if l′(t) ∈ C1. From (LR),

the regularity of l′ is the same of uy(0, t). So, ψ2(t) ∈ C1 if and only if uy(0, t) is in
C1 and this condition is equivalent to the second order compatibility condition at
y = 0. That is:

ψ1tt = ((a(t, u)uy)y + b(y, t)uy)t.

But, since ψ1 is a constant, we can write the previous equation as:

0 = ((a(t, u)uy)y + b(y, t)uy)t for y = 0, t = 0 (3.71)

((a(t, u)uy)y + b(y, t)uy)t = −2Er20
r′(t)− l′(t)
(r(t)− l(t))3

(uuy)y +E
r20

(r(t)− l(t))2
(uuy)yt

+
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
uyt +

(l′′(t)(r0 − y) + r′′(t)y)(r(t)− l(t))

(r(t)− l(t))2
uyt

− (r′(t)− l′(t))(l′(t)(r0 − y) + r′(t)y)
(r(t)− l(t))2

uyt

and

uyt = ((a(t, u)uy)y + b(y, t)uy)y

= E
r20

(r(t)− l(t))2
(uuy)yy +

l′(t)(r0 − y) + r′(t)y
r(t)− l(t)

uyy +
r′(t)− l′(t)
r(t)− l(t)

uy

while

(uuy)yt =
Er20 (u(uuy)y)yy
(r(t)− l(t))2

+
l′(t)(r0 − y) + r′(t)y

r(t)− l(t)
(uuy)yy +

r′(t) + 2l′(t)
r(t)− l(t)

(uuy)y.

Equation (3.71) becomes:

0 = E2(ũ0(ũ0(ũ0)y)y)yy + 2El′(0)(ũ0(ũ0)y)yy + l′(0)2(ũ0)yy + l′′(0)(ũ0)y

that is hypotesis (3.10) of the Theorem. So, the hypoteses of the Theorem guarantee
that ψ1 and ψ2 are both C1 functions and as a consequence Lemma 3.9 holds. So,
(Su) has a solution that is unique, positive and in C2,1.
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Moreover, from Theorem 3.4, there exists ρ which solves (Sρ) and since u ∈ C2,1

then it is a continuous and positive function.
In this way Theorem 3.2 is proved.
We denote by (ulr, ρlr) the solution, dependent on l(t) and r(t), which existence

and uniqueness is shown in Theorem 3.2. From (LRF ) we define:

dl̃

dt
= −E

α

µ− α

r0
r(t)− l(t)

(ulr)y(0, t)−
β

µ− α

dr̃

dt
= −E

r0
r(t)− l(t)

(ulr)y(r0, t)−
ν

ρlr(r0, t)− dulr(r0, t)
2
3

and we define the transformation Γ(l, t) = (l̃, r̃). We would like to show that this
transformation admits a fixed point and so we could end the proof.

As we said at the end of the introduction of this chapter, in this part of the
proof we follow the one in [2].

So, in the Banach space C2+α/2([0, T ]) we introduce the closed set:

L = {g(t) ∈ C2+α/2([0, T ]) : g(0) = 0, g′(0) = l′(0), g′′(0) = l′′(0)}

and in the Banach space C1+α/2

R =
{
g(t) ∈ C1+α/2([0, T ]) : g(0) = 0, g′(0) = r′(0)

}
(3.72)

and we define

||g||L = max
t∈[0,T ]

|g(t)|+ max
t∈[0,T ]

|g′(t)|+ max
t∈[0,T ]

|g′′(t)|+ < g′′ >α/2
t

and
||g||L = max

t∈[0,T ]
|g(t)|+ max

t∈[0,T ]
|g′(t)|+ < g′ >α/2

t

where

< g >
α/2
t = sup

0≤s<t≤T

|g(t)− g(s)|
|t− s|α .

Using the Schauder estimates it can be shown that:

(ulr)y(0, t; l, r) ∈ C(3+α)/2[0, T ] and (ulr)y(r0, t; l, r) ∈ C(1+α)/2[0, T ].

From the definition of l̃ and r̃:

dl̃

dt
= −E

r0
r(t)− l(t)

(ulr)y(0, t; l, r)−
β

µ− α
l̃(0) = 0
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and

dr̃

dt
= −E

r0
r(t)− l(t)

(ulr)y(r0, t; l, r)−
ν

ρlr(r0, t; l, r)− du
2
3

lr(r0, t; l, r)
r̃(0) = r0.

Then: 



l̃(t) =

∫ t

0

q1(0, τ, l, r)dτ

r̃(t) = r0 +

∫ t

0

q2(r0, τ, l, r)dτ

with q1(0, t, l, r) ∈ C1+(1+α)/2 and q2(r0, t, l, r) ∈ C(1+α)/2 for what we said about
the functions (ulr)y(0, t, l, r) and (ulr)y(r0, t, l, r). Finally we define:

F = L×R

and
||z||F = ||z||L + ||z||R

for z(t) = (l(t), r(t)).
So, denoting by B1 the closed set of F such that ||z||F ≤ 1, then we have that

we can choose T small enough to have that Γ maps B1 in B1.
Finally using again the Schauder estimates we can show also that Γ is a con-

traction; that is:
||Γ(z1)− Γ(z2)||F ≤ q(T )||z1 − z2||F

with q(T ) → 0 for T → 0. So, Γ has a unique fixed point and the theorem is proved.

4 – Some open problems

First of all we want to emphasize that we expect to obtain a global existence result
for our system. But, as for every parabolic degenerate equation, the global existence
of the solution is harder to prove than the local one. In fact, uniform estimates for
the coefficients of the equations for all time t > 0 are needed and, up to now, we
are not able to give these estimates.

Moreover, in the forthcoming paper [15], we describe and discuss two numerical
schemes that we used for some computer simulations. The first one is for the
numerical characterization of the traveling wave solution (see also [16]), the second
one for the approximation of the solution of the general problem. In this case,
in order to verify the efficiency of the method, we set the traveling wave solution
as the initial datum of the problem and we use the numerical scheme to find the
corresponding approximated solution. Then we compare it and the approximated
traveling wave solution at every time t > 0. We obtain that in a finite time the
approximated solution becomes a traveling wave. This result suggests that the
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traveling wave is asymptotically stable with respect to the dynamics of the system
(M). In fact, starting from a perturbed traveling wave solution, the system reaches
in a finite time the steady state configuration of the non perturbed traveling wave.
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Stefania Melillo – “Sapienza” Università di Roma – Dipartimento di Fisica – piazzale Aldo Moro
5 – 00185 Roma
Email address: melillo@phys.uniroma1.it
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