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– Introduction

The aim of this thesis is to investigate some hydrodynamical models arising in
biology, from both the analytical and the numerical point of view.

Nowadays, mathematical analysis of biological phenomena has become an im-
portant tool to explore complex processes, and to detect mechanisms that might
not be evident to the experimenters. In the present work we are interested in
the movement of populations of cells, which can be influenced by changes in the
environment.

The reaction to an external stimulus is generally called taxis; typically the word
taxis is preceded by a prefix, that is determined by the type of stimulus that organ-
isms in a given system respond to.

Several types of taxis are well know, like the aerotaxis, the response of an or-
ganism to variation in oxygen concentration, or the phototaxis, the response to
variation in light intensity and direction. In this thesis we focus on chemotaxis, i.e.
the influence of chemical substances present in the environment on the movement
of mobile species.

For example, a large number of insects and animals rely on an acute sense of smell
for transmitting information between members of their species. Since pheromone
release is an important mean for communication, predation and attraction mating
partners, it influences the direction of the population movements [114, 115].

Chemotaxis can lead to strictly oriented or partially oriented and partially tum-
bling movements. The movement towards a higher/lower concentration of the chem-
ical substance is termed positive/negative chemotaxis. The substances that lead to
positive chemotaxis are chemoattractants and those leading to negative chemotaxis
are repellents.
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As shown in [114, 115], chemotaxis is decisive in biological processes. For exam-
ple, the formation of cells aggregations (amoebae, bacteria, etc) occurs during the
response of the species populations to the change of the chemical concentrations in
the environment. In multicellular organisms, chemotaxis of cell populations plays a
crucial role throughout the life cycle: during embryonic development it plays a role
in organizing cell positioning, for example during gastrulation [52] and patterning
of the nervous system [132]; in the adult life, it directs immune cell migration to
sites of inflammation [178, 47] and fibroblasts into wounded regions to initiate heal-
ing. These same mechanisms are used during cancer growth, allowing tumor cells
to invade the surrounding environment [41] or stimulating new blood vessel growth
[101]. Thus communication by chemical signals determines how cells arrange and
organize themselves.

The movement of bacteria under the e↵ect of a chemical substance has been a
widely studied topic in Mathematics in the last decades, and numerous models have
been proposed. Moreover it is possible to describe this biological phenomenon at
di↵erent scales. For example, by considering the population density as a whole, it
is possible to obtain macroscopic models of partial di↵erential equations. One of
the most celebrated model of this class is the one proposed by Patlak in 1953 [133]
and subsequently by Keller and Segel in 1970 [89].

It is given by a coupled reaction-advection-di↵usion system for the space and
time evolution of the density u = u(x, t) of cells, and the chemical concentration
� = �(x, t) at time t and position x 2 Rn,

(
@tu = r · (�D1r�+ D2ru),

@t� = r · (D�r�) + uf(�) � �k�,
(1)

where r· denotes the divergence respect to the spatial variable. In the Patlak-
Keller-Segel (PKS) system, the evolution of density of bacteria is described by a
parabolic equation, and the density of chemoattractant is generally driven by a
parabolic or an elliptic equation. The behavior of this system is now quite well-
known: in the one-dimensional case, the solution is always global in time. In several
space dimensions, if initial data are small enough in some norms, the solution will
be global in time and rapidly decaying in time; while on the opposite, it will explode
in finite time at least for some large initial data.

The simplicity, the analytical tractability, and the capacity to replicate some of
the key behaviors of chemotactic populations are the main reasons of the success of
this model of chemotaxis. In particular, the ability to display auto-aggregation, has
led to its prominence as a mechanism for self-organization of biological systems.

Moreover, there exists a lot of variations of system (1) to describe biological
processes in which chemotaxis is involved. They di↵er in the functional forms of
the three main mechanisms involved in the chemotactical movement. They are:
the sensing of the chemoattactant, which has an e↵ect on the oriented movement
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of the species, the production of the chemoattractant by a mobile species or an
external source, and the degradation of the chemoattractant by a mobile species or
an external e↵ect.

For instance in Chapter 3, we propose a model of PKS type to describe the in-
flammatory process which occurs during ischemic stroke [47], where the chemotactic
sensitivity has a saturation term. Since the biological process involves di↵erent type
of cells and chemical substances, and some of them are able to move, while others
do not have any mobility, we adopt both ordinary and partial di↵erential equations.

However, the approach of PKS model is not always su�ciently precise to describe
the biological phenomena [59]. As a matter of fact, the di↵usion leads to fast
dissipation or explosive behaviors and prevents us to observe intermediate organized
structures, like aggregation. Moreover it is not able to reproduce the “run and
tumble” behavior.

The main reason is that this approach describe processes on a long time scale,
while for short time range one gets better a description from models with finite
characteristic speed.

The “run and tumble” (the movement along straight lines, the sudden stop
and the change of direction) is described quite well by a stochastic process, called
velocity-jump process [76, 155]. It can be studied by a kinetic transport equation
introduced in [123], which reads

@tf + v · rxf = T (S, f), (2)

where f(t, x, v) denotes the density of cells, depending on time t, position x and
velocity v 2 sSn�1 with s > 0. It is interesting to note that parabolic chemotaxis
equations, such as the PKS model (1) can be obtained as the di↵usion limit of the
transport equation (2), after the rescaling t ! ✏2t, x ! ✏x. This shows that the
PKS system (1) corresponds to a long time asymptotic of the transport model.

At an intermediate scale between di↵usion and kinetic models we can find hy-
perbolic models. This class of models can be derived as a fluid limit of the transport
equation (2), but with a di↵erent scaling, namely the hydrodynamic scaling t ! ✏t,
x ! ✏x [31], which gives hydrodynamical systems.

Starting from a transport equation for the chemosensitive movements, in [74]
Hillen shows a kinetic derivation of hyperbolic models by the moment closure
method, thus obtaining the Cattaneo model for chemosensitive movement. Using
the first two moments he obtains the model:8

><
>:

@tu + r · v = 0,

@tv + �2ru = �v + h(�,r�)g(u),

@t� = ��+ au � b�.

(3)

It is a hyperbolic-parabolic system where x 2 Rn, t � 0, u is the population density,
v are the fluxes, � is the concentration of chemical species, and the source terms
g, h are smooth functions.
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Hyperbolic models can also be obtained by phenomenological derivations and
continuum mechanics, as done by Gamba et al. to describe the vasculogenesis
process. In [66, 150] they proposed the model:

8
><
>:

@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) + rP (⇢) = �↵⇢u + µ⇢r�,

@t� = D��+ a⇢� �
⌧ ,

(4)

where ⇢ is the density of endothelial cells, u their velocity and � is the concentration
of the chemoattractant.

In this hydrodynamical framework, in Chapter 6 we propose a model for the
growth of phototrophic biofilms. Starting from the ideas of the mixture theory
[138, 14, 137], we write some balance equations which contain the main assump-
tions coming from biophysical considerations (mass and momentum conservation,
influence of nutrients and light, ...). In the biofilm we consider four phases: Bacte-
ria, Dead Cyanobacteria, Extracellular matrix of polymeric substances and Liquid,
a common velocity for the solid phases, and a velocity for the liquid. Then the
model reads

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

@tB + r · (BvS) = �B ,

@tD + r · (DvS) = �D,

@tE + r · (EvS) = �E ,

@tL + r · (LvL) = �L,

@t((1 � L)vS) + r · ((1 � L)vS ⌦ vS) + (1 � L)rP

= r⌃+ (M � �L)vL � MvS,

@t(LvL) + r · (LvL ⌦ vL) + LrP = �(M � �L)vL + MvS,

r · ((1 � L)vS + LvL) = 0,

(5)

where P is the hydrostatic pressure. We will give more details on the biological
phenomenon and the model formulation in what follows.

Let us focus our attention now on models (3), (4), and (5), from an analytical
point of view.

We can observe that system (3) is a semilinear hyperbolic-parabolic system,
where the damped wave equation is coupled to a parabolic one.

On the other hand, system (4) is a quasilinear hyperbolic-parabolic system,
where the last equation does not change with respect to the previous system, while
the hyperbolic part is essentially given by the isentropic Euler equations. Biofilm
system (5) seems to be of intermediate kind between an incompressible system,
since the average velocity, unlike the phase velocities, is divergence free, and a
compressible system, on behalf on the presence of the pressure term that we find in
the compressible gas equations.
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These three systems are strictly related and they could be seen almost as encap-
sulated. As a matter of fact, the di↵erential part of Cattaneo Hillen model can be
also seen as the linearization of the Gamba-Preziosi model (4) and the biofilm one
(5), like a sort of “building block” for the others.

Moreover, system (4) can be useful for a rigorous study of the biofilm model since
the hyperbolic part is essentially the same. Then the investigation of toy-models
like (3) is an important tool for a deeper understanding of the solutions dynamics to
more complete ones, from an analytical, a numerical, and also modeling perspective.

In this thesis we investigate two di↵erent aspects of the mathematical description
of cells movements. The first part is devoted to the analytical and numerical study
of hyperbolic models of chemotaxis (3), (4).

The second one is devoted to the modeling and the numerical approximation
of two biological processes: inflammation during ischemic stroke and the growth of
phototrophic biofilms.

– Part I: analysis and numerical approximations

First we investigate the analytical behavior of some hyperbolic-parabolic sys-
tems.

The results we obtain, i.e. the global existence in time of smooth solution to
the Cauchy problem for small initial data and their asymptotic behavior, are a first
step towards the study of the behavior of solutions in general, including also more
realistic situations.

It could be extremely interesting to individuate a threshold for pattern formation
or blow up, as in the parabolic case. We showed numerically that with “large”
initial data blow up may occur, but we did not find a precise threshold nor proved
it analytically.

Analysis

We start our analytical study by considering the semilinear hyperbolic-parabolic
system (3). The coupling of this type of equations has been widely studied by
Kawashima and Shizuta [86, 87, 153]. Under the smallness assumption on the
initial data and the dissipation condition on the linearized system, they were able
to prove global (in time) existence and asymptotic stability of smooth solutions
to the initial value problem for a general class of symmetric hyperbolic-parabolic
systems.

System (3) does not enter in this framework. As a matter of fact, due to the
presence of the source term au, the dissipative condition fails.

In order to obtain our global existence result, we follow a di↵erent approach,
i.e. the one proposed by Guarguaglini et al. [70] for the one-dimensional case. The
basic idea is to consider the hyperbolic and parabolic equation “separately”, and
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to take advantage of their respective properties. Let us explain this approach with
more details.

Thanks to the Green function of the heat equation� p, and the Duhamel’s for-
mula, we know that, the solution to the parabolic equation is:

�(x, t) = (e�bt�p(t) ⇤ �0)(x) +

Z t

0

e�b(t�s)�p(t � s) ⇤ (au(s))ds.

On the other hand for the damped wave equation,

(
@tu + r · v = 0,

@tv + �2ru = �v,
(6)

we have, by the theory of dissipative systems [154], that the presence of the dissi-
pative term �v enforces a faster decay of the solution. This implies that we can
write the solution of the hyperbolic part of system (3), as

w(x, t) = ( �h(t) ⇤ w0)(x) +

Z t

0

�h(t � s) ⇤ H(�,r�, w)(s)ds,

where w = (u, v), H(�,r�, w) = [0, h(�,r�)g(u)]t.
Our strategy has been to use the decomposition of the Green function of dis-

sipative hyperbolic systems done by Bianchini at al. [17] and its precise decay
rates.

Indeed in [17] the authors proposed a detailed description of the multidimen-
sional Green function for a class of partially dissipative systems. They analyzed
the behavior of the Green function for the linearized problem, decomposing it into
two main terms. The first term is the di↵usive one, and consists of heat kernels,
while the faster term consists of the hyperbolic part. Moreover they gave a more
precise description of the behavior of the di↵usive part, which is decomposed into
four blocks, which decay with di↵erent decay rates. They showed that solutions
have canonical projections on two di↵erent components: the conservative part and
the dissipative part. The first one, which formally corresponds to the conservative
part of the equations, decays in time like the heat kernel, since it corresponds to
the di↵usive part of the Green function. On the other side, the dissipative part
is strongly influenced by the dissipation and decays at a rate t�

1
2 faster than the

conservative one.
By these refined estimates we were able to prove global existence of smooth

solutions for small initial data, and to determine at the same time their asymptotic
behavior.

Moreover, unlike in [70], we are able to prove the global existence of solution
not only of the perturbations of the zero state, but also of small constant states.
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To obtain this result, we proceed along the lines of the zero state case. In order to
get the decay of solutions, we need to adapt our technique to treat the linear term
which does not present enough polynomial decay.

Besides, we are able to show decay rates of the L1 norm of solution of order
O(t�

n
2 ), faster than the one obtained in [70] which was O(t�

n
4 ).

The parabolic and hyperbolic models of chemotaxis are expected to have the
same behavior for long time. We investigate this aspect analytically and prove that
solutions to the PKS model have the same decay rates as solutions to (3). Moreover
we show that the di↵erence between the solution of PKS model and the hyperbolic
one decays with a rate of O(t�

n
2 ) in L2, so t�

n
4 faster than the decay of solutions

themselves.
The following step in our study is the investigation of the behavior of the quasi-

linear hyperbolic-parabolic system (4).
We analyze the one-dimensional case only. Unfortunately, it is not possible to

adopt the same technique of the semilinear case. In order to understand why, let
us write the solutions to (4) as

U(t) = �h(t) ⇤ U0 +

Z t

0

@x�
h(t � s) ⇤

⇥
f̄ 0(U)U(s) � f̄(U(s))

⇤

+

Z t

0

�h(t � s) ⇤ h(U + U,@x�)ds

where U = (⇢,⇢u ), h(U + U,@x�) = [0, (⇢+ ⇢̄)@x�)]t and� h is the Green function
of the linearized hyperbolic system.

The main problem is the presence of the term @x�
h(t�s)⇤

⇥
f̄ 0(U)U(s) �f̄(U(s))

⇤
,

because due to this term, it is not possible to achieve a global existence result. As a
matter of fact starting from U 2 Hs(R), we get U 2 Hs+1(R) and we cannot close
the estimates.

Then to obtain a global existence result we use a di↵erent approach. As done
before we look at the hyperbolic part of (4) without the source term µ⇢@x�, i.e. we
consider isentropic Euler equations with damping. This system enters in a particular
framework proposed by Hanouzet and Natalini. In [73], they determined su�cient
conditions which guarantee the global existence in time of smooth solutions; these
are the entropy dissipation condition and the Shizuta-Kawashima condition (SK).

The first one is a condition for systems which are endowed with a strictly convex
entropy. Even if the strict convexity guarantees that the entropy estimates are
equivalent to the L2 estimate, and the dissipation the invariance in the same norm,
this condition is too weak to prevent the formation of singularities. Indeed there
exist systems that satisfy this condition and do not admit the global existence
of smooth solutions. The condition (SK) is a generalization of the Kawashima
condition for hyperbolic-parabolic problem. In terms of stability it guarantees the
necessary coupling between conserved and non conserved quantities in order to have
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dissipation e↵ects, in both the state variables. Following the work by Hanouzet and
Natalini in [73], our approach is based on energy estimates for the parabolic and
hyperbolic equations. As a matter of fact, thanks to the estimates for the parabolic
equation, we are able to treat also the source term µ(⇢̄+ ⇢)@x�.

Once that the global existence for smooth solutions has been obtained for per-
turbation of small constant states, we are able to determine the asymptotic behavior
for large times of solutions, by using the decay rates of the Green functions as done
in the previous case.

Numerical approximations

We proved theorems of global existence of smooth solutions for these systems,
and our results hold only for small regular initial data, so we are motivated to use
numerical simulations as a tool to investigate the evolution of solutions also for large
data.

One goal would be to know whether the hyperbolic system (3) has the same
behavior as the parabolic system (1), that is to say global existence for small initial
data in some norms, and blow up of solutions for some large initial data. It has also
to be noticed that the previous analytical results about global existence of solutions
were obtained on the whole space, whereas numerical simulations are performed on
a bounded domain.

Hyperbolic equations have been the subject of intensive research in the last
decades because they can be applied to a lot of di↵erent fields, e.g. gas dynamic,
optics, geophysics, biology. Regarding conservation laws, it is well known that, for
example for quasilinear system, solutions naturally develop discontinuities (shock
waves). Then the construction of stable and consistent numerical schemes is not
an easy task, since the presence of these discontinuities generates oscillations in the
schemes. Moreover it is often di�cult to find an e↵ective numerical approxima-
tion to hyperbolic equations with a source term due to problems like sti↵ness of
the source term, instability of the solutions, incorrect approximation of stationary
solutions, and loss of mass conservation.

We use an adaptation of the relaxation method proposed by Aregba-Driollet and
Natalini [13]. The main advantages of the relaxation approximation are the simple
formulation, even for general multidimensional systems of conservation laws, and
the easy numerical implementation.

Moreover this framework presents some special properties: the scalar and the
system cases are treated in the same way at the numerical level; all the approxi-
mating problems are in diagonal form, which is very convenient for numerical and
theoretical purposes; we could easily change the number and the geometry of the
velocities involved in our construction to improve the accuracy of the method. Even
if these algorithms are not optimal, they illustrate how to construct an e�cient and
simple approximation even for very complicated systems.
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For this reason we applied this method to di↵erent systems, starting from wave
equation, up to the biofilm model (5).

– Part II: modeling and numerical approximations

In the second part of the thesis, we are interested in biological problems with
the aim to create models able to reproduce the main mechanisms involved. Then
we focus on the modeling and the numerical simulations of the processes. We derive
these models starting from phenomenological observations “making everything as
simple as possible, but not simpler”.

We propose di↵erent models of partial di↵erential equation to describe respec-
tively the inflammation during ischemic stroke and the growth of phototrophic
biofilms.

Inflammation during ischemic stroke

Strokes consist in the rapidly developing loss of brain functions due to a distur-
bance in the cerebral blood flow. During a stroke, the a↵ected area of the brain
is unable to function, leading to troubles in moving, walking, seeing, speaking or
understanding. It is a medical emergency and can cause permanent neurological
damage, complications, and death.

We focus our study on one of the pathophysiological mechanisms involved in
ischemic stroke, the inflammatory process [45, 83]. In a general setting, inflamma-
tion is a complex biological response of vascular tissues to harmful stimuli such as
pathogens, damaged cells or irritants.

During ischemic stroke, inflammation is triggered to eliminate the dead cells but
can also lead to the death of some other cells. Then inflammation influences the
survival of neurons and glial cells both in a positive and a negative way.

We are interested in understanding which influence dominates, depending on the
situation. Our final aim is to understand if and how it is possible to control the
positive and negative aspects of this biological process, and this could be helpful
for the development of new therapeutic strategies in ischemic stroke.

We have considered as a starting point in our study the cell model proposed
recently by T. Lekelov-Boissard et al. [33]. This ODEs model took into account
the two phases of inflammation: activation of microglia and infiltration of blood
leukocytes, but did not consider the space dimension. Then we introduce it in the
model, more precisely we introduce the di↵usion and the chemotaxis of proteins
and leukocytes.

The model includes many parameters and one of the main problems is to deter-
mine the values of these parameters. We fix these values with di↵erent methods.
Some parameters are determined by fitting the results of the model to real data
coming from experiments, other parameters thanks to biological knowledge and the
remaining parameters so that the system is not disturbed.
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We have found a set of parameter values that allows to obtain realistic simula-
tions of the biological phenomenon.

Growth of phototrophic biofilms

A biofilm is a complex gel-like aggregation of microorganisms like bacteria,
cyanobacteria, algae, protozoa and fungi, embedded in an extracellular matrix of
polymeric substances (EPS). EPS develops resistance to antibiotics, to our immune
system, to disinfectants or cleaning fluids.

Even if a biofilm contains water, it is mainly a solid phase. Biofilms can develop
on surfaces which are in permanent contact with water, i.e. solid/liquid interfaces,
but the growth of microorganisms also occurs in di↵erent types of interfaces such
as air/solid, liquid/liquid or air/liquid.

Biofilms are found everywhere: in industrial process, on medical devices, but
also on the surface of monuments. In this thesis, we are interested on the formation
and evolution of biofilms on fountains walls, i.e.: on stone substrates and under
a water layer. These biofilms cause much damage, such as unaesthetic biological
patinas, decoesion and loss of substrate material from the surface of monuments or
degradation of the internal structure.

Our first goal is to introduce a model which keeps the physical finite speed of
propagation of the fronts. Then we propose the hydrodynamical model (5), where
the inertial terms in the momentum equations in turn guarantees the hyperbolicity
of the system and the finite speed of propagation. Actually, in most of the models
coming from the mixture theory approach, as for instance [137, 58], these terms are
neglected, in order to simplify the analysis and the numerical approximation. In
fact, di↵usive terms stabilize the fluid and prevent possible breakdowns or other in-
stabilities. On the other hand, this simplification introduces a non-physical infinite
speed of propagation in the problem, and makes it di�cult to study e↵ectively the
evolution of interfaces between the solid (biofilm) and the liquid (water) phases.
We prefer to keep the inertial terms and to solve the full hyperbolic problem using
some robust and Riemann Solver-free scheme like the relaxation schemes [13].

However, there are two important di↵erences with respect to a usual hyperbolic
system. First, since we are dealing with a multiphase fluid, it is di�cult to deal with
regions where one of the phases may vanish. This is usually solved by neglecting
these regions, for instance by selecting special initial conditions. In a biofilm this
choice is not possible, since it is important to model also the region where there is
only the biofilm or the liquid. It turns out that this problem of vanishing phases can
be solved by approximating source terms just by using an Implicit-Explicit scheme.

The other problem arises from the fact that our model is supplemented with
a constraint term due to the mass conservation, which implies that the average
hydrodynamic velocity of the mixture is divergence free. This constraint is needed
to compute the hydrostatic pressure. To enforce the divergence free constraint, we
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used a fractional step approach, similar to the Chorin-Temam projection scheme
[36, 161] for the Navier-Stokes equations, with a very accurate reconstruction of the
pressure term.

– Plan of the thesis

This thesis is organized as follows:

in Chapter 1 we present the derivation of parabolic and hyperbolic model of
chemotaxis.

At the beginning we introduce the standard Patlak-Keller-Segel model and some
variations. Then we present hyperbolic models of chemotaxis showing two di↵erent
possible derivations: the kinetic derivation with the moment closure method by
Hillen [74] and the phenomenological derivation of a vasculogenesis model based on
continuum mechanics.

In Chapter 2 we investigate the existence and the behavior for large times of
global smooth solutions to the Cauchy problem on Rn, for the semilinear hyperbolic-
parabolic system (3).

Initially we introduce some properties of partially dissipative hyperbolic systems,
and we present some of the results obtained by Bianchini et al. in [17] on the
decomposition of the Green Kernel. Thanks to the sharp decay estimates of the
Green kernel of the parabolic and hyperbolic equations, we are able to prove the
results. Moreover, in Section 2.5 we prove an analogous result for perturbation of
constant (non-null) stationary state.

Finally, by the same technique, we compare the large time behavior of the solu-
tion with the behavior of solution to the parabolic Keller-Segel model.

Part of these results are contained in [46].

In Chapter 3 we investigate the existence and the behavior for large times of
global smooth solution to the Cauchy problem on R for the quasilinear hyperbolic-
parabolic system (4).

Firstly we introduce hyperbolic partially dissipative systems. The global exis-
tence of solutions is proved by energy estimate, while the study of the large times
behavior is based on the decay estimates of the Green Kernel of the linearized oper-
ators. We show that these results hold also for perturbation of small constant (non
null) state.

Part of the results obtained are also present in [49].

Chapter 4 is devoted to the numerical approximation of the hyperbolic-parabolic
models studied analytically in the previous chapters.

At the beginning we give an introduction to finite di↵erence schemes, defin-
ing fundamental concepts like consistency, convergence, stability and monotonicity.
Then we present 3-point finite di↵erence schemes for hyperbolic conservation laws
and we briefly present also some classical schemes for parabolic equations.

A section is dedicated to the relaxation method, scheme used in our simulations.
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The second and the third section of this chapter are devoted to several numerical
simulations in the two dimensional case of the hyperbolic-parabolic models (3), (4).
With reference to the chemotaxis model we show results of pattern formation and
also simulations in agreement with our analytical result. Regarding the vasculogen-
esis problem, we show simulations of development of vascular network with di↵erent
initial data and also simulations in agreement with the analytical results.

Some of the simulations obtained are reported also in [48].
In Chapter 5, we propose a model to describe the inflammatory process which

occurs during ischemic stroke [47]. Firstly, an introduction to some basic concepts
about the biological phenomenon is given. Then, a detailed derivation of the model
and the numerical scheme used are presented. Finally, the studies of the model
robustness and sensitivity are showed and some numerical results on the time and
space evolution of the process are presented and discussed.

Part of these results are contained in [47].
In the final chapter, a system of nonlinear hyperbolic partial di↵erential equa-

tions is introduced to model the formation of biofilms. At the beginning, an intro-
duction to some basic concepts about biofilms is given. Then a detailed derivation
of the model, which is mainly based on the theory of mixtures, is presented, also
in comparison with previous models. In the last sections we present an adapted
numerical scheme and we discuss numerical simulations.

These results are also reported in [38, 39].

– Research perspective

In this thesis we present some global existence results on the Cauchy problem
for some hyperbolic-parabolic models arising in biology assuming small initial data.
However nothing is known for the moment, beyond our numerical simulations, for
large initial data, bounded domains and blow-up phenomena and in particular the
ability of these models to capture aggregation phenomena is unknown.

Therefore, a first target could be to answer these questions: what is the asymp-
totic behavior of the solutions of the Cattaneo model? Do they exist globally in
time or explode in finite time or may both of these situations occur with a criti-
cal threshold as for the parabolic model? We would also have to establish under
which conditions on the initial data the solution remains non negative, which is
an essential condition for modeling density of bacteria. To find an answer to all
these analytic points, we could need also a careful and accurate scheme to simulate
the multidimensional equations. These two tasks are closely related: indeed, the
numerical simulations give some ideas for the behaviors of the solution we try to
understand, while the analysis of the system gives us some clues on the properties
the scheme has to possess. The idea could be to generalize what was proposed by
[120] in the one-dimensional case, where a high order scheme on asymptotic so-
lutions was designed and where the preservation of mass using suitable boundary
conditions was enforced.
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It would be also the natural first step in the analysis of the other non-linear
hyperbolic models developed to describe cell movements, since the Cattaneo model
is a linearized version of the non-linear Preziosi’s models we will lean on. A careful
comparison with the results yet proved for parabolic Patlak-Keller-Segel system
would also be a significant break through. However, the analysis would be much
more delicate than the one of the parabolic system and new mathematical strategies
should be considered. We could get inspired from the complete study in the one-
dimensional case [70], where the explicit time decay of the solutions of the linearized
system was used, which for the Cauchy problem was essentially proved in [17],
but then adapted to a di↵erent context, and for the Neumann case was directly
analyzed in that work. We expect the system to possess equilibrium states which
will make the study easier; for now on, classical techniques do not seem to work, but
new perspectives may be opened thanks to pointwise estimates and combination of
appropriate Lyapounov functions, like those used in chemotaxis or in population
dynamics.

Concerning the biological damage of monuments, the only models that can be
found until now in literature are based on the so-called kinetic theory of active
particles [23] in the field of works of art conservation, or cellular automata mod-
els or ODE individual-based models [53] which lead to a huge amount of coupled
ordinary di↵erential equations. These systems are simple to be implemented and
give a good description of what happens at a microscopic level. However, they have
some major drawbacks: need for large computational time, di�culty to consider the
e↵ective spatial behavior of particles, di�culty to predict the possible formation of
structural patterns and high sensitivity to initial data. For all these reasons, we
think that a model based on PDEs, like the one proposed in this thesis, although
a bit more complicated to study, would give more reliable macroscopic results with
an easier calibration, and would therefore have an impressing and immediate de-
scriptive power. It should also enable us to work on larger space scale since PDEs
simulations require less computational resources than large systems of ODEs.

Other features, as signaling mechanism, should be added and results should
be compared with some experiments done on purpose. The ultimate goal of this
research could be the construction of a more general model including both chemical
and biological deterioration phenomena, in order to understand how they interact
with each another. The natural application of this coupling could be the study of
bioremediation, for which no mathematical modeling is actually known.
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1 – Modeling of chemotaxis

Chemotaxis is the influence of chemical substances present in the environment on
the movement of mobile species. This influence can lead to strictly oriented move-
ment or to partially oriented and partially tumbling movement. We have a posi-
tive/negative chemotaxis when the chemical substance attracts an organism and,
in this case, the chemical factor is called chemoattractant/chemorepellent.

Chemotaxis is an important mean of cellular communication and determinates
how cells arrange and organize themselves.

As shown in [114, 115], chemotaxis is important not only in animal and insect
ecology, but it can also be crucial in biological processes, e.g. when a bacterial
infection invades a body. The movement of cells toward the source is the result
of chemotaxis. Moreover convincing evidence suggests that leukocyte cells in the
blood move towards a region of bacterial inflammation, in order to counter it, by
moving up a chemical gradient caused by the infection [103, 166, 165, 6].

An interesting aspect of positive oriented chemotactical movement is the for-
mation of cells (amoebae, bacteria, etc) amounts during the responds of species
population to the change of the chemical concentrations in the environment, but
such aggregation patterns often require a certain threshold number of individuals
[79].

Extensive research has been conducted on the mechanistic and signaling pro-
cesses regulating chemotaxis in bacteria, particularly in E. coli [15], and in the life
cycle of cell slime molds such as Dictyostelium discoideum [52].

In multicellular organisms, chemotaxis of cell populations plays a crucial role
throughout the life cycle: during embryonic development it plays a role in orga-
nizing cell positioning, for example during gastrulation [52] and patterning of the
nervous system [132]; in the adult, it directs immune cell migration to sites of
inflammation [178], [47] and fibroblasts into wounded regions to initiate healing.
The same mechanisms occur in cancer growth, allowing tumour cells to invade the
surrounding environment [41] or stimulate the growth of new blood vessel [101].

In this chapter we present the derivation of parabolic and hyperbolic partial
di↵erential models of chemotaxis.

At the beginning we introduce the standard Patlak-Keller-Segel model, while
the subsequent section is dedicated to hyperbolic models of chemotaxis. We will
focus our attentions on two possible derivations: the moment closure method and
the continuum mechanics approach based on phenomenological assumptions.

1.1 – The Patlak-Keller-Segel model

Chemotaxis can be described, at macroscopic level, by considering the population of
the motile living species as a whole. The most famous model of partial di↵erential
equations was proposed in 1953 by Patlak [133] and subsequently in 1970 by Keller
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and Segel [88, 89]. Keller and Segel were interested in describing the aggregation
behavior of cellular slime mold which, they interpreted as the result of an instability.
The interest in slime mold morphogenesis was driven by the identification of the
chemical which acts as acrasin in Dictyostelium discodeum. Then they tried to
deduce the co-operative behavior of amoebae from their individual properties.

In its original form this model consists of four coupled reaction-advection-di↵u-
sion equations; we show its derivation following [141, 88]. They identified four
species relevant to the process:

• u(x, t) is the density of amoebae at the point x (in R, R2 or R3) and at the time
t.

• �(x, t) is the concentration of the chemical attractant acrasin.
• ⌘(x, t) is the concentration of acrasinase, an enzyme that degrades the chemoat-

tractant acrasin.
• c(x, t) is the concentration of a complex that forms when acrasin and acrasinase

react.

The assumptions made by Keller and Segel on the model are the following:

1. Acrasin is produced by the amoeba at a rate of f(�) per amoebae.
2. Acrasinase is produced by the amoeba at a rate of g(�,⌘ ) per amoebae.
3. Acrasin (�) and acrasinase (⌘) react to form a complex (c) which dissociates into

a free enzyme (acrasinase) and a degraded product, that is

k1 k2

⌘ + � ⌦ c ! ⌘ + degraded product
k�1 .

4. Acrasin (�), acrasinase (⌘) and the complex (c) di↵use according to Fick’s Law.
5. The amoebae move in the direction of increasing gradient of acrasin (�) and

follow a random motion analogous to di↵usion.

The total number of amoebae remains fixed. In order to derive the equations of
motion we consider an arbitrary fixed region and balance the mass of each species.
Let V be an arbitrarily fixed region with boundary @V . Balance of mass requires
that the amoebae density satisfies

d

dt

change of mass in Vz }| {Z

V

u(x, t)dx = �

flux out of the boundary of Vz }| {Z

@V

Ju · nds +

birth or death in Vz }| {Z

V

Qudx , (7)

where Ju is the flux vector of amoeba mass, n is an outward unit normal to V , and
Qu is the net mass of amoeba created (birth - death) per unit time per unit volume.
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It is possible to write equations for the other species giving rise to the analogous
terms J�, Q�, J⌘, Q⌘, Jc, and Qc. However, before we determine the forms based
on the modeling assumptions of these terms, let us note that by the divergence
theorem, Z

@V

Ju · ndS =

Z

V

r · Judx,

and equation (7) can be written as
Z

V

@tu + r · Ju � Qudx = 0.

Since this equation has to hold for arbitrary V , then the integrand must vanish,
yielding the di↵erential equations

@tu(x, t) = �r· Ju + Qu.

It is possible to obtain similar equations for the other species, but it remains to
specify the terms Js and Qs for s = u,� ,⌘ and c. To characterize the flux and
growth terms they followed the model assumptions. The flux terms �, ⌘, and c are
determined by assumption 4 as a classical Fickian di↵usion

Js = �Dsrs for s = �, ⌘, c.

The parameter Ds is the di↵usion coe�cient that they assumed to be constant. By
assumption 5, the form for Ju can be determinated:

Ju = �D2ru + D1r�.

This definition of flux characterizes the model. As a matter of fact these terms
describe two important aspects of the movement of the species. The term �D2ru
with D2 > 0 says that the organisms avoid increasing concentrations of their own
kind species. It is a sort of spreading out to avoid overcrowding. The second term
D1r� is a “Fourier” type term and illustrates the chemotaxis phenomenon of the
species in the response to the chemical �. When D1 > 0, this term can be inter-
preted as the movement of amoebae from low concentrations of � towards higher
concentrations. It is a positive chemotaxis indicating that � is a chemoattractant.
If D1 < 0, then we have a negative chemotaxis and � is a chemoinhibitor. Keller
and Segel assumed for their model D1 > 0.

The last assumption implies that the total population number is constant, Qu =
0.

For the other species, we assume that the chemical reactions are linear. This
leads to the following forms for the growth terms:

(1) + (3) ) Q� = uf(�) � k1�⌘ + k�1c,

(2) + (3) ) Q⌘ = ug(�,⌘ ) � k1�⌘ + k�1c + k2c,

(3) ) Qc = k1�⌘ � k�1c � k2c.
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Then the system can be written as:

8
>>>>><
>>>>>:

@tu = r · (�D1r�+ D2ru),

@t� = r · (D�r�) + uf(�) � k1�⌘ + k�1c,

@t⌘ = r · (D⌘r⌘) + ug(�,⌘ ) � k1�⌘ + k�1c + k2c,

@tc = r · (Dcrc) + k1�⌘ � k�1c � k2c.

(8)

In [90] they focused their attention on the aggregation process, by considering ag-
gregation as a manifestation of instability in a uniform distribution of amoebae and
acrasin.

They assume a homogeneous population of cells. As a matter of fact, early in
the life cycle of the amoebae the properties of the cells are supposed to be such
that a uniform distribution is stable and the random non-uniformities, which occur
in a real system, decay. At some point in the life cycle of all cells, however, the
characteristics of the individual cell change in such a way that makes a uniform
distribution unstable. Any spontaneous perturbation can then trigger aggregation.
Keller and Segel did not attempt to o↵er an explanation of the mechanisms for
changes in the individual cell, but rather analyzed the e↵ects on a population of
cells which result from such changes.

In this preliminary investigation Keller and Segel considered the simplest rea-
sonable model. So they made further simplifications which allowed the problem to
be reduced to two equations for � and u. These simplifications were made to avoid
obscuring essential features with heavy calculations.

They made the assumption that the complex is in a steady state with regard to
the chemical reaction:

k1�⌘ � k�1c � k2c = 0.

They also assumed that the total concentration of enzyme (both free and bound)
is a constant ⌘0:

c + ⌘ = ⌘0.

Substituting these into the system, we get a model of two equations

(
@tu = r · (�D1r�+ D2ru),

@t� = r · (D�r�) + uf(�) � �k�,
(9)

where
k� = ⌘0k2K/(1 + K�) and K = k1/(k�1 + k2).

Let us observe that the evolution of density of bacteria and the density of chemoat-
tractant are described by parabolic equations. The behavior of this system is quite
well known now: in the one-dimensional case, the solution is always global in time.
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In higher-dimensional cases, if the norm of the initial datum is small enough in
some norms, the solution will be global in time; on the opposite, it will explode
in finite time for an initial datum which is large enough, at least for some specific
initial data.

In literature there exists a lot of variations of (9) which di↵er in the choice of
the chemotactic sensitivity function and the reaction terms in the mobile species
equation or the chemical ones. We can write the general form of PKS model as:

(
@tu = r · (D(u)ru � A(u)B(�)C(r�)) + f(u),

@t� = ��+ ug(u) � �.
(10)

The simplicity, the analytical tractability and the capacity to replicate key behavior
of chemotactic populations are the main reasons of the success of this class of models
of chemotaxis compared to discrete individual based approach. The ability to dis-
play auto-aggregation has led to its prominence as a mechanism for self-organization
of biological systems. The directed movement of cells and organisms in response to
chemical gradients, chemotaxis, has raised significant interest due to its critical role
in a wide range of biological phenomena.

All the e↵ects depend on the functional forms of the three main processes during
chemotactical movement: the sensing of the chemoattactant which has an e↵ect on
the oriented movement of the species, the production of the chemoattractant by a
mobile species or an external source and the degradation of the chemoattractant by
a mobile species or an external e↵ect.

Patlak-Keller-Segel type equations have become widely utilized in models for
chemotaxis, thanks to their ability to capture key phenomena, intuitive nature
and relative tractability (analytically and numerically) as compared to discrete/
individual based approaches.

Di↵erent phenomena are described by this class of equations. Models based on
the Patlak-Keller-Segel equations have also been developed to understand whether
chemotaxis may underpin embryonic pattern formation processes, such as the forma-
tion and dynamics of the primitive streak [129], pigmentation patterning in snakes
[116] and fish [133] and cell colonisation and neural crest migration [99]. Modeling
the role of chemotaxis in pathological processes is a large field: Luca et al. [106]
considered whether the chemotactic aggregation of microglia may provide a mecha-
nistic basis for senile plaques during progression of Alzheimer’s disease. Moreover,
chemotaxis has been incorporated into the modeling of a number of distinct stages
of tumour growth, including the migration of invasive cancer cells [136], tumour-
induced angiogenesis [32, 108] and macrophage invasion into tumours [127].

In Chapter 5 we propose a model to describe the inflammatory process which
occurs during ischemic stroke [47].

Further approaches, like stochastic and discrete methods, have been developed
to derive these models. Horstmann’s review [82] considers five di↵erent methods



[21] Analysis and numerical approximations of hydrodynamical models. . . 137

to describe in detail this class of system. Briefly, these are (a) arguments based
on Fourier’s law and Fick’s law [89], (b) biased random walk approaches [126],
(c) interacting particle systems [155], (d) transport equations [5] or [76], and (e)
stochastic processes [133]. Recently, Byrne and Owen [25], proposed a derivation
from multi-phase flow modeling.

In addition to their utilization within models for biological systems, a large body
of work has emerged on the mathematical properties of the Keller-Segel equations
(9) [82, 79] and, in particular, on the conditions under which specialisation or varia-
tions of (9) either form finite-time blow-up or have globally existing solutions. The
majority of these papers has been devoted to a special case of (9), in which the
function k� is assumed to have linear form [see model (M1) below]. This “minimal
model” has rich and interesting properties including globally existing solutions, fi-
nite time blow-up and spatial pattern formation. Detailed reviews can be found in
the survey of Horstmann [82], and in the textbooks of Suzuki [159] and Perthame
[135].

A number of variations have been described based on additional biological re-
alism; here we report some of these variations following [79]. These variations are
introduced in a form that includes a single additional parameter which, under an
appropriate limit, reduces the system to the minimal form. In many cases this mod-
ification regularizes the problem such that solutions exist globally in time, then the
corresponding parameter for each of the extended models is called regularization
parameter. This parameter allows to study in detail bifurcation conditions, pattern
formation and properties of the nonuniform solutions. Below we list the ten models
studied in [79].

• The minimal model (M1)

(
@tu + r · (Dru � �ur�) = 0,

@t� = ��+ u � �.

We shall refer to this system as the minimal model following the nomenclature
of Childress and Percus [35].

• Signal-dependent sensitivity models (M2a)-(M2b)
There are two versions of signal-dependent sensitivity, the “receptor” model
[100, 104, 148, 149, 167],

8
<
:
@tu + r ·

✓
Dru � �u

(1 + ↵�)2
r�
◆

= 0,

@t� = ��+ u � �,
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where for ↵! 0 the minimal model is obtained, and the “logistic” model [123, 90]

8
<
:
@tu + r ·

✓
Dru � �u

1 + �

�+ �
r�
◆

= 0,

@t� = ��+ u � �,

where for � ! 1 the minimal model, follows and for � ! 0 the classical form
of �(�) = 1/� is obtained.

• Density-dependent sensitivity models (M3a)-(M3b)
There are two models with density-dependent sensitivity, the “volume-filling”
model [77, 128],

8
<
:
@tu + r ·

✓
Dru � �u

✓
1 � u

�

◆
r�
◆

= 0,

@t� = ��+ u � �,

where the limit of � ! 1 leads to the minimal model, and

8
<
:
@tu + r ·

✓
Dru � �

u

1 + ✏u
r�
◆

= 0,

@t� = ��+ u � �,

where ✏! 0 leads to (M1).
• The non local model (M4)

(
@tu + r ·

⇣
Dru � �uṙ⇢�

⌘
= 0,

@t� = ��+ u � �,

with the non-local gradient defined as

ṙ⇢� =
n

!⇢

Z

Sn�1

��(x + ⇢�, t)d�,

where ! = |Sn�1| and Sn�1 denotes the (n � 1) dimensional unit sphere in Rn

[125, 78]. The non-local gradient is chosen such that the minimal model follows
for ⇢! 0.

• The nonlinear-di↵usion model (M5)

(
@tu + r · (Dunru � �ur�) = 0,

@t� = ��+ u � �,

where the minimal model corresponds to the limit as n ! 0 [25, 89, 142, 151,
152].
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• The nonlinear signal kinetics model (M6)

8
<
:
@tu + r · (Dru � �ur�) = 0,

@t� = ��+
u

1 +  u
� �,

where the minimal model corresponds to the limit of  ! 0 [81, 117].
• The nonlinear gradient model (M7)

8
<
:
@tu + r · (Dru � �uFc(r�)) = 0,

@t� = ��+
u

1 +  u
� �,

where the function Fc(r�) : Rn ! Rn is assumed

Fc(r�) =
1

c

✓
tanh

✓
c�x1

1 + c

◆
, · · · , tanh

✓
c�xn

1 + c

◆◆

and it is chosen such that the minimal model follows for c ! 0 [142].
• The cells kinetics model (M8)

(
@tu + r · (Dru � �ur�) + ru(1 � u) = 0,

@t� = ��+ u � �,

which in the limit of zero growth, r ! 0, leads to the minimal model [128].

The models described can be summarized in the following form:

(
@tu = r · (D(u)ru � A(u)B(�)C(r�)) + f(u),

@t� = ��+ ug(u) � �.
(11)

The specific functional choices for D(u), A(u), B(�), C(r�), f(u) and g(u) are given
in Table 1.

Then a natural question that arises is whether solutions blow-up or exist glob-
ally in time. As mentioned earlier, the minimal model (M1) has globally existing
solutions in one space dimension [122] and a threshold phenomenon with blow-up
solutions in higher dimensions [82, 135, 159]. For most of the modified models
(M2)-(M8), global existence of solutions is known, since they have been studied
theoretically or are special cases of more general models.

The relevant results and the related references are summarized in Table 2.
Exploration of the literature reveals two principal methods for demonstrating the

global existence of solutions; (i) finding an L1 a-priori estimate for the chemotaxis
term in the population flux, i.e. the term A(u)B(�)C(r�) in (10), and (ii) to find
a Lyapunov function.
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Table 1 Summary of the models and their functional forms.

Model D(u) A(u) B(�) C(r�) f(u) g(u)

(M1) D u � r� 0 1

(M2a) D u �
(1+↵�)2 r� 0 1

(M2b) D u �(�+1)
(�+�) r� 0 1

(M3a) D u
⇣
1 � u

�

⌘
� r� 0 1

(M3b) D u
1+"u � r� 0 1

(M4) D u � ṙ⇢� 0 1
(M5) Dun u � r⇢� 0 1

(M6) D u � r� 0 1
1+ u

(M7) D u � 1
c tanh

⇣
cr�
1+c

⌘
0 1

(M8) D u � r� ru(1 � u) 1

Table 2 Summary of global existence results for the model (M1)-(M8).

Model Global existence Reference

(M1) Global existence in 1D Osaki and Yagi [122]
(M1) Global existence in 2D Calvez and Corrias [26]

below threshold
(M1) Global existence in nD Horstmann [82]

below threshold
(M2a) Global existence in nD Winkler [175]
(M2b) � > 0 Global existence in 2D Biler [18]
(M2b) � = 0 Global existence Horstmann [82]

below threshold
(M3a) Global existence in nD Hillen and Painter [79]; Wrzosek [177]
(M3b) Global existence in nD Velazquez [168]
(M4) Global existence in nD Hillen et al. [78]
(M5) Global existence in nD Kowalczyk [92]
(M6) Global existence in nD Horstmann [81]
(M7) Global existence in nD Biler [18]
(M8) Global existence in nD Wrzosek [176]
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1.2 – Hyperbolic models

The approach of Patlak-Keller-Segel model is not always su�ciently precise to de-
scribe the bacteria movements. Since this class of model describes phenomena in
some large time regimes, it does not take into account the fine structure of the
cell density for short times. In order to describe phenomena at an intermediate
temporal and spatial scale hyperbolic models have been introduced.

They have been widely used in recent years, because they allow for analytical
study and yield a realistic description of some relevant phenomena. These methods
are applied to a range of di↵erent fields like population dynamics, forest fire models,
bistable systems and combustion wavefronts.

They are able to describe some biological mechanisms, as for instance the “run
and tumble” movement of some bacteria.

Also for this class of model di↵erent derivations are possible. In [65] Fort and
Mendez summarize the di↵erent approaches as follows: (a) isentropic random walk
with reaction, (b) anisotropic random walks with reaction, (c) phenomenological
derivation, (d) thermodynamical derivation, (e) derivation from waiting time dis-
tribution and (f) kinetic derivation. As a matter of fact, hyperbolic models can be
obtained as fluid limit of transport kinetic equation with the hydrodynamic scaling
t ! ✏t, x ! ✏x, as shown by Perthame et al. [59].

Another technique to reduce a kinetic transport model is the moment closure
method, which leads into hyperbolic models as proved by Hillen [74]. In the next
section we will show that the two-moment case reduces into models depending on
Cattaneo’s law of heat conduction; we will report the results of [74, 75] from which
most of the contents are taken. The models obtained by this technique respect
finite propagation speeds and are based on the individual movement patterns of the
species.

1.2.1 – The Cattaneo-Hillen model

Velocity jump process and transport equations As observed in experiments [1, 16],
some bacteria have a characteristic movement called “run and tumble”. They move
in a certain direction at an almost constant speed (run), suddenly they stop and
choose a new direction (tumble) to continue movement. The tumbling intervals are
short compared to the mean run times. This type of individual movement pattern
can be modeled by a stochastic process which is called velocity jump process [158].
The characteristic parameters are mean runtime, turning distribution and mean
speed.

Let p(x, t, v) denote the population density at spatial position x 2 Rn at time
t � 0 with velocity v 2 Rn. Although the most meaningful space dimensions are
n = 1, 2, 3, the theory works for all n 2 N. Let us assume that individuals choose
any direction with bounded velocity. We denote the set of possible velocities as V ,
where V ⇢ Rn is bounded and symmetric (i.e v 2 V ) �v 2 V ).
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Then the linear transport model, which bases on a velocity jump process [158,
124] reads

@tp(x, t, v) + v · rp(x, t, v)

= �µp(x, t, v) + µ

Z
T (v, v0)p(x, t, v0)dv0,

(12)

where µ is the turning rate or turning frequency, hence ⌧ = 1
µ is the mean run

time and T (v, v0) is the probability kernel for the new velocity v given the previous
velocity was v0. Moreover the identity

Z
T (v, v0)dv = 1,

ensures particle conservation.
If motion is modeled by a di↵usion process and birth and death are included,

then a reaction-di↵usion models, results [114, 115]. Similarly to the di↵usion model
the inclusions of birth and death bring to reaction-di↵usion models. Depending on
concrete experiments the reaction may depend on particle velocity, hence a nonlinear
reaction-transport equation reads:

@tp(x, t, v)+v·rp(x, v, t) = �µp(x, t, v)+µ

Z
T (v, v0)p(x, t, v0)dv0+f(v, p, m0), (13)

where the total population density is denoted as

m0(x, t) =

Z

V

p(x, t, v)dv. (14)

Transport equations appear also in physics as models for gases e.g. Bolzmann
equations [30]. In this physical application some quantities are conserved, among
these are energy, momentum and mass. In biological applications in case of no birth
or death reactions, the only conserved quantity is the total particle number.

The Cattaneo law The Cattaneo law was introduced by Cattaneo in 1949 [28] as
a modification of Fourier’s law of heat conduction. It is used to describe heat
propagation with finite speed.

Let ✓(x, t) 2 R be the temperature of a homogeneous medium⌦ \ Rn and let
q(x, t) 2 Rn be the heat flux. Then the Cattaneo law, together with an equation
for conservation of energy, leads to the following system:

(
@t✓ + r · q = 0,

⌧@tq + q = �Dr✓.
(15)
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The constant ⌧ > 0 describes the adaptation time of the heat flux q to the negative
gradient of the temperature ✓, and the parameter D > 0 is the di↵usion constant.
This system is closely related to damped wave equation. Let us observe that for
⌧ = 0 we have Fourier’s law q = �Dr✓ and system (15) translates into the classical
heat equation @t✓ = D�✓.

The Cattaneo approximation One common feature in understanding the dynamic
properties of reaction-transport equations and Boltzmann equations are moment
methods. By multiplication of (12) with powers of v and integration, it is possible
to derive an infinite sequence of equations for the moments of p.

As a matter of fact in the equation for the n-th moment the (n+1)�st moment
appears. To close the equations for the first n moments we need an approximation
of the (n + 1)�moment. This closure problem is well know and widely discussed in
transport theory. For Boltzmann equations the closure problem has been dealt with
the theory of extended thermodynamics [111]. An entropy functional is maximized
under the constraint of fixed first n moments. One assumes that the (n + 1)�st
moment of the minimizer approximates the (n+1)�st moment of the true solution,
getting the desired closure.

Here we report a theory for closing the moment equations based on minimization
principle proposed by Hillen [74].

In this biological context the negative L2(V )�norm can be seen as an entropy
as defined in thermodynamics, so it is possible to close the moment system by
minimizing the L2�norm under the constraint of fixed first n�moments.

We report the moment closure approach for the first two moments used by Hillen
[74]; this closure leads to semilinear Cattaneo systems.

Let us consider a transport equation which corresponds to a velocity jump pro-
cess with fixed speed, but variable direction (Pearson walk [134]). In this case
V = sSn�1 with s > 0 and we denote ! = |V | = sn�1!0, where !0 = |Sn�1|. The
turn angle distribution is assumed to be constant T (v, v0) = |V |�1. Then the initial
value problem for the linear transport equation reads:

@tp + v · rp = µ

✓
m0

!
� p

◆
, (16)

p(x, 0, v) = '0(x, v). (17)

Let us observe that the shift operator � := �v · r on L2(Rn ⇥ V ) with domain

D(�) =
�
� 2 L2(Rn ⇥ V ) : �(·, v) 2 H1(Rn)

 
,

is skew-adjoint. It generates a strongly continuous unitary group on L2(Rn ⇥ V )
[44]. The right-hand side of (16) is bounded, therefore the linear transport equation
defines a strongly continuous solution group on L2(Rn⇥V ). For '0 2 D(�) solutions
p(x, t, v) exist in

C1([0,1), L2(Rn ⇥ V )) \ C([0,1), D(�)).
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Let us consider the equations of the first two moments (m0, mi), i 2 {1, · · · , n} of
p, where m0 is defined (14) and the higher moments of p are denoted by:

mi(x, t) =

Z

V

vip(x, t, v)dv i = 1, . . . , n, (18)

mij(x, t) =

Z

V

vivjp(x, t, v)dv i, j = 1, . . . , n. (19)

Let us note that m0 is scalar, mi is a vector and mij is a 2-tensor.
For constant turn angle distribution T (v, v0) in [74] is proved that the negative

of the L2(V )� norm is an entropy for (16). The method proposed minimize the
L2(V )�norm under the constraint of fixed moments m0 and mi and then it assumes
that the second moment mij(umin) of minimizer umin approximates the second
moment mij(p). This leads to a closed hyperbolic system for an approximate density
M0 and an approximate flow M i.

Since the resulting system is known from heat transport theory as the Cattaneo
system it is called Cattaneo approximation to (m0, mi). It is possible to estimate
(m0, mi) � (M0, M i) in L2(Rn) as shown in [74], motivating the use of Cattaneo
system as models for the movement of microorganisms like bacteria or amoeba.

The Cattaneo approximation can be used to approximate the transport model
for all times whereas the parabolic approximations are valid for large times only.

In order to derive the equations for the first two moments m0 and mi we integrate
(16) over V obtaining the conservation law

@tm
0 +

nX

j=1

@jm
j = 0. (20)

Multiplication of (16) with vi and integration along V leads to

Z
vi@tpdv = �

nX

j=1

Z
vivj@jpdv + µ

m0

!

Z
vidv � µ

Z
vipdv.

For the symmetry of V = sSn�1, it follows that
R

vidv = 0. Hence

@tm
i +

nX

j=1

@jm
ij = �µmi. (21)

To close this system of n + 1 moment equations (20) and (21) we have to replace
mij(p).

The main step is to derive a function umin(x, t, v) which minimizes the L2(V )
norm ku(x, t, ·)k2

L2 , under the constraint that umin has the same first moments m0
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and mi as p has. Once we have obtained such a function umin we have to replace
mij(p) by mij(umin).

Let us introduce Lagrangian multipliers⇤ 0 2 R and⇤ i 2 R for i = 1, . . . , n and
define

H(u) :=
1

2

Z

V

u2dv � ⇤0

✓Z

V

udv � m0

◆
�

nX

i=1

⇤i

�
viudv � mi

�
.

The Euler-Lagrange equation of H(u) reads u � ⇤0 �
nP

i=1

⇤iv
i = 0, which gives

u = ⇤0 +
nX

i=1

⇤iv
i.

Then we have to use the constrains to determine⇤ 0 and⇤ i:

m0 =

Z

V

udv =

Z

V

⇤0dv +
nX

i=1

Z

V

⇤iv
idv.

We have
R

V
vidv⇤i = 0, hence

⇤0 =
m0

!
,

mi =

Z

V

viudv =

Z

V

vi⇤0dv +
nX

j=1

Z

V

vi(⇤jv
j)dv.

The first integral vanishes. To evaluate the second integral let us note that

Z

Sn�1

��T d� =
!0

n
In,

where In is the n ⇥ n identity matrix. Hence

Z

v

vvT dv =

Z

Sn�1

(s�)(s�)T sn�1d� = !
s2

n
In.

It follows that⇤ i is given by

⇤i =
n

!s2
mi.

Then we have got an explicit form of the minimizer:

umin(x, t, v) =
1

!

 
m0(x, t) +

nX

i=1

n

s2
vim

i(x, t)

!
.
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To derive the moment closure we consider the second moment of the minimizer
umin:

mij(umin) =
nX

j=1

Z

V

vivjumin(x, t, v)dv

=
1

!

nX

j=1

Z

V

vivjm0dv +

Z

V

vivjvkdvmk (22)

=
s2

n
m0I,

because the tensor
Pn

j=1

R
v
vivjvkdv vanishes.

We have chosen umin such that m0(u) = m0(p) and mi(u) = mi(p). Let us now
close the system of the first two moments by assuming that mij(u) ⇡ mij(p). Then
replacing mij in (21) together with (20) gives a linear Cattaneo system

@tM0 + @j

nX

j=1

M j = 0 (23)

@tM
i +

s2

n
@iM

0 = �µM i, (24)

with initial conditions

M0(·, 0) = m0(·, 0), M i(·, 0) = mi(·, 0).

We introduce capital letters to distinguish between the moments (m0, mi) of p and
the solutions (M0, M i) of the Cattaneo system. The error which appears during
this approximation can be controlled, as proved in [74].

A Cattaneo model for chemosensitive movement In [74] Hillen derives also models
for chemosensitive movement based on Cattaneo’s law of heat propagation with
finite speed. Moreover, in a work in collaboration with Dolak, he applied the model
to pattern formation as observed in experiments with Dictyostelium discoideum,
Salmonella typhimurium and Escherichia coli.

In case of bacterial chemotaxis it has been observed in experiments that bacteria
significantly change their turning rate in response to external stimuli, but they do
not change their turn angle distribution. So the turning rate should depend on the
velocity v, on the concentration of the external signal � and on its gradient r�,
then µ = µ(v, �,r�).

Since bacteria are too small to measure concentration gradients along their body
axis, they measure gradients while moving through them. Then the turning rate
depends not directly on r� but on the directional derivative:

�v� := @t�+ v · r�.
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Let us assume µ = µ(�,� v�). The kernel K(v, v0) is chosen in such a way that the
total particle number is preserved.

This can be achieved by K(v, v0) = µ(�,� v�)T (v, v0) where
R

V
T (v, v0)dv = 1.

Then the transport equation for chemosensitive movement reads:

@tp + v · rp = �µ(�,� v�) +

Z

V

µ(�,� v�)T (v, v0)p(v0)dv0. (25)

Let us observe that if we restrict to 1-D with two speeds ±s, the model considered
by Hillen and Stevens in [80] follows

8
>><
>>:

@tu
+ + �@xu+ = �µ+(�,@ x�)u+ + µ�(�,@ x�)u�,

@tu
� � �@xu� = µ+(�,@ x�)u+ � µ�(�,@ x�)u�,

@t�� D@xx� = ���+ ↵(u+ + u�).

(26)

Functions u± denote the densities of the right/left moving part of the total pop-
ulation and � is the external chemotactic stimulus biasing the movement of the
population itself. Parameters �, �, D, which are assumed to be strictly positive
constants, represent characteristic speed of propagation of u±, time-scale for the
dynamics and di↵usion coe�cient for the chemoattractant respectively. The terms
µ± are called turning rates and they control the probability of transition from u+

to u� and vice versa, i.e. the change of direction in the movement of a single
individual.

In [80], a first result of local and global existence for weak solutions under the
assumption of turning rate’s boundness is proved. Recently Guarguaglini et al. in
[70] have proved more general results for this model under weaker hypotheses, by
showing a general result of global stability of some constant states for both the
Cauchy problem on the whole real line and the Neumann problem on a bounded in-
terval for small initial data. These results have been obtained by using the linearized
operators and the accurate analysis of their nonlinear perturbations.

Let us consider now a more specific form of the turning rate

µ(�,� v�) = µ0(1 � ↵(�)�v�),

for some costant µ0 > 0 and an appropriate function ↵(�).
Let us assume moreover that T (v, v0) = 1

! , then a prototype model for chemosen-
sitive movements reads

@tp + v · rp = �µ0(1 � ↵�v�)p(v) +
µ0

!

Z

V

(1 � ↵(�)�v)�T (v, v0)p(v0)dv0. (27)

Using the notation of the moments m0 and mi we can write (27) as

@tp + v · rp = �µ0(1�↵(@t�+ v · r�))p(v) +
µ0

!

�
m0 � ↵m0@t�� ↵mi@i�

�
. (28)
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To derive the equations for the first two moments we integrate (28) obtaining

@tm
0 +

nX

j=1

@jm
j = 0.

Multiplication of (28) with vi and integration gives

mi
t +

nX

j=1

@jm
ij = �µ0(1 � ↵@t�)mi + µ0↵

nX

j=1

@j�mij .

Again with (22) the corresponding Cattaneo system for chemosentive movement
reads

M0
t +

nX

j=1

@jM
j = 0

M i
t +

s2

n
@iM

0 = �µ0(1 � ↵@t�)M i +
s2

n
µ0↵@i�M0.

(29)

A model for slime molds In [51], Dolak and Hillen proposed a model of this class
to describe the behavior of the slime mold Dictyostelium discoideum. This amoeba
develops an extraordinary mechanism controlled by chemotaxis: upon starvation,
the amoebae form tissue-like aggregates. The cells move upward gradients of the
messenger molecule cAMP produced by the cells themselves. Eventually, they form
a fruiting body, where spores can survive until conditions for germination are favor-
able. The formation of aggregates has been documented by many authors. Guided
by observations of Firtel et al. [60], the aim of Dolak and Hillen simulations was
not to reproduce the experimental results as precisely as possible, but to describe
them qualitatively. The non-dimensionalize model is

8
>><
>>:

@tu + r · v = 0,

⌧@tv + v = �Dru + u(1 � u)r�,

@t� = ��+ ↵u � �.

(30)

Here u, v and � are the particle density, the particle flux, and the signal concentra-
tion, respectively.

In their study, the Cattaneo model for chemosensitive movement is well suited
to describe the experimentally observed patterns. On a long time scale the same
behavior for the PKS model and the Cattaneo model is expected. For short time
ranges, however, one expects a better description from a Cattaneo type model, due
to finite characteristic speed.
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In their simulations Hillen and Dolak use realistic parameter values as given in
Ford et al. [64], observing that both models, parabolic and hyperbolic, fit the data.
But di↵erences can be seen in the time range up to about 40 s. Following Ford’s
experiments both model types are appropriate and the model should be chosen
in accordance to the available data. If spread is measured for the population as
a whole (motility D or chemotactic sensitivity, �), then a di↵usion based model
should be used. If individual paths are followed and turning rates and turn-angle
distributions are measured, then a hyperbolic model is more appropriate. There is
certainly an overlap region, where both model types can be used with equal reasons.
From a more theoretical point of view, the transport and Cattaneo-models provide
a convenient platform to study and understand how the behavior of a population
as a whole emerges from the behavior of its individual members.

1.2.2 – The Gamba-Preziosi model

As seen for the Patlak-Keller-Segel model, it is possible get models by phe-
nomenological derivations and continuum mechanics. In what follows we present a
hyperbolic model of vasculogenesis proposed by Preziosi et al. in [150, 66].

Filbet et al. in [59] derived the model as a hydrodynamic limit of a kinetic
velocity-jump process by a Chapman-Eskog expansion.

Let us start with a short biological background of this phenomenon. Vasculogen-
esis is the process of blood vessel formation by cells, endothelial cells and angioblasts.
An analogous phenomenon is the angiogenesis, the physiological process involving
the growth of new blood vessels from pre-existing vessels. It is a normal and vital
process in growth and development, as well as in wound healing and in granulation
tissue. However, it is also a fundamental step in the transition of tumors from a
dormant state to a malignant one. Folkman in [61] hypothesized that, if it were
possible to inhibit neovascularization, it might stop the growth of the tumour or
at least contain its growth to a dormant mass of around 2 to 3 mm in diameter.
Moreover, he suggested that such antiangiogenesis could be the basis for a new form
of cancer therapy. A particularly important aspect, from a cancer therapy point
of view, is that antiangiogenic therapy does not induce acquired drug resistance in
experimental cancer [20] unlike chemotherapy. The field of anti-angiogenesis is now
fast growing with an increasing number of areas where modeling could be of some
considerable value.

In vasculogenesis, the ability to form networking capillary tubes is a cell auto-
nomous property of the endothelial cells (ECs), which need permissive but not
instructive signals from the extracellular environment. In recent years many ex-
perimental investigations have been performed on the mechanism of blood vessel
formation [40].

Since in vivo studies, are prone to a variety of sensitivity problems, much of
the experimental work in this area has been on in vitro (biological) model systems
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which avoid many of the experimental di�culties with in vivo systems. The de-
velopment of in vitro angiogenesis (biological) models provides a controlled means
for studying blood vessel formation [62]. The reasonable assumption is that, if the
in vitro studies replicate the type of patterns observed in vivo, then these mod-
els provide information on the pattern formation mechanism which operates in
vivo.

Cells are cultured on a gel matrix and their migration and aggregation are ob-
served through videomicroscopy. This way, the process of formation of a vascular
network starting from randomly seeded cells can be accurately tracked. Track-
ing of individual trajectories in some experiments [42] shows marked persistence
in the direction, with a small random component superimposed. The motion is
directed towards a zone of higher concentration of cells, suggesting that chemotac-
tic factors play a role. Cells migrate over distances which are an order of mag-
nitude larger than their radius and aggregate when they get in touch with one
of their neighbors. In a time of the order of 10 h they form a continuous mul-
ticellular network which can be described as a collection of nodes connected by
chords.

In the biological system the percolating property is of physiological relevance,
since it is directly linked with the functionality of blood vessels.

Here we represent the theoretical model proposed by Serini et al. [150, 66] which
turns out to be in good agreement with these experimental observations.

In what follows we shall refer to this system as the Gamba-Preziosi model. It is
able to reproduce well both the observed percolative transition and the typical scale
of observed vascular networks. These structures cannot be explained by the above
parabolic models, which generically lead to a fast decay or to pointwise blow-up,
but are recovered by numerical experiments on hyperbolic models.

The Gamba-Preziosi model for vasculogenesis [150, 66] focuses on the early de-
velopment of vascular network formation. They assume, as reported in [7], that per-
sistence and chemotaxis are the key features to determinate the size of the structure.
In their view, mechanical interaction of the cells with the matrigel can be neglected
to describe the behavior of the system along the first 3-6 hours.

As shown in [7], the mathematical model is based on the following assumptions:

1. endothelial cells show persistence in their motion;
2. endothelial cells communicate via the release and absorption of a soluble growth

factor. This chemical factor can reasonably identified with VEGF-A (Serini et
al. [150]);

3. the chemical factors released by cells di↵use and degrade in time;
4. endothelial cells neither duplicate nor die during the process;
5. cells are slowed down by friction due to the interaction with the fixed substratum;
6. closely packed cells mechanically respond to avoid overcrowding.



[35] Analysis and numerical approximations of hydrodynamical models. . . 151

Then the state variables involved in the process are:

• The density ⇢ of endothelial cells;
• The velocity u of the endothelial cells;
• The density � of chemoattractant.

The equations are derived from the conservation laws of mass and momentum. Let
us recall how get these equation in general. Proceeding in a standard way, as shown
in [37], let assume that for each time t, the density ⇢ of endothelial cells has a well
defined mass density ⇢(x, t) for x 2 D, a region in the three dimensional space. Let
u(x, t) denote the velocity of cells that are moving through x at time t.

Let V is an arbitrary subregion of D, then the mass of cells in V at time t is
given by

m(V, t) =

Z

V

⇢(x, t)dx.

In what follows we shall assume that the function ⇢ and u are smooth enough so
that the standard operations of calculus may be performed on them. The derivation
of the equations is based on two basic principles:

i) mass is neither created nor destroyed;
ii) the rate of change of momentum of a portion of the fluid equals the force applied

to it (Newton’s second law).

Let V be a fixed subregion of D; the rate of change of mass in V is

d

dt
m(V, t) =

d

dt

Z

V

⇢(x, t)dx =

Z

V

@t⇢(x, t)dx.

Let @V denote the boundary of V , assumed to be smooth; let n denote the unit
outward normal defined at points of @V ; and let dS denote the area element on @V .
The volume flow rate across @V per unit area is u · n and the mass flow rate per
unit area is ⇢u · n.

The principle of conservation of mass can be stated as follows: the rate of increase
of mass in V equals the rate at which mass is crossing @V in the inward direction;
i.e.,

d

dt

Z

V

⇢dx = �
Z

@V

⇢u · dS.

This is the integral form of the law of conservation of mass. By the divergence
theorem, this statement is equivalent to

Z

V

[@t⇢+ r · (⇢u)] dx = 0.
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Since this has to hold for all V , it is equivalent to

@t⇢+ r · (⇢u) = 0. (31)

Let us observe that if ⇢ and u are not smooth enough to justify the steps that lead
to the di↵erential form of the law of conservation of mass, then the integral form is
the one to use.

Let us call
�u = @t + u · r,

the directional derivative; it takes into account the fact that the cells are moving
and that the positions of particles change with time.

For any continuum, forces acting on a piece of material are of two types.
First, there are forces of stress, whereby the piece of material is acted on by

forces across its surface by the rest of the continuum. Second, there are external,
or body, forces such as gravity or a magnetic field, which exert a force per unit
volume on the continuum. Let us recall that, for any ideal fluid and any motion of
the fluid, there is a function p(x, t) called pressure such that if S is a surface in the
fluid with a chosen unit normal n, the force of stress exerted across the surface S
per unit area at x 2 S at time t is p(x, t)n.

Note that the force is in the direction n and that the force acts orthogonally to
the surface S, then there are no tangential forces.

If V is a region in the fluid at a particular instant of time t, then the total force
exerted on the fluid inside V by means of stress on its boundary is

fsurf = {force on V } = �
Z

@V

pndS.

If e is any fixed vector in space, the divergence theorem gives

e · fsurf = �
Z

@V

pe · ndS = �
Z

V

div (pe)dx = �
Z

V

rp · edx.

Thus

fsurf = �
Z

V

rpdx. (32)

If b(x, t) denotes the given body force per unit mass, then the total body force is

B = �
Z

V

⇢bdx. (33)

Thus, on any piece of material,

force per unit volume = �rp + ⇢b.
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By Newton’s second law we are led to the di↵erential form of the law of balance of
momentum:

⇢�u =

fz }| {
�rp + ⇢b . (34)

Regarding the chemoattractant we proceed as done in the Keller and Segel model,
thus obtaining a linear parabolic equation.

The mathematical model then writes as8
>>><
>>>:

@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) = f,

@t� = D��+ a⇢� 1

⌧
�.

(35)

The first equation in (35) is a mass conservation equation and corresponds to the
assumption that cells do not undergo mitosis or apoptosis during the experimental
phenomenon. The last equation is a di↵usion equation for the chemical factor which
is produced at a rate ↵ and degrades with a half life ⌧ .

The second equation assumes that cell motion can be obtained on the basis of
a suitable force balance. Although the second term at the l.h.s. of the momentum
equation reminds the convective flux of cellular matter, it should be understood
as a term modeling cell persistence, their “inertia” in changing cell direction. The
“force” f then models the reasons which may cause a change in cell persistence.
They include

1. A chemotactic body force
fchem = µ⇢r�, (36)

where µ measures the intensity of cell response per unit mass. The linear depen-
dence on ⇢ corresponds to the assumption that each cell experiences a similar
chemotactic action. A saturation e↵ect on the amount of chemoattractant could
be included. The generalization of the model to the case of multiple species
of chemical factors, characterized by di↵erent physical properties and biological
actions (e.g. attraction and repulsion), is also of interest to understand how to
govern the formation of the network.

2. A dissipative interaction with the substrate

fdiss = �↵⇢u. (37)

The linear dependence of fdiss on ⇢ corresponds to the assumption that each cell
is subject to the same dissipative forces.

3. As seen before a force across the surface rp that in this case is incompenetrability
of cellular matter, to model the fact that closely packed cells resist to compression

fsurf = �r[⇢⇡(⇢)], (38)

where ⇡(⇢) is a non negative function depending on the cellular density.
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After some standard algebra, it is possible to rewrite system (35) as

8
>>><
>>>:

@t⇢+ r · (⇢u) = 0,

@tu + u · ru = µr�� ↵u �rP (⇢),

@t� = D��+ a⇢� �

⌧
,

(39)

where P (⇢) is defined by

⇢
dP

d⇢
=

d

d⇢
(⇢⇡)

or

P =

Z
1

⇢

d

d⇢
(⇢⇡)d⇢,

and D,↵, and ⌧ , are, respectively, the di↵usion coe�cient, the rate of release, and
the characteristic degradation time of soluble mediators.

2 – A semilinear hyperbolic-parabolic model of chemotaxis

In this chapter we present some analytical results on a semilinear PDEs model of
chemosensitive movement, which generalize the one proposed by Dolak and Hillen
in [51], 8

>><
>>:

@tu + r · v = 0,

@tv + �2ru = �b(�,r�)v + h(�,r�)g(u),

@t� = ��+ f(u,� ),

(40)

where x 2 Rn, t � 0, u : Rn ⇥ R+ ! R+ is the population density, v =
(v1, v2, . . . , vn) : Rn ⇥ R+ ! Rn are the fluxes and � : Rn ⇥ R+ ! R+ the con-
centration of the chemical species. The parameter � is the characteristic speed of
propagation of the cells and the source terms b, h, g, and f are smooth functions.

It is a model with finite speed of propagation, based on the so-called Cattaneo
system where, the typical parabolic equation for bacteria, usually used in Patlak-
Keller-Segel models, is replaced by a system of hyperbolic equations. As seen in the
previous chapter this model (40) is obtained, starting from a velocity jump process
by minimizing the L2-norm through a moment closure method.

Our aim is to study this semilinear hyperbolic-parabolic system from an ana-
lytical point of view, in order to give a rigorous analytical assessment to prototype
models like (40), as a first step in investigation of more complex one, e.g. the quasi-
linear hyperbolic model for vasculogenesis studied in Chapter 3, or the model for
phototrophic biofilm proposed in Chapter 6.

This chapter is focused on the study of solutions to system (40) with the aim to
investigate their possible behavior.
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With reference to the one dimensional case, a first result of local and global
existence for weak solutions, under the assumption of turning rate’s boundness,
was proved in [80]. Recently Guarguaglini et al. in [70] have proved more general
results for this model under weaker hypotheses, by showing a general result of global
stability of zero constant states for the Cauchy problem and of general constant state
for the Neumann problem. These results have been obtained using the linearized
operators, and the accurate analysis of their nonlinear perturbations.

Proceeding along this line, in [48] we presented a global existence theorem and
the asymptotic behavior for smooth solutions with small initial data to the Cauchy
problem, for a simplified version of system (40) in the two dimensional spatial case.

In this chapter, we will consider the multidimensional model (40) with generic
source terms, and we will show the global existence of smooth solutions with small
initial data to the Cauchy problem. Moreover we will determinate their asymptotic
behavior.

The chapter is organized as follows: in the first section, we review some prop-
erties of partially dissipative hyperbolic systems, and we summarize the results
obtained by Bianchini et al. in [17] about the asymptotic behavior of their smooth
solutions.

In [17], the authors proposed a detailed description of the multidimensional
Green function to partially dissipative system, assuming the existence of a strictly
entropy and the Shizuta-Kawashima condition. The authors analyzed the behavior
of the Green function for the linearized problem, decomposing it into two main
terms. The first term is the di↵usive one, and consists of heat kernels, while the
faster term which contains the hyperbolic part.

Then in Section 2.2, we prove the local existence in time for smooth solutions
to system (40) to the Cauchy problem, by a classical fixed point theorem, and
subsequently in Section 2.4, we are able to prove the global existence result thanks
to the refined decay estimates of the Green Kernel of hyperbolic equations. We show
the global existence, and we determinate the asymptotic behavior of this solutions,
also for perturbation of small constant states in the case of simpler source terms. In
order to prove this result, we need to slightly modified our technique to compensate
the lack of polynomial decay of linear term in the hyperbolic equations.

As observed in the previous chapter, for large time hyperbolic and parabolic
model are expected to have the same behavior. Then, in the last section, we first
determinate the asymptotic behavior of the solutions to the parabolic Patlak-Keller-
Segel model related to system (40), obtaining the same decay rate of the hyper-
bolic one. Finally, we examine the di↵erence between solutions to the hyperbolic-
parabolic system (40) and to the related PKS model, showing that this di↵erence
decays with a faster rate.
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2.1 – Partially dissipative hyperbolic systems

In this first section we recall some properties of hyperbolic dissipative systems.
Let us focus our attention on the following multidimensional system of balance

laws (
@tu + r · v = 0,

@tv + �2ru = ��v,
(41)

where u : Rn ⇥ R+ ! R+, v = (v1, v2, . . . , vn) : Rn ⇥ R+ ! Rn, with initial
conditions

u(x, 0) = u0(x), v(x, 0) = v0(x).

We can observe that since (41) is equivalent to damped wave equation, the behavior
of the solutions to the Cauchy problem for this system is quite well known [86].
Moreover system (41) belongs to the class of dissipative hyperbolic systems.

It is possible to rewrite system (41) in a compact form as

@tw +

nX

j=1

Aj@xj w = g(w), (42)

where w = (u, v) 2 ⌦ ✓ R ⇥ Rn, and

Aj =

✓
0 ej

�2et
j 0

◆
,

with (Aj)11 2 R1⇥1, (Aj)12 2 Rn⇥1, (Aj)21 2 R1⇥n, and (Aj)22 2 Rn⇥n and ej is
the canonical j�th vector of Rn. Here we denote the source term by

g(w) =

✓
0

q(w)

◆
=

✓
0

��v

◆
, with q(w) 2 Rn.

The initial condition reads

w(x, 0) = w0(x). (43)

By the introduction of new variables W = (W1, W2), with

W1 = u, W2 =
v

�2
,

and a symmetric positive definite matrix A0, defined as

A0 =

✓
I 0
0 �2I

◆
, (44)
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it is possible to symmetrize system (42). Selecting W as new variable, our system
reads

A0(W )@tW +

nX

j=1

Āj@xj W = G(�(W )),

where

Āj := AjA0(W ) =

✓
0 �2ej

�2et
j 0

◆
,

and G(W ) = g(�(W )) = (0, Q(W ))t. Let us notice that, for every j = 1, . . . , n, the
matrix Āj is symmetric.

In order to continue the analysis of smooth solutions for dissipative hyperbolic
system let us introduce the condition of Shizuta and Kawashima [153] for hyperbolic
systems.

Definition 2.1. System (42) verifies condition (SK), if every eigenvector ofPn
j=1 Aj⇠j is not in the null space of Dg(0) for every ⇠ 2 Rn+1\{0}.

We can observe that system (42) verifies the Kawashima condition since, given
an equilibrium state ✓

u
0

◆
2 Rn+1,

then the generic vector ✓
X
0

◆
2 Rn+1,

is eigenvector of
Pn

j=1 Aj⇠j , if and only if X = 0.

With reference to the existence of smooth solutions to system (42), we recall the
following result, which is a special case of the results in [17].

Theorem 2.2. Let us consider the Cauchy problem (42)-(43). Let s � 0. For
every w0 2 Hs(Rn), there is a unique global solution w to (42)-(43) which verifies

w 2 C0([0,1); Hs(Rn)) \ C1([0,1); Hs�1(Rn)),

and such that,

sup
0t<+1

kw(t)k2
Hs +

Z +1

0

kv(⌧)k2
Hsd⌧  Ckw0k2

Hs ,

where C is a positive constant.
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The refined estimates of the Green Kernel of system (42) proposed by Bianchini
et al. [17], holds for linearized dissipative system in the Conservative-Dissipative
form. Then, we rewrite system (42) in this particular form, which will be useful in
our study.

Let us consider a linear system with constant coe�cients

wt +

nX

j=1

Ajwxj = Bw, (45)

where w = (u, v) 2 R ⇥ Rn.

Definition 2.3. System (45) is in Conservative-Dissipative form (C-D form) if
it is symmetric, i.e. At

j = Aj for all j = 1, . . . , n, and there exists a negative definite
matrix D 2 Rn⇥n, such that

B =

✓
0 0
0 D

◆
.

In this case w1 is called the conservative variable, while w2 is the dissipative one.
Under suitable assumptions every symmetrizable dissipative system can be rewrit-

ten in the C-D form. Let us observe that system (42) can be easily written in the
Conservative-Dissipative form by a change of variable.

Set

M =

✓
I 0
0 ��1

◆
,

and define the matrices of the C-D form

Ãj =

✓
0 �ej

�et
j 0

◆
, B̃ =

✓
0 0
0 ��I

◆
.

Setting ✓
w̃1

w̃2

◆
= M

✓
u
v

◆
=

✓
u
v
�

◆

and reporting in (41), we obtain the conservative-dissipative form for system (41)

(
@tw̃1 + �r · w̃2 = 0,

@tw̃2 + �rw̃1 = ��w̃2.

We will consider by now the conservative-dissipative form of system (41) written
as: (

@tu + �r · v = 0,

@tv + �ru = ��v.
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2.1.1 – The multidimensional Green function

We present now the results on the study of the Green Kernel� h(x, t) of mul-
tidimensional dissipative hyperbolic systems done by Bianchini et al. in [17]. In
their work the authors analyzed the behavior of the Green function for linearized
problems, which has been decomposed into two main terms. The first term, the
di↵usive one, consists of heat kernel, while the faster term consists of the hyperbolic
part.

In general, the form of the Green function is not explicit, but it is possible to
deal with its Fourier transform. The separation of the Green kernel into various
parts is done at the level of a solution operator�( t) acting on L1 \ L2(Rn, Rn+1).

They considered the Cauchy problem for the linear system in the conservative-
dissipative form

@tw +
nX

j=1

Aj@xj
w = Bw, w 2 Rn+1

w(0, ·) = w0,

(46)

where Aj , j = 1, . . . , n are symmetric matrices and

B =

✓
0 0
0 D

◆
,

where D 2 Rn⇥n is a negative definite matrix.
Set, for ⇠ 2 Rn,

A(⇠) :=
nX

j=1

⇠jAj , E(i⇠) = B � iA(⇠).

They introduced the polar coordinates in Rn

⇠ = ⇢⇣,⇢ = |⇠|, ⇣ 2 Sn�1,

and set E(i⇢,⇣ ) = E(i⇢⇣). More generally, in C ⌦ Sn�1,

E(z,⇣ ) = E(z⇣) = B � zA(⇣).

Since Sn�1 is compact, then when E(z,⇣ ) is considered in C ⌦ Sn�1, the points
z = 0, z = 1 are uniformly isolated exceptional point for all ⇣, while in general there
are a finite number of exceptional curves for 0 < |z| < 1. Exceptional points are
the solutions to det(B�zA��I), which is a polynomial equation with holomorphic
coe�cients. Thus it is possible to expand E(z,⇣ ) near z = 0 and z = 1.
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Since the support of� h is contained in the wave cone of (46), then for t � 0,
�h(·, t) has compact support. The solution of the Cauchy problem (46) is given by

w(·, t) = �h(·, t) ⇤ w0,

and using the Fourier transform, we have

ŵ(⇠, t) = b�h(⇠, t)ŵ0(⇠) = eE(i⇠)tŵ0(⇠).

In this framework, when the condition (SK) is verified, there exists a c > 0 such
that, if �(i⇠) is an eigenvalue of E(i⇠), with ⇠ 2 Rn+1\{0}, then

R(�(i⇠))  �c
|⇠|2

1 + |⇠|2 . (47)

Then using the previous inequaliy it is possible to obtain some decay estimates. For
a > 0, we have

k�(|⇠| > a)eE(i⇠)tk  Ce
�c a2

1+a2 t
,

k�(|⇠|  a)eE(i⇠)tk  Ce
� c

1+a2 |⇠|2t
.

Let us introduce the following decomposition

w(·, t) = Ma(t)w0 + Ma(t)w0,

with

cMa(t)w0 = �(|⇠| > a)eE(i⇠)tŵ0(⇠),

cMa(t)w0 = �(|⇠|  a)eE(i⇠)tŵ0(⇠).

For the high frequencies it is possible to obtain

kMa(t) ⇤ w0kL2 = Ck�(|⇠| > a)eE(i⇠)tŵ0(⇠)kL2  Ce
�c a2

1+a2 tkw0kL2 ,

and for any derivative D� in the space variables:

kD�Ma(t) ⇤ w0kL2  Ce
�c a2

1+a2 tkD�w0kL2 .

For the low frequencies it is possible to get,

kD�Ma(t) ⇤ w0kL1  C

Z

Sn�1

Z a

0

e
� c

1+a2 |⇠|2t|⇠|� |ŵ0(⇠)||⇠|n�1d|⇠|d⇣

 C(a, |�|) min
n

1, t�
n
2 � |�|

2

o
kw0kL1

kD�Ma(t) ⇤ w0kL2  C

✓Z

Sn�1

Z a

0

e
� c

1+a2 |⇠|2t|⇠|2� |ŵ0(⇠)|2|⇠|n�1d|⇠|d⇣
◆ 1

2

 C(a, |�|) min
n

1, t�
n
4 � |�|

2

o
kw0kL1 .
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More generally, for � 2 Nn and p 2 [2, +1], the decay estimates obtained are:

kD�Ma(t) ⇤ w0kLp  C(a, |�|) min
n

1, t�
n
2 (1� 1

p )� |�|
2

o
kw0kL1 .

In order to get more refined estimate, Bianchini et al. [17] used the Conservative-
Dissipative form by expanding E(i⇠) for the low frequencies.

As a matter of fact, they gave a more precise description of the behavior of
the di↵usive part, which is decomposed in four blocks, which decay with di↵erent
decay rates. They showed that solutions have canonical projections on two di↵erent
components: the conservative part and the dissipative part. The first one, which
formally corresponds to the conservative part of equations in (46), decays in time
like the heat kernel, since it corresponds to the di↵usive part of the Green function.
On the other side, the dissipative part is strongly influenced by the dissipation and
decays at a rate t�

1
2 faster of the conservative one.

They studied the expansion of E(z,⇣ ) = B � zA(⇣) near z = 0 introducing the
total projector P (z,⇣ ) corresponding to all the eigenvalues near 0, and P�(z,⇣ ) =
I �P (z,⇣ ) the projector corresponding to the whole family of the eigenvalues with
strictly negative real part. The principal part of P (z,⇣ ) is the projector Q0 = R0L0,
the principal part of P�(z,⇣ ) is Q� = R�L�, where the projectors R0, L0, R�, L�
are given by

L0 = RT
0 = [I1 0] , L� = RT

� = [0 In] .

Then they proved the following theorem, [17]:

Theorem 2.4. Consider the linear PDE in the conservative-dissipative form

@tw +

nX

j=1

Aj@xj w = Bw,

where Aj, B satisfy the assumption (SK), and let Q0 = R0L0, Q� = I�Q0 = R�L�
be the eigenprojectors on the null space and the negative definite part of B.

Then, for any function w0 2 L1 \ L2(Rn, Rn+1) the solution of the linear dissi-
pative system can be decomposed as

w(t) = �h(t) ⇤ w0 = K(t) ⇤ w0 + K(t) ⇤ w0,

where for any multi index � and for every p 2 [2, +1], the following estimates hold:
K(t) estimates:

kL0D
�K(t) ⇤ w0kLp  C(|�|) min{1, t�

n
2 (1� 1

p )� |�|
2 }kL0w0kL1

+ C(|�|) min{1, t�
n
2 (1� 1

p )� 1
2�

|�|
2 }kL�w0kL1 ,

kL�D�K(t) ⇤ w0kLp  C(|�|) min{1, t�
n
2 (1� 1

p )� 1
2�

|�|
2 }kL0w0kL1

+ C(|�|) min{1, t�
n
2 (1� 1

p )�1� |�|
2 }kL�w0kL1 .
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K(t) estimates:

kD�K(t) ⇤ w0kL2  Ce�ctkD�w0kL2 .

2.2 – Local existence of smooth solutions

Since our aim is to prove the global existence of smooth solutions with small initial
data to the complete hyperbolic-parabolic system (40), a sharp results of local
existence of solutions in essential for our proof. We prove this local existence of
solutions to the Cauchy problem with a standard fixed point method for a more
general semilinear hyperbolic-parabolic system

8
>><
>>:

@tu + �r · v = F1(u, v,�, r�),

@tv + �ru = F2(u, v,�, r�),

@t� = ��+ F3(u, v,�, r�),

(48)

where u,� : Rn⇥R+ ! R+, v = (v1, v2, . . . , vn) : Rn⇥R+ ! Rn, F1, F3 : Rn⇥R+ !
R and F2 : (F 1

2 , . . . , Fn
2 ) : Rn ⇥ R+ ! Rn, with Fi(0) = 0. We complement the

system with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), �(x, 0) = �0(x), (49)

and with the regularity assumptions

u0, v0 2 Hs(Rn), �0 2 Hs+1(Rn). (50)

Theorem 2.5. There exists t⇤ > 0, only depending on initial data, such that,
under the assumptions that, for i = 1, 2, 3, Fi are locally Lipschitz maps, problem
(48)-(49)-(50), has a unique local solution

w = (u, v) 2 C([0, t⇤), Hs(Rn)), � 2 C([0, t⇤), Hs+1(Rn)).

Proof. Thanks to the semigroup theory and the Duhamel principle it is
possible to write the solutions to the hyperbolic part of (48) as

w(x, t) = S(t)w0(x) +

Z t

0

S(t � s)F (w, �,r�)(s)ds, (51)

where w = (u, v), is the solution to the hyperbolic system

@tw +
nX

j=1

Aj@xj
w = F,
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with F (w, �,r�) = (F1(u, v,�, r�), F2(u, v,�, r�))t, and {S(t)}t�0 is the semi-
group generated by the linear hyperbolic PDEs given by Theorem 2.2.

By the same way, the solution of the parabolic equation can be written as

�(x, t) = T (t)�0(x) +

Z t

0

T (t � s)F3(w, �,r�)(s)ds,

where {T (t)}t�0 is the semigroup generated by the linear heat equation.
Since the parabolic and hyperbolic problem have bounded solutions in Rn [56],

we have the following estimates:

kS(t)kL(Hs,Hs)  g1(t) , kT (t)kL(Hs+1,Hs+1)  g2(t),

where gi(t) are constants depending on time.
We are going to prove the local existence of solution to system (48) by a step

procedure. At the beginning we consider smooth source terms which verify the
global Lipschitz condition. In what follows we shall relax this assumption to include
local Lipschitz continuity.

• Let us assume that Fi, for i = 1, 2, 3, is a smooth map which satisfies the global
Lipschitz condition. Since we want to prove the existence of solutions by a fixed
point method, we have to define a set where solutions will be well-defined, to
prove that this is an invariant set and to built on it a contraction map.
We will find a fixed point on (w,� ). Then fix R > 0, let us define

K=

(
(w,� )2C([0, t0];H

s)⇥C([0, t0];H
s+1):kw(t)�w0kHs+k�(t)��0kHs+12R,

s.t. u(x, 0) = u0(x), v(x, 0) = v0(x), �(x, 0) = �0(x).

)

Since we want that solutions be also in L1 space, by the Sobolev embedding
theorem we consider Hs with s �

⇥
n
2

⇤
+ 1.

By assumption we know that, the source terms Fi, for i = 1, 2, 3, are C1 functions
which satisfy the global Lipschitz condition. This means,

kFi(w1, �1,r�1) � Fi(w2, �2,r�2)kHs

 L(kw1 � w2kHs + k�1 � �2kHs + kr�1 �r�2kHs), 8wi, �i.
(52)

We can observe that the set K 6= {0} because (w0, �0) 2 K. Let us now prove
that K is an invariant set for a suitable choice of the time t0. Taking (w,� ) 2 K
and defining an iterative map ⌃(w,� ) = (w, �) as:

w(x, t) = S(t)w0(x) +

Z t

0

S(t � s)F (w, �,r�)(s)ds,

�(x, t) = T (t)�0(x) +

Z t

0

T (t � s)F3(w, �,r�)(s)ds,

(53)

then we have to prove that ⌃: K ! K.
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Let us consider the first equality, thus

kw(t) � w0kHs  kS(t)w0 � w0kHs +

����
Z t

0

S(t � s)F (w, �,r�)(s)ds

����
Hs

.

We can notice that, being S(t) a strongly continuous semigroup, there exists a
time t1, small enough such that

kS(t)w0 � w0kHs  R

2
, for t 2 [0, t1].

By the global Lipschitz assumption follows

kw(t) � w0kHs  R

2
+

����
Z t

0

S(t � s)F (w, �,r�)(s)ds

����
Hs

 R

2
+ g1(t) t L sup

s2(0,t)

(kw(s)kHs + k�(s)kHs+1).

Since w,� 2 K, we deduce that

kw(t)kHs  kw(t) � w0kHs + kw0kHs  2R + kw0kHs ,

k�(t)kHs+1  k�(t) � �0kHs+1 + k�0kHs+1  2R + k�0kHs+1 .

Therefore

kw(t) � w0kHs  R

2
+ g1(t)tL(4R + kw0kHs + k�0kHs+1). (54)

Let us now estimate the parabolic equation. Since the solution can be written
as

�(x, t) = T (t)�0(x) +

Z t

0

T (t � s)F3(w, �,r�)(s)ds,

we can estimate

k�(t) � �0kHs+1  kT (t)�0 � �0kHs+1 +

����
Z t

0

T (t � s)F3(w, �,r�)(s)ds

����
Hs+1

.

Let us observe that, being T (t) a strongly continuous semigroup, there exists a
time t2, small enough, such that

kT (t)�0 � �0kHs+1  R

2
, for t 2 [0, t2].
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Moreover, since for the heat kernel we have an explicit decay we get

kT (t�s)F3(w, �,r�)(s)kHs+1 ckT (t � s)F3(w, �,r�)(s)kL2

+
X

|↵|=s+1

kDs+1
x T (t � s)F3(w, �,r�)(s)kL2

= ckT (t � s)F3(w, �,r�)(s)kL2

+
X

|↵|=s+1

kD1
xT (t � s)Ds

xF3(w, �,r�)(s)kL2

g2(t � s)(1 + (t � s)�
1
2 )kF3(w, �,r�)(s)kHs .

Then, thanks to the global Lipschitz condition we deduce

k�(t) � �0kHs+1  R

2
+ g2(t)(t +

p
t)L sup

s2(0,t)

(kw(s)kHs + k�(s)kHs+1)

 R

2
+ g2(t)(t +

p
t)L(2R + kw0kHs + k�0kHs+1).

(55)

If we sum the inequalities (54) and (55), we get

kw(t)� w0kHs + k�(t) � �0kHs+1 R + g1(t)tL(4R + kw0kHs + k�0kHs+1)

+g2(t)(t +
p

t)L(2R + kw0kHs + k�0kHs+1).

Then, there will be a time t̄, such that for t 2 (0, t̄],

kw(t) � w0kHs + k�(t) � �0kHs+1  2R,

which proves that K is an invariant set. We obtain our result, if we prove that
the map is a contraction i.e., we need to show that:

k⌃(w1, �1) � ⌃(w2, �2)k  kk(w1, �1) � (w2, �2)k with k < 1.

Let us define ⌃(w1, �1) = (w1, �1) and ⌃(w2, �2) = (w2, �2). Then proceeding
as before

kw1(t) � w2(t)kHs =

����
Z t

0

S(t � s)(F (w1, �1,r�1)(s) � F (w2, �2,r�2)(s))ds

����
Hs


Z t

0

cg1(t�s)L(kw1(s)�w2(s)kHs + k�1(s) � �2(s)kHs+1)ds.

Thus we obtain

kw1(t) � w2(t)kHs

 g1(t)tL sup
s2(0,t)

(kw1(s) � w2(s)kHs + k�1(s) � �2(s)kHs+1). (56)
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Let us consider now the function �. It is possible to estimate the di↵erence
between �1 and �2 in the Hs+1 norms as follows

k�1(t)��2(t)kHs+1

=

����
Z t

0

T (t�s)(F3(w1, �1,r�1)(s)�F3(w2, �2,r�2)(s)ds

����
Hs+1


Z t

0

g2(t�s)(1+(t�s)�
1
2 L(kw1(s) � w2(s)kHs + k�1(s) � �2(s)kHs+1)ds

 g2(t)(t +
p

t)L sup
s2(0,t)

(kw1(s) � w2(s)kHs + k�1(s) � �2(s)kHs+1).

(57)

Summing inequalities (56) and (57), we get

kw1(t) � w2(t)kHs + k�1(t) � �2(t)kHs+1

 c(g1(t) + g2(t))(t +
p

t)L sup
s2(0,t)

(kw1(s) � w2(s)kHs + k�1(s) � �2(s)kHs+1).

Then there exists a time t⇤, such that for t 2 (0, t⇤), L(t +
p

t)(g1(t) + g2(t)) 
k < 1 obtaining that:

kw1(t) � w2(t)kHs + k�1(t) � �2(t)kHs+1

 k sup
s2(0,t)

(kw1(s) � w2(s)kHs + k�1(s) � �2(s)kHs+1).

Hence for small t, the contraction property of ⌃ holds.
Thanks to the contraction theorem, there is a fixed point of the map ⌃, ⌃(w,� ) =
(w,� ). This means that, for t 2 (0, t⇤), system (48) has a smooth solution.
We can notice that, thanks to the global Lipschitz condition, it is possible to
iterate this procedure obtaining a global, in time, solution to system (48).

• Now we will relax the condition on the source terms Fi, assuming the local
Lipschitz condition, i.e.

kFi(w1, �1,r�1) � Fi(w2, �2,r�2)kHs

 L(kw1 � w2kHs + k�1 � �2kHs + kr�1 �r�2kHs)

if kwikHs , k�ikHs+1 2 BR, for a fixed R, where BR := {U = (w,� ) : kwkHs +
k�kHs+1  R}.
We will consider (w0, �0) 2 BR0 , where BR0 := {U = (w,� ) : kwkHs+k�kHs+1 
R0} and the function � 2 C1([0, +1]), 0  �  1 with � = 1 in [0, 1) and supp
� ✓ [0, 2].
Let 'R(U) = �( 1

R |U |) and set

eFi = '(U)Fi(U) =

(
Fi on BR,

0 on Bc
R.
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We consider now the system:
8
>><
>>:

@teu + �r · ev = eF1(eu, ev, e�,re�),

@tev + �reu = eF2(eu, ev, e�,re�),

@t
e� = �e�+ eF3(eu, ev, e�,re�).

(58)

Let us observe that on BR, system (58) verifies a global Lipschitz condition,

then from the previous proof there exists a solution eU = (eu, ev, e�) of (58) and it
is unique for all t.
Now we want to prove that there will exists a time tR such that eU(t) 2 BR.
Let us observe that

k ew(t)kHs  kS(t)w0kHs +

����
Z t

0

S(t � s) eF ( ew, e�,re�)(s)ds

����
Hs

 g1(t)kw0kHs + g1(t)tL sup
s

(k ew(s)kHs + ke�(s)kHs+1).

On the other hand, for the variable � holds

ke�(t)kHs+1  kT (t)�0kHs +

����
Z t

0

T (t � s)fF3( ew, e�,re�)ds

����
Hs

 g2(t)k�0kHs + g2(t)(t +
p

t)L sup
s2(0,t)

(k ew(s)kHs + ke�(s)kHs+1).

Summing these two inequalities we obtain:

k ew(t)kHs + ke�(t)kHs+1  g1(t)kw0kHs + g2(t)k�0kHs

+ (g1(t) + g2(t))(t +
p

t)L sup
s2(0,t)

(k ew(s)kHs + ke�(s)kHs+1)

then

sup
s2(0,t)

(k ew(s)kHs + ke�(s)kHs+1)

 1

1 � (t +
p

t)L(g1(t) + g2(t))
(g1(t)kw0kHs + g2(t)k�0kHs).

This implies that there will be a time t⇤, such that for t 2 (0, t⇤],

sup
s2(0,t⇤)

keU(t)kHs = sup
s2(0,t⇤)

(k ew(t)kHs + ke�(t)kHs+1)  R.

Since eF = F for kUk  R, by uniqueness of solution, we obtain eU = U in
Rn ⇥ (0, t⇤), then we have the local solution to system (48). ⇤
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2.3 – Continuation principle

In this section we prove some results which can be useful to establish the existence
of global solutions to the more specific problem

8
>><
>>:

@tu + �r · v = 0,

@tv + �ru = �b(�,r�)v + h(�,r�)g(u),

@t� = ��+ f(u,� ),

(59)

with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), �(x, 0) = �0(x), (60)

and the regularity assumptions

u0, v0 2 Hs(Rn) \ L1(Rn), �0 2 Hs+1(Rn). (61)

In order to prove our results we make some assumptions on the functions b, f, g, h
on the right hand side in system (59).

(Hb): b 2 Cs+1(Rn+1) and

b(z, w) = � + b̄(z, w),

where � > 0, and for all fixed K > 0

|b̄(z, w)|  Bk(|z| + |w|) for all z, w 2 [�K, K],

where Bk is a suitable constant depending on K.
(Hh): h 2 Cs+1(Rn+1) and h(0, 0) = 0. In particular for all fixed K > 0 with

|h(z, w)|  Hk(|z| + |w|) for all z, w 2 [�K, K],

where Hk is a suitable constant depending on K.
(Hg): g 2 Cs+1(R) and g(0) = 0. For all fixed K > 0 with

|g(z)|  Gk|z| for all z 2 [�K, K],

where Gk is a suitable constant depending on K.
Let us notice that this general sensitivity function, h(�,r�)g(u), covers dif-
ferent possible relations between species and chemical substance present in
chemotaxis models as reported in Table 3.
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Table 3 Sensitivity Functions h(�,r�)g(u) from literature [79]. c, �,� ,� are constants.

h(�,r�)g(u)

�r�u

�
(1+↵�) r�u

�(�+1)
(�+�) r�u

�r�u(1 � u
� )

� 1
c tanh( cr�

1+c ) u

(Hf ): f 2 Cs+1(R2) and
f(z, w) = az � bw + f̄(z, w),

where a, b > 0, and for all fixed K > 0,

|f̄(z, w)|  Fk(|z|2 + |w|2) for all z, w 2 [�K, K],

where Fk is a suitable constant depending on K.

By these assumptions, we are led to consider the system
8
>><
>>:

@tu + �r · v = 0,

@tv + �ru = ��v � b̄(�,r�)v + h(�,r�)g(u),

@t� = ��+ au � b�+ f̄(u,� ).

(62)

It is possible to rewrite the above system as

(
@tw +

Pn
j=1 Aj@xj

w = Bw + B̄(�,r�)w + H(�,r�, w),

@t� = ��+ au � b�+ f̄(u,� ),
(63)

where

Aj =

✓
0 �ej

�et
j 0

◆
, B =

✓
0 0
0 ��

◆
,

and

B̄(�,r�) =

✓
0

�b̄(�,r�)

◆
, H(�,r�, w) =

✓
0

h(�,r�)g(w)

◆
.

Thanks to the regularity of source terms, the local Lipschitz condition yields. Then
we can apply Theorem 2.5 and deduce the local existence of solution to (62).

Before proceeding in our study of global existence of solutions we recall some
well-known inequalities in the Sobolev spaces [160].
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Proposition 2.6. Let u, v 2 Hs(Rn) \ L1(Rn), s > 0, |�|  s, then

kD�(uv)kL2  c(kukL1kD�vkL2 + kvkL1kD�ukL2).

If u, v 2 Hs+|�|(Rn),

kD�(uv)kHs  c(kukL1kD�vkHs + kvkL1kD�ukHs),

if � = 0, then
kuvkL2  kukL2kvkL1 .

Proposition 2.7. Let F be smooth and assume F (0) = 0. Then, for u 2
Hs(Rn) \ L1(Rn)

kF (u)kHs  Cs(kukL1)(1 + kukHs).

Proposition 2.8. Let u 2 Hs(Rn) \ L1(Rn) (s � 1) such that there exists
�0 > 0 that for (x, t) 2 Rn ⇥ [0, +1),

|u(x, t)|  �0.

Then for every smooth function h

kD�h(u)kL2  C�kh0kC|�|�1(|u|�0)kuk
|�|�1
L1 kD�ukL2 ,

with � 6= 0, |�|  s.

Now we are going to prove the existence of global solutions of perturbation to
problem (62)-(60)-(61) using the following Continuation Principle.

Proposition 2.9. Let T < +1 be the maximal time of existence for a local
solution (w,� ) to system (62)-(60)-(61). Then

lim sup
t!T�

kw(t)kHs + k�(t)kHs+1 = +1.

Proof. Let (w,� ) be a given local smooth solution on a maximal time interval
(0, Tmax).
Let T > Tmax and assume there exists an a priori bound

R := sup
(0,T )

max {k�kHs+1 , kwkHs} .

Let tR > 0 be the maximal time of existence of solutions to the Cauchy problem,
with kw0kHs , k�0kHs+1  R.
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Then, there exists t̄ 2 (T � tR

2 , T ) such that, we can consider the functions
w(x, t̄) 2 Hs(Rn) and �(x, t̄) 2 Hs+1(Rn) as initial data for a new Cauchy prob-
lem, with maximal time of existence T = t̄ + tR > Tmax, and we find a contra-
diction. ⇤

From the previous result, it is enough to estabilish an a priori Hs, Hs+1 bound
to give the global existence. Beside we can notice that to prove the global existence
result, it is enough to prove the boundness of L1-norm of functions (w,� ), as proved
by the following Lemma.

Lemma 2.10. Let (w,� ) 2 C([0, t), (Hs(Rn)) ⇥ C([0, t), Hs+1(Rn)) a solution
of (62) for 0  t  T , where kw(t)kL1 , k�(t)kW 1,1  K, then there will exist a
constant Ck such that,

kw(t)kHs + k�(t)kHs+1  c(kw0kHs + k�0kHs+1)eCkt, 0  t  T.

Proof. Let kw(t)kL1 , k�(t)kW 1,1  K, then we want to prove that Hs norms
of these functions are bounded.

Thanks to the Duhamel’s formula we can write the solution of the hyperbolic
part as

w(x, t) = ( �h(t) ⇤ w0)(x) +

Z t

0

�h(t � s) ⇤ (B̄(�,r�)(s)w(s)

+ H(�,r�, w)(s))ds,

where� h is the Green function of system (41). Then

kw(t)kHs k�h(t) ⇤ w0kHs +

Z t

0

k�h(t � s) ⇤ (B̄(�,r�)w(s)+H(�,r�, w)(s))kHsds

Ckw0kHs +

Z t

0

CkB̄(�,r�)(s)w(s)kHs + kH(�,r�, w)(s)kHsds,

by Proposition 2.6 we deduce

kw(t)kHs Ckw0kHs +C

Z t

0

(kb̄(�,r�)(s)kL1kw(s)kHs +kw(s)kL1kb̄(�,r�)(s)kHsds

+C

Z t

0

kh(�,r�)(s)kL1kg(w)kHs + kh(�,r�)(s)kHskg(w)kL1ds.
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Let us observe that, by assumptions (Hb),(Hf ),(Hg),(Hh) and Proposition 2.8, we
have

kg(w)kHs Ckg(w)kL2 +Cḡ0kwks�1
L1 kDswkL2 CGkkwkL2 +Cḡ0kwks�1

L1 kwkHs .

kh(�,r�)kHs Hk(k�kL2 + kr�kL2) + Cb̄0k(�,r�)ks�1
L1

X

|↵|=s

kDs(�,r�)kL2

C[Hk(k�kL2 + kr�kL2) + Ch̄0Ks�1k�kHs+1 ].

kb̄(�,r�)kHs C[Bk(k�kL2 + kr�kL2) + Cb̄0K
s�1k�kHs+1 ].

kf̄(u,� )kHs ckf̄(u,� )kL2 +
X

|↵|=s

kD↵
x f̄(u,� )kL2

C[Fk(kukL2kukL1 + k�kL2k�kL1) + Cf̄ 0Ks�1(k�kHs + kukHs)].

By previous inequalities we get

kw(t)kHs  c(kw0kHs +

Z t

0

(Bk + HkGk)(k�(s)kL1 + kr�(s)kL1)kw(s)kHsds

+

Z t

0

(Bk + HkGk)kw(s)kL1(k�(s)kL2 + kr�(s)kL2)ds

+

Z t

0

kw(s)kL1(Cb̄0 + Ch̄0)Ks�1(k�kHs + kr�kHs)ds.

The last relation can be written as:

kw(t)kHs  C

✓
kw0kHs +

Z t

0

Mk(k�kHs+1 + kw(s)kHs)ds

◆
, (64)

where the constant Mk depends on K and Cb0 , Ch0 .
Let us consider now the solution of the parabolic equation, that thanks to

Duhamel’s formula we can write as

�(x, t) = (e�bt�p(t) ⇤ �0)(x) +

Z t

0

e�b(t�s)�p(t � s) ⇤ (au(s) + f̄(u,� )(s))ds.

Then, we can estimate the Hs+1-norm of � as follows

k�(t)kHs+1 ke�bt�p(t) ⇤ �0kHs+1 +

Z t

0

ke�b(t�s)�p(t�s) ⇤ au(s)+f̄(u,� )(s)dskHs+1

Ck�0kHs+1 +

Z t

0

akw(s)kHs + (1 + (t � s)�
1
2 )kf̄(u,� )(s)kHsds

Ck�0kHs+1 + Dk

Z t

0

(1 + (t � s)�
1
2 )kw(s)kHs + k�(s)kHs+1ds,
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where the constant Dk depends on K and Cf 0 . If we sum the last inequality and
(64) we obtain

kw(t)kHs + k�(t)kHs+1  C(k�0kHs+1 + kw0kHs)

+

Z t

0

(1+(t�s)�
1
2 )(Dk+Mk)(kw(s)kHs + k�(s)kHs+1)ds.

Applying Gronwall’s Lemma we easily deduce

kw(t)kHs + k�(t)kHs+1  c̃(kw0kHs + k�0kHs+1)e(Dk+Mk)(t+
p

t). (65)

⇤

Moreover it is also possible to verify that the boundness of k�kW 1,1 , implies the
boundness of kwkL1 . Indeed we have

kw(t)kL1 =

�����h(t) ⇤ w0+

Z t

0

�h(t � s) ⇤ (B̄(�,r�)(s)w(s)+H(�,r�, w)(s))

����
L1

ds

Ckw0kL1 +

Z t

0

C(kB̄(�,r�)w(s)kL1 + kH(�,r�, w)(s)kL1)ds,

and by assumptions (Hb), (Hh), and k�kW 1,1  K we get

kw(t)kL1  Ckw0kL1 +

Z t

0

C(Bk + HkGk)(kr�(s)kL1 + k�(s)kL1)kw(s)kL1ds.

Applying as before the Gronwall’s Lemma we get

kw(t)kL1  c̃kw0kL1et(C(Bk+HkGk)K).

In the proof of global existence we are not going to use this remark, but it could be
useful for more general results.

2.4 – Global existence and asymptotic behavior of smooth solutions

In this section our aim is to prove the boundness of solutions to system (62) for
every time t. Once that this result will be obtained, we could easily prove the
global existence of solutions by Lemma 2.10 and Continuation Principle 2.9. The
estimates are built up on sharp decay estimates, obtained by Theorem 2.4 for the
Green function of the hyperbolic operator and the known decay of the heat kernel.

Let us observe that by this approach, we get simultaneously the boundness of
L1-norm of solutions and also their decay rates. Given � > 0, let us define for a
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given function g the functionals

M �
g (t) = sup

(0,t)

(max{1, s�}kg(s)kL2)

N �
g (t) = sup

(0,t)

(max{1, s�}kg(s)kL1).

Moreover let us denote by Ds
x any space derivative D↵

x , such that |↵| = s.
Before starting our proof, let us recall an useful lemma [17]:

Lemma 2.11. For any �,� � 0, t � 2

⌫ := min {�, �,� + � � 1} ,

it holds

Z t

0

min
�
1, (t � s)��

 
min

�
1, s��

 
ds

 C ·

8
><
>:

min {1, t�⌫} , �, �6= 1,

min {1, t�⌫(1 + ln t)} , �  1, � = 1 or � = 1, �  1,

min
�
1, t�1

 
, � >1, � = 1 or � = 1, �> 1,

Z t

0

min
�
1, s��

 
ds  C ·

8
><
>:

1, � >1,

ln t,� = 1,

t1��, 0  � < 1,
Z t

0

e�c(t�s) min
�
1, s��

 
ds  C min

�
1, s��

 
, � � 0.

2.4.1 – Decay estimates for the chemoattractant

We can collect the estimate referred to the function � in the following proposi-
tion.

Proposition 2.12. Let (u, v,� ) be the solution of system (62)-(60)-(61), under
the assumptions (Hb),(Hf ), (Hg), (Hh). Let K, T > 0 such that for t 2 (0, T ),
ku(t)kL1 , k�(t)kW 1,1  K. Then for t 2 (0, t),

N
n
2

D1
x�

(t)  C
⇣
kDx�0kL1 + (1 + FkK)N

n
2

u (t) + FkKN
n
2

� (t)
⌘

,

M �̃
Ds+1

x �
(t)  C

⇣
kDs+1

x �0kL2 + (1 + Ck)M �̃
Ds

xu(t) + CkM �̃
Ds

x�
(t)
⌘

,



[59] Analysis and numerical approximations of hydrodynamical models. . . 175

where �̃ = min
�

n
4 + 1

2 + s
2 , n

2

 
, and the constant Ck depends on K and C 0

f . Moreover,
if K is su�ciently small, then we have

N
n
2

� (t)  C
⇣
k�0kL1 + (1 + FkK)N

n
2

u (t)
⌘

,

M
n
4

� (t)  C
⇣
k�0kL2 + (1 + FkK)M

n
4

u (t)
⌘

,

M �̃
Ds

x�
(t)  C

⇣
kDs

x�0kL2 + (1 + Ck)M �̃
Ds

xu(t)
⌘

.

Proof. Fix K > 0 large enough and let T > 1. Take a solution to system (62)
such that kukL1(Rn⇥(0,T )), k�kW 1,1(Rn⇥(0,T ))  K

2 , this is possible provided that
the initial data are suitably small. Thanks to the Duhamel’s formula it is possible
to write the function � as

�(x, t) = (e�bt�p(t) ⇤ �0)(x) +

Z t

0

e�b(t�s)�p(t � s) ⇤ (↵u(s) + f̄(u,� )(s))ds. (66)

Now we proceed in estimating the function in the di↵erent norms. Let us start with
the L1-norm.

L1-estimate for � By the previous equations, we have

k�(t)kL1 e�btk�p(t) ⇤ �0kL1 +

Z t

0

e�b(t�s)k�p(t�s) ⇤ (↵u(s) + f̄(u,� )(s))kL1ds

e�btk�0kL1 +

Z t

0

e�b(t�s)k�p(t � s)kL1k(↵u(s) + f̄(u,� )(s))kL1ds

Ce�btk�0kL1 +

Z t

0

Ce�b(t�s)((↵+KFk)ku(s)kL1 + KFkk�(s)kL1)ds.

Let us multiply by min{1, s�
n
2 } max{1, s

n
2 } = 1, which yields,

k�(t)kL1  C

✓
e�btk�0kL1 + (1 + KFk)N

n
2

u (t)

Z t

0

e�b(t�s) min{1, s�
n
2 }ds

+ KFkN
n
2

� (t)

Z t

0

e�b(t�s) min{1, s�
n
2 }ds

◆
.

Thanks to Lemma 2.11, we easily deduce

k�(t)kL1

C
⇣
e�btk�0kL1 +(1+FkL) min{1, t�

n
2 }N

n
2

u (t) + FkL min{1, t�
n
2 }N

n
2

� (t)
⌘

.
(67)
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L1-estimate for D1
x� Proceeding in a similar way, we get

kD1
x�(t)kL1 kD1

x(e�bt�p(t) ⇤ �0)kL1

+

Z t

0

kD1
x(e�b(t�s)�p(t � s) ⇤ (↵u(s) + f̄(u,� )(s))kL1ds

e�btkD1
x(�p(t) ⇤ �0)kL1

+

Z t

0

e�b(t�s)kD1
x(�p(t � s) ⇤ (↵u(s) + f̄(u,� )(s))kL1ds

e�btk�p(t)kL1kD1
x�0kL1

+

Z t

0

e�b(t�s)kD1
x�

p(t � s)kL1k↵u(s) + f̄(u,� )(s)kL1ds

Ce�btkD1
x�0kL1

+

Z t

0

Ce�b(t�s)(t � s)�
1
2 ((↵+ KFk)ku(s)kL1 + KFkk�(s)kL1)ds

C


e�btkD1

x�0kL1+(1+KFk)N
n
2

u (t)

Z t

0

e�b(t�s)(t�s)�
1
2 min{1,s�

n
2 }ds

+ KFkN
n
2

� (t)

Z t

0

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds

�
.

In order to complete our estimate, we need to estimate the integral

Z t

0

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds.

It can be splitted in two parts as

Z t

0

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds =

Z t�1

0

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds

+

Z t

t�1

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds.

Let us start from the first integral. Since 1  t � s  t, by Lemma 2.11 we get

Z t�1

0

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds


Z t�1

0

e�b(t�s) min{1, s�
n
2 }ds  C min{1, |t � 1|�n

2 }.
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While for the second integral, we consider the change of variable ✓ = t � s, then
Z t

t�1

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds

=

Z 1

0

e�b✓✓�
1
2 min{1, (t � ✓)�

n
2 }d✓  C min{1, |t � 1|�n

2 }.

Therefore, we obtain
Z t

0

e�b(t�s)(t � s)�
1
2 min{1, s�

n
2 }ds  C min{1, |t � 1|�n

2 }.

Thus the estimates of the L1-norm of the first derivative is given by

kD1
x�(t)kL1  C

⇣
e�btkD1

x�0kL1 + (1 + KFk)N
n
2

u (t) min{1, |t � 1|�n
2 }

+KFkN
n
2

� (t) min{1, |t � 1|�n
2 }
⌘

.
(68)

From the last inequality and (67) follows that the functionals N
n
2

� and N
n
2

D1
x�

, can

be estimated as

N
n
2

� (t)  C
⇣
k�0kL1 + (1 + FkK)N

n
2

u (t) + FkKN
n
2

� (t)
⌘

.

N
n
2

D1
x�

(t)  C
⇣
kDx�0kL1 + (1 + FkK)N

n
2

u (t) + FkKN
n
2

� (t)
⌘

.
(69)

Moreover, if K is su�ciently small, then we have:

N
n
2

� (t)  C
⇣
k�0kL1 + (1 + FkK)N

n
2

u (t)
⌘

. (70)

L2-estimate for � We estimate now the function � and its derivatives in the L2-
norm. Let us start from the L2 estimate for �. By the Duhamel’s formula (66),
follows

k�(t)kL2 ke�bt�p(t) ⇤ �0kL2 +

Z t

0

ke�b(t�s)�p(t � s) ⇤ (↵u(s) + f̄(u,� )(s))kL2ds

e�btk�p(t)kL1k�0kL2 +

Z t

0

e�b(t�s)(k�p(t�s)kL1k↵u(s)+f̄(u,� )(s)kL2ds

C(e�btk�0kL2 +

Z t

0

e�b(t�s)(ku(s)kL2 + FkK(ku(s)kL2 + k�(s)kL2))ds

C(e�btk�0kL2 + (1 + FkK)M
n
4

u (t)

Z t

0

e�b(t�s) min{1, s�
n
4 }ds

+FkKM
n
4

� (t)

Z t

0

e�b(t�s) min{1, s�
n
4 }ds).
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Proceeding as done before, by Lemma 2.11 we obtain

k�(t)kL2  C
⇣
e�btk�0kL2 + (1 + FkK)M

n
4

u (t) min{1, t�
n
4 }

+FkKM
n
4

� (t) min{1, t�
n
4 }
⌘

.
(71)

Then, for the related functional, the following estimate yields

M
n
4

� (t)  C
⇣
k�0kL2 + (1 + FkK)M

n
4

u (t) + FkKM
n
4

� (t)
⌘

.

Also in this case, if K is su�ciently small, then

M
n
4

� (t)  C
⇣
k�0kL2 + (1 + FkK)M

n
4

u (t)
⌘

. (72)

L2-estimate for Ds
x� Let us proceed estimating the L2�norm of the s-derivative

the function �. By the Duhamel’s formula, we obtain in a similar way

kDs
x�(t)kL2  e�btkDs

x�
p(t) ⇤ �0kL2

+

Z t

0

e�b(t�s)kDs
x�

p(t � s) ⇤ (↵u(s) + f̄(u,� )(s))kL2ds

 Ce�btkDs
x�0kL2

+

Z t

0

Ce�b(t�s)(kDs
xu(s)kL2 + kDs

xf̄(u,� )(s)kL2)ds

 Ce�btkDs
x�0kL2

+

Z t

0

Ce�b(t�s)(kDs
xu(s)kL2 + Cf̄ 0Ks�1(kDs

x�(s)kL2 + kDs
xu(s)kL2)).

Using Lemma 2.11 we deduce:

kDs
x�(t)kL2  C

⇣
e�btkDs

x�0kL2 + (1 + 2Cf 0Ks�1)M �̃
Ds

xu(t) min{1, t��̃}

+ 2Cf 0Ks�1M �̃
Ds

x�
(t) min{1, t��̃}

⌘
,

where �̃ = min
�

n
4 + 1

2 + s
2 , n

2

 
. Then, for the related functional we have

M �̃
Ds

x�
(t)  C

⇣
kDs

x�0kL2 + (1 + Ck)M �̃
Ds

xu(t) + CkM �̃
Ds

x�
(t)
⌘

and, if K is su�ciently small, then

M �̃
Ds

x�
(t)  C

⇣
kDs

x�0kL2 + (1 + Ck)M �̃
Ds

xu(t)
⌘

. (73)
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L2-estimate for Ds+1
x � Finally we estimate the L2-norm of the s + 1-derivative of

�. As done before

kDs+1
x �(t)kL2  e�btkDs+1

x �p(t) ⇤ �0kL2

+

Z t

0

e�b(t�s)kDs+1
x �p(t � s) ⇤ (↵u(s) + f̄(u,� )(s))kL2ds

 Ce�btkDs+1
x �0kL2

+

Z t

0

Ce�b(t�s)kD1
x�

p(t � s)kL1kDs
x(↵u(s) + f̄(u,� )(s))kL2ds

 Ce�btkDs+1
x �0kL2 +

Z t

0

Ce�b(t�s)(t � s)�
1
2 kDs

xu(s)kL2

+

Z t

0

2CCf 0Ks�1e�b(t�s)(t � s)�
1
2 (kDs

x�(s)kL2 +kDs
xu(s)kL2)ds.

Thanks to Lemma 2.11 we deduce,

kDs+1
x �(t)kL2  C

⇣
e�btkDs+1

x �0kL2 + (1 + K)M �̃
Ds

xu(t) min{1, |t � 1|�n
4 }

+ KM �̃
Ds

x�
(t) min{1, |t � 1|��̃}

⌘
,

(74)

where �̃ = min
�

n
4 + 1

2 + s
2 , n

2

 
. Then, for the functional we get

M �̃
Ds+1

x �
(t)  C

⇣
kDs+1

x �0kL2 + (1 + Ck)M �̃
Ds

xu(t) + CkM �̃
Ds

x�
(t)
⌘

. (75)

⇤

2.4.2 – Decay estimates for the conservative and dissipative variables

Now we can prove the existence of global solutions to system (62) for suitably
small initial data.

Theorem 2.13. Under the assumptions (Hb), (Hf ),(Hg), and (Hh) there exists
an ✏0 > 0 such that, if

ku0kHs , ku0kL1 , kv0kHs , kv0kL1 , k�0kHs+1 , k�0kW 1,1  ✏0,

then there exists a unique global solution to the Cauchy problem (62)-(60):

u 2 C([0,1), Hs(Rn)), v 2 C([0,1), Hs(Rn)), � 2 C([0,1), Hs+1(Rn)),

for s �
hn
2

i
+ 1.
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Moreover for the solution (u, v,� ) the following decay rates are satisfied

ku(t)kL1 ⇠ t�
n
2 , ku(t)kL2 ⇠ t�

n
4 , kDk

xu(t)kL2 ⇠ t��k , for k = 0, . . . , s;

kv(t)kL1 ⇠ t�
n
2 , kv(t)kL2 ⇠ t�⌫0 , kDk

xv(t)kL2 ⇠ t�⌫k , for k = 0, . . . , s;

k�(t)kL1 ⇠ t�
n
2 , kD1

x�(t)kL1 ⇠ t�
n
2 ,

k�(t)kL2 ⇠ t�
n
4 , kDk+1

x �(t)kL2 ⇠ t��k , for k = 0, . . . , s;

where �k = min
�

n
4 + 1

2 + 1
2

⇥
k+1
2

⇤
, n

4 + �r
 
, with r =

⇥
k
2

⇤
, ⌫0 = min

�
n
2 , n

4 + 1
2

 
,

and ⌫k = min
�

n
4 + 1 + 1

2

⇥
k+1
2

⇤
, n

4 + �r
 
, with r =

⇥
k
2

⇤
.

Remark 2.14. We have defined the decay rates of the s-order derivative as

�s = min

⇢
n

4
+

1

2
+

1

2


s + 1

2

�
,
n

4
+ �r

�
, for s � 1, (76)

where r =
⇥

s
2

⇤
. Here we write the explicit form for the lower orders.

Set �0 = n
4 . Let be s = 1, then, by the relation (76), we have �1 = min

�
n
4 + 1, n

2

 
.

If s=2, then �2 =min
�

n
4 +1, n

4 + �1
 
. When s = 3, we get �3 = min

�
n
4 + 3

2 , n
4 + �1

 

and so on.
In Figure 1 are illustrated the decay rates for s = 1, . . . , 4.

Proof. In order to prove our global existence result, we need to estimate the
Hs and L1-norm of the solution (u, v) to system (62).

By the Duhamel’s formula that solution w to system (62) can be written as

w(x, t) = ( �h(t)⇤w0)(x)+

Z t

0

�h(t�s)⇤(B̄(�,r�)(s)w(s)+H(�,r�, w)(s))ds, (77)

where the function� h(·) is the Green function of the dissipative hyperbolic sys-
tem (41).

Thus for the first component of w, the conservative variable u, we have:

u(x, t) = ( �h1 (t)⇤w0)(x)+

Z t

0

�h
1 (t� s)⇤ (B̄(�,r�)w(s)+H(�,r�, w)(s))ds, (78)

where� h
1 is the first row of the (n + 1) ⇥ (n + 1) Kernel� h.

Regarding the generic dissipative component vj , for j = 1, . . . , n, we have

vj(x, t) = ( �hj+1(t) ⇤ w0)(x)

+

Z t

0

�h
j+1(t � s) ⇤ (B̄(�(s),r�(s))w + H(�,r�, w)(s))ds,

(79)

where� h
j+1 is the (j + 1)-th row of� h.
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Figure 1 Decay Rates of function �, u s-derivatives for s = 1, . . . , 4

We take into account the expression of� h and its decay rates, presented in Sec-
tion 2.1.1, in order to obtain decay estimates of the conservative and dissipative
variables.

L2-estimate for u We will start our analysis by the L2 estimate for the function u.
By equation (78) follows

ku(t)kL2  k�h
1 (t) ⇤ w0kL2

+

Z t

0

k�h
1 (t � s) ⇤ (B̄(�(s),r�(s))w + H(�,r�, w))kL2ds.

(80)

In Subsection 2.1.1 we observed that, it is possible to decompose the Green Kernel,
then

k�h
1 (t) ⇤ w0kL2 kK1,1(t) ⇤ u0kL2

+

nX

i=1

kK1,i+1(t) ⇤ vi
0kL2 + kK1,1(t) ⇤ u0kL2 +

nX

i=1

kK1,i+1(t) ⇤ vi
0kL2 .
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By Theorem 2.4 we deduce

kK1,1(t) ⇤ u0kL2  Ce�ctku0kL2 kK1,1(t) ⇤ u0kL2 C min{1, t�
n
4 }ku0kL1 ,

kK1,i+1(t) ⇤ vi
0kL2  Ce�ctkvi

0kL2 , kK1,i+1(t) ⇤ vi
0kL2 C min{1, t�

n
4 � 1

2 }kvi
0kL1 .

Moreover we can decompose the integral term in (80) as

Z t

0

k�h
1 (t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds


Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds

+

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds.

Let us start estimating the first integral.

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2


Z t

0

Ce�c(t�s)(kB̄(�,r�)(s)w(s)kL2 + kH(�,r�, w)kL2)ds


Z t

0

Ce�c(t�s)(Bk(kr�(s)kL1 + k�(s)kL1)kv(s)kL2

+ HkGk(kr�(s)kL1 + k�(s)kL1)ku(s)kL2ds.

Proceeding as done for the estimates of the function �, we arrive at

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2

CBk(N
n
2

D1
x�

(t)M⌫0
v (t) + N

n
2

� (t)M⌫0
v (t))

Z t

0

e�c(t�s) min{1, s�( n
2 +⌫0)}ds

+ CHkGk(M
n
4

u (t)N
n
2

� (t) + M
n
4

u (t)N
n
2

D1
x�

(t))

Z t

0

e�c(t�s) min{1, s�
3
4 n}ds,

where ⌫0 = min
�

n
4 + 1

2 , n
2

 
. Then thanks to Lemma 2.11 we deduce

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2 

+ CBk min{1, t�( n
2 +⌫0)}(N

n
2

D1
x�

(t)M⌫0
v (t) + N

n
2

� (t)M⌫0
v (t))

+ CHkGk min{1, t�
3
4 n}(M

n
4

u (t)N
n
2

� (t) + M
n
4

u (t)N
n
2

D1
x�

(t)).
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To complete our estimate we need to study the contribution of the hyperbolic Green
function di↵usive part.

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds


Z t

0

C min{1, (t�s)�
n
4 � 1

2 }(kb̄(�,r�)(s)v(s)kL1 + kh(�,r�)g(u)(s)kL1)ds


Z t

0

C min{1, (t�s)�
n
4 � 1

2 }(kb̄(�,r�)(s)kL2kv(s)kL2 +kh(�,r�)(s)kL2ku(s)kL2)ds


Z t

0

C min{1, (t�s)�
n
4 � 1

2 }(Bkk�(s)kL2kv(s)kL2 + Bkkr�(s)kL2kv(s)kL2ds

+

Z t

0

C min{1, (t�s)�
n
4 � 1

2 }(HkGkk�(s)kL2ku(s)kL2+HKGkkr�(s)kL2ku(s)kL2)ds.

Introducing the functionals M�, we arrive at

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds

BK(M
n
4

� (t)M⌫0
v (t)+M

n
4

D1
x�

(t)M⌫0
v (t))

Z t

0

min{1, (t � s)�
n
4 � 1

2 } min{1, s�( n
4 +⌫0)}ds

+HkGk(M
n
4

� (t)M
n
4

u (t)+M
n
4

D1
x�

(t)M
n
4

u (t))

Z t

0

min{1, (t � s)�
n
4 � 1

2 } min{1, s�
n
2 }ds,

and by Lemma 2.11 we deduce

Z t

0

kK1(t � s) ⇤ (B̄(�,r�)w(s) + H(�,r�, w)(s))kL2

min{1, t�⌫0}(BKM
n
4

� (t)M⌫0
v (t) + BKM

n
4

D1
x�

(t)M⌫0
v (t)) (81)

+ min{1, t�✓}(HkGkM
n
4

u (t)M
n
4

� (t) + HkGkM
n
4

u (t)M
n
4

D1
x�

(t)),

where ✓ = 1
4 if n = 1 otherwise ✓ = n

4 + 1
2 .
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Then we obtain the L2-norm of the function u summing the previous inequalities.

ku(t)kL2  C

"
e�ct(ku0kL2 +

nX

i=1

kvi
0kL2)

+ min{1, t�
n
4 }ku0kL1 + min{1, t�

n
4 � 1

2 }
nX

i=1

kv0
i kL1

#

+ Ck

h
min{1, t�( n

2 +⌫0)}(N
n
2

D1
x�

(t)M⌫0
v (t) + N

n
2

� (t)M⌫0
v (t))

+ min{1, t�
3
4 n}(M

n
4

u (t)N
n
2

� (t) + M
n
4

u (t)N
n
2

D1
x�

(t))

+ min{1, t�⌫0}(M
n
4

� (t)M⌫0
v (t) + M

n
4

D1
x�

(t)M⌫0
v (t))

+ min{1, t�✓}(M
n
4

u (t)M
n
4

� (t) + M
n
4

u (t)M
n
4

D1
x�

(t))
i
,

(82)

where the constant Ck depends on K.

L2-estimate for Ds
xu The next step is the estimate of s-order derivative of function

u. From the Duhamel’s formula, it follows that

kDs
xu(t)kL2  kDs

x�
h
1 (t) ⇤ w0kL2

+

Z t

0

kDs
x�

h
1 (t�s)⇤(B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds.

(83)

Decomposing the Green Kernel, the first term in the previous inequality can be
estimated as

kDs
x�

h
1 (t) ⇤ w0kL2  kDs

xK1,1(t) ⇤ u0kL2

+
nX

i=1

kDs
xK1,i+1(t) ⇤ vi

0kL2 + kDs
xK1,1(t) ⇤ u0kL2

+
nX

i=1

kDs
xK1,i+1(t) ⇤ vi

0kL2 .

Therefore, by Theorem 2.4, we have

kDs
xK1,1(t) ⇤ u0kL2  Ce�ctkDs

xu0kL2 ,

kDs
xK1,1(t) ⇤ u0kL2  C min{1, t�

n
4 � s

2 }ku0kL1 ,

kDs
xK1,i+1(t) ⇤ vi

0kL2  Ce�ctkDs
xvi

0kL2 ,

kDs
xK1,i+1(t) ⇤ vi

0kL2  C min{1, t�
n
4 � 1

2� s
2 }kvi
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Moreover we can decompose the integral term in (83) as

Z t

0

kDs
x�

h
1 (t � s) ⇤ (B̄(�,r�)w(s) + H(�,r�, w)(s))kL2ds


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+
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0
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Let us start estimating the first integral.
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
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Then, by Lemma 2.11 we get
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where �̃ = min{n
4 + 1

2 + s
2 , n

2 } and ⌫̃ = min{n
4 + 1 + s

2 , n
2 }.
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In order to complete our estimate, we need to study the contribution of the
hyperbolic Green function di↵usive part

Z t

0

kDs
xK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds.

Proceeding as before,
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
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k
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Moreover
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Then, by Lemma 2.11 we get
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where �̃ = min
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, and ⌫̃ = min
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Finally the L2 norm of the s-derivative of function u, can be estimated as follows:
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(84)

L1 estimate for u Let us focus now on the L1 norm of the function u.

ku(t)kL1  k�h
1 (t) ⇤ w0kL1

+

Z t

0

k�h
1 (t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL1ds.

(85)

By the decomposition of the Green Kernel, we can estimate the first term in the
previous inequality as

k�h
1 (t) ⇤ w0kL1  kK1,1(t) ⇤ u0kL1 +

nX

i=1

kK1,i+1(t) ⇤ vi
0kL1 + kK1,1(t) ⇤ u0kL1

+
nX
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kK1,i+1(t) ⇤ vi
0kL1 .

Thanks to Theorem 2.4, we have

kK11(t) ⇤ u0kL1  kK1,1(t) ⇤ u0kHs  Ce�ctku0kHs ,
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Let us decompose the integral term.

Z t

0
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We can estimate the first integral as
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In order to complete our study on the L1 norm of function u, we estimate the
contribution of the hyperbolic Green function di↵usive part.
Z t

0

kK1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s)(s))kL1ds


Z t

0

min{1, (t � s)�
n
2 � 1

2 }kB̄(�,r�)(s)v(s)kL1 + kh̄(�,r�)g(u)(s)kL1ds


Z t

0

min{1, (t � s)�
n
2 � 1

2 }Bk(k�(s)kL2kv(s)kL2 + kr�(s)kL2kv(s)kL2)ds

+

Z t

0

min{1, (t � s)�
n
2 � 1

2 }HkGk(k�(s)kL2ku(s)kL2 + kr�(s)kL2ku(s)kL2)ds

BK(M
n
4

� (t)M⌫0
v (t)+M

n
4

D1
x�

(t)M⌫0
v (t))

Z t

0

min{1, (t � s)�
n
2 � 1

2 } min{1, s�( n
4 +⌫0)}ds

+HkGk(M
n
4

� (t)M
n
4

u (t)+M
n
4

D1
x�

(t)M
n
4

u (t))

Z t

0

min{1, (t � s)�
n
2 � 1

2 } min{1, s�
n
2 }ds.

Thanks to Lemma 2.11 we deduce
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We can collect the previous estimates in the following inequality
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(86)

where the constant Ck depends on K.
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In order to complete our proof we need to estimate, by the same technique, the
dissipative variable v.

L2-estimate for v Let us start with the L2 norm of a generic component vj , with
j = 1, . . . , n.

By the Duhamel’s formula (79) we get

kvj(t)kL2  k�h
j+1(t) ⇤ w0kL2

+

Z t

0

k�h
j+1(t � s) ⇤ (B̄(�,r�)(s)w(s) + H(�,r�, w)(s))kL2ds.

(87)

Then by the decomposition of the Green kernel we have
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and by Theorem 2.4 we get the following estimates
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We pass now to estimate the second term in (87). Decomposing the integral term,
we get
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Let us focus on the first integral on the right-hand side. We can notice that, since the
singular part of the Green Kernel has the same decay rate for both conservative and
dissipative variable, we can estimate this term, as done previously in the estimate
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of function u. Then,
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. On the other hand, when estimating the dissipative

term of Green Kernel di↵usive part, we get a faster decay, with respect to the
conservative variable u. The dissipative part, being strongly influenced by the
dissipation, decays at the rate t�
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2 faster of the conservative one. Proceeding as

done before,
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where ⌫0 = min
�

n
2 , n
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. Then, summing the previous inequalities we obtain the

L2-norm of the function v.

kvj(t)kL2  C

"
e�ct(ku0kL2 +

X

i

kvi
0kL2) + min{1, t�

n
4 � 1

2 }ku0kL1

+ min{1, t�
n
4 �1}

X

i

kvi
0kL1

#

+ Ck

h
min{1, t�( n

2 +⌫0)}(N
n
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D1
x�

(t)M⌫0
v (t) + N

n
2

� (t)M⌫0
v (t))
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3
4 n}(M
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u (t)N
n
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� (t) + M
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(t))
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� (t)M⌫0
v (t) + M
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(t)M⌫0
v (t)

+ M
n
4

� (t)M
n
4

u (t) + M
n
4

D1
x�

(t)M
n
4

u (t))
i
.

(88)

In order to complete our study we need to estimate the L2 norm of the s-derivative
of function v and its L1 norm.

L2-estimate for Ds
xv Regarding the s-order estimate for vj , we have

kDs
xvj(t)kL2 C

"
e�ct(kDs

xu0kL2 +

nX

i=1

kDs
xvi

0kL2

+min{1, t�
n
4 � 1

2� s
2 }ku0kL1 +min{1, t�

n
4 �1� s

2 }
nX

i=1

kvi
0kL1)

#

+ Ck

h
min{1, t�(�̃+ n

2 )}(M �̃
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x�
(t)N

n
2

v (t) + M �̃
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2

v (t))
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n
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D1
x�

(t)M ⌫̃
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xv(t) + N
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2

� (t)M ⌫̃
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2 )}(M �̃

Ds
x�
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u (t)

+ M �̃
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n
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i
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(89)

Let us recall that ⌫̃ = min
�

n
4 + 1 + s

2 , n
2

 
.
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L1-estimate for v On the other hand, for the L1 norm of function vj , we get the
following estimates

kvj(t)kL1  C

"
e�ct(ku0kHs +

nX

i=1

kvi
0kHs) + min{1, t�

n
2 � 1

2 }ku0kL1
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0 kL1

#
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(t)M
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4
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i
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(90)

Once that, decay rates of variable have been determinated by inequalities (82), (84),
(86), (88), (89), (90), we apply Proposition 2.12 to get the following estimates for
the functionals related to the solution (u, v). For t > ✏ > 0,

M
n
4

u (t)  C1

h
E0 + D0 + D0

⇣
M

n
4

u (t) + N
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2
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⌘
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u (t))2
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i
,

where ⌫0 = min
�

n
2 , n

4 + 1
2

 
.

M �̃
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⇣
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,
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where �̃ = min{n
4 + 1

2 + s
2 , n

2 }, and ⌫̃ = min{n
4 + 1 + s

2 , n
2 }.
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where D0 = k�0kHs+1 , E0 = max{ku0kHs , ku0kL1 , kv0kHs , kv0kL1} and the con-
stant Ci = Ci(Fk, K, Cb0 , Ch0).

Let us define

P (t) := M
n
4

u (t) + N
n
2

u (t) + M �̃
Ds

xu(t) + M⌫0
v (t) + N

n
2

v (t) + M ⌫̃
Ds

xv(t).

We can notice that all the previous estimates are linear combinations of sums of
type: A0F

�
w(t)+ F �

w(t)F �1

w1
(t) where F �

w, F �1

w1
are terms of P (t). Then it is possible
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to estimate each of them with A0P (t) + P (t)2. It follows that if initial data are
small, we have

CkP (t)2 � (1 � Ck0)P (t) + C0 � 0, (91)

where Ck is a positive constant depending on K, Ck0 is a positive constant depend-
ing on K and on data, and C0 also is a positive constant depending on data. For suit-

ably small initial data, this inequality implies that M
n
4

u (t), N
n
2

u (t), M �̃
Ds

xu(t), M⌫0
v (t),

N
n
2

v (t), M ⌫̃
Ds

xv(t) remain bounded, as far as ku, vkL1  K and k�kW 1,1  K. When

t > 1 this implies that kw(t)kL1 does not increase. Thanks to the Proposition 2.12

the same is true for N
n
2

� and N
n
2

D1
x�

.

Since we have also obtained that k�(t)kW 1,1 is bounded, from Lemma 2.10
and the continuation principle we have the global existence of smooth solutions to
system (40).

Optimal decay rates In order to complete our proof, we need to improve the decay
rates of Ds

xu, Ds
xv, Ds

x� in the L2 norm.
By the previous estimates, we got that, independently from the derivative order s,
the decays rates of these function are equal to �̃ = min

�
n
4 + 1

2 + s
2 , n

2

 
, for u, �

and equal to ⌫̃ = min
�

n
4 + 1 + s

2 , n
2

 
for v. This implies that, for small n, even if

the derivative order is high, we get always the decay t�
n
2 , as illustrated by the blue

line in Figure 2 for n = 2.
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and �s = min
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2

⇤
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,

with r =
⇥

s
2

⇤
for n = 2.

Looking at inequality (84) we notice that these decays come from the estimates
related to Green Kernel di↵usive part.

Then, we need to adopt a di↵erent strategy to estimate these terms and overcome
the di�culty, i.e. split the derivatives on both terms.
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We show this procedure by induction on a simple source term �u.

• Let s = 1. Since in this case we cannot split the order of derivative, we proceed
as done before keeping the derivative on the Green Kernel. Then,
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0

kD1
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
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4
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4
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where �1 = min
�

n
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2

 
.

• Let us consider the second order derivative, i.e. s = 2. Now we split the
derivative both on the Green Kernel and the source term, proceeding as fol-
lows,
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.

• Finally, we iterate the procedure for a generic s, splitting the derivatives as
follows. We left

⇥
s+1
2

⇤
derivatives on the Green Kernel, and the remaining ones
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⇥
s
2

⇤
, on the source terms. By this way we get
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Thus, through this simple procedure, we are able to obtain faster decays rates for
the s derivative of the functions u, v and �. More precisely for the s�derivative
of function v, since the Green Kernel has a faster decay, we get the rate ⌫s =
min

�
n
4 + 1 + 1

2

⇥
s+1
2

⇤
, n

4 + �r
 
. ⇤

2.5 – Global existence and asymptotic behavior of perturbations
of constant stationary states

The aim of this section is to investigate the behavior of small constant states. For
the sake of simplicity we will consider the system with a simpler source term,

8
>><
>>:

@tũ + r · ṽ = 0,

@tṽ + rũ = �ṽ + ũr�̃,

@t�̃ = ��̃+ aũ � b�̃,

where (ũ, ṽ, �̃) = (ū+u, v, �̄+�), (ū, 0, �̄) is a stationary solution with �̄ = a
b ū, and

(u, v,� ) is a perturbation. Therefore we can rewrite the previous system as follows

8
>><
>>:

@tu + r · v = 0,

@tv + ru = �v + (u + ū)r�,

@t� = ��+ au � b�.

(92)

This system is supplemented by the initial conditions

u0, v0 2 Hs(Rn) \ L1(Rn), �0 2 Hs+1(Rn) \ L1(Rn). (93)

In order to prove the global existence result and the decay of solutions to (92) we
will proceed along the lines of the previous sections. Then starting from a local
solution to (92), which is guaranteed by Theorem 2.5, we will get estimates and
decay rates of the Hs and L1 norm. Then by the continuation principle 2.9 we will
obtain our existence result.
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To get the decay of solutions we need to adapt the technique used in the above
proof of stability for the zero constant state, to treat the linear term ūr�, which
does not present enough polynomial decay.

Existence of global solutions to system (92) is given by the following theorem.

Theorem 2.15. There exists an ✏0 > 0 such that, if

ku0kHs , ku0kL1 , kv0kHs , kv0kL1 , k�0kHs+1 , k�0kL1 , ū  ✏0,

then there exists a unique global solution to the Cauchy problem (92)-(93)

u 2 C([0,1); Hs(Rn)), v 2 C([0,1); Hs(Rn)), � 2 C([0,1); Hs+1(Rn)),

for s �
hn
2

i
+ 1.

(94)

Moreover, for the solution (u, v,� ) the following decay rates are satisfied

ku(t)kL1 ⇠ t��, ku(t)kHs ⇠ t��,

kv(t)kL1 ⇠ t��, kv(t)kHs ⇠ t��,

k�(t)kL1 ⇠ t��, kD1
x�(t)kL1 ⇠ t��,

k�(t)kHs+1 ⇠ t��, k�(t)kHs ⇠ t��,

(95)

where � = min
�

n
4 , n

8 + 1
 
.

Proof. Let us consider a local solution to system (92). Taking into account the
expressions for the Green function, we are going to estimates the norm of solutions.
Let us notice that for the solution to the linear parabolic equation the estimates
of the previous case still hold. In order to prove our result we need the following
estimates which, even if are not optimal, they are in suitable spaces.
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(96)
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2.5.1 – Decay estimates for the conservative and dissipative variables

As before we proceed by estimating the norm of the conservative and dissipative
variables of the hyperbolic part, starting from the function u.

L2-estimate for u By the Duhamel’s formula we can write this solution as

u(x, t) = ( �h1 (t) ⇤ w0)(x) +

Z t

0

�h
1 (t � s) ⇤ [0, (u + ū)r�(s)]ds, (97)

where� h
1 is the first row of the (n + 1) ⇥ (n + 1) matrix� h.

Then

ku(t)kL2  k�h
1 (t) ⇤ w0kL2 +

Z t

0

k�h
1 (t � s) ⇤ [0, (u + ū)r�(s)]kL2ds. (98)

From the decomposition of the Green Kernel we know that

k�h
1 (t) ⇤ w0kL2  kK1,1(t) ⇤ u0kL2 +

nX
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kK1,i+1(t) ⇤ vi
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+
nX
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0kL2 ,

and by Theorem 2.4 we get

kK1,1(t) ⇤ u0kL2  Ce�ctku0kL2 ,
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2 }kvi
0kL1 , for i = 1, . . . , n.

(99)

The integral term can be decomposed as
Z t

0

k�h
1 (t � s) ⇤ [0, (u(s) + ū)r�(s)]kL2ds


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0

kK1(t � s) ⇤ [0, (u(s) + ū)r�(s)]kL2ds

+
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0
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Let us start with the first integral of the previous inequality.
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ce�c(t�s)(kr�(s)kL2ku(s)kL1 + ūkr�(s)kL2ds,
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then

Z t

0

kK1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2

 CM�
D1

x�
(t)N �

u(t)

Z t

0

e�c(t�s) min{1, s�2�}ds

+ CūM �
D1

x�
(t)

Z t

0

e�c(t�s) min{1, s��}ds,

where � = min
�

n
4 , n

8 + 1
 
.

By Lemma 2.11 we deduce that

Z t

0

kK1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])dskL2

 C
h
min{1, t�2�}M �

D1
x�

(t)N �
u(t) + min{1, t��}ūM �

D1
x�

(t)
i
.

(100)

To complete our estimate we need to study the dissipative part. Due to the presence
of the linear term ūD1

x�, we do not have enough polynomial decay. In order to
overcome this di�culty we apply the derivative of the linear term to the Green
function, getting a faster decay.

Thanks to this modification, we are able to estimate this term as follows

Z t

0

kK1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds


Z t

0

nX

i=1

kK1,i+1(t � s) ⇤ ([0, (u(s) + ū)@xi�(s)])kL2ds


Z t

0

nX

i=1

kK1,i+1(t � s) ⇤ ([0, u @xi
�(s)])kL2ds

+

Z t

0

nX

i=1

kD1
xi

K1,i+1(t � s) ⇤ ([0, ū�(s)])kL2ds

 C

Z t

0

min{1, (t � s)�
n
4 � 1

2 }kr�(s)kL2ku(s)kL2ds

+ C

Z t

0

min{1, (t � s)�
n
8 �1}ūk�(s)k

1
2

L2k�(s)k
1
2

L1ds.
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Then we obtain the estimate

Z t

0

kK1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2ds

 CM�
D1

x�
(t)M �

u(t)

Z t

0

min{1, (t � s)�
n
4 � 1

2 } min{1, s�2�}ds

+ Cū(M �
�(t))

1
2 (N �

�(t))
1
2

Z t

0

min{1, (t � s)�
n
8 �1} min{1, s��}ds

 C
⇣
min{1, t�⌫}M �

D1
x�

(t)M �
u(t) + ū min{1, t��}(M �

�(t))
1
2 (N �

�(t))
1
2

⌘
,

where ⌫ = 1
4 if n = 1, otherwise ⌫ = n

4 + 1
2 . Summing the last inequality and (99),

(100) we obtain

ku(t)kL2  C

 
e�ct(ku0kL2 +

nX

i=1

kvi
0kL2 + min{1, t�

n
4 }ku0kL1

+ min{1, t�
n
4 � 1

2 }
nX

i=1

kvi
0kL1

+ min{1, t�2�}(M �
D1

x�
(t)N �

u(t) + min{1, t��}ū(M �
�(t))

+ min{1, t�⌫}M �
D1

x�
(t)M �

u(t)

+ ū min{1, t��}(M �
�(t))

1
2 (N �

�(t))
1
2

!
.

(101)

L2 estimate for Ds
xu In a similar way it is possible obtain the s-order estimate for

the conservative variable. From the Duhamel’s formula we know that

kDs
xu(t)kL2  kDs

x�
h
1 (t) ⇤ w0kL2

+

Z t

0

kDs
x�

h
1 (t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds.

(102)

Let us start considering the first term that we can decompose as

kDs
x�

h
1 (t) ⇤ w0kL2  kDs

xK1,1(t) ⇤ u0kL2

+
nX

i=1

kDs
xK1,i+1(t) ⇤ vi

0kL2 + kDs
xK1,1(t) ⇤ u0kL2

+

nX

i=1

kDs
xK1,i+1(t) ⇤ vi

0kL2 , for i = 1, . . . , n,
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then by Theorem 2.4 we have

kDs
xK1,1(t) ⇤ u0kL2  Ce�ctkDs

xu0kL2 ,

kDs
xK1,1(t) ⇤ u0kL2  C min{1, t�

n
4 � s

2 }ku0kL1 ,

kDs
xK1,i+1(t) ⇤ vi

0kL2  Ce�ctkDs
xvi

0kL2 ,

kDs
xK1,i+1(t) ⇤ vi

0kL2  C min{1, t�
n
4 � 1

2� s
2 }kvi

0kL1 .

Let us focus now on the integral term that we can decompose as

Z t

0

kDs
x�

h
1 (t � s) ⇤ ([0, (u + ū)r�(s)])kL2ds


Z t

0

kDs
xK1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds

+

Z t

0

kDs
xK1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds.

We estimate the first integral as

Z t

0

kDs
xK1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2


Z t

0

Ce�c(t�s)kDs
x[(u(s) + ū)r�(s)]kL2


Z t

0

Ce�c(t�s)(kūDs
x(r�(s))kL2 + kDs

x(ur�(s))kL2)


Z t

0

Ce�c(t�s)(ūkDs+1
x �(s)kL2 +ku(s)kL1kDs+1

x �(s)kL2 +kr�(s)kL1kDs
xu(s)kL2 .

Thanks to Lemma 2.11 we deduce that:

Z t

0

kDs
xK1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2

 Cū min{1, t��}M �
Ds+1

x �
(t)

+ C min{1, t�2�}(N �
u(t)M �

Ds+1
x �

(t) + N �
D1

x�
(t)M �

Ds
xu(t)).
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To complete our estimate, we need to study the dissipative part,

Z t

0

kDs
xK1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2ds


Z t

0

nX

i=1

kDs
xK1,i+1(t � s) ⇤ ([0, (u + ū)@xi�(s)])kL2ds


Z t

0

nX

i=1

kDs
xK1,i+1(t � s) ⇤ u(s)@xi�(s)kL2ds

+

Z t

0

nX

i=1

kDs+1
x K1,i+1(t � s) ⇤ ū�(s)kL2ds.

We proceed as done before and by Lemma 2.11 we obtain

Z t

0

kDs
xK1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2

 C
h
min{1, t�s}(M �

D1
x�

(t)M �
u(t) + M �

u(t)M �
D1

x�
(t))

+ ū min{1, t��}(M �
�(t))

1
2 (N �

�(t))
1
2

i
,

where s = min
�

n
4 + 1

2 + s
2 , 2�

 
and � = min

�
n
4 , n

8 + 1
 
. Then we can write the

estimate in the L2 norm of the s�derivative of the conservative variable u as

kDs
xu(t)kL2 C

h
e�ct(kDs

xu0kL2 + kDs
xv0kL2 + min{1, t�

n
4 � s

2 }ku0kL1

+ min{1, t�
n
4 � 1

2� s
2 }kv0kL1))

+ ū min{1, t��}(M �
Ds+1

x �
(t)+min{1, t�2�}(N �

u(t)M �
Ds+1

x �
(t)

+ N �
D1

x�
(t)M �

Ds
xu(t))

+ min{1, t�s}(M �
D1

x�
(t)M �

u(t) + M �
u(t)M �

D1
x�

(t))

+ ū min{1, t��}(M �
�(t))

1
2 (N �

�(t))
1
2

i
.

(103)

L1-estimate for u Finally with the same approach, we estimate the L1 norm of
the function u. By the Duhamel’s formula we know that

ku(t)kL1 k�h
1 (t) ⇤ w0kL1 +

Z t

0

k�h
1 (t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL1ds, (104)
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and by the decomposition of the Green Kernel, we get

k�h
1 (t) ⇤ w0kL1  kK1,1(t) ⇤ u0kL1 +

nX

i=1

kK1,i+1(t) ⇤ vi
0kL1 + kK1,1(t) ⇤ u0kL1

+

nX

i=1

kK1,i+1(t) ⇤ vi
0kL1 .

By Theorem 2.4, we deduce that

kK1,1(t) ⇤ u0kL1  Ce�ctku0kHs , kK1,1(t) ⇤ u0kL1 C min{1, t�
n
2 }ku0kL1 ,

kK1,i+1(t) ⇤ vi
0kL1  Ce�ctkvi

0kHs , kK1,i+1(t) ⇤ vi
0kL2C min{1, t�

n
2 � 1

2 }kvi
0kL1 .

We can decompose the integral term as,

Z t

0

k�h
1 (t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL1ds


Z t

0

nX

i=1

kK1,i+1(t � s) ⇤ ([0, (u + ū)@xi�(s)])kL1ds

+

Z t

0

nX

i=1

kK1,i+1(t � s) ⇤ ([0, (u(s) + ū)@xi�(s)])kL1ds.

Let us estimate the first term in the previous inequality,

Z t

0

nX

i=1

kK1,i+1(t � s) ⇤ ([0, (u(s) + ū)@xi
�(s)])kL1ds


Z t

0

nX

i=1

CkK1,i+1(t � s) ⇤ ([0, (u + ū)@xi
�(s)])kL2ds

+ C

Z t

0

X

|↵|=s

kDs
x

nX

i=1

K1,i+1(t � s) ⇤ ([0, (u + ū)@xi�(s)])kL2ds.

Then, by the estimates of the function u and its derivatives in the L2norm, we have

Z t

0

nX

i=1

kK1,i+1(t � s) ⇤ ([0, (u + ū)@xi�(s)])kL1ds

 C
⇣
min{1, t�2�}(M �

D1
x�

(t)N �
u(t) + min{1, t��}ūM �

D1
x�

(t)

+ ū min{1, t��}(M �
Ds+1

x �
(t)+min{1, t�2�}(N �

u(t)M �
Ds+1

x �
(t)+N �

D1
x�

(t)M �
Ds

xu(t))
⌘

.
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As the final step we need to estimate the dissipative part:

Z t

0

kK1(t � s) ⇤ ([0, (u + ū)r�(s)])kL1ds


Z t

0

C min{1, (t � s)�
n
2 � 1

2 }kr�(s)kL2ku(s)kL2ds

+

Z t

0

C min{1, (t � s)�
n
4 �1}ūk�(s)kL2ds

 C
h
min{1, t�2�}M �

D1
x�

(t)M �
u(t) + ū min{1, t��}M �

�

i
.

Thus we can estimate the L1-norm of the function u as follows.

ku(t)kL1  C

"
e�ct(ku0kHs +

nX

i=1

kvi
0kHs) + min{1, t�

n
2 }ku0kL1

+ min{1, t�
n
2 � 1

2 }
nX

i=1

kvi
0kL1

+ min{1, t�2�}(M �
D1

x�
(t)N �

u(t) + min{1, t��}ūM �
D1

x�
(t)

+ ū min{1, t��}M �
Ds+1

x �
(t)

+ min{1, t�2�}(N �
u(t)M �

Ds+1
x �

(t) + N �
D1

x�
(t)M �

Ds
xu(t))

+ min{1, t�2�}M �
D1

x�
(t)M �

u(t) + ū min{1, t��}M �
�

#
.

(105)

Next subsection is devoted to the estimates of the L2 and L1 norms of the func-
tion v.

L2-estimate for v By the Duhamel’s formula we can write the generic component
vj , with j = 1, . . . , n, as

vj(x, t) = ( �hj+1(t) ⇤ w0)(x) +

Z t

0

�h
j+1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])ds,

then

kvj(t)kL2  k�h
j+1(t) ⇤ w0kL2

+

Z t

0

k�h
j+1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2ds.

(106)
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By the decomposition of the Green kernel we have that

k�h
j+1(t) ⇤ w0kL2  kKj+1,1(t) ⇤ u0kL2

+
nX

i=1

kKj+1,i+1(t) ⇤ vi
0kL2 + kKj+1,1(t) ⇤ u0kL2

+
nX

i=1

kKj+1,i+1(t) ⇤ vi
0kL2 .

Thus, thanks to Theorem 2.4 we deduce

kKj+1,1(t) ⇤ u0kL2  Ce�ctku0kL2 ,

kKj+1,1(t) ⇤ u0kL2  C min{1, t�
n
4 � 1

2 }ku0kL1 ,

kKj+1,i+1(t) ⇤ vi
0kL2  Ce�ctkvi

0kL2 ,

kKj+1,i+1(t) ⇤ vi
0kL2  C min{1, t�

n
4 �1}kvi

0kL1 for i = 1, . . . , n.

(107)

As done before we can decompose the integral term in (106) as

Z t

0

k�h
j+1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds


Z t

0

kKj+1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2ds

+

Z t

0

kKj+1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2ds.

Let us start estimating the first integral
Z t

0

kKj+1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds


Z t

0

Ce�c(t�s)k(u(s) + ū)r�(s)kL2ds


Z t

0

Ce�c(t�s)(kr�(s)kL2ku(s)kL1 + ūkr�(s)kL2ds

+ CM �
D1

x�
(t)N �

u(t)

Z t

0

e�c(t�s) min{1, s�2�}ds

+ CūM �
D1

x�
(t)

Z t

0

e�c(t�s) min{1, s��}ds.
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Thanks to Lemma 2.11 we obtain:
Z t

0

kKj+1(t � s) ⇤ ([0, (u + ū)r�(s)])kL2

 C min{1, t�2�}(M �
D1

x�
(t)N �

u(t) + ū min{1, t��}M �
D1

x�
(t).

(108)

In order to complete our estimate we need to study the dissipative part, then
Z t

0

kKj+1(t � s) ⇤ ([0, (u(s) + ū)r�(s)])kL2ds


Z t

0

C min{1, (t � s)�
n
4 �1}kr�(s)kL2ku(s)kL2ds

+

Z t

0

C min{1, (t � s)�
n
8 �1}ūk�(s)k

1
2

L2k�(s)k
1
2

L1ds

 C(min{1, t�⌫}M �
D1

x�
(t)M �

u(t) + ū min{1, t��}(M �
�(t))

1
2 (N �

�(t))
1
2 ,

where ⌫ = min
�

n
4 + 1, 2�

 
. Finally if we sum the last inequality and (107), (108)

we get the L2-norm of the function v

kv(t)kL2  C


e�ct(ku0kL2 +

nX

i=1

kvi
0kL2) + min{1, t�

n
4 � 1

2 }ku0kL1

+ min{1, t�
n
4 �1}

nX

i=1

kvi
0kL1

+ min{1, t�2�}(M �
D1

x�
(t)N �

u(t) + min{1, t��}ūM �
D1

x�
(t)

+ min{1, t�⌫}M �
D1

x�
(t)M �

u(t)

+ ū min{1, t��}(M �
�(t))

1
2 (N �

�(t))
1
2

�
.

(109)

L2-estimate for Ds
xv Proceeding along the lines of the conservative variable esti-

mates, we get the estimate of the s�derivative of v in L2,

kDs
xvj(t)kL2 C


e�ct(kDs

xu0kL2 +

nX

i=1

kDs
xvi

0kL2 + min{1, t�
n
4 � 1

2� s
2 }ku0kL1

+ min{1, t�
n
4 �1� s

2 }
nX

i=1

kvi
0kL1)+ū min{1, t��}M �

Ds+1
x �

(t)

+ min{1, t�2�}(N �
u(t)M �

Ds+1
x �

(t) + N �
D1

x�
(t)M �

Ds
xu(t))

+ min{1, t�⌫s}(M �
D1

x�
(t)M �

u(t) + M �
u(t)M �

D1
x�

(t))

+ ū min{1, t��}(M �
�(t))

1
2 (N �

�(t))
1
2

�
,

(110)

where ⌫s = min
�

n
4 + 1 + s

2 , 2�
 
.
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L1 estimates for v In a similar way we obtain the estimate of the L1 norm of vj ,

kvj(t)kL1  C


e�ct(ku0kHs +

nX

i=1

kvi
0kHs) + min{1, t�

n
2 � 1

2 }ku0kL1

+ min{1, t�
n
2 �1}

nX

i=1

kvn
0 kL1 + min{1, t�2�}M �

D1
x�

(t)N �
u(t)

+ ū min{1, t��}M �
D1

x�
(t) + min{1, t�2�}M �

D1
x�

(t)M �
u(t)

+ ū min{1, t��}M �
�(t)

�
.

(111)

Decay rates of variables Thanks to Proposition (2.12) and inequalities in (101),
(103), (105), (109), (110), (111), we obtain, for t > ✏ > 0 the following estimates
for functionals:

M �
u(t)Cū(E0+D0)+C1

h
ūD0

⇣
(M �

u(t))
1
2 +(N �

u(t))
1
2

⌘
+ūD0

�
M �

u(t)+N �
u(t)

�

+(N �
u(t))2 + N �

u(t)M �
u(t) + (M �

u(t))2
i
.

M �
Ds

xu(t)  Cū(E0 + D0) + C2

h
ūD0

⇣
(M �

u(t))
1
2 + (N �

u(t))
1
2

⌘

+ ūD0

⇣
M �

u(t) + N �
u(t) + M �

Ds
xu(t)

⌘

+ (M�
u(t))2 + N �

u(t)M �
Ds

xu(t) + (M �
Ds

xu(t))2
i
.

N �
u(t)  Cū(E0 + D0) + C3

h
ūD0

�
M �

u(t)

+N�
u(t) + M �

Ds
xu(t)

⌘
+ N �

u(t)M �
u(t) + (M �

u(t))2

+ N �
u(t)M �

Ds
xu(t) + (M �

Ds
xu(t))2 + M �

Ds
xu(t)N �

u(t) + (N �
u(t))2

i
.

M �
v (t)  Cū(E0 + D0)+C4

h
ūD0

⇣
(M �

u(t))
1
2 + (N �

u(t))
1
2

⌘
+ūD0

�
M �

u(t) + N �
u(t)

�

+ (N �
u(t))2 + N �

u(t)M �
u(t) + (M �

u(t))2
i
.

M �
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xv(t)  Cū(E0 + D0) + C5

h
ūD0

⇣
(M �

u(t))
1
2 + (N �

u(t))
1
2

⌘

+ ūD0

⇣
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u(t) + N �
u(t) + M �
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⌘

+ (M�
u(t))2 + N �

u(t)M �
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xu(t) + (M �
Ds

xu(t))2
i
.

N �
v (t)  Cū(E0 + D0) + C6

h
ūD0

⇣
M �

u(t) + N �
u(t) + M �

Ds
xu(t)

⌘

+ N �
u(t)M �

u(t) + (M �
u(t))2

+ N �
u(t)M �

Ds
xu(t) + (M �

Ds
xu(t))2 + M �

Ds
xu(t)N �

u(t) + (N �
u(t))2

i
.
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Moreover D0 = max{k�0kHs+1 , k�0kL1}, E0 = max{kw0kHs , kw0kL1}, while the
constant Ci = Ci(Fk, K, Cb0 , Ch0) for i = 1, . . . , 6.

Let us proceed as in the previous section setting

P (t) := M �
u(t) + N �

u(t) + M �
Ds

xu(t) + M �
v (t) + N �

v (t) + M �
Ds

xv(t).

It follows that, if initial data and the constant state are small, we have

CP (t)2 � (1 � Ck0)P (t) + C1P (t)
1
2 + C0 � 0, (112)

where C0, C1 and Ck0 are positive constants depending on initial data and constant
state and C is a positive constant depending on estimates of Green function. For
suitably small data, this inequality implies that M �

u(t), N �
u(t), M �

Ds
xu(t), M �

v (t),

N �
v (t), M�

Ds
xv(t) remain bounded. On the other hand, when t > 1, this implies that

L1-norm of solution (u, v) do not increase with t. Thanks to the Proposition 2.12
the same holds for N �

� and N �
D1

x�
. Then by Lemma 2.10 and the continuation

principle we get the global existence of solution. ⇤

2.6 – Comparison with the Patlak-Keller-Segel model

As observed in Chapter 1, hyperbolic and parabolic model are expected to have
the same behavior for large times. In this section we investigate this aspect by
studying the decay estimates for the analogous Patlak-Keller-Segel (PKS) model,
and comparing these results with the ones obtained in the previous section for the
Cattaneo-Hillen model. For the sake of simplicity we consider a simplified version
of system (40), namely

8
>><
>>:

@tu + r · v = 0,

@tv + ru = ��v + h(�,r�)g(u),

@t� = ��+ f(u,� ).

(113)

Thus, assuming b(�,r�) ⌘ � and formally disregarding the term @tv in the second
equation of (113), we get v = 1

� (h(�,r�)g(u) � ru), then the system reduces to
the PKS parabolic system:

(
�@tũ ��ũ + r · (h(�̃,r�̃), g(ũ)) = 0,

@t�̃ = ��̃+ f(ũ, �̃),

where the functions f, g, h satisfy the assumptions (Hg), (Hf ), (Hh). Then we are
led to consider the system

(
�@tũ ��ũ + r · (h(�̃,r�̃)g(ũ)) = 0,

@t�̃ = ��̃+ aũ � b�̃+ f̄(ũ, �̃),
(114)
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with initial condition

ũ(x, 0) = ũ0(x), �̃(x, 0) = �̃0(x). (115)

It is known that, for small initial data the solution of the above problem decay in
time in L2-norm in the same way as the solutions to problem (113) [94].
Our aim is to prove that under the assumption of small initial data, if

u0(x) = ũ0(x), �0(x) = �̃0(x), (116)

then ku(t) � ũ(t)kL2 and k�(t) � �̃(t)kL2 for large t, approach zero faster than the
decay of ku(t)kL2 , kũ(t)kL2 , k�(t)kL2 and k�̃(t)kL2

2.6.1 – Asymptotic behavior of the Patlak-Keller-Segel model solutions

First of all we prove the following theorem on the asymptotic behavior of global
smooth solutions to system (114).

Theorem 2.16. Let (ũ, �̃) a global solution to the Cauchy problem (114)-(115),
with regularity assumptions

kũ0kHs , kũ0kL1 , k�̃0kHs+1 , k�̃0kW 1,1  ✏0.

Then the following decay estimate holds,

kũ(t)kL1 ⇠ t�
n
2 , kũ(t)kL2 ⇠ t�

n
4 ,

k�̃(t)kL1 ⇠ t�
n
2 , kD1

x�̃(t)kL1 ⇠ t�
n
2 ,

k�̃(t)kL2 ⇠ t�
n
4 , kD1

x�̃(t)kL2 ⇠ t�
n
4 .

To prove the theorem we use the same approach of the previous section. Let us
observe that we can easily obtain the local existence of solution to system (114) by
the semigroup theory and fixed point method [160]. While for a global existence
result for small initial data see [26] and reference therein.

Proof. Fix K > 0 large enough and let T > 1. Take a solution to system
(114) such that kũkL1(Rn⇥(0,T ))  K

2 , k�̃, D1
x�̃kL1(Rn⇥(0,T ))  K

2 , this is possible
provided that the initial data are suitably small.

By the Duhamel’s formula we can write solution to (114) as

ũ(x, t) = �
1
� (t) ⇤ ũ0(x) +

Z t

0

�
1
� (t � s) ⇤ (r · (h(�̃,r�̃)g(ũ)(s))ds,

�̃(x, t) = (e�bt�p(t) ⇤ �̃0)(x) +

Z t

0

e�b(t�s)�p(t � s) ⇤ (↵ũ(s) + f̄(ũ, �̃))ds.
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Let us focus on the function ũ, then we can estimate the L2-norm as

kũ(t)kL2  k� 1
� (t) ⇤ ũ0kL2 +

Z t

0

k� 1
� (t � s) ⇤ (r · (h̄(�̃,r�̃)g(ũ)(s)))kL2ds,

 Ct�
n
4 kũ0kL1 +GkHk

Z t

0

(t � s)�
1
2 (kũ(s)kL1(k�̃(s)kL2 + kr�̃(s)kL2)ds,

 Ct�
n
4 kũ0kL1 +C min{1, t�( n

4 + n
2 )+ 1

2 }(M
n
4

�̃
(t)N

n
2

ũ (t) + M
n
4

D1
x�̃

(t)N
n
2

ũ (t)).

Then for the functional the following estimates yields,

M
n
4

ũ (t)  C
⇣
kũ0kL1 + M

n
4

�̃
(t)N

n
2

ũ (t) + M
n
4

D1
x�̃

(t)N
n
2

ũ (t)
⌘

. (117)

Proceeding in a similar way, we get the estimate of the function in the L1-norm

kũ(t)kL1  k� 1
� (t) ⇤ ũ0kL1 +

Z t

0

k� 1
� (t � s) ⇤ (r · (h̄(�̃,r�̃)g(ũ)(s)))kL1ds,

 ct�
n
2 kũ0kL1 +GkHk

Z t

0

(t � s)�
1
2 kũ(s)kL1(k�̃(s)kL1 +kr�̃(s)kL1)ds,

 ct�
n
2 kũ0kL1 + min{1, t�n+ 1

2 }N
n
2

ũ (t)(N
n
2

�̃
(t) + N

n
2

D1
x�̃

(t)).

This implies

N
n
2

ũ (t)  C
⇣
kũ0kL1 + N

n
2

ũ (t)(N
n
2

�̃
(t) + N

n
2

D1
x�̃

(t))
⌘

. (118)

Now we consider the solution to the second parabolic equation of (114), �. Thanks
to Proposition 2.12 we have

M
n
4

�̃
(t)  C

⇣
k�̃0kL2 + (1 + FkL)M

n
4

ũ (t)
⌘

,

M
n
4

˜D1
x�

(t)  C
⇣
kD1

x�0kL2 + (1 + FkK)M
n
4

ũ (t) + FkKM
n
4

�̃
(t)
⌘

,

N
n
2

�̃
(t)  C

⇣
k�̃0kL1 + (1 + FkL)N

n
2

ũ (t)
⌘

,

N
n
2

˜D1
x�

(t)  C
⇣
kDx�̃0kL1 + (1 + FkK)N

n
2

ũ (t) + FkKN
n
2

�̃
(t)
⌘

.

Then substituting these inequalities in (117), (118) we get

M
n
4

ũ (t)  C0 + B0(M
n
4

ũ (t) + N
n
2

ũ (t)) + CkM
n
4

ũ (t)N
n
2

ũ (t), (119)

N
n
2

ũ (t)  C0 + B0N
n
2

ũ (t) + Ck(N
n
2

ũ (t))2, (120)
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where Ck is a positive constant depending on K, B0 is a positive constant depending
on K and data and C0 is also a positive constant depending on data.

Let us sum these last relations, and define P (t) := M
n
4

ũ (t) + N
n
2

ũ (t).
Then we obtain the following inequality

2CkP (t)2 � (1 � 2B0)P (t) + 2C0 � 0.

This formula, implies that for suitably small data, M
n
4

ũ (t),N
n
2

ũ (t) remain bounded.
Moreover when t > 1 this implies that the norm of u do not increase. Thanks to
Proposition 2.12 the same holds for the L1-norm of � and r�. ⇤

2.6.2 – Decay estimate of the di↵erence of solutions

In this section we compare the large times behavior of solution u to system
(113) with the solution to the parabolic PKS model (114). We have proved, in the
previous section that for small initial data, the solutions to the problem (114) decay
in time, in L1 and L2-norms, as the solutions to the hyperbolic system (113).
Let us recall that it is possible to give a more precise expansion of the di↵usive
part K(x, t) of the Green Kernel of the dissipative hyperbolic system. As a matter
of fact, in [17] it is shown that in the linearized isentropic Euler equations with
damping for a generic n, K(x, t) can be decomposed as:

K(x, t) =


�p (r�p)T

r�p r2�p

�
+ R1(x, t), (121)

where� p is the heat kernel for ut = �u, and the rest term R1(x, t) satisfies the
bound

R1(x, t) =
e�c|x|2/t

(1 + t)
n
2 + 1

2


O(1) O(1)(1 + t)�

1
2

O(1)(1 + t)�
1
2 O(1)(1 + t)�1

�
.

Our aim is to show that, under the assumption of small initial data, if

u0(x) = ũ0(x), �0(x) = �̃0(x), (122)

then ku(t) � ũ(t)kL2 , and k�(t) � �̃(t)kL2 , for large t, approach zero faster than
ku(t)kL2 , kũ(t)kL2 , k�(t)kL2 and k�̃(t)kL2 .

Theorem 2.17. Let (u, v,� ) and (ũ, �̃) be the global solutions respectively to
system (113) and (114) under the assumptions (Hf ), (Hg), (Hh) and (122). Then
there exist ✏0, L > 0 such that, if

ku0kHs , ku0kL1 , kv0kHs , kv0kL1 , k�0kHs+1 , k�0kW 1,1  ✏0
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then, for all t > 0,

sup
(0,t)

�
max{1, s�}ku(s) � ũ(s)kL2

 
 L, sup

(0,t)

n
max{1, s�}k�(s) � �̃(s)kL2

o
 L,

where � = min{n
4 + 1

2 , n
2 }.

Proof. Let K > 0 such that ku, v,�, r�, ũ, ṽ, �̃,r�̃kL1(Rn⇥(0,1))  K. The
di↵erence between u and ũ can be expressed as follows

|u � ũ|  |(�h
11(t) � �

1
� (t)) ⇤ u0| +

�����
nX

i=1

�h
1,i+1(t) ⇤ vi

0

�����

+

����
Z t

0

�h
1 (t � s) ⇤ (B̄(�,r�)v(s) + H(�,r�, u)(s))ds

� 1

�

Z t

0

r� 1
� (t � s) ⇤ (H(�̃,r�̃, ũ))ds

���� .

By equation (121), for t > 1, we have

|u � ũ|  |(K11(t) + R11(t)) ⇤ u0| +

�����
nX

i=1

�h
1,i+1(t) ⇤ vi

0

�����

+

����
1

�

Z t

0

r� 1
� (t � s) ⇤ (H(�,r�, u) � H(�̃,r�̃, ũ))ds

����

+

����
Z t

0

(K1(t � s) + R1(t � s)) ⇤ H(�,r�, u)ds

����

+

����
Z t

0

�h
1 (t � s) ⇤ B̄(�,r�)v(s)ds

���� .

Proceeding as in the proof of Theorem 2.13, we are able to estimate ku � ũkL2 for
large t:

ku(t) � ũ(t)kL2  k(K11(t) + R11(t)) ⇤ u0kL2 + k
nX

i=1

�h
1,i+1(t) ⇤ vi

0kL2

+
1

�

Z t�1

0

kr� 1
� (t � s) ⇤ (H(�,r�, u)(s) � H(�̃,r�̃, ũ)(s))kL2ds

+

Z t

0

k(K1(t � s) + R1(t � s)) ⇤ H(�,r�, u)(s)kL2ds

+

Z t

0

k�h
1 (t � s) ⇤ B̄(�,r�)v(s)kL2ds

+
1

�

Z t

t�1

kr� 1
� (t � s) ⇤ (H(�,r�, u)(s) � H(�̃,r�̃, ũ)(s))kL2ds.

(123)
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For the first two terms on the right hand side we have,

k(K11(t) + R11(t)) ⇤ u0kL2  e�ctku0kL2 + t�( n
4 + 1

2 )ku0kL1

k
nX

i=1

�h
1,i+1(t) ⇤ vi

0kL2  e�ct
nX

i=1

kvi
0kL2 + min{1, t�( n

4 + 1
2 )}

nX

i=1

kvi
0kL1 .

Let us now estimate the first integral as

1

�

Z t�1

0

kr� 1
� (t � s) ⇤ (H(�,r�, u)(s) � H(�̃,r�̃, ũ)(s))kL2ds

 1

�

Z t�1

0

kr� 1
� (t � s)kL2kh(�,r�)(s)g(u)(s) � h(�̃,r�̃)(s)g(ũ)(s)kL1ds

 1

�

Z t�1

0

C min{1, t � s�( n
4 + 1

2 )}kh(�,r�)(s)g(u)(s) � h(�̃,r�̃)(s)g(ũ)(s)kL1ds

+ CHkGk(M
n
4

D1
x�

(t)+M
n
4

� (t))M �
u�ũ

1

�

Z t�1

0

min{1, t�s�( n
4 + 1

2 )} min{1, s�
n
4 ��)}ds

+ CHkGkM
n
4

ũ (t)M �
���̃

1

�

Z t�1

0

min{1, t � s�( n
4 + 1

2 )} min{1, s�
n
4 ��)}ds

+ CHkGkM
n
4

ũ (t)M �
D1

x��D1
x�̃

1

�

Z t�1

0

min{1, t � s�( n
4 + 1

2 )} min{1, s�
n
4 ��)}ds,

where � = min{n
4 + 1

2 , n
2 }.

Then, thanks to Lemma 2.11 we deduce

1

�

Z t�1

0

kr� 1
� (t � s) ⇤ (H(�,r�, u)(s) � H(�̃,r�̃, ũ)(s))kL2ds

 C1(min{1, t�✓1}(HkGk(M
n
4

� (t) + M
n
4

D1
x�

(t))M �
u�ũ + M

n
4

ũ (t)M �
���̃

+ M
n
4

ũ (t)M �
D1

x��D1
x�̃

),

where ✓1 = min
�

n
4 + 1

2 , n
4 + �, n

2 + � � 1
2

 
. The second part of the integral can be

estimated as follows

1

�

Z t

t�1

kr� 1
� (t � s) ⇤ (H(�,r�, u)(s) � H(�̃,r�̃, ũ)(s))kL2ds

 1

�

Z t

t�1

(t � s)�
1
2 kh(�,r�)g(u)(s) � h(�̃,r�̃)g(ũ)(s)kL2ds

+ HkGkC min{1, t�(�+ n
2 )}(M �

u�ũ(t)N
n
2

�̃
(t) + M �

u�ũ(t)N
n
2

D1
x�̃

(t))

+ HkGkC min{1, t�(�+ n
2 )}(M �

���̃(t)N
n
2

ũ (t) + M �
D1

x��D1
x�̃

(t)N
n
2

ũ (t)).
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We estimate now the fourth term in (123) as,

Z t

0

k(K1(t � s) + R1(t � s)) ⇤ H(�,r�, u)(s)kL2ds


Z t

0

Ce�c(t�s)kh(�,r�)g(u)kL2

+ C min{1, (t � s)�( n
4 +1)}kh(�,r�)g(u)(s)kL1ds.

On the other hand the first term can be estimated as

Z t

0

Ce�c(t�s)kh(�,r�)g(u)kL2ds


Z t

0

Ce�c(t�s)HkGk(k�(s)kL2ku(s)kL1 + kr�(s)kL2ku(s)kL1)ds

 C min{1, t�
3
4 n}(GkHkM

n
4

D1
x
(t)N

n
2

u (t) + M
n
4

� (t)N
n
2

u (t)).

While the second term is estimate by

Z t

0

C min{1, (t � s)�( n
4 +1)}kh(�,r�)(s)g(u)(s)kL1ds


Z t

0

C min{1, (t � s)�( n
4 +1)}GkHk(k�(s)kL2 + kr�(s)kL2)ku(s)kL2)ds

 C2 min{1, t�✓2}HkGk(M
n
4

u (t)M
n
4

� (t) + M
n
4

u (t)M
n
4

D1
x�

(t)),

where ✓2 = min{n
4 +1, n

2 }. In order to complete our estimate, we need to study the
fifth integral term in (123), then proceeding as done before,

Z t

0

k�h
1 (t � s) ⇤ B̄(�,r�)w(s)kL2ds


Z t

0

kK1(t � s) ⇤ b̄(�,r�)v(s)kL2ds

+

Z t

0

kK1(t � s) ⇤ b̄(�,r�)v(s)kL2ds

 Bk min{1, t�( n
4 + n

2 )}(M
n
4

� (t)N
n
2

v (t) + M
n
4

D1
x�

(t)N
n
2

v (t))

+ Bk min{1, t�✓3}BK(M
n
4

� (t)M⌫0
v (t) + M

n
4

D1
x�

(t)M⌫0
v (t)),

where ✓3 = min{n
4 + 1

2 , n
2 }.
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If we sum all the previous estimates, we get the following estimate for the dif-
ference of function u and function ũ in the L2-norm.

ku(t) � ũ(t)kL2

C

"
e�ctku0kL2 +t�( n

4 + 1
2 )ku0kL1 +e�ct

nX

i=1

kvi
0kL2 +min{1, t�( n

4 + 1
2 )}

nX

i=1

kvi
0kL1

#

+Ck

h
min{1, t�✓1}((M

n
4

� (t)+M
n
4

D1
x�

(t))M �
u�ũ(t)+M

n
4

ũ (t)(M �
���̃(t)+M �

D1
x��D1

x�̃
(t))

+min{1, t�( n
4 +�)}(M �

u�ũ(t)N
n
2

D1
x�̃

(t) + M �
u�ũ(t)N

n
2

�̃
(t))

+min{1, t�( n
4 +�)}(M �

���̃(t)N
n
2

u (t) + M �
D1

x��D1
x�̃

(t)N
n
2

u (t))

+min{1, t�
3
4 n}(M

n
4

� (t)N
n
2

u (t) + M
n
4

D1
x�

(t)N
n
2

u (t))

+ min{1, t�✓2}(M
n
4

u M
n
4

� +M
n
4

u M
n
4

D1
x�

)+ min{1, t�✓3}(M
n
4

� M⌫0
v (t)+M

n
4

D1
x�

M⌫0
v (t)) ,

where � = min{n
4 + 1

2 , n
2 }, ✓1 = min{n

4 + 1
2 , n

4 + �, n
2 � 1

2 + �}, ✓2 = min{n
4 + 1, n

2 },
and ✓3 = min{n

4 + 1
2 , n

2 }.

Let us now focus on the function �. Arguing as in Proposition 2.12, it is easy to
show that the di↵erence of the second variables is given by

k�(t) � �̃(t)kL2


Z t

0

ke�b(t�s)�p(t � s) ⇤ (au(s) � aũ(s) + f̄(u,� )(s) � f̄(ũ, �̃)(s))kL2ds


Z t

0

Ce�b(t�s)(kau(s) � aũ(s)kL2 + kf̄(u,� )(s) � f̄(ũ, �̃)(s)kL2ds


Z t

0

e�b(t�s)Ck(ku(s) � ũ(s)kL2 + k�(s) � �̃(s)kL2)ds

 Ck(M�
u�ũ(t) + M �

���̃(t))
Z t

0

e�b(t�s) min{1, s��}ds

 Ck min{1, t��}(M �
u�ũ(t) + M �

���̃(t)).

Then, for small initial data we have

M�
���̃(t)  C1kM �

u�ũ(t). (124)

Proceeding in a similar way we get also

M�
D1

x��D1
x�̃

 C2KM �
u�ũ. (125)
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Then by using the known decays of the L2-norm and L1-norm of u, ũ, �, �̃, r�,r�̃,
from inequalities in (124) and (125) we obtain

M�
u�ũ(t)  C0

 
ku0kL2 +

nX

i=1

kvi
0kL2 + ku0kL1 +

X

i

kvi
0kL1

!

+ C1k

h
M �

u�ũ(t)(M
n
4

� (t) + M
n
4

D1
x�

(t) + M
n
4

ũ (t))
i

+ C2k

h
M

n
4

D1
x�̃

(t)N
n
2

D1
x�̃

(t)) + M
n
4

�̃
(t)N

n
2

�̃
(t) + M

n
4

ũ (t)N
n
2

ũ (t)

+ M
n
4

D1
x�

(t)N
n
2

D1
x�

(t) + M
n
4

� (t)N
n
2

�̃
(t) + M

n
4

u (t)N
n
2

u (t)

+ M
n
4

u (t)N
n
2

u (t) + M
n
4

� (t)N
n
2

u (t) + M
n
4

D1
x�

(t)N
n
2

u (t) + M
n
4

� (t)M
n
4

u (t)

+ M
n
4

D1
x�

(t)M
n
4

u (t) + M
n
4

� (t)M⌫0
v (t) + M

n
4

D1
x�

(t)M⌫0
v (t)

i
,

where C1k and C2k are positive constant depending on K.

Now for small M
n
4

� (t), M
n
4

D1
x�

(t) and M
n
4

ũ (t), or K, i.e. for small initial data, we

have a global bound for M�
u�ũ(t), with � = min{n

4 + 1
2 , n

2 }, and of course for the

functional M �
���̃(t). ⇤

3 – A quasilinear hyperbolic-parabolic model of vasculogenesis

In this chapter we present some analytical results on the PDEs model of vasculoge-
nesis proposed by Gamba el al. [150, 66]

8
>>><
>>>:

@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) + rP (⇢) = �↵⇢u + µ⇢r�,

@t� = D��+ a⇢� �

⌧
.

(126)

Here ⇢ is the density of endothelial cells, u their velocity, and � the density of
chemoattractant. The parameters D, a, and ⌧ are, respectively, the di↵usion
coe�cient, the rate of release, and the characteristic degradation time of solu-
ble mediators, while ↵ is a drift coe�cient and µ measures the strength of cell
response.

As seen in Chapter 1, this system is derived in a classical way by continuum
mechanics and describes the early stages of vasculogenesis taking into account mi-
gration and chemotaxis.
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It is based on the following assumptions:

1. endothelial cells show persistence in their motion;
2. endothelial cells communicate via the release and absorption of a soluble growth

factor. This chemical factor can reasonably identified with VEGF-A (Serini et
al. [150]);

3. the chemical factors released by cells di↵use and degrade in time;
4. endothelial cells neither duplicate nor die during the process;
5. cells are slowed down by friction due to the interaction with the fixed substratum;
6. closely packed cells mechanically respond to avoid overcrowding.

The model in (126) is able to reproduce several experimentally observed facts, e.g.
the mean chord length is approximately independent on the initial cell density
and connected networks are formed only above a critical threshold for density, as
shown in [150, 66]. Moreover, through biological experiment, theoretical insights
and numerical simulations, the authors provided a strong evidence that endothelial
cell number and the range of activity of a chemoattractant factor regulate vascular
network formation.

Since we are interested in the behavior of system (126) from an analytical point
of view, we focus our attention on the study of solutions to the hyperbolic-parabolic
systems, aiming at investigating the di↵erent behaviors which can arise. Our pur-
pose is to give a rigorous analytical assessment of a prototype model, like system
(126), which can be used as a first step in the understanding of more complete
systems.

A first analytical study of this model was proposed by Kowalczyk et al. in [93]. In
their work, the authors introduced a viscous term �r2(⇢u) in the second equation,
in order to reproduce an energy mechanism that models the slowing down of cells
in the proximity of network structure. They performed a detailed linear stability
analysis of the model in the two dimensional case, aiming at checking its potential
for structure formation. They found that, in the case of initial data representing
a continuum cell monolayer, this is unstable at low cell densities, while pressure
stabilizes it at high densities.

In this chapter we study the model in (126) from the analytical point of view
by considering the one-dimensional case. In particular, we focus on solutions that
can be written as perturbation of a non null constant state [49]. We will prove a
global existence theorem and then we will study the asymptotic behavior of smooth
solutions to the Cauchy problem in Hs.

Let us observe that system (126), as the semilinear Cattaneo-Hillen model an-
alyzed in the previous chapter, does not enter in the framework of hyperbolic-
parabolic system studied by Shizuta and Kawashima, [86, 153, 87]. Indeed, due to
the presence of the source term a⇢, the dissipative condition fails.

In order to prove our results we use a di↵erent technique with respect to Chapter
2, where we proved these analytical results for the linearization of the di↵erential
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part of system (126). As a matter of fact, the nonlinearity of the fluxes precludes
the direct use of the decay estimate of the linearized Green operator.

In the first section we recall some basic results concerning quasilinear hyper-
bolic systems with entropy dissipation and the Shizuta-Kawashima (SK) condition.
Indeed in [73], Hanouzet and Natalini determinated these as su�cient conditions
which guarantee the global existence in time of smooth solutions. The entropy dis-
sipation is a condition for system which are endowed with a strictly convex entropy,
but it is to weak to prevent the formation of singularities. In fact there exist systems,
which even if satisfy this condition, do not admit a global solution. The condition
(SK) guarantees the necessary coupling between conserved and non conserved quan-
tities to have dissipation in both the state variables. Moreover additional energy
estimates, based on condition (SK), permit one to close the analysis.

Since the hyperbolic part of system (126), i.e. isentropic Euler equations, verifies
these conditions, we prove our result of global solution for system (126) by combining
in a suitable way energy estimates for the parabolic and hyperbolic parts.

Finally we focus on the study of the decay property of the quasilinear system.
We prove some estimates that describe the asymptotic behavior of solution in L1

and Hs�norm.

3.1 – Partially dissipative hyperbolic systems

Let us consider the Cauchy problem for the following hyperbolic-parabolic system
8
>>><
>>>:

@t⇢̃+ @x(⇢̃ũ) = 0,

@t(⇢̃ũ) + @x(⇢̃ũ2 + P (⇢̃)) = �↵⇢̃ũ + µ⇢̃@x�̃,

@t�̃ = D@xx�̃+ a⇢̃� �̃

⌧
,

(127)

where ⇢̃, ũ, �̃ : R ⇥ R+ ! R+, with initial conditions

⇢̃(x, 0) = ⇢0(x), ũ(x, 0) = u0(x), �̃(x, 0) = �0(x). (128)

We made the assumption
P 0(⇢) > 0,

with ⇢ > 0, to ensure the strictly hyperbolicity of system (127). Defining ṽ := ⇢̃ũ,
we can rewrite the system in the following form

8
>>>><
>>>>:

@t⇢̃+ @xṽ = 0,

@tṽ + @x

✓
ṽ2

⇢̃
+ P (⇢̃)

◆
= �↵ṽ + µ⇢̃@x�̃,

@t�̃ = D@xx�̃+ a⇢̃� �̃

⌧
,

(129)

which is equivalent for smooth solutions.
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Our aim is to prove that, under suitable assumptions, the Cauchy problem as-
sociated to the hyperbolic-parabolic system admits a global smooth solution, for
small and smooth initial data. In particular we consider solutions of the form
(⇢̃, ṽ, �̃) = (⇢ + ⇢̄, v,� + �̄), where (⇢̄, 0, �̄) is a constant stationary solution to the
problem and (⇢, v,� ) is a perturbation. We assume that �̄ = a⌧ ⇢̄, in order to ensure
that the constant state (⇢̄, 0, �̄) is a solution to system (129).

Therefore, we can rewrite system (129) as follows in terms of the perturbations:

8
>>>><
>>>>:

@t⇢+ @xv = 0,

@tv + @x

✓
v2

⇢+ ⇢̄
+ P (⇢+ ⇢̄)

◆
= �↵v + µ(⇢+ ⇢̄)@x�,

@t� = D@xx�+ a⇢� �

⌧
.

(130)

Since the complete system (130) does not verify the dissipation condition in [86],
to get our global existence result we consider the hyperbolic and the parabolic
equations separately, in order to take advantage of their respective properties.

3.1.1 – Strictly entropy dissipative condition

In this section we focus our attention on the hyperbolic part of (130).
As we want to prove the global existence of solution by energy methods, we first

prove some properties of the selected problem.
Then, let us consider

8
><
>:

@t⇢+ @xv = 0,

@tv + @x

✓
v2

⇢+ ⇢̄
+ P (⇢+ ⇢̄)

◆
= �↵v.

(131)

In [73], Hanouzet and Natalini proposed a quite general framework of su�cient
conditions which guarantees the global existence in time of smooth solutions to
quasilinear hyperbolic systems. These are the entropy dissipative condition and the
Shizuta Kawashima condition. In this section we are going to show that system
(131) verifies both the conditions.

First of all, we want to prove that system (131) is endowed with an entropy
function, that is a convex real function E such that there exists a related entropy-
flux q satisfying the following condition

(f 0)tE 0 = q0,

where f is the flux of system (131).
In order to ensure the existence of an entropy-flux function q, we need to prove

that the previous condition is verified, which means that the di↵erential form (f 0)tE 0
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is exact. This condition can be characterized by the property that the matrix
r((f 0)tE 0) is symmetric.

Let us notice that r((f 0)tE 0) = (f 0)tE 00 + f 00E 0, therefore, in order to obtain the
existence of an entropy-flux function q, it is su�cient to prove that

(f 0)tE 00 is symmetric,

or equivalently that E 00f 0 is symmetric.
Once we have proved the existence of an entropy function for system (131), an

additional equation for the entropy evolution can be written. Indeed, fixing an
equilibrium state Û for system (131) (i.e. g(Û) = 0), we perform the scalar product
of system (131) by E 0(U) � E 0(Û), to get the entropy identity

@t(E(U) � E 0(Û) · U) + @x(q(U) � E 0(Û) · f(U)) = (E 0(U) � E 0(Û)) · (g(U) � g(Û)).

From this equation, we deduce that the integral of E(U)�E 0(Û) · U is decreasing if
the term on the right-hand side is negative.

Denoted by � the set of equilibrium states to the system (131), this decay prop-
erty is encoded in the following definition (see [73]).

Definition 3.1. The system (131), endowed by the entropy E , is entropy dissi-
pative if, for every Û 2 �, and for any U in a neighborhood of Û , the inequality

(E 0(U) � E 0(Û)) · (g(U) � g(Û))  0, (132)

is satisfied.

We know that property (132) is invariant under a�ne transformation. Then, by
applying a simple change of variables, we can choose the entropy E , such that, for
a single equilibrium value Û 2 �, it is a strictly convex quadratic function. In our
case, setting U = (⇢̄, 0), we define a new function Ẽ that is still a dissipative entropy
for system (131)

Ẽ(U) = E(U + U) � E(U) � E 0(U) · U,

and moreover it is a quadratic function in U = 0.
Assuming that Ẽ is a strictly convex function, we can introduce the entropy

variable (see [73])

W := Ẽ 0(U) = E 0(U + U) � E 0(U),

and the functions

Ẽ⇤(W ) := W · �(W ) � Ẽ(�(W )),

q⇤(W ) := W · f(�(W )) � q(�(W )),
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where � := (Ẽ 0)�1. Setting A0 = (Ẽ⇤)00(W ), A1 = f 0(�(W ))A0 and eG(W ) =
g(�(W )). We can rewrite system (131) in the entropy variable as

A0@tW + A1@xW = eG(W ). (133)

Let us observe that A0 is symmetric positive definite and A1 is symmetric.
Now, we take U an open subset of R2 and set

� :=
�
U 2 U : g(U + U) = 0

 
,

� := Ẽ 0(�) =
n

W 2 Ẽ 0(U) : G(W ) = 0
o

.

Let us observe that, if W = (W 1, W 2) 2 � and W = (W1, W2) is any given point
such that the segment (W1, sW2 + (1 � s)W 2) 2 Ẽ 0(U) for all s 2 [0, 1], then the
point W ⇤ = (W1, W 2) is again in� . Therefore, we can write

Q(W ) =

✓Z 1

0

(@
W2

Q)t(W1, sW2 + (1 � s)W 2)ds

◆
(W2 � W 2),

where Q(W ) = g2(�(W )). In particular, from the dissipative condition, we deduce
that there exists a real positive scalar function B = B(W, W ) such that, for every
W in a suitable neighborhood of W ,

Q(W ) = �B(W, W )(W2 � W 2).

Definition 3.2. The system (131), endowed with a strictly convex entropy, is
strictly entropy dissipative if there exists a positive scalar function B(W, W ) such
that

Q(W ) = �B(W, W )(W2 � W 2), (134)

for every W 2 Ẽ 0(U) and W = (W1, W2) 2 �.

Now we want to prove that system (131) satisfies the latter condition. To this
end, we consider the canonical entropy function

E =
1

2

v2

⇢+ ⇢̄
+ (⇢+ ⇢̄)

Z ⇢+⇢̄

0

P (s)

s2
ds, (135)

and the relative flux

q =
1

2

1

(⇢+ ⇢̄)2
v3 +

P (⇢+ ⇢̄)

⇢+ ⇢̄
v + v

Z ⇢+⇢̄

0

P (s)

s2
ds.

Let us observe that this entropy is a strictly convex function. System (131), endowed
with the entropy E , satisfies the dissipative condition as

(E 0(U) � E 0(Û)) · (g(U) � g(Û)) = �↵ v2

⇢+ ⇢̄
 0.
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Moreover, thanks to the strictly convexity of E , we can rewrite the system (131) in
the form (133) using the entropy variable W = E 0(U). It is easy to show that in this
case the scalar positive function B of condition (134) is given by B = ↵(⇢ + ⇢̄) =
↵�1(W, W ) > 0. Therefore the system (133) is strictly entropy dissipative.

Let us finally observe that, in our case,

� =
�
U 2 U : g(U + U) = 0

 
= {U 2 U : U = (⇢, 0)} , (136)

therefore, thanks to the definition of Ẽ , it can be easily verified that

� =
n

W 2 Ẽ 0(U) : G(W ) = 0
o

=
n

W 2 Ẽ 0(U) : W2 = 0
o

.

3.1.2 – The Shizuta-Kawashima condition

As observed before, the entropy dissipation condition is too weak to prevent the
shock formation. In order to obtain global existence of smooth solutions to quasilin-
ear hyperbolic system, Hanouzet and Natalini in [73] determinated a supplementary
condition, the Shizuta-Kawashima condition, which guarantees these results.

This section is devoted to proving that system (133) satisfies the Shizuta-Ka-
washima condition [153], introduced in the previous chapter (Definition 2.1) for
hyperbolic systems.

Let us recall that, in our case, as we have

f(U + U) =

0
@

v
v2

⇢+ ⇢̄
+ P (⇢+ ⇢̄)

1
A , g(U) =

✓
0

�↵v

◆
,

then

f 0(U + U) =

0
@

0 1

� v2

(⇢+ ⇢̄)2
+ P 0(⇢+ ⇢̄) 2

v

⇢+ ⇢̄

1
A , g0(U) =

✓
0 0
0 �↵

◆
.

Consequently, to ensure that system (133) satisfies the Shizuta-Kawashima condi-
tion, we need to prove that every eigenvector of f 0(U) is not in the null space of
g0(U), where U = (⇢̄, 0) as indicated in (136).

Let us take X 2 R2 � {0} an eigenvector of f 0(U) and denote with � 6= 0 the
corresponding eigenvalue. This means that

�X = f 0(U)X ()
✓
�X1

�X2

◆
=

✓
0 1

P 0(2⇢̄) 0

◆✓
X1

X2

◆

()
⇢
�X1 = X2,
�X2 = P 0(2⇢̄)X1.
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Then, we have two possibilities:

(a) � =
p

P 0(2⇢̄) and X2 =
p

P 0(2⇢̄)X1;

(b) � = �
p

P 0(2⇢̄) and X2 = �
p

P 0(2⇢̄)X1.

Let us suppose for example that the case (b) is satisfied. It is possible to proceed
in the same way in the other case. Now, we suppose that X is in the null space of
g0(U), which means that

g0(U)X = 0 ()
✓

0 0
0 �↵

◆✓
X1

X2

◆
= 0 () �↵X2 = 0.

So, if X is an eigenvector of f 0(U), X is not in the null space of g0(U). This proves
that system (133) satisfies the Shizuta-Kawashima condition.

In the case of strictly entropy dissipative system, Definition 2.1 is equivalent to:

(H1) for every � 2 R and every X 2 R\{0} the vector (X, 0)t 2 R2 is not in the
null space of �A0(0) + A1(0).

Then, the following lemma holds (see [73]).

Lemma 3.3. Assume that system (133) is strictly entropy dissipative, then Con-
dition (H1) is equivalent to:
there exists a constant matrix K 2 R2⇥2 such that

• KA0(0) is skew-symmetric;
• the matrix

1

2
(KA1(0) + (KA1(0))t) +

1

2

✓
0 0
0 B(0) + B(0)t

◆

is positive definite.

3.2 – The global existence of smooth solutions

In this section, by means of energy estimates, we aim at proving the global existence
of smooth solutions to the complete hyperbolic-parabolic system

8
>>>><
>>>>:

@t⇢+ @xv = 0,

@tv + @x

✓
v2

⇢+ ⇢̄
+ P (⇢+ ⇢̄)

◆
= �↵v + µ(⇢+ ⇢̄)@x�,

@t� = D@xx�+ a⇢� �

⌧
.

(137)

Let us recall that ⇢, u,� : R ⇥ R+ ! R+,v = ⇢u and P 0(⇢) > 0. Moreover,
U = (⇢̄, 0, �̄) is a constant stationary solution to the problem, with �̄ = a⌧ ⇢̄.



[109] Analysis and numerical approximations of hydrodynamical models. . . 225

3.2.1 – Local existence of smooth solutions

In order to prove the global existence of smooth solution with small initial data,
a result of local existence is crucial for our proof. As we have shown in the previous
sections, the hyperbolic part (131) of system (137) has a strictly convex entropy Ẽ
and it satisfies the strictly entropy dissipative condition.

Now, let us write the first two equations of system (137) in the form:

@t(U + U) + @xf(U + U) = g(U + U) + h(U + U,@x�), (138)

where U = (⇢, v), g(U) = (0,�↵v), f(U) = (v, v2

⇢ + P (⇢)) and h(U,@ x�) =

(0, µ⇢@x�). Moreover we can introduce the entropy variable, W = Ẽ 0(U), and
rewrite the system (138) as

A0@tW + A1@xW = G(W ) + H(W,@ x�). (139)

Here, setting �(W ) = (Ẽ 0)�1(W ), we have

A0(W ) = (� (W ))0, A1(W ) = f 0(�(W ))A0,

G(W ) = g(�(W )), H(W,@ x�) = h(�(W ), @x�).

Then we can rewrite the complete system (137) as:

8
<
:

A0@tW + A1@xW = G(W ) + H(W,@ x�),

@t� = D@xx�+ a�1(W ) � �

⌧
.

(140)

We can observe that (140) is a symmetric hyperbolic-parabolic system. This class
of system has been studied by Kawashima in [86]. As a matter of fact he considered
the initial value problem for systems of quasilinear partial di↵erential equations in
the form

8
>>>><
>>>>:

A0
1(W,� )Wt +

nX

j=1

Aj
11(W,� )Wxj

= f1(W,�, Dx�),

A0
2(W,� )�t �

nX

j,k=1

Bij
2 (W,� )�xixj

= f2(W,�, DxW, Dx�),

(141)

where t � 0 and x = (x1, . . . , xn) 2 Rn, (n � 1). Here W (x, t) and �(x, t) are
vectors with m0 and m00 components, respectively, and the pair (W,� )(x, t) takes
its values in an open convex set O in Rm (m = m0+m00 � 1). A0

1 and Aj
11 2 Rm0⇥m0

(j = 1, . . . , n) (resp. A0
2 and Bjk

2 2 Rm00⇥m00
(j, k = 1, . . . , n)). Functions f1 and f2
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take values respectively in Rm0
and Rm00

, and Dx denotes the derivatives (@/@x)↵

with |↵| = 1.
The system (141) is complemented with the initial conditions

(W,� )(x, 0) = (W0, �0)(x). (142)

Kawashima assumed that system (141) is symmetric hyperbolic-parabolic in the
following sense:

Condition 3.4. The functions A0
1(W,� ), A0

2(W,� ), Aj
11(W,� ) (j = 1, . . . , n)

and Bjk
2 (W,� ) (j, k = 1, . . . , n) are su�ciently smooth in (W,� ) 2 O and such that:

i) A0
1(W,� ) and A0

2(W,� ) are real symmetric and positive definite for (W,� ) 2 O,
ii) Aj

11(W,� ) is real symmetric for (W,� ) 2 O;

iii) Bjk
2 (W,� ) is real symmetric and satisfies Bjk

2 (W,� ) = Bkj
2 (W,� ) for (W,� ) 2 O,

and
Pn

j,k=1 Bij
2 (W,� )!j!k is symmetric positive definite for all (W,� ) 2 O,! =

(!l, . . . , !n) 2 Sn�1.

Under these conditions f1(W,�, Dx�) and f2(W,�, DxW, Dx�) can be regarded as
lower order terms of the system. Denoted by ⌘ 2 Rnm0

and ⇣ 2 Rnm00
the vectors

corresponding to DxW and Dx�, the author assumed that

Condition 3.5. The functions f1(W,�,⇣ ) and f2(W,�, ⌘,⇣ ) are su�ciently
smooth in (W,�,⇣ ) 2 O ⇥Rnm0

and (W,�, ⌘,⇣ ) 2 O ⇥Rnm00
, respectively, and

satisfy f1(W,�, 0) = f2(W,�, 0, 0) = 0 for some constant state (W,�) 2 O.

Fixed a constant d1 so that 0 < d1 < d0 ⌘ dist(O0, @O), let us denoted by Xs
T1

the set of function (W,� )(x, t) satisfying:

• W � W 2 C([0, T ), Hs(Rn)), @tW 2 C([0, T ), Hs�1(Rn)),
• � � � 2 C([0, T ), Hs(Rn)) \ L2([0, T ), Hs+1(Rn)), @t� 2 C([0, T ), Hs�2(Rn)) \

L2([0, T ), Hs�1(Rn)),
• (W,� )(x, t) 2 O1 for any (x, t) 2 Rn ⇥ [0, T ],

• sup0⌧t k(W � W,� � �)(⌧)k2
Hs +

Z t

0

k�� �)k2
s+1d⌧  M2,

•
Z t

0

k@t(W,� )(⌧)k2
Hs�1d⌧  M1 for t 2 [0, T ].

Existence and uniqueness of local in time solutions to the Cauchy problem are
proved by the following theorem (Theorem 2.9 [86]).

Theorem 3.6. Let Conditions 3.4 and 3.5 be assumed. Let n � 1 and s � s0 +1
(s0 � [n/2]+1) be integers. Suppose that the initial data satisfy (W0�W,�0��) 2
Hs(Rn) and (W0, �0)(x) 2 O0 for any x 2 Rn, where O0 is a bounded open convex
set in Rm satisfying O0 ⇢ O.
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Then there exists a positive constant T1 ( T0), depending only on O0, d1,
and kW0 � W,�0 � �kHs such that the initial value problem (141), (142) has a
unique solution (W,� ) 2 Xs

T1
(O1, M, M1), where O1, M and M1 are determinated

as follows

O1 =d1�neighborhood of O0, M =2C1(O1)kW0�W,�0��ks, M1 =2C3(O1, M)M.

In particular, the solution satisfies

W � W 2 C([0, T1), H
s(Rn)) \ C1([0, T1), H

s�1(Rn)),

�� � 2 C([0, T1), H
s(Rn)) \ C1([0, T1), H

s�2(Rn)) \ L2([0, T1), H
s+1(Rn)),

sup
0⌧t

k(W � W,� � �)(⌧)k2
Hs

+

Z t

0

k(W�W )(⌧)k2
s+k(�� �)(⌧)k2

s+1d⌧C2
4kW0�W,�0��k2

Hs for t2 [0, T1],

where C4 > 1 is a constant depending only on O0, d1 and kW0 � W,�0 � �kHs .

Coming back to our problem, we can observe that system (140) can be re-
garded as a coupled system of a symmetric hyperbolic system for W and a strongly
parabolic equation for �. Hence, thanks to this theorem, if the initial data (W0, �0)
are in Hs(R), with s � 2, then there exists a local in time solution (W,� ) 2
C([0, T1), H

s(R)) to the Cauchy problem.
Let us consider now the variable  = @x�. Deriving the parabolic equation with

respect to the spatial variable we get the system

8
<
:

A0@tW + A1@xW = G(W ) + H(W, ),

@t = D@xx + a@x�1(W ) �  

⌧
.

We can observe that, as this system verifies the conditions of Theorem 3.6, the
local existence of its solutions follows. Considering system (140) and taking an
initial datum �0 2 Hs+1, then the parabolic equation admits the local existence in
the space C([0, T1), H

s+1(R)).
Now we are going to prove the existence of global solution to system (140), by

using the following theorem.

Theorem 3.7. We consider the Cauchy problem associated to system (140),
with small initial data W0 2 H2(R) and �0 2 H2(R). If kW0kH2(R), k�0kH2(R) and

⇢̄ are su�ciently small, then there exists a unique global solution (W,� ) to system
(140), such that

W 2 C([0,1), H2(R)), � 2 C([0,1), H2(R)) \ L2([0,1), H3(R))
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and, for each T > 0,

kW (T )k2
H2 +

Z T

0

k@xW (⌧)k2
H1 d⌧ +

Z T

0

kW2(⌧)k2
H2  C kW0k2

H2 ,

k�(T )k2
H2 +

Z T

0

k@x�(⌧)k2
H2 d⌧  C(kW0k2

H2 + k�0k2
H2),

(143)

where C = C(⇢̄, kW0kH2 , k�0kH2).

Energy estimates for � Our aim is to prove this result by suitable energy esti-
mates. Let us consider the local (in time) solution (W,� ) 2 C([0, T ), H2(R))⇥
C([0, T ), H2(R)) \ L2([0, T ), H3(R)).

First we focus on the parabolic equation providing energy estimates for the
function �.

We consider the parabolic equation

@t� = D@xx�+ a⇢� �

⌧
. (144)

Deriving with respect to the spatial variable and multiplying by @x�, we obtain

@t

✓
1

2
(@x�)2

◆
=D@xxx�@x�+ a@x⇢@x�� (@x�)2

⌧

=D@x (@xx�@x�) � D(@xx�)2 + a@x⇢@x�� (@x�)2

⌧
.

Then, integrating with respect to x and t, we get for every ✏ > 0

1

2

Z
(@x�)2dx + D

Z t

0

Z
(@xx�)2dsdx  1

2

Z
(@x�0)

2dx +
a

2✏

Z t

0

Z
(@x⇢)

2dxds

+
a✏

2

Z t

0

Z
(@x�)2dxds � 1

⌧

Z t

0

Z
(@x�)2dxds,

that is

1

2

Z
(@x�)2dx + D

Z t

0

Z
(@xx�)2dsdx +

✓
1

⌧
� a✏

2

◆Z t

0

Z
(@x�)2dxds

 1

2

Z
(@x�0)

2dx +
a

2✏

Z t

0

Z
(@x⇢)

2dxds.

Here, we take ✏ such that ✏ < 2
a⌧ .
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In the same way, we can obtain

1

2

Z
(@xx�)2dx + D

Z t

0

Z
(@xxx�)2dsdx +

✓
1

⌧
� a✏

2

◆Z t

0

Z
(@xx�)2dxds

 1

2

Z
(@xx�0)

2dx +
a

2✏

Z t

0

Z
(@xx⇢)

2dxds.

Now, let us introduce the generic functional

N2
l (t) := sup

0st
kW (s)k2

Hl +

Z t

0

kW2(s)k2
Hl ds +

Z t

0

k@xW (s)k2
Hl�1 , for l = 1, 2.

We set also

N2
0 (t) := sup

0st
kW (s)k2

L2 +

Z t

0

kW2(s)k2
L2 ds.

Therefore we can rewrite the last two estimates for @x� and @xx�, in the following
way:

k@x�(t)k2
L2 +c1

Z t

0

k@xx�(s)k2
L2ds+c2

Z t

0

k@x�(s)k2
L2dxdsk�0k2

H1 + c3N
2
1 (t), (145)

k@xx�(t)k2
L2 +c̃1

Z t

0

k@xxx�(s)k2
L2ds+c̃2

Z t

0

k@xx�(s)k2
L2dsk�0k2

H2 + c̃3N
2
2 (t). (146)

Moreover, using these last estimates, we can control L1-norm of @x� too. Indeed,
we have

sup
t

k@x�kL1  sup
t

✓Z
((@x�)2 + (@xx�)2)dx

◆ 1
2

 C (k�0kH1 + k�0kH2 + N1(t) + N2(t))

 C (k�0kH2 + N2(t)) .

(147)

Zero order energy estimate for W Now, we want to estimate the L2-norm of the
function W . To this end, we multiply the system (138) by Ẽ 0(U) = E 0(U+U)�E 0(U),
so we have

@tẼ(U) + @xQ̃(U) = Ẽ 0(U) · g(U + U) + Ẽ 0(U) · h(U + U,@x�),

where Q̃(·) is the entropy-flux associated to the function Ẽ .
Let us observe that, thanks to definitions of the entropy Ẽ and variable W =

Ẽ 0(U), there exists a constant c2 such that

1

c2
|W |2  Ẽ(U)  c2|W |2.
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Moreover, as proved in Section 3.1.1, the system (138) satisfies the strictly entropy
dissipative condition, therefore there exists a constant c1 such that,

�(W · G̃(W )) � c1|W2|2.

Let us integrate the previous system, with respect to space variable x, so we obtain:

d

dt

Z
Ẽ(U)dx =

Z
Ẽ 0(U) · g(U + U)dx +

Z
Ẽ 0(U) · h(U + U,@x�)dx,

which yields

1

c2

d

dt

Z
|W |2dx + c1

Z
|W2|2dx 

Z
Ẽ 0(U) · h(U + U,@x�)dx.

Then, integrating respect to the temporal variable, we get

1

c2
kW (t)k2

L2+

Z t

0

c1kW2(s)k2
L2ds  1

c2
kW0k2

L2+

Z t

0

Z
Ẽ 0(U+U)·h(U+U,@x�)dxds.

Now, let us observe that, thanks to the definition of the function h(U + U,@x�),
the last integral can be estimated as follows

Z t

0

Z
Ẽ 0(U) · h(U + U,@x�)dxds =

Z t

0

Z
W2µ(⇢+ ⇢̄)@x�dxds


Z t

0

µkW2(s)kL2k⇢(s)@x�(s)kL2ds +

Z t

0

µ⇢̄kW2(s)kL2k@x�(s)kL2ds


Z t

0

µkW2(s)kL2k⇢(s)kL1k@x�(s)kL2ds +

Z t

0

µ⇢̄kW2(s)kL2k@x�(s)kL2ds

 C sup
s2(0,t)

k⇢(s)kL1

Z t

0

�
kW2(s)k2

L2 + Ck@x�(s)k2
L2

�
ds

+ C⇢̄

Z t

0

�
kW2(s)k2

L2 + k@x�(s)k2
L2

�
ds.

Then, thanks to the energy estimate (145) of �, we obtain

Z t

0

Z
W2µ(⇢+ ⇢̄)@x�dxds  CN1(t)

h
N2

0 (t) + k�0k2
H1 + N2

1 (t)
i

+ C⇢̄
h
N2

0 (t) + k�0k2
H1 + N2

1 (t)
i
.
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In conclusion, the zero order estimate of function W is given by

kW (t)kL2 +

Z t

0

kW2(s)k2
L2ds  N2

0 (0) + C(k�0k2
H1)N1(t)

+ C(⇢̄)N2
1 (t) + CN3

1 (t) + C(⇢̄, k�0k2
H1).

Let us observe that the positive constant C(⇢̄, k�0k2
H1) depends on the initial data

and on the constant state and, when these data go to zero, it vanishes.

First order energy estimate for W Now we estimate the L2-norm of the first deriva-
tive of the local solution W . To this end, we consider the system

A0@tW + A1@xW = G(W ) + H(W,@ x�). (148)

Deriving with respect to the spatial variable, we obtain

@x(A0@tW ) + @x(A1@xW ) = @xG(W ) + @xH(W,@ x�).

Then, we take the inner product with @xW , which yields

@x(A0@tW ) · @xW + @x(A1@xW ) · @xW = @xG(W ) · @xW + @xH(W,@ x�) · @xW.

Thanks to the symmetry of matrices A0 and A1, we have

@x(A0@tW ) · @xW =
1

2
@t ((A0@xW ) · @xW ) � 1

2
(@tA0@xW ) · @xW

+ (@xA0@tW ) · @xW,

@x(A1@xW ) · @xW =
1

2
@x((A1@xW ) · @xW ) +

1

2
(@xA1@xW ) · @xW.

Therefore, substituting these relations in the previous system and integrating over
R, we get:

1

2

d

dt

Z
(A0@xW ) · @xW dx � 1

2

Z
(@tA0@xW ) · @xWdx +

Z
(@xA0@tW ) · @xW dx

+
1

2

Z
(@xA1@xW ) · @xW dx =

Z
@xG(W ) · @xW dx +

Z
@xH(W,@ x�) · @xWdx.



232 CRISTIANA DI RUSSO [116]

Let us observe that, thanks to the strictly entropy dissipative condition, there exists
a positive scalar function B such that

@xG(W ) · @xW = @x(�BW2) · @xW2 = �(@xBW2) · @xW2 � (B@xW2) · @xW2.

Substituting this equality in the last system, we obtain:

1

2

d

dt

Z
(A0@xW ) ·@xWdx+

Z
(B@xW2) ·@xW2dx=

1

2

Z
(@tA0@xW ) ·@xWdxr

�
Z

(@xA0@tW ) ·@xWdx� 1

2

Z
(@xA1@xW ) ·@xWdx

�
Z

(@xBW2) ·@xW2dx+

Z
@xH(W,@ x�) ·@xWdx.

(149)

Now, to estimate the right hand side of the previous inequality, we proceed along
the lines of [73] and we rewrite the first equations of system (140) in the form

@tW = �A@xW � A�1
0

✓
0

BW2

◆
+ A�1

0 H(W,@ x�),

where A = A�1
0 A1 = (f 0)t(�(W )). Then

@tA0 = A0
0@tW = �A0

0

✓
A@xW + A�1

0

✓
0

BW2

◆
� A�1

0 H(W,@ x�)

◆
.

We consider the following terms which will be useful in the estimate of (149).

I1 :=
1

2
[@tA0@xW + @xA1@xW ] · @xW

=

⇢
1

2
[A0

1@xW� A0
0(A@xW )]� 1

2
A0

0

✓
A�1

0

✓
0

BW2

◆
�A�1

0 H(W,@ x�)

◆�
@xW ·@xW

=

⇢
1

2
[(A0

0@xW )A � A0
0(A@xW ) + A0(A

0@xW )]

� 1

2
A0

0

✓
A�1

0

✓
0

BW2

◆
� A�1

0 H(W,@ x�)

◆�
@xW · @xW

=

⇢
1

2
[A0(A

0@xW )] � 1

2
A0

0

✓
A�1

0

✓
0

BW2

◆
� A�1

0 H(W,@ x�)

◆�
@xW · @xW,
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and

I2 := [@xA0@tW + @xA1@xW ] · @xW

=

⇢
[(A0A)0@xW�(A0

0@xW )A] @xW

�(A0
0@xW )

✓
A�1

0

✓
0

BW2

◆
�A�1

0 H(W,@ x�)

◆�
@xW

=

⇢
A0(A

0@xW )@xW � (A0
0@xW )

✓
A�1

0

✓
0

BW2

◆
� A�1

0 H(W,@ x�)

◆�
· @xW.

Reporting I1 � I2 in (149) yields

1

2

d

dt

Z
(A0@xW ) · @xWdx +

Z
(B@xW2) · @xW2dx

= �1

2

Z
[A0(A

0@xW )@xW ] · @xWdx

�
Z ⇢

1

2
A0

0(A
�1
0

✓
0

BW2

◆
@xW · @xW + (B0@xW )W2 · @xW2

�
dx

+

Z
(A0

0@xW )A�1
0 H(W,@ x�) · @xWdx +

1

2

Z
(A0

0A
�1
0 H(W,@ x))@xW · @xWdx

+

Z
(A0

0@xW )A�1
0

✓
0

BW2

◆
· @xWdx +

Z
@xH(W,@ x�) · @xWdx.

Let us observe that the first term on the right hand side is cubic in @xW . It vanishes
when the matrix A0(W )A0(W ) is skew-symmetric. The other terms are quadratic
namely they can be written in the form

Z
⌘(W )(@xW,@ xW )W2.

Then, integrating with respect to time variable, we obtain

c1

Z
|@xW (t)|2dx + c2

Z t

0

Z
|@xW2|2dxds


Z

|@xW0|2dx + C(k�0k2
H2)N3

2 (t) + C(k�0k2
H2 , ⇢̄)N3

1 (t)

+

Z t

0

Z
@xH(W,@ x�) · @xWdxds.

(150)

Let us focus on the last integral. Thanks to the definition of the function H, we
have @xH(W,@ x�) = [0, µ @xx�⇢+µ@x⇢@x�+µ⇢̄@xx�]t, therefore the last integrand
is equal to

@xH(W,@ x�) · @xW = µ@xx� ⇢ @xW2 + µ@x⇢ @x�@xW2 + µ ⇢̄ @xx�@xW2.
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Using the energy estimates (145), (146) for the function �, yields

Z t

0

Z
|µ@xx�⇢@xW2 + µ@x⇢@x�@xW2 + µ⇢̄@xx�@xW2|dxds

 C

Z t

0

( k@xx�(s)kL2k@xW2(s)kL2k⇢(s)kL1

+k@x�(s)kL2k@x⇢(s)kL1k@xW2(s)kL2ds+µ⇢̄k@xx�(s)kL2k@xW2(s)kL2)ds

 C sup
s2(0,t)

k⇢(s)kL1

Z t

0

�
k@xW2(s)k2

L2 + k@xx�( s)k2
L2

�
ds

+ C sup
s2(0,t)

k@x⇢(s)kL1

Z t

0

�
k@xW2(s)k2

L2 + k@x�(s)k2
L2

�
ds

+ Cµ⇢̄

Z t

0

�
k@xW2(s)k2

L2 + k@xx�(s)k2
L2

�
ds

 CN1(t)
⇣
N2

1 (t) + k�0k2
H1 + N2

1 (t)
⌘

+ CN2(t)
⇣
N2

1 (t) + k�0k2
H1 + N2

1 (t)
⌘

+ Cµ⇢̄
⇣
N2

1 (t) + k�0k2
H1 + N2

1 (t)
⌘

.

Substituting this calculation in (150), we obtain the first order estimate:

k@xW (t)k2
L2 +

Z t

0

k@xW2(s)k2
L2  N2

1 (0) + C(k�0k2
H1)N1(t) + C(k�0k2

H2)N3
2 (t)

+ C(k�0k2
H1)N2(t) + C(⇢̄, k�0k2

H2)N1(t)
2 + C(⇢̄, k�0k2

H1),

that is

k@xW (t)k2
L2 +

Z t

0

k@xW2(s)k2
L2ds  N2

1 (0) + C(k�0k2
H1)N2(t) + C(⇢̄)N2

1

+ CN3
2 (t) + C(⇢̄, k�0k2

H1).

Second order energy estimate for W Now, we are interested in proving the validity
of a second order estimate of W , in the L2-norm. As done in the previous case,
we perform the second space derivative of system (139) and take the inner product
with @xxW , which gives

@xx(A0@tW ) · @xxW + @xx(A1@xW ) · @xxW

= @xxG(W ) · @xxW + @xxH(W,@ x�) · @xxW.
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Thanks to the symmetry of matrices A0 and A1, we deduce that

@xx(A0@tW ) · @xxW =
1

2
@t ((A0@xxW ) · @xxW ) � 1

2
(@tA0@xxW ) · @xxW

+ 2(@xA0@xtW ) · @xxW + (@xxA0@tW ) · @xxW,

@xx(A1@xW ) · @xxW =
1

2
@x((A1(W )@xxW ) · @xxW ) +

3

2
(@xA1@xxW ) · @xxW

+ (@xxA1@xW ) · @xxW.

Moreover, as seen before, there exists a positive definite matrix B such that G(W ) ·
W = �BW2 · W2. Then, substituting these relations in the previous system and
integrate it over R, we obtain

1

2

d

dt

Z
(A0@xxW ) · @xxWdx +

Z
(B@xxW2) · @xxW2dx

=

Z 
1

2
@tA0@xxW � 2@xA0@xtW � @xxA0@tW

�
· @xxWdx

�
Z 

3

2
@xA1@xxW + @xxA1@xW

�
· @xxWdx

�
Z

[2@xB@xW2 + @xxBW2] · @xxW2dx + @xxH(W,@ x�) · @xxWdx.

(151)

To estimate the first terms on the right-hand side of the equation, we proceed along
the lines of [73]. As previously, we are going to develop some terms which will be
useful for estimate (151). By using again (148), we have

J1 := (@tA0 + @xA1)@xxW · @xxW

=


A0

1@xW � A0
0A@xW � A0

0A
�1
0

✓
0

BW2

◆�
@xxW · @xxW

=


A0

0@xWA � A0
0A@xW + A0A

0@xW � A0
0A

�1
0

✓
0

BW2

◆

+ A0
0A

�1
0 H(W,@ x�)

�
@xxW · @xxW.
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By taking the x derivative of (148), we obtain also:

J2 := (@xA0@xtW + @xA1@xxW ) · @xxW

= �
⇢

(A0
0@xW )


(A0@xW )@xW + A@xxW + @x

✓
A�1

0

✓
0

BW2

◆◆

� @x(A�1
0 H(W,� ))

��
· @xxW + (@xA1@xxW ) · @xxW

= �

(A0

0@xW )(A0@xW )@xW�A0(A
0@xW )@xxW +@x(A0

0@xW )

✓
A�1

0

✓
0

BW2

◆◆�

· @xxW � (A0
0@xW )@x(A�1

0 H(W,� )) · @xxW.

In a straightforward way we have also

J3 := (@xxA0@tW + @xxA1@xW ) · @xxW

= [2(A0
0@xW )(A0@xW )@xW + A0A

00(@xW,@ xW )@xW + A0(A
0@xxW )@xW ]

· @xxW �

(A00

0(@xW,@ xW ) + A0
0@xxW )A�1

0

✓
0

BW2

◆�
· @xxW

+ [(A00
0(@xW@xW ) + A0

0@xxW )A�1
0 H(W,@ x�)] · @xxW.

Reporting 1
2J1 � 2J2 � J3 in (151) gets

1

2

d

dt

Z
(A0@xxW ) · @xxWdx +

Z
(B@xxW2) · @xxW2dx

=
1

2

Z
[A0

0@xWA � A0
0(A@xW )] @xxW · @xxWdx

�
Z 

A0A
00
(@xW,@ xW )@xW + A0(A

0@xxW )@xW +
3

2
A0(A

0@xW )@xxW

�
· @xWdx

+

Z 
(A

00
0 (@xW,@ xW ) + A0

0@xxW )A�1
0

✓
0

BW2

◆�
· @xxWdx

�
Z 

1

2
A0

0A
�1
0

✓
0

BW2

◆
@xxW � 2A0

0@xW@x

✓
A�1

0

✓
0

BW2

◆◆�
@xxWdx

+
1

2

Z
[A0

0A
�1
0 H(W,@ x�) � 2A0

0@xW@xA�1
0 H(W,@ x�)] · @xWdx

+

Z
[A0

0@xxWA�1
0 H(W,@ x�) � A00

0(@xW,@ xW )] · @xxWdx

�
Z

(2@xB@xW + @xxBW2) · @xxW2 +

Z
@xxH(W,@ x�) · @xxWdx.

The right hand side of the previous inequality, with the exception of the last term,
can be estimate following the technique used by Hanouzet and Natalini in [73].
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Let us now focus our attention on the last integral of the previous inequality
and we integrate with respect to time, i.e.

Z t

0

Z
@xxH(W,@ x�) · @xxWdxds,

where @xxH(W ) = [0, µ(@xxx�⇢+ 2�xx@x⇢+ @x�@xx⇢+ ⇢̄@xxx�)]t.
Proceeding along the line of the first order estimate, we get, using (145), (146),

Z t

0

Z
@xxH(W,@ x�) · @xxWdxds

=

Z t

0

Z
µ(@xxx�⇢+ 2@xx�@x⇢+ @x�@xx⇢+ ⇢̄@xxx�)@xW2dxds

 C sup k⇢(s)kL1

Z t

0

⇣
k@xxx�(s)k2

L2 + k@xxW2(s)k2
L2

⌘
ds

+ C sup k@x⇢(s)kL1

Z t

0

⇣
k@xx�(s)k2

L2 + k@xxW2(s)k2
L2

⌘
ds

+ C sup k@x�(s)kL1

Z t

0

⇣
k@xx⇢(s)k2

L2 + k@xxW2(s)k2
L2

⌘
ds

+ µ⇢̄

Z t

0

⇣
k@xxx�(s)k2

L2 + k@xxW2(s)k2
L2

⌘
ds

 CN1(t)
⇣
k�0k2

H2 + N2
2 (t)

⌘
+ CN2(t)

⇣
k�0k2

H1 + N2
2 (t)

⌘

+ CN2
2 (t)

⇣
k�0k2

H2 + N2
2 (t)

⌘
+ C⇢̄

⇣
k�0k2

H2 + N2
2 (t)

⌘

 C(k�0k2
H2)N2(t) + CN3

2 (t) + C(⇢̄, k�0k2
H2)N

2
2 (t) + C(⇢̄, k�0k2

H2).

Substituting this inequality in (151) and following the proof in [73], we obtain the
second order estimate:

k@xxW (t)k2
L2 +

Z t

0

k@xxW2(s)k2
L2ds

 N2
2 (0) + C2N

3
2 (t) + C(k�0k2

H2)N1(t) + C(k�0k2
H1)N2(t)

+ C(k�0kH2)N
2
2 (t) + C(⇢̄, k�0k2

H2) + C(⇢̄)N2
2 (t),

that is

k@xxW (t)k2
L2 +

Z t

0

k@xxW2(s)k2
L2dsN2

2 (0)+C(k�0k2
H2)N2(t) + C(⇢̄, k�0k2

H2)N
2
2 (t)

+ C2N
3
2 (t) + C(⇢̄, k�0k2

H2).
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Let us observe that, even if in the previous inequality there is the third derivative
of function �, we have been able to estimate all the terms by the second order
functional N2 thanks to the energy estimates (145), (146).

3.2.2 – Proof of the global existence result

Now, we are finally able to prove the existence of a global smooth solution for
system (137), that is the above stated Theorem 3.7.

Proof. Let us recall the definition of the functionals

N2
l (t) := sup

0st
kW (s)k2

Hl +

Z t

0

kW2(s)k2
Hl ds +

Z t

0

k@xW (s)k2
Hl�1 ds, for l = 1, 2,

N2
0 (t) := sup

0st
kW (s)k2

L2 +

Z t

0

kW2(s)k2
L2 ds,

and the energy estimates, obtained in the previous sections:

kW (t)kL2 +

Z t

0

kW2(s)k2
L2ds  N2

0 (0)

+C(k�0k2
H1)N1(t) + CN2

1 (t) + CN3
1 (t) + C(k�0k2

H1 ⇢̄),

(152)

k@xW (t)k2
L2 +

Z t

0

k@xW2(s)k2
L2ds  N2

1 (0)

+C(k�0k2
H1)N2(t) + C(⇢̄)N2

1 + CN3
2 (t) + C(⇢̄, k�0k2

H1),

(153)

and

k@xxW (t)k2
L2 +

Z t

0

k@xxW2(s)k2
L2ds  N2

2 (0) + C(k�0k2
H2)N2(t)

+ C(⇢̄, k�0k2
H2)N

2
2 (t) + C2(k�0kH2)N3

2 (t) + C(⇢̄, k�0k2
H2).

(154)

Therefore, to obtain an estimate of the functional N2
l (t), we need to study also the

term Z t

0

k@xW (s)k2
Hl�1ds, for l = 1, 2.

It is here that we have to use the condition (SK). To this end, we rewrite system
(139), as a linear hyperbolic system with a source term which depends on W and
�,

A0(0)@tW + A1(0)@xW = L(W,@ xW ) + H̃(W,@ x�), (155)
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where

L(W,@ xW ) :=
⇥
(A1(0) � A1(W )) � (A0(0) � A0(W ))A�1

0 (W )A1(W )
⇤
@xW

�
⇥
A0(0)A�1

0 (W )
⇤✓ 0

BW2

◆
,

H̃(W,@ x�) :=
⇥
A0(0)A�1

0 (W )
⇤
H(W,@ x�).

Let us recall that, in Section 3.1.2, we proved that system (139) (without the source
term H(W,@ x�)) satisfies the condition (SK). As shown by Shizuta and Kawashima
[153], and reported in Lemma 3.3 this means that there exists a constant matrix K
such that

• KA0(0) is skew-symmetric;
• the matrix

1

2
(KA1(0) + (KA1(0))t) +

1

2

✓
0 0
0 B(0) + B(0)t

◆

is positive definite.

Now, we apply the matrix K to our system and take the scalar product with @xW .
Then, integrating over (0, t) ⇥ R yields

Z t

0

Z
K [A0(0)@tW +A1(0)@xW ] · @xWdxds =

Z t

0

Z
KL(W,@ xW ) · @xWdxds

+

Z t

0

Z
KH̃(W,@ x�) · @xWdxds.

First we have, by integrating by parts

Z t

0

Z
K [A0(0)@tW ] · @xWdxds = �

Z t

0

Z
(KA0(0)@txW ) · Wdxds

= �
Z

(KA0(0)@xW ) · Wdx

����
t

0

+

Z t

0

Z
(KA0(0)@xW ) · @tWdxds

= �
Z

(KA0(0)@xW ) · Wdx

����
t

0

�
Z t

0

Z
(KA0(0)@tW ) · @xWdxds,

thanks to the skew-symmetry of KA0(0). Then, there exists a positive constant C1

such that
Z t

0

Z
K [A0(0)@tW ] · @xWdxds = �1

2

Z
(KA0(0)@xW ) · Wdx |t0 ,

� �C1(kW (t)k2
H1

+ kW (0)k2
H1

).

(156)
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Now we estimate the next term. We get

Z t

0

Z
(KA1(0)@xW ) · @xWdxds =

1

2

Z t

0

Z ⇥�
KA1(0) + (KA1(0))t

�
@xW

⇤
· @xWdxds

=

Z t

0

Z ✓
1

2
(KA1(0) + (KA1(0))t) +

✓
0 0
0 S

◆◆
@xW

�
· @xWdxds

�
Z t

0

Z
(SW2) · @xW2dxds,

where S is the symmetric positive matrix 1
2 (B(0) + B(0)t). Then

Z t

0

Z
(KA1(0)@xW ) · @xWdxds � C2

Z t

0

k@xWk2
L2ds � C3

Z t

0

kW2k2
H1ds,

for two positive constants C2 and C3. To estimate the right-hand side of (156), we
consider the following relations

|KL(W,@ xW ) · @xW |  C1(✏) (|W2| + |W | |@xW |) |@xW | , (157)���KH̃(W,@ x�) · @xW
���  C2(✏) |H(W,@ x�)| |@xW | . (158)

Let us observe that

Z t

0

Z
|W2| |@xW | dxds  ⌫

Z t

0

k@xW (s)k2
L2 ds +

1

4⌫

Z t

0

kW2(s)k2
L2 ds,

where ⌫ is an arbitrary small constant, and

Z t

0

Z
|W | |@xW |2 dxds  kW (t)kL1

Z t

0

k@xW (s)k2
L2 ds.

Hence, using (157) we obtain

����
Z t

0

Z
KL(W,@ xW ) · @xWdxds

���� 
1

2
C2

Z t

0

k@xW (s)k2
L2 + C4

Z t

0

kW2(s)k2
L2 ds

+ C5kW (t)kL1

Z
k@xW (s)k2

L2 ds.

Let us focus now on the last integral of the right-hand side of (156). First of all
we recall that H(W,@ x�) = (0, µ ⇢+ ⇢̄@x�), then starting from inequality (158) and
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taking into account the energy estimates for the function � (see Section 3.2.1), we
obtain:
Z t

0

Z
µKH̃(W,@ x�) · @xWdxds  µ

Z t

0

Ck@xW (s)kL2k@x�(s)kL2k⇢(s)kL1dsdx

+ µ

Z t

0

C⇢̄k@xW (s)kL2k@x�(s)kL2dsdx

 C sup
s2(0,t)

k⇢(s)k
L1

Z t

0

⇣
k@xW (s)k2

L2
+ k@x�(s)k2

L2

⌘
ds

+ C⇢̄

Z t

0

⇣
k@xW (s)k2

L2
+ k@x�(s)k2

L2

⌘
ds

 CN1(t)
�
k�0k2

H1 + N2
1 (t)

�
+ C(⇢̄)

�
k�0k2

H1 + N2
1 (t)

�

 C
�
k�0k2

H1

�
N1(t) + C(⇢̄)N2

1 (t) + CN3
1 (t) + C

�
⇢̄, k�0k2

H1

�
.

Then, substituting these calculations in (156) and following again the proof in [HN],
we get

Z t

0

k@xW (s)k2
L2ds  CN2

1 (0) + C(k�0k2
H1)N1(t) + C(⇢̄)N2

1 (t)

+ CN3
1 (t) + C(⇢̄, k�0k2

H1).

(159)

Finally we need to estimate the term
Z t

0

kWxx(s)kL2ds.

First we take the x�derivative of equation (155), and the scalar product with @xxW

Z t

0

Z
K [A0(0)@txW + A1(0)@xxW ] · @xxWdxds =

Z t

0

Z
K@xL · @xxWdxds

+

Z t

0

Z
K@xH̃ · @xxWdxds.

By arguing as in the previous case, we easily obtain:
Z t

0

k@xxW (s)k2
L2ds  CN2

2 (0) + C(k�0k2
H1)N2(t) + C(⇢̄)N2

2 (t)

+ C(k�0k2
H2)N3

2 (t) + C(⇢̄, k�0k2
H2).

(160)

Now, let us sum up the inequalities (152), (153), (154), (159) and (160) to get

N2
2 (t)  bN2

2 (0) + b1N2(t) + b2N
2
2 (t) + b3N

3
2 (t) + b4,

where the constants bi depend on ⇢̄ and k�0kH2 , for i = 1, . . . , 4.
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Choosing small initial data and small constant state, that is C su�cient small,
by using standard arguments we can prove the inequality (143). ⇤

Remark 3.8. Theorem 3.7 ensures that for �0 2 H2(R) then there exists � 2
C([0,1), H2(R)) solution to the parabolic equation of the system (140). Let us
notice that it always possible to write this solution by the Duhamel formula

�(x, t) = (e�
t
⌧ �p(t) ⇤ �0)(x) +

Z t

0

e�
(t�s)

⌧ �p(t � s) ⇤ a⇢(s)ds,

where

�p(x, t) :=
e�

x2

4Dt

2
p
⇡Dt

.

As observed before, if we consider an initial datum �0 2 H3(R), we get a local
solution �(t) 2 C([0, T ], H3(R)) for t 2 (0, T ). Moreover we have

k�(t)kH3 =k(e� t
⌧ �p(t) ⇤ �0)kH3 +

Z t

0

ke� (t�s)
⌧ �p(t � s) ⇤ a⇢(s)kH3ds

 e�
t
⌧ k�p(t)kL1k�0kH3 +

Z t

0

e�
(t�s)

⌧ k�p(t � s) ⇤ a⇢(s)kH3ds

 e�
t
⌧ Ck�0kH3 +

Z t

0

e�
(t�s)

⌧ k�p(t � s) ⇤ a⇢(s)kL2ds

+

Z t

0

X

|↵=3|
e�

(t�s)
⌧ kD↵

x�
p(t � s) ⇤ a⇢(s)kL2ds

 e�
t
⌧ Ck�0kH3 +

Z t

0

Ce�
(t�s)

⌧ ka⇢(s)kL2ds

+

Z t

0

e�
(t�s)

⌧ k@x�
p(t � s)kL1ka⇢(s)kH2ds

e�
t
⌧ Ck�0kH3 +

Z t

0

e�
(t�s)

⌧ (t � s)�
1
2 ka⇢(s)kH2ds+

Z t

0

Ce�
(t�s)

⌧ ka⇢(s)kL2ds

 e�
t
⌧ Ck�0kH3 + C1

Z t

0

e�
(t�s)

⌧ (t � s)�
1
2 + C1

Z t

0

e�
(t�s)

⌧ ds,

where C1 = sups2(0,t) k⇢(s)kH2 .
Which yields

k�(t)kH3  C(e�
t
⌧ k�0kH3 + C1). (161)

In conclusion, if the initial datum �0 2 H3(R), even the global solution �(t) 2
C([0,1), H3(R)).
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Remark 3.9. Let us observe that, considering initial data in Hs(R)⇥Hs+1(R),
Theorem 3.6 ensures the local existence of solution (W,� )(t) in C([0, T ), Hs(R)) ⇥
C([0, T ), Hs+1(R)).

Thanks to Theorem 3.7 we obtain the existence of global solution to this system
in C([0, T ), H2(R))⇥C([0, T ), H3(R)) when the initial data (W0, �0) are in H2(R)⇥
H3(R).

Then, following the approach of Majda (Theorem 2.2 in [107]), it is possible to
prove the global existence of solutions in C([0,1), Hs(R)) ⇥ C([0,1), Hs+1(R))
taking initial data in (W0, �0) 2 Hs(R) ⇥ Hs+1(R).

3.3 – Asymptotic behavior

In this section we study the time decay properties of the global smooth solution to
system (137), proceeding along the lines of [17].

By means of the decomposition of the Green function of the linearized problem,
we aim to obtain the Hs and L1 decay estimates of solutions of the model.

To this end we rewrite system (137) in the Conservative-Dissipative form (Defi-
nition 2.3) as

@t(U + U) + @xf(U + U) = g(U) + h(U + U,@x�), (162)

where

U =

0
@

⇢
vp

P 0(⇢̄)

1
A , U =

✓
⇢̄
0

◆
, f(U + Ū) =

0
@

p
P 0(⇢̄)v

p
P 0(⇢̄)

v2

(⇢+ ⇢̄)
+

P (⇢+ ⇢̄)p
P 0(⇢̄)

1
A ,

g(U) =

✓
0

�↵u

◆
, h(U + U,@x�) =

0
@

0

µ
(⇢+ ⇢̄)p

P 0(⇢̄)
@x�

1
A .

Defined f̄(U) = f(U + U) � f(U), and µ̄ = µp
P 0(⇢̄)

the system can be rewritten in

the following way

@tU + f̄ 0(U)@xU = g(U) + @x

�
f̄ 0(U)U � f̄(U)

�
+ h(U + U,@x�), (163)

and its solution is given by

U(t) = �h(t) ⇤ U0 +

Z t

0

@x�
h(t � s) ⇤

⇥
f̄ 0(U)U(s) � f̄(U(s))

⇤
ds

+

Z t

0

�h(t � s) ⇤ h(U + Ū ,@x�)ds,

(164)
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where� h denotes the Green function of the linearized system

@tU + f̄ 0(U)@xU = g(U).

We will use the estimates due to Bianchini, Hanouzet and Natalini [17], also reported
in the previous chapter (Theorem 2.4). Let us recall the main estimates that will
be useful to get our results.

For a linear dissipative system in the conservative-dissipative form

@tw +

nX

j=1

Aj@xj w = Bw, (165)

it is possible to decompose the solution to the Cauchy problem as

w(t) = �h(t) ⇤ w0 = K(t) ⇤ w0 + K(t) ⇤ w0,

for any function w0 2 L1 \ L2(Rn, Rn+1).

Moreover for any multi index � and for every p 2 [1, +1] the following estimates
hold.

K(t) estimates:

kL0D
�K(t) ⇤ w0kLp  C(|�|) min{1, t�

n
2 (1� 1

p )� |�|
2 }kL0w

0kL1

+ C(|�|) min{1, t�
n
2 (1� 1

p )� 1
2�

|�|
2 }kL�w0kL1 ,

kL�D�K(t) ⇤ w0kLp  C(|�|) min{1, t�
n
2 (1� 1

p )� 1
2�

|�|
2 }kL0w

0kL1

+ C(|�|) min{1, t�
n
2 (1� 1

p )�1� |�|
2 }kL�w0kL1 .

K(t) estimates:

kD�K(t) ⇤ w0kL2  Ce�ctkD�w0kL2 .

In order to prove our result we need also the following estimates which, even if not
optimals, they are in suitable spaces:

kL0D
�K(t) ⇤ w0kL2  C(|�|) min{1, t�

n
8 � |�|

2 }kL0w0k
1
2

L2kL0w0k
1
2

L1

+ C(|�|) min{1, t�
n
8 � |�|

2 � 1
2 }kL�w0k

1
2

L2kL�w0k
1
2

L1 ,

kL0D
�K(t) ⇤ w0kL1  C(|�|) min{1, t�

n
4 � |�|

2 }kL0w0kL2

+ C(|�|) min{1, t�
n
4 � |�|

2 � 1
2 }kL�w0kL2 .

(166)
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Remark 3.10. As shown in [17], if we focus on the one-dimensional case, we
have the following decomposition

�(x, t) = K(x, t)�
�
�t  x  �t, t � 1

 
+ K(x, t) + R(x, t)�

�
�t  x  �t

 
,

where

R(x, t) =
X

j

e�(x��1
j )t2/Ct

1 + t


O(1) O(1)(1 + t)�1/2

O(1)(1 + t)�1/2 O(1)(1 + t)�1

�
.

Moreover it is known that for the dissipative hyperbolic system

(
@t⇢+ @xv = 0,

@tv + @x⇢ = ��v,

that is the linearization of our quasilinear hyperbolic system, the di↵usive part of
the Green Kernel K(x, t) can be decomposed as follows,

K11(x, t) = �
1
� (x, t), K12(x, t) = K21(x, t) =

1

�
@x�

1
� (x, t),

K22(x, t) =
1

�2
@xx�

1
� (x, t),

where�
1
� is the Green Kernel of the heat equation. For more details see [17].

3.3.1 – Hs Estimates of the solution

This section is devoted to study the decay rates of solution to the system (162)
in the Hs-norms.

We define

Es := max {kU0kL1 , kU0kHs} , Ds := max {k�0kL1 , k�0kHs+1} ,

and the general functional

M↵
w := sup

0st
{max {1, s↵} kw(s)kHs} .

Then, we shall prove the following theorem

Theorem 3.11. Let (U,� )(t) a global solution to problem (137), with initial
conditions

U(x, 0) = U0(x), �(x, 0) = �0(x),
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and regularity assumptions

U0(x) 2 Hs+1(R) \ L1(R), �0(x) 2 Hs+1(R) \ L1(R), for s � 1.

Then the following decay estimate holds :

kU(t)kHsC min{1, t�
1
4 }(Es+1+Ds+1), k�(t)kHs+1C min{1, t�

1
4 }(Es+1+Ds+1),

where the constant C depends on the constant state.

Proof. First we consider the parabolic equation

@t� = D@xx�+ au � �

⌧
,

and using the Duhamel’s formula, we can write the solution as

�(x, t) = (e�
t
⌧ �p(t) ⇤ �0)(x) +

Z t

0

e�
(t�s)

⌧ �p(t � s) ⇤ a⇢(s)ds, (167)

where

�p(x, t) :=
e�

x2

4Dt

2
p
⇡Dt

.

Let us start with the Hs+1 estimate:

k�(t)kHs+1 = k(e� t
⌧ �p(t) ⇤ �0)kHs+1 +

Z t

0

ke� (t�s)
⌧ �p(t � s) ⇤ a⇢(s)kHs+1ds

 e�
t
⌧ k�p(t)kL1k�0kHs+1 +

Z t

0

e�
(t�s)

⌧ k�p(t � s) ⇤ a⇢(s)kHs+1ds

 e�
t
⌧ Ck�0kHs+1 +

Z t

0

e�
(t�s)

⌧ k�p(t � s) ⇤ a⇢(s)kL2ds

+

Z t

0

e�
(t�s)

⌧

X

|↵=s+1|
kD↵

x�
p(t � s) ⇤ a⇢(s)kL2ds

 e�
t
⌧ Ck�0kHs+1 +

Z t

0

Ce�
(t�s)

⌧ ka⇢(s)kL2ds

+

Z t

0

e�
(t�s)

⌧ k@x�
p(t � s)kL1ka⇢(s)kHsds

 e�
t
⌧ Ck�0kHs+1 +

Z t

0

Ce�
(t�s)

⌧ (t � s)�
1
2 ka⇢(s)kHsds

+

Z t

0

Ce�
(t�s)

⌧ ka⇢(s)kL2ds

 e�
t
⌧ Ck�0kHs+1 + M

1
4

U (t)

Z t

0

e�
(t�s)

⌧ (t � s)�
1
2 min{1, s�

1
4 }ds

+ M
1
4

U (t)

Z t

0

e�
(t�s)

⌧ min{1, s�
1
4 }ds.
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So we obtain the following Hs+1 estimate for �

k�(t)kHs+1  C(e�
t
⌧ k�0kHs+1 + min{1, |t � 1|� 1

4 }M
1
4

U (t) + min{1, t�
1
4 }M

1
4

U (t)),

which yields

M
1
4

�x
(t)  C(e�

t
⌧ max{1, t

1
4 }k�0kHs+1 + M

1
4

U (t)). (168)

Let us notice that from the previous inequality the decay rates if the function � in
Hs+1 is the same rate of the function U in Hs.

Now we focus on the estimate of function U . We can easily observe that

f̄(U) � f̄ 0(U)U =

=0z }| {
f̄(U) +U2r(U),

where r : R ! R is a suitable smooth function. Therefore, using (164) and the
definition of Es, we obtain

kU(t)kHs  C min{1, t�
1
4 } kU0kL1 + Ce�ct kU0kHs

+ C

Z t

0

min{1, (t � s)�
3
4 }
��U2(s)r(U)(s)

��
L1 ds

+ C

Z t

0

e�c(t�s)
��@x(U2(s)r(U))(s)

��
Hs ds

+

Z t

0

k�h(t � s) ⇤ h(U + U,@x�)(s)kHsds

C min{1, t�
1
4 }Es+ C

Z t

0

min{1, (t � s)�
3
4 }
��U2(s)r(U)(s)

��
L1 ds

+ C

Z t

0

e�c(t�s)
��@x(U2(s)r(U))(s)

��
Hs ds

+

Z t

0

k�h(t � s) ⇤ h(U + U,@x�)(s)kHsds.

(169)

At this stage we want to estimate the right hand side of this inequality.
Let us start studying the first integral in (169), as follows

Z t

0

min{1, (t � s)�
3
4 }
��U2(s)r(U)(s)

��
L1 ds


Z t

0

min{1, (t � s)�
3
4 }kU2(s)kL2kr(U)(s)kL2ds


Z t

0

min{1, (t � s)�
3
4 }kU(s)k2

L2kr(U)(s)kL1(|U |�0)ds


⇣
CM

1
4

U (t)
⌘2
Z t

0

min{1, (t � s)�
3
4 } min{1, s�

1
2 }ds.
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Then from Lemma 2.11, we deduce

Z t

0

min{1, (t � s)�
3
4 }C

��U2(s)r(U)
��

L1 ds

 C

Z t

0

min{1, (t � s)�
3
4 } min{1, s�

1
2 }
⇣
M

1
4

U (t)
⌘2

 C1 min{1, t�
1
4 }
⇣
M

1
4

U (t)
⌘2

.

(170)

In order to estimate the following term in (169) we recall an useful lemma.

Lemma 3.12. Fixed s > n
2 , � 2 Nn, and let u 2 Hs0

(Rn0
) verify inequality

|u(x, t)|  �0,

where �0 > 0 and s0 � s + |�|. Then, we have

kD�(u2r(u))kHs  C(�0, kukHs , krkCs+|�|(|u|�0))kukL1kD�ukHs .

Thanks to this lemma we deduce that
��@x(U2r(U))

��
Hs  C(�0, kukHs , krkCs+|�|(|u|�0)) kUkL1 k@xUkHs

 C kUkL1 kUkHs+1  C kUkHs kUkHs+1

, (171)

then we have
Z t

0

e�c(t�s)
��@x(U2r(U))(s)

��
HsdsC

Z t

0

e�c(t�s) kU(s)kL1 kU(s)kHs+1 ds

C

Z t

0

e�c(t�s) kU(s)kHs kU(s)kHs+1 ds

CM
1
4

U (t)Es+1

Z t

0

e�c(t�s) min{1, s�
1
4 }ds

C min{1, t�
1
4 }M

1
4

U (t)Es+1.

(172)

In the last inequalities, we have used Lemma 2.11 and the estimate of Theorem 3.7
to controll the norm in Hs.

Remark 3.13. In the previous chapter we have shown the global existence of
solutions and their decay rates simultaneously by estimate of the L1 and Hs-norms
of the functions.

Let us notice that the presence of the term @x(U2r(U)) precludes the direct use
of the decay estimates. As a matter of fact, due to the presence of this term, it
is not possible to close our estimate, because starting from in Hs, we get terms in
Hs+1.
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Finally we estimate the last integral of (169)

Z t

0

k�h(t � s) ⇤ h(U + U,@x�)(s)kHsds 
Z t

0

kK(t � s) ⇤ h(U + U,@x�)(s)kHsds

+

Z t

0

kK(t � s) ⇤ h(U + U,@x�)(s)kHsds.

For the first term, we have:

Z t

0

kK(t � s) ⇤ h(U + U,@x�)(s)kHsds


Z t

0

ce�c(t�s)kh(U + U,@x�)(s)kHsds


Z t

0

ce�c(t�s)k@x�(s)kHs(⇢̄+ k⇢(s)kHs)ds

 ⇢̄M
1
4

�x
(t)

Z t

0

ce�c(t�s) min{1, s�
1
4 }ds

+ M
1
4

�x
(t)M

1
4

U (t)

Z t

0

ce�c(t�s) min{1, s�
1
2 }ds

 c1 min{1, t�
1
4 }⇢̄M

1
4

�x
(t) + c1 min{1, t�

1
2 }M

1
4

�x
(t)M

1
4

U (t).

(173)

In order to complete our estimate, we need to study the contribution of the hyper-
bolic Green function di↵usive part.

Z t

0

kK(t � s) ⇤ h(U + U,@x�)(s)kHsds

=

Z t

0

kK12(t � s) ⇤ µ̄(⇢(s) + ⇢̄)@x�(s)kHsds

+

Z t

0

kK22(t � s) ⇤ µ(⇢(s) + ⇢̄)@x�(s)kHsds


Z t

0

CkK12(t � s) ⇤ µ(⇢(s) + ⇢̄)@x�(s)kHsds


Z t

0

Ck@xK12(t � s) ⇤ µ⇢̄�(s)kHs + kK12(t � s) ⇤ µ⇢@x�kHsds

 µ̄

Z t

0

min{1, (t � s)�
9
8 }⇢̄k�(s)k

1
2

L2k�(s)k
1
2

L1ds

+ µ̄

Z t

0

min{1, (t � s)�
3
4 } min{1, s�

1
2 }dsM

1
4

�x
(t)M

1
4

U (t).

(174)
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Since in our study we do not di↵erentiate the decays of conservative and the dis-
sipative variables, in the previous inequalities we have estimated the decay of K22

with the same decay rate of K12, even if it decays faster.

Thanks to (166) we deduce that

µ̄

Z t

0

min{1, (t � s)�
9
8 }⇢̄k�(s)k

1
2

L2k�(s)k
1
2

L1ds

 µ̄

Z t

0

min{1, (t � s)�
9
8 }⇢̄k�(s)kHsds

 µ̄ min{1, t�
1
4 }⇢̄M

1
4

� (t).

(175)

The second integral of (174) can be estimated as

Z t

0

kK12(t � s) ⇤ µ̄⇢@x�kHsds  C min{1, t�
1
4 }M

1
4

�x
(t)M

1
4

U (t). (176)

In conclusion, substituting (170), (172), (173), (175), (176) in (169), it results

kU(t)kHs  C̃
⇣
min{1, t�

1
4 }Es + min{1, t�

1
4 }M

1
4

U Es+1 + min{1, t�
1
4 }(M

1
4

U (t))2

+ min{1, t�
1
4 }⇢̄M

1
4

�x
(t) + min{1, t�

1
2 }M

1
4

�x
(t)M

1
4

U (t)

+ min{1, t�
1
4 }M

1
4

�x
(t)M

1
4

U (t) + µ̄ min{1, t�
1
4 }⇢̄M

1
4

� (t)
⌘

.

Multiplying this relation by max{1, t
1
4 } we get

M
1
4

U (t)  C
⇣
Es + M

1
4

U (t)Es+1 + (M
1
4

U (t))2 + ⇢̄(M
1
4

�x
(t) + µ̄⇢̄M

1
4

� (t))

+
⇣
1 + min{1, t�

1
4 }
⌘

M
1
4

�x
(t)M

1
4

U (t)
⌘

.

Now, we substitute inequality (168) in the previous one, obtaining

M
1
4

U (t)  C
⇣
Es + M

1
4

U (t)Es+1 + (M
1
4

U (t))2 + ⇢̄max{1, t
1
4 }e�t/⌧k�0kHs+1

+⇢̄M
1
4

U (t)+µ̄⇢̄max{1,t
1
4 }e�t/⌧k�0kHs + µ̄⇢̄M

1
4

U (t)+ e�t/⌧k�0kHs+1M
1
4

U (t)

+ max{1, t
1
4 }e�t/⌧k�0kHs+1M

1
4

U (t) + (M
1
4

U (t))2 + min{1, t�
1
4 }(M

1
4

U (t))2
⌘

.
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Then, for t > � > 0, we get

M
1
4

U (t) Cs + C1M
1
4

U (t) + C2(M
1
4

U (t))2, (177)

where Cs = Cs(Es, Ds+1, ⇢̄) and C1 = C1(Es+1, Ds+1, ⇢̄). From this inequality we
deduce that, if the initial data and the perturbation ⇢̄ are su�ciently small, then
we have

M
1
4

U (t)  CCs,

that yields

kU(t)kHs  C min{1, t�
1
4 }Cs,

and the same for the solution �

k�(t)kHs+1  C min{1, t�
1
4 }Cs. ⇤

3.3.2 – L1 estimates of the solution

In this section our aim to estimate the L1-norm of solutions to the system (162).
As done before, we define the functional

N↵
w(t) := sup

0st
{max {1, s↵} kw(s)kL1} ,

and set

Es := max {kU0kL1 , kU0kHs} , Ds := max {k�0kL1 , k�0kHs} .

Our aim is to prove the following theorem

Theorem 3.14. Let (U,� )(t) a global solution to system (137), with initial con-
ditions

U(x, 0) = U0(x), �(x, 0) = �0(x),

and regularity assumptions

U0(x) 2 H2(R) \ L1(R), �0(x) 2 H2(R) \ L1(R).
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Then the following decay estimate holds:

kU(t)kL1  C min{1, t�
1
4 }(E2 + D2), k�(t)kL1  C min{1, t�

1
4 }(E2 + D2),

where the constant C depends on the constant state.

Proof. Proceeding as done before we obtain L1 estimates for � and @x�.
First of all we show that

k�(t)kL1 = k(e� t
⌧ �p(t) ⇤ �0)kL1 +

Z t

0

ke� (t�s)
⌧ �p(t � s) ⇤ a⇢(s)kL1ds

 e�
t
⌧ k�p(t)kL1k�0kL1 +

Z t

0

e�
(t�s)

⌧ k�p(t � s) ⇤ a⇢(s)kL1ds

 e�
t
⌧ Ck�0kL1 +

Z t

0

e�
(t�s)

⌧ k�p(t � s)kL1ka⇢(s)kL1ds

 e�
t
⌧ Ck�0kL1 +

Z t

0

e�
(t�s)

⌧ Cka⇢(s)kL1ds

 e�
t
⌧ Ck�0kL1 + N

1
2

U (t)

Z t

0

e�
(t�s)

⌧ C min{1, s�
1
2 }ds,

which yields

k�(t)kL1  C
⇣
e�

t
⌧ k�0kL1 + min{1, t�

1
4 }N

1
4

U (t)
⌘

. (178)

In a similar way, we get

k@x�(t)kL1  C
⇣
e�

t
⌧ k@x�0kL1 + min{1, |t � 1|� 1

4 }N
1
4

U (t)
⌘

. (179)

Now let us consider the solution of our system written in the form (163), so its
solution is given by

U(t) = �h(t) ⇤ U0 +

Z t

0

@x�
h(t � s) ⇤

⇥
f 0(U)U(s) � f(U(s))

⇤
ds

+

Z t

0

�h(t � s) ⇤ h(U + U,@x�)(s)ds.
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Let us estimate the L1-norm of U in the following way

kU(t)kL1 k�h(t) ⇤ U0kL1 +

Z t

0

��@x�
h(t�s)⇤

⇥
f 0(U)U(s)�f(U(s))

⇤��
L1 ds

+

Z t

0

k�h(t � s) ⇤ h(U + U,@x�)(s)kL1ds

 k�h(t) ⇤ U0kL1 +

Z t

0

k@x�
h(t � s) ⇤ (U2r(U)(s))kL1ds

+

Z t

0

k�h(t � s) ⇤ h(�, U + Ū)(s)kL1ds

 C min{1, t�
1
2 }kU0kL1 + Ce�ctkU0kH1

+

Z t

0

kK(t � s) ⇤ U2r(U)(s)kL1ds

+

Z t

0

��K(t � s) ⇤ @x(U2r(U))(s)
��

L1 ds

+

Z t

0

k�h(t � s) ⇤ h(U + U,@x�)(s)kL1ds.

(180)

As observed before, in the one dimensional case it is possible to decompose the
Green function as

�(x, t) = K(x, t)�
�
�t  x  �t, t � 1

 
+ K(x, t) + R(x, t)�

�
�t  x  �t

 
,

then the remainder R(x, t) and the di↵usive part K(x, t) in (180) can be estimated
as

Z t

0

(k@xKkL2 + k@xRkL2)
��U2r(U)(s)

��
L2 ds


Z t

0

min{1, (t � s)�
3
4 }
��U2r(U)(s)

��
L2 ds


Z t

0

min{1, (t � s)�
3
4 } kr(U)(s)kL2

��U2(s)
��

L1 ds


Z t

0

min{1, (t � s)�
3
4 } kr(U)kL2(|U(s)|�0kU(s)kL1 kU(s)kHsds

 c min{1, t�
1
4 }N

1
4

U (t)M
1
4

U (t).
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While the term K(x, t) is estimated as

Z t

0

��K(t � s) ⇤ @x(U2r(U))
��

L1 ds 
Z t

0

e�c(t�s)
��@x(U2r(U)(s))

��
H1 ds


Z t

0

e�c(t�s)C kU(s)kL1 kU(s)kH2 ds

 N
1
4

U (t)E2

Z t

0

e�c(t�s) min{1, s�
1
4 }ds,

 C min{1, t�
1
4 }N

1
4

U (t)E2,

where we have used the estimate (171). Finally we estimate the last term in (180).
Proceeding in a similar way it can be decomposed as

Z t

0

k�h(t�s)⇤h(U + U,@x�)(s)kL1ds
Z t

0

kK(t � s) ⇤ h(U + U,@x�)(s)kL1ds

+

Z t

0

kK(t � s) ⇤ h(U + U,@x�)(s)kL1ds

+

Z t

0

kR(t � s) ⇤ h(U + U,@x�)(s)kL1ds.

Let us start from the first integral on the right hand side.

Z t

0

kK(t � s) ⇤ h(U + U,@x�)kL1ds


Z t

0

ce�c(t�s)kh(U + U,@x�)(s)kL1ds


Z t

0

ce�c(t�s) (⇢̄k@x�(s)kL1 + k⇢(s)@x�(s)kL1) ds


Z t

0

ce�c(t�s) (⇢̄k@x�(s)kL1 + k⇢(s)kL1 k@x�(s)kL1) ds


Z t

0

ce�c(t�s) min{1, s�
1
4 }ds⇢̄N

1
4

�x
(t)

+

Z t

0

ce�c(t�s) min{1, s�
1
2 }dsN

1
4

�x
(t)N

1
4

U (t)

 c1 min{1, t�
1
4 }⇢̄N

1
4

�x
(t) + c1 min{1, t�

1
2 }N

1
4

�x
(t)N

1
4

U (t),

(181)

thanks to Lemma 2.11.
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Now need to estimate the contributions of the hyperbolic Green function dissi-
pative and remainder part

Z t

0

k(K(t � s) + R(t � s)) ⇤ h(U + U,@x�)(s)kL1ds

=

Z t

0

k(K(t � s) + R(t � s)) ⇤ (⇢̄+ ⇢)@x�(s)kL1ds


Z t

0

k(K(t � s) + R(t � s)) ⇤ ⇢(s)�x(s)kL1ds

+

Z t

0

k@x(K(t � s) + R(t � s))) ⇤ ⇢̄�(s)kL1ds.

For the first integral we have
Z t

0

k(K(t � s) + R(t � s)) ⇤ ⇢(s)�x(s)kL1ds


Z t

0

min{1, (t � s)�
3
4 }k⇢(s)�x(s)kL2ds

 N
1
4

U (t)M
1
4

�x
(t)

Z t

0

min{1, (t � s)�
3
4 } min{1, s�

1
2 }ds

 min{1, t�
1
4 }N

1
4

U (t)M
1
4

�x
(t).

While for the second one we get
Z t

0

k@x(K(t � s) + R(t � s)) ⇤ ⇢̄�(s)kL1ds


Z t

0

min{1, (t � s)�
5
4 }⇢̄k�(s)k

1
2

L2k�(s)k
1
2

L1ds


Z t

0

min{1, (t � s)�
5
4 }⇢̄min{1, s�

1
4 }k�(s)kHsds

 min{1, t�
1
4 }⇢̄M

1
4

� (t).

In conclusion we obtain that

kU(t)kL1 C
⇣
min{1, t�

1
2 } kU0kL1 + e�ct kU0kH1

+ min{1, t�
1
4 }N

1
4

U (t))M
1
4

U (t)

+ min{1, t�
1
4 }N

1
4

U (t)E2 + min{1, t�
1
4 }⇢̄N

1
4

�x
(t)

+ min{1, t�
1
2 }N

1
4

�x
(t)N

1
4

U (t)

+ min{1, t�
1
4 }N

1
2

U (t)M
1
4

�x
(t) + min{1, t�

1
4 }⇢̄M

1
4

� (t)
⌘

.

(182)
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Let us recall that M
1
4

U  cC1 and M
1
4

�x
 cC2. Then, substituting inequalities (178)

and (179) in (182), we obtain

kU(t)kL1  C
⇣
min{1, t�

1
2 } kU0kL1 + e�ct kU0kH1 + min{1, t�

1
4 }⇢̄D2

+ min{1, t�
1
4 }N

1
4

U (t)(C1 + C2 + D2 + E2)

+⇢̄min{1, t�
1
4 }N

1
4

U (t) + min{1, t�
1
2 }(N

1
4

U (t))2
⌘

.

Multiplying the previous relation by max{1, t
1
4 }, we get

N
1
4

U (t)  C
h
B1 + N

1
4

U (t)C1 + (N
1
4

U (t))2C2

i
,

where B1 = B1(D2, ⇢̄, E1) and Ci = Ci(Di, ⇢̄, Ei).

In conclusion, if initial data and the constant state are su�ciently small, for the
L1 norm of the function U we obtain the following estimate

kU(t)kL1  C min{1, t�
1
4 }Cs+1.

This means that the decay rate of the function U , and of course of the function
�, in L1-norm is O(t�

1
4 ) also in the case of perturbation of non-null constant

state. ⇤

4 – Numerical approximations and simulations

In this chapter we focus our attention on the numerical approximation of two
hyperbolic-parabolic models which arise to describe chemotactical movements. In
Chapters 2 and 3 we proved theorems of global existence of smooth solutions for
these systems.

Since our results hold only for small regular initial data, we are motivated to
use numerical simulations as a tool to investigate the evolution of solutions also for
larger data.

One goal would be to know whether hyperbolic-parabolic systems have the same
behavior as parabolic-elliptic systems, that is to say global existence for small initial
data and blow up of solutions for large initial data, in dimensions greater than
2 [135], or the parabolic-parabolic systems that, in two-dimensional case, have a
critical mass threshold below which global existence is ensured [26].

It has also to be noticed that the previous analytical results about global exis-
tence of solutions were obtained on the whole space, whereas numerical simulations
will be performed on a bounded domain.
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The chapter is organized as follows: at the beginning we give an introduction
to finite di↵erence schemes, defining fundamental concepts like consistency, con-
vergence, stability and monotonicity. Then we will present some finite di↵erence
schemes for hyperbolic conservation laws.

A section is dedicated to the relaxation method, which is used in our simulations,
and asymptotic high order methods. We briefly present also some classical schemes
for parabolic equations.

The third and the fourth parts of the chapter are devoted to the numerical sim-
ulations in the two dimensional case of the hyperbolic-parabolic models for chemo-
taxis and vasculogenesis studied previously from the analytical point of view.

4.1 – An introduction to finite di↵erence schemes

In this section we shall present some numerical backgrounds for finite di↵erence
schemes. The main reference is [157] from which most of the contents are taken.

We start defining a grid of points in the (x, t) plane. Let h and k be positive
numbers called space step and time step ; then the grid will be given by the points
(xm, tn) = (mh, nk) for arbitrary integers n and m.

We are interested in grids with small values of h and k. For a function v defined
on the grid we write vn

m for the value of v at the grid point (xm, tn). We also use
the notation un

m, for u(xm, tn), when u is defined for continuously varying (x, t).
The basic idea of finite di↵erence schemes is to replace derivatives by finite

di↵erences. This can be done in many ways. As two examples we may have:

@u

@t
(xm, tn) ⇡ u(xm, tn + k) � u(xm, tn)

k

⇡ u(xm, tn + k) � u(xm, tn � k)

2k
.

These are valid approximations, as seen from the formulas

@u

@t
(t, x) = lim

"!0

u(x, t + ") � u(x, t)

"

= lim
"!0

u(x, t + ") � u(x, t � ")

2"
,

relating the derivative of u to some values of u. Similar formulas approximate
derivatives with respect to x.

The method for deriving these schemes is very simple and this is one of the
significant features of the general method of finite di↵erences. Moreover the finite
di↵erence method is known for the great variety of schemes that can be used to
approximate a given partial di↵erential equation. However, the analysis of these
schemes to determine if they are accurate approximations of the di↵erential equation
requires some powerful mathematical tools.
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4.1.1 – Convergence and consistency

The most basic property that a scheme must have in order to be used is that its
solutions approximate the solution of the corresponding partial di↵erential equation
and that the approximation improves as the time and space steps, h and k, tend
to zero. We call such a scheme a convergent scheme. We consider linear partial
di↵erential equations of the form

P (@x, @t)u = f(x, t), (183)

which are of first order in the derivative with respect to t. We also assume for such
equations, or systems of equations, that the specification of initial data, u(x, 0),
completely determines a unique solution. The real variable x ranges over the whole
real line or an interval. Examples of equations that are first order in time are the
transport equation

@tu + a@xu = 0, (184)

where a is a constant, and the heat equation

@tu � b@xxu = 0, (185)

where b > 0 is a constant.

Definition 4.1. A one-step finite di↵erence scheme approximating a partial
di↵erential equation is a convergent scheme if, for any solution to the partial dif-
ferential equation, u(x, t), and solutions to the finite di↵erence scheme, vn

m, such
that v0

m converges to u0(x) as mh converges to x, then vn
m converges to u(x, t) as

(mh, nk) converges to (x, t) with h, k converging to 0.

This definition is not complete until we clarify the nature of the convergence.
Let ⌦ be a real interval and J⌦ the set of values with index m such that mh 2 ⌦.
The discretization values v = {vn

m} at time tn will be defined by

vn := {vn
m : m 2 J⌦}.

The two most common discrete norm used to estimate the convergence error are
the l1� norm

kvnk1,h = max{|vn
m|, m 2 J⌦},

and the l2� norm

kvnk2,h =

( X

m2J⌦

h|vn
m|2
) 1

2

.

We will say that a scheme is convergent in norm k · k·,h if

kvn � unk·,h ! 0
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as h, k ! 0, nk ! t 2 (0, T ) for all initial data u0 such that the corresponding
initial value problem is well-posed in the chosen norm k · k·,h.

Proving that a given scheme is convergent is not easy in general, if attempted
in a direct manner. However, there are two related concepts that are easy to check:
consistency and stability. First, we define consistency (for linear partial di↵erential
equations).

Definition 4.2. Given a partial di↵erential equation, Pu = f , and a finite
di↵erence scheme, Pk,hv = f , we say that the finite di↵erence scheme is consistent
with the partial di↵erential equation if for any smooth function �(x, t):

P�� Pk,h�! 0 as k, h ! 0, (186)

the convergence being pointwise convergence at each point (x, t).

Consistency implies that the solution of the partial di↵erential equation, if it
is smooth, is an approximate solution of the finite di↵erence scheme. Similarly,
convergence means that a solution of the finite di↵erence scheme approximates
a solution to the partial di↵erential equation. It is natural to consider whether
consistency is su�cient for a scheme to be convergent.

Consistency is certainly necessary for convergence, but as the following example
shows, a scheme may be consistent but not convergent.

Remark 4.3. Consider the partial di↵erential equation @tu + @xu = 0 with the
following forward-time forward-space scheme:

vn+1
m � vn

m

k
+

vn
m+1 � vn

m

h
= 0.

The scheme may be rewritten as

vn+1
m = vn

m � k

h

�
vn

m+1 � vn
m

�

= (1 + �)vn
m � �vn

m+1,
(187)

where we have set � =
k

h
. This scheme is consistent, as a matter of fact:

P� = @t�+ @x�,

Pk,h� =
�n+1

m � �n
m

k
+
�n

m+1 � �n
m

h
.

Using the Taylor series of the function � in t and x about (xm, tn), we have that

�n+1
m = �n

m + k@t�+
1

2
k2@tt�+ O(k3),

�n
m+1 = �n

m + h@x�+
1

2
h2@xx�+ O(h3)
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where the derivatives on the right-hand side are all evaluated at (xm, tn), and so

Pk,h� = @t�+ @x�+
1

2
k@tt�+

1

2
h@xx�+ O(k2) + O(h2).

Thus

P�� Pk,h� = �1

2
k@tt�� 1

2
h@xx�+ O(k2) + O(h2) ! 0, as (h, k) ! 0.

As initial condition for the di↵erential equation we take:

u0(x) =

(
1 if � 1  x  0.

0 elsewhere.

The solution of the partial di↵erential equation is a shift of u0 to the right by t. In
particular, for t greater than 0, there are positive values of x for which u(x, t) is
nonzero. For the di↵erence scheme take the initial datum:

v0
m =

(
1 if � 1  mh  0.

0 elsewhere.

As equation (187) shows, the solution of the di↵erence scheme at (xm, tn) depends
only on xm0 for m0 > m at previous times. Thus we conclude that vn

m, is always 0
for points xm to the right of 0, that is,

vn
m = 0 for m > 0, n � 0.

Therefore, vn
m cannot converge to u(x, t), since for positive t and x, the function u

is not identically zero, yet vn
m is zero.

4.1.2 – Stability

The previous remark shows that a scheme must satisfy other conditions besides
consistency before we can conclude that it is convergent. The important property
that is required is stability. To introduce this concept we note that, if a scheme
is convergent, as vn

m converges to u(x, t), then certainly vn
m is bounded in some

sense. This is the essence of stability. The following definition of stability is for
the homogeneous initial value problem, that is, one in which the right-hand-side
function f is 0.

Before giving the definition of stability we need to define the stability region.
For many schemes there are restrictions on the way that h and k should be chosen
so that the scheme is stable, and therefore useful in computation. A stability region
is any bounded nonempty region of the first quadrant of R2 that has the origin as
an accumulation point. That is, a stability region must contain a sequence (k⌫ , h⌫)
that converges to the origin as v tends to infinity. A common example is a region
of the form {(k, h) : 0 < k  ch  C} for some positive constants c and C.
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Definition 4.4. A finite di↵erence scheme Pk,hv = 0 for a first-order equation
is stable in the norm k·k·,h in a stability region ⇤, if for all T > 0 there is a constant
CT such that, for all v0,

kvnk·,h  CT kv0k·,h

for 0  nk  T , (k, h) 2 ⇤.

The importance of the concepts of consistency and stability can be seen in the
Lax-Richtmyer equivalence theorem, which is the fundamental theorem in the theory
of finite di↵erence schemes for initial value problems.

Theorem 4.5 (The Lax-Richtmyer Equivalence Theorem). A consistent finite
di↵erence scheme for a partial di↵erential equation for which the initial value prob-
lem is well-posed is convergent if and only if it is stable.

The proof of this theorem can be found in [157]. As underlined in [157], the
Lax-Richtmyer equivalence theorem is a very useful theorem, since it provides a
simple characterization of convergent schemes.

Determining whether a scheme is convergent or nonconvergent can be di�cult if
we attempt to verify Definition 4.1 in a rather direct way. However, the determina-
tion of the consistency of a scheme is quite simple, and determining the stability of
a scheme is also quite easy. Thus the more di�cult result of convergence is replaced
by the equivalent and easily verifiable conditions of consistency and stability. It is
also significant that the determination of the consistency and stability of schemes
involves essentially algebraic manipulations.

This discussion of Theorem 4.5 has focused on the half part of the theorem
that states that consistency and stability imply convergence. The theorem is useful
in the other direction also. It states that we should not consider any unstable
schemes, since none of these will be convergent. Thus the class of reasonable schemes
is precisely delimited by those that are consistent and stable. The usefulness of
the Lax-Richtmyer theorem arises both from the ease of verifying consistency and
stability and from the precise relationship established between these concepts and
the concept of convergence.

Let us consider now the class of three points schemes, i.e. schemes with the
following form:

vn+1
m = ↵vn

m+1 + �vn
m + �vn

m�1, (188)

where ↵,� and � are constants to fix. We have a first result of stability in l2�norm.

Proposition 4.6. Let us consider an explicit scheme as (188) for the transport
equation (184). A su�cient condition for the stability in the l2-norm is that the
following inequality yields:

|↵| + |�| + |�|  1.



262 CRISTIANA DI RUSSO [146]

Proof. For sake of simplicity we assume that our interval is the real line, i.e.
⌦ = R. Then we have:

1X

m=1
|vn+1

m |2 =

1X

m=1
|↵vn

m+1 + �vn
m + �vn

m�1|2


1X

m=1
|↵|2|vn

m+1|2 + |�|2|vn
m|2 + |�|2|vn

m�1|2

+ 2|↵||�||vn
m+1||vn

m| + 2|�||�||vn
m||vn

m�1| + 2|↵||�||vn
m+1||vn

m�1|

 (|↵|2 + 2|↵||�| + |�|2 + 2|�||�| + |�|2 + 2|↵||�|)
1X

m=1
|vn

m|2

= (|↵| + |�| + |�|)2
1X

m=1
|vn

m|2,

where we used the relation 2xy  x2 + y2. This completes the proof. ⇤

To ensure the consistency with equation (184) we have the following proposition.

Proposition 4.7. Let the ratio k
h be equal to a fixed constant � > 0. Then a

three-points explicit finite di↵erence scheme (188) is consistent with equation (184),
if and only if ↵+ � + � = 1 and � � ↵ = �a.

Proof. Thanks to Taylor series we have:

un+1
m = un

m + k@tu +
1

2
k2@ttu + O(k3),

un
m±1 = un

m ± h@xu +
1

2
h2@xxu ± 1

6
h3@xxxu + O(h4).

Then we get

1

k

⇥
un+1

m � (↵un
m+1 + �un

m + �un
m�1)

⇤

=
1 � ↵� � � �

k
un

m + @tu + (� � ↵)��1@xu

+
1

2
k(@ttu � ��2(↵+ �)@xxu) + O(k2).

This completes the proof. ⇤
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To conclude this part, we briefly point out that the class of linear explicit schemes
consistent for problem (184), forms a family depending on a parameter. If we set

q = ↵+ �,

we can rewrite these schemes in the “viscous” form:

vn+1
m = vn

m � a�

2
(vn

m+1 � vn
m�1) +

q

2
(vn

m+1 � 2vn
m + vn

m�1). (189)

The q parameter is linked to the numerical viscosity of the scheme, as the scheme
is formally consistent at the second order with the viscous equation:

@tu + a@xu =
1

2
�h
⇣ q

�2
� a2

⌘
@xxu.

In Table 4 we show possible coe�cients choices for three-points explicit finite dif-
ference schemes for scalar transport equations.

Table 4 Three-points explicit finite di↵erence schemes for scalar transport equation.

Scheme (↵, �,� ) q Convergence

Upwind (a < 0) (��a, (1 + �a), 0) ��a �1  �a  0
Upwind (a > 0) (0, (1 � �a), � a) �a 0  �a  1
Forward-central (��a/2, 1, �a/2) 0 never
Lax-Friedrichs ((1 � �a)/2, 0, (1 + �a)/2) 1 |�a|  1
Lax-Wendro↵ ((��a + �2a2)/2, 1 � �2a2, (�a + �2a2)/2) (�a)2 |�a|  1

Theorem 4.8 (TheCourant-Friedrichs-LewyCondition). For an explicit scheme
for the hyperbolic equation (184) of the form vn+1

m = ↵vn
m+1 + �vn

m + �vn
m�1 with

k/h = � held constant, a necessary condition for stability is the Courant-Friedrichs-
Lewy (CFL) condition,

|a�| < 1.

For systems of equations for which v is a vector and ↵,� and � are matrices, we
must have |✓i�| < 1 for all eigenvalues ✓i of the matrix A.

Proof. First consider the case of a single equation. If a�> 1, then by
considering the point (x, t) = (0, 1) we see that the solution to the partial di↵erential
equation depends on the values of u0(x) at x = �a. But the finite di↵erence scheme
gives that vn

0 depends on v0
m only for |m| < n, by the form of the scheme.

Since h = ��1k, we have |m|h < ��1kn = ��1, since nk = 1. So vn
0 depends on

x only for |x| < ��1 < |a|. Thus vn
0 cannot converge to u(0, 1) as h ! 0.

For the case of a system of equations, we have that u(x, 1) depends on u0(x) for
x in the interval [�a, a], where a is the maximum magnitude of the characteristic
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speeds ✓i. If |✓i�| > 1 for some characteristic speed ✓i, then we can take initial data
that are zero in [���1, ��1] but not zero near ✓i. Then u(x, 1) will not be zero, in
general, and yet vn

0 with nk = 1 will be zero. Thus vn cannot converge to u(·, 1),
and the theorem is proved. ⇤

4.1.3 – l1-stability and monotonicity

A useful way to get l1� stable approximations, is to construct schemes which
verify the monotone comparison property, i.e if v0

m and ṽ0
m are two approximations

of the initial datum such that for all m > 0, v0
m  ṽ0

m, then vn
m  ṽn

m for all
m, n > 0.

Definition 4.9. A one-step scheme of the form

vn+1
m =

X

j

cj,nvn
j , (190)

is monotone if cj,n � 0 for all j, n.

Let us observe that, thanks to this definition, monotone schemes are l1-stable.

Theorem 4.10. Let be given a monotone scheme of the form (190) and let define

vmin := min{v0
m}, vmax := max{v0

m},

then, for all n, m
vmin  vn

m  vmax.

Then, Theorem 4.5 allows us to state that all consistent and monotone schemes of
the form (190), are convergent.

It is possible to characterize monotone schemes between the consistent schemes
of the form (188); for that purpose, we will use the viscous form (189) of the scheme.

Proposition 4.11. A three-points explicit scheme consistent with equation
(184), in the viscous form (189) is monotone if and only if

�|a|  q  1.

Proof. Le us observe that

↵ =
1

2
(q � a�), � = 1 � q,� =

1

2
(q + a�). ⇤

Unfortunately, the class of monotone schemes is too limited to hold more accu-
rate approximations. Indeed a monotone scheme is at most of first order accurate.
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Then, it is useful to analyze the class of l2-stable schemes, which will turn out
to be less restricted.

4.1.4 – The Von Neumann stability analysis

In this section we develop the basic properties of Fourier analysis in the discrete
case as an important tool for analyzing finite di↵erence schemes and their solutions.

We will use Fourier analysis on the grid of integers Z or hZ, which is defined by
hZ = {hm : m 2 Z}. Since the spacing between the grid points is h, we define the
transform by

v̂(⇠) =
1p
2⇡

1X

m=�1
e�imh⇠vmh, (191)

for ⇠ 2 [�⇡/h, ⇡/h], and then the inversion formula is

vm =
1p
2⇡

Z ⇡/h

�⇡/h

eimh⇠ v̂(⇠)d⇠. (192)

For the discrete transform, the Parseval’s relation also holds, then we have equality
for the l2-norm of v and the the l2-norm of v̂,

kv̂k2
h =

Z ⇡/h

�⇡/h

|v̂(⇠)|2d⇠ =
1X

m=�1
|vm|2h = kvk2

h. (193)

Parseval’s relation will be used extensively in the study of stability. It allows us to
replace the stability estimates by the equivalent inequality

kv̂nkh  C⇤
T kv̂0kh,

for the transform of the grid function. In the next section we study the stability of
schemes by examining the e↵ect of the scheme on the transform of the solution. It
should also be pointed out that there is no relation equivalent to Parseval’s relation
in the case of l1� norm. Because there is no such relation, the Lax-Richtmyer
theorem is more di�cult to use in the maximum norm.

We now apply Fourier analysis to the initial value problem for the transport
equation

@tu + a@xu = 0. (194)

We begin by transforming only in the spatial variable. We obtain for û(!, t) the
equation

@tû = �ia!û,
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which is an ordinary di↵erential equation in t. This equation is easily solved and,
using the initial datum, the solution is

û(!, t) = e�ia!tû0(!).

We now show that the initial value problem for (194) is well-posed. By the use of
Parseval’s relation and this last relationship, we obtain, using |e�ia!t| = 1,

Z 1

�1
|u(x, t)|2dx =

Z 1

�1
|û(!, t)|2d! =

Z 1

�1
|e�ia!tû0(!)|2d!

=

Z 1

�1
|û0(!)|2d! =

Z 1

�1
|u0(x)|2dx.

An important application of Fourier analysis is the von Neumann analysis of sta-
bility of finite di↵erence schemes. With the use of Fourier analysis we can give
necessary and su�cient conditions for the stability of finite di↵erence schemes. We
illustrate the method by considering a particular example and then discussing the
method in general. Through the use of the Fourier transform the determination
of the stability of a scheme is reduced to relatively simple algebraic considerations.
We begin by studying the forward-time backward-space scheme

vn+1
m � vn

m

k
+ a

vn
m � vn

m�1

h
= 0,

which can be rewritten as

vn+1
m = (1 � a�)vn

m + a�vn
m�1, (195)

where � = k/h. Using the Fourier inversion formula for vn, we have

vn
m =

1p
2⇡

Z ⇡/h

�⇡/h

eimh⇠ v̂n(⇠)d⇠,

and substituting this in (195) for vn
m and vn

m�1, we obtain

vn+1
m =

1p
2⇡

Z ⇡/h

�⇡/h

eimh⇠
⇥
(1 � a�) + a�e�ih⇠

⇤
v̂n(⇠)d⇠.

Comparing this formula with the Fourier inversion formula for vn+1,

vn+1
m =

1p
2⇡

Z ⇡/h

�⇡/h

eimh⇠ v̂n+1(⇠)d⇠,
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and using the fact that the Fourier transform is unique, we deduce that the integrand
is the same as the one in the inversion formula. We then have that

v̂n+1(⇠) =
⇥
(1 � a�) + a�e�ih⇠

⇤
v̂n(⇠) = g(h⇠)v̂n(⇠), (196)

where
g(h⇠) = (1 � a�) + a�e�ih⇠.

The formula (196) shows that advancing the solution of the scheme by one time
step is equivalent to multiplying the Fourier transform of the solution by the am-
plification factor g(h⇠). From (196) we obtain the important formula

v̂n(⇠) = g(h⇠)nv̂0(⇠). (197)

By means of the Fourier transform every one-step scheme can be put in the form
(197), and this provides a standard method for studying the wide variety of schemes.
All the information about a scheme is contained in its amplification factor, and we
show how to extract important information from it. In particular, the stability and
accuracy of schemes is easy to determine from the amplification factor. We now use
formula (197) to study the stability of scheme (195). By Parseval’s relation,

h

1X

m=�1
|vn

m|2 =

Z ⇡/h

�⇡/h

|v̂n(⇠)|2d⇠ =

Z ⇡/h

�⇡/h

|g(h⇠)|2n|v̂0(⇠)|2d⇠.

Thus we see that the stability inequality will hold, with J = 0, if |g(h⇠)|2n is suitably
bounded. We now evaluate |g(h⇠)|. Setting ✓ = h⇠, we have

g(✓) = (1 � a�) + a�e�i✓ = (1 � a�) + a� cos ✓ � ia� sin ✓.

To evaluate |g(✓)|2 we add the squares of the real and imaginary parts. We also
make use of the half-angle formulas for the sine and cosine functions. These are

1 � cos' = 2 sin2 1

2
' sin' = 2 sin

1

2
' cos

1

2
'.

We then have:

|g(✓)|2 = (1 � a�+ a� cos ✓)2 + a2�2 sin2 ✓

= (1 � 2a� sin2 1

2
✓)2 + 4a2�2 sin2 1

2
✓ cos2

1

2
✓

= 1 � 4a� sin2 1

2
✓ + 4a2�2 sin4 1

2
✓ + 4a2�2 sin2 1

2
✓ cos2

1

2
✓

= 1 � 4a�(1 � a�) sin2 1

2
✓.
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We see from this last expression that |g(✓)| is bounded by 1 if 0 < a� < 1; thus

h
1X

m=�1
|vn

m|2 
Z ⇡/h

�⇡/h

|v̂0(⇠)|2d⇠ = h
1X

m=�1
|v0

m|2,

and the scheme is stable by Definition 4.4.

The exact condition for stability of constant coe�cient one-step schemes is given
in the next theorem. In general the amplification factor g will also depend on h
and k.

Theorem 4.12. A one-step finite di↵erence scheme (with constant coe�cients)
is stable in a stability region ⇤ if and only if there is a constant K (independent of
✓, k, and h) such that

|g(✓, k, h)|  1 + Kk (198)

with (k, h) 2 ⇤. If g(✓, k, h) is independent of h and k, the stability condition (198)
can be replaced by the restricted stability condition

|g(✓)|  1.

The result of this theorem is proved in [157]. This theorem shows that to determine
the stability of a finite di↵erence scheme we need to consider only the amplification
factor g(h⇠). This analysis is usually called von Neumann analysis.

In the previous sections we classified schemes only on the basis of whether or not
they are convergent, considering via the Lax-Richtmyer equivalence theorem, sta-
bility and consistency. But, two convergent schemes may di↵er considerably in how
their solution approximates the solution of di↵erential equations. Let us introduce
the order of accuracy of a scheme (for a linear partial di↵erential equation).

Definition 4.13. A scheme Ph,kv = 0 that is consistent with the di↵erential
equation Pu = 0 is accurate of order p in time and order q in space if for any smooth
function �(x, t)

P�� Ph,k� = O(kp) + O(hq).

We will say that this scheme is accurate of order (p, q).

The quantity P�� Ph,k� = O(kp) + O(hq) is called the truncation error of the
scheme. Let us notice that, even if the schemes introduced in the previous sections
refer to linear equations, they can be generalize to nonlinear hyperbolic equations.
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4.1.5 – Example of 3-points di↵erence schemes for hyperbolic conservation laws

In this section, following [68] we present two of the most usual 3�points di↵erence
schemes for hyperbolic conservation laws. We will use these schemes in the next
section for our numerical simulations.

Let us consider the following Cauchy problem

(
@tu + @xf(u) = 0 x 2 R, t > 0,

u(x, 0) = u0(x)
(199)

where f is a C2 real valued function, u0 2 L1(R), and we set a(u) = f 0(u). Let us
consider the (2l + 1)�points explicit di↵erence scheme of the form:

vn+1
m = H(vn

m�l, . . . , v
n
m+l), 8n � 0, m 2 Z, (200)

where H : R2l+1 ! R, is a continuous function.

Definition 4.14. The di↵erence scheme (200) can be put in the conservative
form if there exists a continuous function g : R2l ! R such that

H(v�l, . . . , vl) = v0 � �{g(v�l+1, . . . , vl) � g(v�l, . . . , vl�1)}. (201)

The function g is called numerical flux. Then the scheme (200) becomes:

vn+1
m = vn

m � �{g(vn
m�l+1, . . . , v

n
m+l) � g(vn

m�l, . . . , v
n
m+l�1)}.

Let us set for simplicity

gn
m+1/2 = g(vn

m�l+1, . . . , v
n
m+l), gn

m�1/2 = g(vn
m�l, . . . , v

n
m+l�1).

1. Lax-Friedrichs scheme

vn+1
m =

(vn
m+1 + vn

m�1)

2
� �

(f(vn
m+1) � f(vn

m�1))

2
. (202)

It can be put in the conservative form with the following numerical flux

gLF (u, v) =
(f(u) + f(v))

2
� (v � u)

2�
,

and it is l2-stable and first order accurate.
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2. The upwind scheme
We have already introduced this scheme in the previous section in the case of
transport equation. The scheme has a natural extension in the nonlinear case
when the function f is monotone:

vn+1
m =

(
vn

m � �{f(vn
m) � f(vn

m�1)} if f 0 > 0

vn
m � �{f(vn

m+1) � f(vn
m)} if f 0 < 0.

(203)

This scheme is consistent with equation (199), l2-stable and first order accurate
monotone. In the general case where f is not monotone, a scheme that provides
suitable extensions of the upwind scheme is the Engquist-Osher scheme. More
details on three points di↵erent schemes can be found in [68].

4.1.6 – High order schemes

Given a sequence v = {vm}m2Z, let us introduce the following norm

TV (v) =
X

m2Z
|vm+1 � vm|.

Definition 4.15. A finite di↵erence scheme is said to be total variation dimin-
ishing (TVD) if

TV (vn+1)  TV (vn), 8n � 0.

A 3�points TVD conservative di↵erence scheme is at most first order accurate, but
it is possible to construct second order TVD schemes thanks to di↵erent techniques.

The first one, proposed by Sweby and Davis, is the Flux Limiters method. It
is based on the idea to convert a 3�points first order accurate TVD scheme into a
5� points second order accurate TVD scheme. In the Flux Limiters approach, the
numerical flux is corrected, and this correction to the underlying 3� points scheme
is limited to ensure that the limiting scheme is TVD.

Another technique is the Van Leer’s scheme, that is to say a second order exten-
sion of the Godunov’s method, using piecewise linear instead of piecewise constant
approximation of the solution. It relies on the integral form of the conservation
law and involves the exact or approximate solution of local Riemann problems,
adding a procedure of slope-limiting to preserve monotonicity. Piecewise Parabolic
Method (PPM) and Essentially Non Oscillatory (ENO) schemes are higher order
Godunov-type schemes. For much details about high order schemes see for instance
[68].
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4.1.7 – Finite di↵erence schemes for parabolic equations

In this section we present finite di↵erence schemes for parabolic equations. The
definitions of convergence, consistency, stability, and accuracy of finite di↵erence
schemes given in previous sections were given in a su�cient general way so that
they also apply to schemes for parabolic equations.

1. The standard explicit scheme

vn+1
m = vn

m +
bk

h2
(vn

m�1 � 2vn
m + vn

m+1). (204)

Let µ = k/h2. The parameter µ plays a role for parabolic equations similar to
the role of � for hyperbolic equations. The scheme (204) is easily seen to be
first-order accurate in time and second-order in space. The stability analysis is
similar to what we did for hyperbolic equations, i.e., replace vn

m by gneim✓. So
this scheme is stable under the CFL condition bµ  1

2 .

2. The standard implicit scheme

vn+1
m = vn

m +
bk

h2
(vn+1

m�1 � 2vn+1
m + vn+1

m+1). (205)

This scheme is unconditionally stable. By a Taylor expansion it is also easy to
check that also this scheme is accurate of order (1, 2), first order in time and
second order in space. It is then useful to introduce other schemes to have higher
accuracy.

3. The ✓-method and the Crank-Nicolson scheme
A natural generalization of the two previous schemes is the following

vn+1
m =vn

m+
bk

h2

⇥
✓(vn+1

m�1�2vn+1
m +vn+1

m+1)+(1 � ✓)(vn
m�1 � 2vn

m + vn
m+1)

⇤
, (206)

where 0  ✓  1. It is clear that for ✓ = 0 we get the explicit scheme (204),
while for ✓ = 1 we get the implicit one (205). Let ✓ 6= 0, by the von Neumann
analysis we obtain

g =
1 � 4b(1 � ✓)µ sin2 �

2

1 + 4b✓µ sin2 �
2

,

since µ > 0 then g  1. Thus we have instability for g < �1, i.e. if

4(1 � 2✓)µ sin2 �

2
> 2.

Therefore, for 0  ✓ < 1
2 the method is l2-stable if and only if

µ  1

2
(1 � 2✓)�1,

while, for 1/2  ✓  1 the method is l2-stable for all µ.
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For this scheme the truncation error is given by

T
n+ 1

2
m = (@tu � b@xxu) +

✓
1

2
� ✓

◆
bk@xx@tu � b

12
h2@4

xu

�

+


1

24
k3@3

t u � b

8
k2@xx@tt

�
+

+


1

12

✓
1

2
� ✓

◆
bkh2@4

x@tu � 2b

6!
h4@6

xu

�
.

The scheme is then accurate of order (1, 2) for all ✓ 6= 1/2. For ✓ = 1/2 the
scheme is accurate of order (2, 2) and it is called the Crank-Nicolson scheme.
Let us notice that the Crank-Nicolson scheme is unconditionally stable.

4.2 – Advanced methods for hyperbolic systems

4.2.1 – Relaxation schemes

In this section we present a class of numerical schemes based on a discrete
kinetic approximation for multidimensional hyperbolic systems of conservation laws
proposed by Aregba-Driollet and Natalini in [13].

We will use this class of schemes in the following to approximate solutions to
two dimensional hyperbolic, and hyperbolic-parabolic systems studied analytically
in Chapters 2 and 3.

We consider a weak solution u : Rd ⇥ [0, T ] ! U , with U a convex subset of Rk

to the Cauchy problem

@tu +

dX

j=1

@xj Aj(u) = 0, (207)

u(x, 0) = u0(x), (208)

where the system is hyperbolic (symmetrizable) and the flux functions Aj are locally
Lipschitz continuous on Rk with values in U . First we introduce the BGK discrete
approximation and outline the general setting of own framework.

Let us consider also a non-empty family E of convex smooth entropies for (207).
We assume that E is separable, that is to say it contains a countable set which is
dense in a suitable topology. In particular, E can be just a single convex entropy.

We approximate problem (207), (208) by a sequence of semilinear systems

@tf
✏ +

dX

j=1

⇤j@xj
f ✏ =

1

✏

 
M

 
lX

i=1

f ✏i

!
� f ✏

!
(209)

with Cauchy data
f ✏(x, 0) = f ✏0(x). (210)
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Here ✏ is a positive number,⇤ j are real diagonal l ⇥ l matrices, fi = (f1
i , . . . , fk

i )
for i = 1, . . . , l, and M is a Lipschitz continuous function defined on Rk with values
in Rl. Then we have

@tf
✏
i +

dX

j=1

⇤i,i
j @xj

f ✏i =
1

✏

 
Mi

 
lX

i=1

f ✏i

!
� f ✏i

!
, i = 1, . . . l. (211)

Then we set u✏ :=
Pl

i=1 f ✏i .
Moreover we suppose that the following relations are satisfied for all u 2 ⌦, for

some fixed rectangle⌦ ⇢ Rk:

8
>><
>>:

lP
i=1

Mi(u) = u,

lP
i=1

⇤jMi(u) = Aj(u), j = 1, . . . , d.

(212)

It is easy to see that, if f ✏ converges in some strong topology to a limit f and, ifPl
i=1 f ✏i0 converges to u0, then

Pl
i=1 fi is a solution of problem (207), (208).

In fact system (209) is just a BGK approximation for (207); see [29] and refer-
ences therein.

The interaction term on the right-hand side is given by the di↵erence between
a nonlinear function, which describes the equilibria of the system, in our case
M(
Pl

i=1 fi), and the unknown f . Now, we consider a family of convex sets Di ⇢ Rk

and assume that it is invariant under the action of the kinetic equation (211). In-
deed, if we assume that

8u 2 U : Mi(u) 2 Di, (213)

then we have
8t � 0, 8x 2 Rd : fi(x, t) 2 Di

as soon as it is true at t = 0. In the following, we will assume that convex sets Di

are chosen, and in particular we will take Di := {Mi(u) : u 2 U}.

Definition 4.16. A kinetic entropy for the system (211) is a convex function

H(f) =
Pl

i=1 Hi(f), with Hi : Di ! R such that

(H1) for each u 2 U
H(M(u)) = ⌘(u),

where ⌘ 2 E, the family of convex smooth entropies.

(H2) for each f = (f1, . . . , fl), with fi 2 Di, let uf :=
lP

i=1

fi 2 U

H(M(uf ))  H(f).
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Let us notice that for any ⌘ 2 E, there exists a kinetic entropy H for system (211).
Under conditions (H1) and (H2), it is easy to obtain an entropy inequality for the
function H.

Now we characterize the existence of a kinetic entropy H that satisfies (H1) and
(H2).

We assume that Mi are given functions satisfying the consistency conditions
(212) and Di are convex sets such that the condition (213) holds. We define the
vector space of Maxwellians:

M✏ =
�
M : U ! Rl|8 ⌘ 2 E, 8i : (M 0

i)
t⌘00 is symmetric everywhere in U

 
, (214)

and the convex cone of nondecreasing Maxwellians

M✏
+ =

�
M 2 M✏|8 ⌘ 2 E, 8i : (M 0

i)
t⌘00 � 0 everywhere in U

 
. (215)

Moreover, we introduce the function

eH(u) =
lX

i=1

eHi(u) (216)

where eHi(u) := Hi(Mi(u)). So the condition (H1) can be written in the form

eH(u) = ⌘(u) u 2 U .

Now, we report a characterization of kinetic entropy H, which has been proved by
Bouchut in [21, 22].

Theorem 4.17. Let us assume that U is an open subset of Rk, and that M 2
C1(U). We also assume that

(i) for ⌘ in a dense subset of E, ⌘00 > 0 and ru⌘(U) is convex ;
(ii) for each i = 1, . . . , l Mi is a C1 di↵eomorphism from U onto the convex open

set Di = {Mi(u) : u 2 U}.

Then, the existence of convex functions (H)⌘2E satisfying (H1)-(H2) and such that

the eH defined in (216) is C1(U), is equivalent to

M 2 ME
+.

Moreover, if this is true, we have

8u 2 U , 8i : ru
eHi = (M 0

i)
tru⌘.
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The general result of Bouchut [21, 22] ensure that, if the Maxwellian functions
satisfy a “nondecreasing” condition, a BGK model is endowed with a kinetic entropy,
namely entropy for the semilinear approximating system, which reduces to a given
entropy of the limit system, as the relaxation parameter tends to zero.

Let us notice that the “nondecreasing” condition on the Maxwellians has a key
role in the study of discrete kinetic approximations, and it is important to have a
characterization of the space of this kind of functions. Here we report a characteri-
zation of the stability condition presented in [21].

Proposition 4.18. Consider an open set U ⇢ Rk. Assume that E contains at
least a strictly convex entropy ⌘0 and M 2 M✏ belongs to C1(U). Then, for all
u 2 U and i 2 1, . . . , l the Jacobian matrix M 0

i is diagonalizable (and thus has only
real eigenvalues). Moreover, M 2 M✏

+ if and only if

8u 2 U+, 8i 2 1, . . . , l � (M 0
i) ⇢ [0, +1[, (217)

where � denotes the spectrum.

A proof of the proposition can be found in [21].

Let us now present a numerical scheme for the relaxing problem (209)-(210) in
order to obtain a numerical approximation of (199), in the relaxed limit ✏ = 0.

The numerical schemes presented in [13] are constructed by splitting (209) into
a homogeneous linear part and an ordinary di↵erential system, which is exactly
solved thanks to the particular structure of the source term.

In the scalar case this construction allows to preserve the monotonicity properties
of (210) and to prove convergence results.

The approximation framework generalizes to systems the construction presented
in [119] for the scalar case, and shares most of the advantages of the relaxation ap-
proximation as proposed in [85] (see also [118, 12]): simple formulation even for
general multidimensional systems of conservation laws and easy numerical imple-
mentation, hyperbolicity, regular approximating solutions.

Actually the main advantage, especially in the multidimensional case, of both
the approximations, seems to be the possibility of avoiding the resolution of local
Riemann problems in the design of numerical schemes as done in Godunov scheme.
Moreover this framework presents some special properties:

• the scalar and the system cases are treated in the same way at the numerical
level;

• all the approximating problems are in diagonal form, which is very likely for
numerical and theoretical purposes;

• we can easily change the number and the geometry of the velocities involved in
our construction to improve the accuracy of the method.
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Even if these algorithms are not optimal, they illustrate how to construct an e�cient
and simple approximation even for very complicated systems. And this property
could be useful in the numerical investigation of systems like those arising in chemo-
taxis and vasculogenesis modeling.

First we report the technique adopted by Aregba-Driollet and Natalini, [13] to
solve numerically (209)-(210). The space time domain Rd ⇥ [0, T ] is discretized by
a square grid

Rd =
[

↵2Zd

I↵, [0, T ] =
[

0nN�1

[tn, tn+1].

Set ↵ = (↵j)1jd and let ej be the canonical jth vector in Rd. Let us now denote
by f ✏,n↵ the approximation of f at the point x↵ 2 Rd and at time tn.

System (209) is split into a linear diagonal hyperbolic part and an ordinary
di↵erential system.

For a given f ✏,n, the function f ✏,n+ 1
2 is an approximate solution at time tn+1 of

the problem 8
><
>:
@tf +

dP
j=1

⇤j@xj
f = 0,

f(tn) = f ✏,n.

(218)

As the system is diagonal, it is possible to consider each equation separately. We
suppose that the scheme can be put in conservative form:

f
✏,n+ 1

2
↵ = f ✏,n↵ � k

h

dX

j=1

⇤j(�
✏,n

↵+ 1
2 ej

� �✏,n
↵� 1

2 ej
) (219)

where

�✏,n
↵+ 1

2 ej
=

0
BBBB@

 1,j(f
✏,n
↵�k1+ej ,1, . . . , f

✏,n
↵+k1,1)

·
·
·

 l,j(f
✏,n
↵�kl+ej ,l, . . . , f

✏,n
↵+kl,l

)

1
CCCCA

.

Here ki 2 Zd and i,j(g, . . . , g) = g, for i = 1, . . . , l.
To take into account the contribution of the singular perturbation term on the

right-hand side, the following ordinary di↵erential system is solved on [tn, tn+1]

F 0 =
1

✏

 
M

 
lX

i=1

Fi

!
� F

!
(220)

with the initial data
F (tn) = f

✏,n+ 1
2

↵ ,
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for all ↵ 2 Zd. Using (212) we obtain

lX

i=1

F 0
i = 0,

so that the solution of (220) with data F (tn) = G at tn can be explicitly obtained
as

S(t, tn, G) = M

 
lX

i=1

Gi

!
+ exp

✓
� t � tn

✏

◆"
G � M

 
lX

i=1

Gi

!#
.

Hence

f ✏,n+1
↵ = M(u

✏,n+ 1
2

↵ ) + exp

✓
��tn

✏

◆
[f
✏,n+ 1

2
↵ � M(u

✏,n+ 1
2

↵ )],

where u is defined by

u =
lX

i=1

fi.

Note that

u✏,n+1
↵ = u

✏,n+ 1
2

↵ .

This way a wide family of numerical schemes for the semilinear system (209), which
di↵er by the choice of the homogeneous scheme (HS) has been constructed. In
the following, the numerical scheme described will be referred to as discrete kinetic
scheme (DKS).

When ✏! 0 in DKS, we obtain the relaxed limit of the scheme:

8
>>>><
>>>>:

fn,↵ = M(un,↵),

fn+ 1
2 ,↵ = H(k)fn,↵,

un+1,↵ =
lP

i=1

f
n+ 1

2 ,↵
i ,

(221)

In [12] it is shown a rigorous convergence result for DKS and the associated relaxed
scheme for the scalar conservation law obtaining the convergence towards the unique
solution of (209)-(210) when ✏ is fixed. Moreover the authors showed the behavior
of the numerical schemes as the parameter ✏ tends to zero.

The resulting numerical scheme is TVD and converges to a weak solution of
(207)-(208). Moreover, if HS is monotone, the limit scheme is also monotone and
converging to the unique entropy solution of (207)-(208).
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4.2.2 – Asymptotic high order schemes

It is often di�cult to find an e↵ective numerical approximation to hyperbolic
equations with a source term, due to problems like sti↵ness of the source term,
instability of the solutions, incorrect approximation of stationary solutions.

Many families of schemes were introduced to face these problems: well balanced,
Runge-Kutta IMEX, upwinding source, and asymptotic preserving. One of the
main ideas is to plug the knowledge of the analytical behavior of the solutions into
the scheme, to guarantee a better approximation, at least around some relevant
asymptotic states of the problem. This is not always easy, also due to the problem
of obtaining a fine “qualitative analysis” of the solutions, in particular for nonlinear
problems.

Following [143, 24, 120] we introduce some schemes which are increasingly ac-
curate for large times, with respect to the asymptotic behavior of solutions. This
property of accuracy is required in order to get better results for large time simula-
tions when computing perturbations of non constant stable states. Given a family
of stable asymptotic states for a given evolutionary problem, we say that a numer-
ical scheme is Asymptotic High Order, in the following we simply write AHO, if it
is high-order accurate, with respect to the local truncation error, when restricted
to every element of this family.

A similar approach has been first introduced by Roe [143] for hyperbolic con-
servation laws with source term. The author proposed the upwinding of the source
term, giving a first example of a first order monotone scheme, which is second order
on all steady states.

In [73] and [17], a quite complete theory of global existence and of the asymptotic
behavior of smooth solutions for this type of systems was developed, actually in a
nonlinear and fully multidimensional framework.

As seen in the previous chapters this theory needs for an extra assumption,
the so-called Shizuta-Kawashima condition [153], which guarantees for a su�cient
coupling between the source and the advection terms. Roughly speaking, under
these assumptions, it is possible to prove that for every perturbation of a given
stationary solution to problem, the corresponding solution decays in the Lp-norm

to its unperturbed state as O(t�
1
2 (1� 1

p )) for p 2 [1,1]. Here we present some results
of [24, 11] on this type of scheme.

Following [11] here we show that, for 2 ⇥ 2 dissipative hyperbolic systems, it is
possible to introduce AHO schemes which are compatible with the behavior pre-
dicted by the qualitative analysis, respectively for the long-time asymptotic and in
the Chapman-Enskog regimes.

The main idea is to modify standard upwinding schemes to keep into account
the long-time behavior of the solutions. Here we will show the description of these
schemes which are AHO respectively around the perturbation of general steady
states and in the di↵usion limit. In [11] some numerical tests presented, showed the
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better performance of these schemes with respect to the usual pointwise approxima-
tion of the source term, and even with the classical upwinding of the source proposed
by Roe in 1986 [143]. In particular, numerical tests showed that the L1 global error
of main di↵usive adapted AHO2p-scheme decays as O(1/t), in agreement with the
decay given, for a given fixed space step, against the decay as O(1/

p
t) of the other

schemes.
Now we outline briefly the core ideas which shape AHO schemes for general

hyperbolic systems. Let u be a solution to the general 2 ⇥ 2 linear hyperbolic
system

@tu + A@xu = Bu, (222)

where

A =

✓
a b
b c

◆
, B = �

✓
0 0
0 d

◆
. (223)

Let
un+1 = H(un) (224)

be a numerical scheme consistent with system (222) and Th its local truncation
error. Usually, the local truncation error is only of first order for a smooth solution
to (222), which is

Th(u) = O(h + k).

We also consider generic stationary solutions û to the same problem, namely such
that

A@xû = Bû.

We can diagonalize the matrix A:

A = R⇤R�1

where ⇤ = diag(�1, �2) and R = (r(1), r(2)) is the column matrix of the right
eigenvectors, i.e. Ar(i) = �ir

(i). Introducing the notation

w = R�1u

problem (222) becomes

(
@tw + ⇤@xw = B̃w,

w(x, 0) = w0(x) = R�1u0(x),
(225)

we denote by B̃ = R�1BR. We will present the method for problem (225).
We denote by h the uniform mesh-length and by xl = lh the spatial grid points

for all l 2 Z. The time levels tn, with t0 = 0, are also spaced uniformly with mesh-
length k = tn+1 � tn for n 2 N. We denote by � the CFL ratio � = k/h, which is
taken constant.
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The initial data w0 is supposed to be smooth and is approximated by its node
values. The approximate solution wn,l = (wn,l

1 , wn,l
2 )t is given by

wn+1,l � wn,l

k
+
⇤

2h
(wn,l+1 � wn,l�1) � Q

2h
(wn,l+1 � 2wn,l + wn,l�1)

= B̃�1w
n,l�1 + B̃0w

n,l + B̃1w
n,l+1, l 2 Z, n 2 N

w0,l = w0(xl), l 2 Z,

(226)

where Q = diag(q1, q2) is the diagonal matrix of the artificial di↵usion terms qi � 0
(i 2 {1, 2}), and B̃�1 = (�̃�1

ij )i,j=1,2, B̃0 = (�̃0
ij)i,j=1,2 and B̃1 = (�̃1

ij)i,j=1,2 are
2⇥ 2 constant matrices that define the source approximation. Those matrices may
depend on h.

The scheme (226) can be seen as a linear function

wn+1 = H(wn). (227)

More precisely we have

wn+1,l
i = Hi(w

n,l�1, wn,l, wn,l+1), i 2 {1, 2}, l 2 Z.

Moreover we assume that the scheme satisfies the following property:

• Consistency.
The scheme (226) is consistent with problem (225), i.e.

B̃�1 + B̃0 + B̃1 = B̃ + hC̃, (228)

where C̃ = (c̃ij)i,j=1,2 is a 2 ⇥ 2 constant matrix not depending on h and k.

In [11], Aregba Driollet et al. showed that, under an additional monotonicity as-
sumption the scheme (226) converges in L1([0, T ], L1(R) \ L1(R)) towards the
solution of the Cauchy problem (225).

Moreover in [11] the discretization of the source term, defined by coe�cients
B̃�1,0,1, is studied to present some schemes which are increasingly accurate for
large times, with respect to the asymptotic behavior of solutions. This property of
accuracy is required in order to get better results for large time simulations when
computing perturbations of non constant stable states.

We say that the scheme (224) is (locally) Asymptotic High Order of order p,
which will be denoted by (AHO)p, for system (222), if the scheme is of order p on
every stationary solution û, i.e.

Th(û) = O(hp).

Now we present two AHO schemes of di↵erent order, presented in [11].
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1. Pointwise approximation of the source term (AHO1-UP).
Fixing, for the di↵erential terms, the upwind approximation Q = diag(|�1|, |�2|),
the basic scheme gives a first-order approximation even on the stationary solu-
tion:

B̃�1
up =

✓
0 0
0 0

◆
, B̃0

up =

✓
b̃11 b̃12

b̃21 b̃22

◆
, B̃1

up =

✓
0 0
0 0

◆
,

where B̃ = R�1BR. If we choose the matrix of the diagonalization of the system
(222) as

R =
d

�2 � �1

 
1 1

� (a � �1)

b
� (�2 � a)

b

!
,

the corresponding source term is given by

B̃ =
d

�2 � �1

✓
�(a � �1) (�2 � a)
(a � �1) �(�2 � a)

◆
. (229)

2. Upwinding of the source term (AHO2-ROE).
An improvement of the previous example is given by a second order upwinding
scheme:

B̃�1
roe =

1

2

✓
H(�1)b̃11 H(�1)b̃12

H(�2)b̃21 H(�2)b̃21

◆
, B̃0

roe =
1

2

✓
b̃11 b̃12

b̃21 b̃21

◆
,

B̃1
roe =

1

2

✓
(1 � H(�1))b̃11 (1 � H(�1))b̃12

(1 � H(�2))b̃21 (1 � H(�2))b̃21

◆
,

(230)

where H(·) is the Heaviside function and where, as above, Q = diag(|�1|, |�2|),
and B̃ is defined as in (229).

4.3 – Numerical Simulations: Semilinear Case

This section is devoted to the numerical simulations of the solutions to the semilinear
hyperbolic-parabolic system studied in the previous chapter,

8
>><
>>:

@tu + r · v = 0,

@tv + �2ru = �b(�,r�)v + h(�,r�, u),

@t� = ��+ f(u,� ).

(231)

We consider the two dimensional case with u,� : R2 ⇥ R+ ! R and v : R2 ⇥ R+ !
R2. We start our numerical study by considering only the hyperbolic part of the
system without any source term, i.e. the wave equation. Subsequently we study
the wave equation with damping and finally, we present the results obtained for the
complete hyperbolic-parabolic system (231).
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4.3.1 – Wave equation

Let us start our study considering the following system

(
@tu + r · v = 0,

@tv + �2ru = 0,
(232)

with initial data

u(x, 0) = u0(x), v(x, 0) = v0(x). (233)

We can observe that this system is equivalent to the wave equation

@2
t u � �2�u = 0.

Our aim is to solve numerically equations (232) on a bounded domain⌦ ⇢ R2 with
homogeneous Neumann boundary conditions for the function u:

ru · n|@⌦ = 0, (234)

and zero boundary condition for the normal component of v

v · n|@⌦ = 0. (235)

Let us take ⌦ = [0, L] ⇥ [0, L] and let us denote by h the space step. We consider
the discretization points x↵ = (↵1h,↵ 2h), 0  ↵i  N + 1. We denote the time
step by k and the approximation of a function f at time tn = nk by fn.

For each time step, we solve the hyperbolic equations using a relaxation method
[13]. We choose this method for our simulations, instead of Lax Friedrichs, Godunow
or Upwind, because these are quite dissipative.

As a matter of fact in Figure 6 it is possible to observe how the Relaxation
scheme approximates better the solution than the Lax Friedrichs one.

Moreover our system even if linear, is not diagonalizable so it is not possible to
use the Upwind scheme. The advantage of our relaxation method is the approxi-
mation of the equations by a diagonal system, easy to solve. Relaxation is also a
convenient setting to extend the schemes to higher orders.

Now we explain our scheme in more details. Let us denote w = (u, v1, v2) and
rewrite (232) as

@tw + @x1
A1(w) + @x2

A2(w) = 0,

with

A1(w) =

0
@

0 1 0
�2 0 0
0 0 0

1
Aw, A2(w) =

0
@

0 0 1
0 0 0
�2 0 0

1
Aw.
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We consider a simple 5-velocities relaxation scheme. Let us choose the five velocities
as

�1 = �(1, 0), �2 = �(0, 1), �3 = �(�1, 0), �4 = �(0,�1), �5 = (0, 0), (236)

for some � > 0. Now we introduce the corresponding Maxwellians Mi(w) 2 R3, i =
1, . . . , 5, of the form

Mi(w) = aiw + bi1A1(w) + bi2A2(w), (237)

for some constants ai, bi1 and bi2 to be chosen.
The conditions of consistency of the Maxwellians are

5X

i=1

Mi(w) = w,
5X

i=1

�i,jMi(w) = Aj(w), j = 1, 2. (238)

Then, a possible choice of the coe�cients ai and bij is the following

a1 = · · · = a4 = a, a5 = 1 � 4a;

b11 = b22 = �b31 = �b42 =
1

2�
, bij = 0 otherwise.

It is easy to see that these coe�cients satisfy conditions (238).
Let us now denote by wn,↵ the approximation of w at the point x↵ 2 R2 and at

time tn. We set the discretization of Maxwellians (237) as

fn,↵
i = Mi(w

n,↵), for i = 1, · · · , 5. (239)

We evolve each of the functions fi, 1  i  5, in time by following the velocity �i:

f
n+1/2,↵
i = fn,↵

i � µ
2X

j=1

�ij(f
n,↵j+1
i � f

n,↵j�1
i )

+ µ
2X

j=1

|�ij |(fn,↵j+1
i � 2fn,↵

i + f
n,↵j�1
i ),

(240)

where µ = k
2h and ↵j + 1 is a shift of the j-th component of the index ↵. We

can observe that thanks to the choice of the velocities (236) the scheme for one
component fi becomes a one-dimensional scheme. Finally, we just end by setting

wn+1 =
5X

i=1

f
n+1/2
i .
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Here, following the results of Bouchut [21] (Proposition 4.18), we set the velocity
� = � and the time and space steps will have to satisfy the stability condition

�
k

h
 1.

Now we explain how to impose the boundary conditions.

Let us consider our domain ⌦ = [0, L] ⇥ [0, L] and the normal vectors ni, for
i = 1, . . . , 4, as indicated in Figure 3.

Figure 3 Domain ⌦ = [0, L] ⇥ [0, L].

First we consider the edge 1. Since the normal vector n1 = (0,�1) , by the boundary
conditions (234)-(235) it follows that

ru · n1 = �@x2
u = 0, v · n1 = �v2 = 0, @x2

v1 = 0. (241)

The boundary condition for v1 is obtained directly from the equations (232). Pro-
ceeding in a similar way for the edge 2, where n2 = (1, 0) , we get

ru · n2 = @x1
u = 0, v · n2 = v1 = 0, @x1

v2 = 0. (242)

Regarding the conditions on edges 3 and 4, they are equivalent to the conditions
(241) and conditions (242) respectively.

Using the above scheme, we have solved numerically system (232) with boundary
conditions (234), (235) on a square domain ⌦ = [0, 1] ⇥ [0, 1].

As initial data, we have chosen

u0(x) = u0(x1, x2) = cos(2⇡x1) cos(2⇡x2), v0(x) = 0,
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Figure 4 Numerical solution of system (232) with initial condition u0(x) =
cos(2⇡x1) cos(2⇡x2), v0(x) = 0, on a square domain [0, 1] ⇥ [0, 1] at di↵erent times
T = 0, 1.76, 3.55 and 4.6. The numerical approximations are obtained by the Relaxation
scheme.

and we have set �2 = 1. In Figure 4 we show numerical solutions of system (232)
at di↵erent times. We can observe that the behavior of the approximate solution
respects the oscillatory nature of the phenomenon, while the Lax Friedrichs scheme
is more dissipative as shown in Figure 5.

Since the solution to this Cauchy problem is known, it is possible to compare
the approximate solution to the real one

u(x, t) = cos(
p

22⇡t)u0(x).
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Figure 5 Numerical solution of system (232) with initial condition u0(x) =
cos(2⇡x1) cos(2⇡x2), v0(x) = 0 on a square domain [0, 1] ⇥ [0, 1] at di↵erent times
T = 0, 1.76, 3.55 and 4.6. The numerical approximations are obtained by the Lax
Friedrichs scheme.

In Figure 6 we can notice that the dissipation of the Relaxation scheme is smaller
than the dissipation of the Lax Friedrichs scheme.

4.3.2 – Wave equation with damping

Let us consider now the following system

(
@tu + r · v = 0,

@tv + �2ru = �2rū0 � v,
(243)

supplemented with initial data

u(x, 0) = u0(x), v(x, 0) = v0(x). (244)
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Figure 6 Comparison between the maximal values of the solution and of the approximated
solutions to system (232) with Lax Friedrichs scheme and the Relaxation one until time
T = 5. The initial conditions are u0(x) = cos(2⇡x1) cos(2⇡x2), v0(x) = 0 and the domain
is the square [0, 1] ⇥ [0, 1].

System (243) is equivalent to the wave equation with damping, where we add a
source term �2rū0,

@2
t u � �2�(u � ū0) + @tu = 0.

Due to the presence of a source term in (243), it is not easy to find an e↵ective
numerical approximation of the solution. We have solved numerically this problem
by two methods, the first is the Relaxation method presented in the previous section,
and the second one is the Relaxation joint with an AHO method for the source term.

We have solved system (243) with boundary conditions (234), (235) on a square
domain ⌦ = [0, 1] ⇥ [0, 1].

As initial data, we have chosen:

u0(x) = u0(x1, x2) = cos(2⇡x1) cos(2⇡x2) + ū0,

v1
0(x) = v1

0(x1, x2) =
4⇡

(4!2 � 1)
�2 sin(2⇡x1) cos(2⇡x2),

v2
0(x) = v2

0(x1, x2) =
4⇡

(4!2 � 1)
�2 cos(2⇡x1) sin(2⇡x2),

(245)

where �2 = 1, and ! =

p
4�28⇡2�1

2 . Here the source term ū0 is taken equal to

ū0(x) = exp


� (x � 1

2 )2 + (y � 1
2 )2

0.001

�
.
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Then, the explicit solution of problem (243)-(245), is

u(x, t) = u(x1, x2, t) = exp(�1

2
t) cos(!t) cos(2⇡x1) cos(2⇡x2) + ū0(x1, x2). (246)

First we have solved the Cauchy problem (243)-(245) using the Relaxation method
presented in the previous section (240), adding the source term

F (w, w̄) =

0
@

0
�2@x1

ū0 � v1

�2@x2
ū0 � v2

1
A .

Then we have obtained

wn+1 =
5X

i=1

f
n+1/2
i + kF (wn, w̄).

Subsequently, in order to find a better approximation of the source term, we have
used a generalization of the AHO2-Roe scheme (230). Then, starting from (240),
we evolve each of the functions fi, 1  i  5, in time by following the velocity �i

and we add the source term as:

f
n+1/2,↵
i =fn,↵

i �µ
2X

j=1

�ij(f
n,↵j+1
i �f

n,↵j�1
i )+µ

2X

j=1

|�ij |(fn,↵j+1
i � 2fn,↵

i +f
n,↵j�1
i )

+k⌫i

2X

j=1

(�̃�1
ij Fn,↵j�1 + �̃0

ijF
n,↵ + �̃1

ijF
n,↵j+1)

| {z }
Gi

,

where
P5

i=1 ⌫i = 1. The source terms Gi are respectively:

�1 = �(1, 0), G1 = k⌫
Fn,↵1�1 + Fn,↵1

2
,

�2 = �(0, 1), G2 = k⌫
Fn,↵2�1 + Fn,↵2

2
,

�3 = ��(1, 0), G3 = k⌫
Fn,↵1+1 + Fn,↵1

2
,

�4 = ��(0, 1), G4 = k⌫
Fn,↵2+1 + Fn,↵2

2
,

�5 = �(0, 0), G5 = k(1 � 4⌫)Fn,↵,

(247)

where we fix ⌫ = 0.1.
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Figure 7 Numerical solution of system (243) with initial condition u0(x) =
cos(2⇡x1) cos(2⇡x2)+ ū0(x) on a square domain [0, 1]⇥ [0, 1] at di↵erent times T = 0, 1, 2
and 3. The numerical approximations are obtained by the Relaxation scheme joint with
AHO2 scheme for the source term.

We can observe in Figure 8 that this method approximates better the solution of
the problem than the method with an explicit form of the source term.

Let us define the error in l1 norm and the relative error in l1 norm respectively
as

ET,h
1 = kuh � uexk1 = max |uh,n

i,j � uex,n
i,j |, EnT,h

1 =
ET,h

1
kuexk1

and the error in l2 norm and the relative error in l2 norm as:

ET,h
2 = kuh � uexk2 =

⇣X
|uh,n

i,j � uex,n
i,j |2

⌘ 1
2

, EnT,h
2 =

ET,h
2

kuexk2

for h ! 0 and T ! 1.
Observing in Tables 5 and 6 the values obtained with these two methods, we

can note that we get better results using the AHO method for the source term.
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Figure 8 Comparison between the maximal values of solution of (243) and the approxima-
tions by Relaxation method and Relaxation + AHO until time T = 3. Initial condition is
u0(x) = u0(x1, x2) = cos(2⇡x1) cos(2⇡x2) + ū0 and the domain is the square [0, 1]⇥ [0, 1] .

Table 5 Relative error in l1 norm for the solution to system (243) approximated by
Relaxation and Relaxation+AHO with h = 0.01 at di↵erent times T .

T Relaxation Relaxation+AHO
5 0.0142 0.0097
10 0.0203 0.0056
20 0.0216 0.0044
50 0.0217 0.0044

Table 6 Relative error in l2 norm for the solution to system (243) approximated by Re-
laxation and Relaxation+AHO with h = 0.01 at di↵erent times T .

T Relaxation Relaxation+AHO
5 0.0564 0.0549
10 0.024 0.0185
20 0.0177 0.0087
50 0.0177 0.0087

4.3.3 – A semilinear Hyperbolic-parabolic model of chemotaxis

Now we study, from the numerical point of view, the complete hyperbolic-
parabolic system

8
>><
>>:

@tu + r · v = 0,

@tv + �2ru = �b(�,r�)v + h(�,r�, u),

@t� = ��+ f(u,� ),

(248)
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which was studied analytically in Chapter 2. In [51] Hillen and Dolak proposed a
model to describe the slime molds behavior, where a supplementary logistic term is
introduced to avoid blow up. Actually the slime mold Dictyostelium discoideum has
a particular mechanism: upon starvation, the amoebae form tissue-like aggregates.
This process is controlled by chemotaxis: the cells move upward gradients of the
messenger molecule cAMP produced by the cells. However the chemotactic sensi-
tivity may saturate and possibly vanishes for high values of the population density.
The non-dimensional system introduced in [51] is:

8
>><
>>:

@tu + r · v = 0,

⌧@tv + �2ru = �v + u(1 � u)r�,

@t� = D��+ ↵u � �,

(249)

where u, v, and � are used for the particle density, the particle flux, and the signal
concentration respectively. The non-dimensional system depends only on D, ⌧,�
and ↵.

We can observe that the theorem of global existence of smooth solutions intro-
duced in Chapter 2 holds also for system (248).

Let us explain now how we solve numerically problem (249) on a bounded do-
main⌦ ⇢ R2 with homogeneous Neumann boundary conditions for the chemical
concentration � and the population density u:

r� · n|@⌦ = 0, ru · n|@⌦ = 0, (250)

and zero boundary condition for the normal component of v

v · n|@⌦ = 0. (251)

Let us take ⌦ = [0, L] ⇥ [0, L] and let us denote by h the space step. We consider
the discretization points x↵ = (↵1h,↵ 2h), 0  ↵i  N + 1. We denote the time
step by k and the approximation of a function f at time tn = nk by fn.

For each time step, we solve first the hyperbolic equations using Relaxation
scheme, presented in the previous section, obtaining wn+1 = (un+1, vn+1

1 , vn+1
2 ).

Then, we solve the parabolic equation for the chemical � using a classical Crank-
Nicolson method for the time discretization and a Finite Di↵erence Method for the
space discretization [157]. Let us denote by M the N ⇥ N classical second order
Finite Di↵erence matrix for the laplacian using second order derivatives for the
computation of boundary values.

The third equation of (249) is therefore discretized as

�n+1 � �n

k
=

D

2
M(�n+1 + �n) +

↵

2
(un+1 + un) � 1

2
(�n+1 + �n),
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which leads to the following linear system:

✓✓
1 +

k

2

◆
I � k

2
DM

◆
�n+1 =

✓✓
1 � k

2

◆
I +

k

2
DM

◆
�n +

↵

2
(un+1 + un). (252)

Using the above scheme, we have solved numerically system (249) with boundary
conditions (250), (251) on a square domain ⌦ = [0, 20] ⇥ [0, 20].

In our simulations the initial conditions are homogeneous distributions of the
cell density with random fluctuations of 1%. Moreover the flux v and the chemical
concentration � are initially zero.

In Figures 9 and 10 we show the evolution of the population density with di↵erent
initial conditions for di↵erent times. We notice that due to initial irregularities of
the cell density, there is a pattern formation. The aggregations continue to grow,
until the saturation u = 1 is reached locally.

Finally, we have solved numerically the following system in the two dimensional
case

8
>>><
>>>:

@tu + r · v = 0,

⌧@tv + �2ru = �v + ur�,

@t� = ��+ ↵u � �.

(253)

In Chaper 2 we have presented some global existence results to the Cauchy problem
for small initial data, but nothing is known for the moment for large initial data,
bounded domains and blow-up phenomena, and in particular, the ability of this
model to capture aggregation phenomena. This result would be of high importance
for the liability of the hyperbolic models we consider.

In order to have some ideas on the behaviors of the solution, we have performed
some numerical tests with di↵erent initial data.

In Figure 11 we show numerical solutions of system (253) with di↵erent initial
conditions. We can observe that with small initial data, like a perturbation of the
zero state or perturbation of small constant state for the population density, we
obtain global existence of solution, while if we consider large initial data the blow
up of solution occurs.

These are only preliminary results, but it could be extremely interesting to
investigate the asymptotic behavior of solutions to this system in general, to find
out if they exist globally in time or explode in finite time. Another hypothesis is
that both of these situations occur with a critical threshold as for the parabolic
model.
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Figure 9 Numerical solution of the model (249) with initial condition u0(x) 2 [0.5, 0.51]
on a square domain [0, 20] ⇥ [0, 20] at di↵erent times T = 0, 230, 346 and 750. Parameter
values: D = 0.03, ⌧ = 1, ↵ = 0.5, � = 1.
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Figure 10 Numerical solution of the model (249) with initial condition u0(x) 2 [0.2, 0.21]
on a square domain [0, 20] ⇥ [0, 20] at di↵erent times T = 0, 230, 288 and 700. Parameter
values: D = 0.03, ⌧ = 1, ↵ = 0.8, � = 1.
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Figure 11 Numerical simulations of the population density in (253) with three di↵erent
initial conditions u0 on a square domain [0.20] ⇥ [0.20]. On the left, we have the initial
conditions and on the right the final approximated solutions. In the first case we have
a compact support perturbation of zero state and the solution at time T = 140. In the
middle the initial condition, which is a compact support perturbation of the constant state
equal to 0.02, and the solution at time T = 140 are displayed. In the final case the initial
condition is a compact support perturbation of the constant state equal to 0.2 and the
solution is calculated until time T = 35. In this case we can observe that blow up occurs.
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4.4 – Numerical simulations: quasilinear case

In this section we show numerical simulations of the solutions to the hyperbolic-
parabolic system

8
>><
>>:

@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) + rP (⇢) = �↵⇢u + µ⇢r�,

@t� = D��+ a⇢� �
⌧ .

(254)

As in the previous section, we start our numerical approximation by studying a
simplified version of (254), i.e. the Isentropic Euler Equations, and subsequently
we will approximate solutions to the complete system.

4.4.1 – Isentropic Euler equations

Euler equations of compressible fluid dynamics have been the subject of intensive
research in the last decades thanks to the variety of their applications, e.g. aircrafts,
ships, weather predictions. The main numerical problem with these equations, and
with quasilinear conservation laws in general, is that solution naturally develops
discontinuities and in particular shock waves.

We consider the system

(
@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) + rP (⇢) = 0,
(255)

with initial data

⇢(x, 0) = ⇢0(x), u(x, 0) = u0(x), (256)

where ⇢ : R2⇥R+ ! R and u : R2⇥R+ ! R2. Here we set the function P (⇢) = ⇢� ,
with � = 5/3.

Our aim is to solve numerically equation (255) on a bounded domain⌦ ⇢ R2

with homogeneous Neumann boundary conditions for variable ⇢

r⇢ · n|@⌦ = 0, (257)

and zero boundary condition for the normal component of u

u · n|@⌦ = 0. (258)

Let us take ⌦ = [0, L] ⇥ [0, L] and let us denote by h the space step. We consider
the discretization points x↵ = (↵1h,↵ 2h), 0  ↵i  N + 1. We denote the time
step by k and the approximation of a function f at time tn = nk by fn.
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For each time step, we solve the hyperbolic equations using a relaxation method
[13]. Let us denote w = (⇢,⇢u 1,⇢u 2) and rewrite (255) as

@tw + @x1
A1(w) + @x2

A2(w) = 0,

with

A1(w) =

0
@

⇢u1

⇢u2
1 + P (⇢)
⇢u1u2

1
A , A2(w) =

0
@

⇢u2

⇢u1u2

⇢u2
2 + P (⇢)

1
A .

We use the 5-velocities relaxation scheme proposed in the previous section. Follow-
ing the results of Bouchut [21] (Proposition 4.18), we set the velocity � = max{|✓ij |},
where ✓ij are the eigenvalues of the Jacobian of the fluxes; the time and space steps
will have to satisfy the stability condition � k

h  1.
Using the above scheme, we have solved numerically system (255) with boundary

condition (257), (258) on a square domain ⌦ = [0, 1] ⇥ [0, 1].
As initial data we have taken

⇢0(x) = 1 + 0.1 exp


� (x � 0.5)2

0.001

�
, u1

0(x) = 0, u2
0(x) = 0.

In Figure 12 we show numerical solutions to this Cauchy problem at di↵erent times.
As observed before, in Isentropic Euler equations shock waves can develop. We can
notice in Figure 13, where a discontinuous initial datum has been considered, that
the relaxation scheme used for our simulations is able to catch the discontinuities
even if it is a first order scheme.

4.4.2 – A quasilinear hyperbolic-parabolic model of vasculogenesis

Following [66, 150, 137], we performed numerical simulations on the non-dimen-
sional system

8
>><
>>:

@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) + rP (⇢) = �↵⇢u + µ⇢r�,

⇠@t� = ��+ a(⇢) � ⇠�,

(259)

where ⇢,� : R2⇥R+ ! R, and u : R2⇥R+ ! R2. Here P (⇢) = ✏⇢ and a(⇢) = a⇢
1+b⇢2 .

This model was introduced by Gamba et al. [150, 66] to study the development
of vascular network formation. As reported in Chapter 1, their basic assumption
is that the persistence and chemotaxis are key features, determining the size of
the structure. They assume that the mechanical interaction of the cells with the
matrigel can be neglected for describing the behavior of the system along the first
hours.
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Figure 12 Numerical solution of the system (255) with initial conditions ⇢0(x) = 1 + 0.1 ⇤
exp

h
� (x�0.5)2

0.001

i
, u0(x) = 0 on a square domain [0, 1]⇥ [0, 1] at di↵erent times T = 0, 0.5, 1

and 1.5.
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Figure 13 Numerical solution of system (255) with ⇢0(x) discontinuous initial datum and
u0(x) = 0, on a square domain [0, 1]⇥ [0, 1] at di↵erent times T = 0, 0.12, 0.32, 0.68 and 1.
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We can notice that, with reference to the quasilinear hyperbolic-parabolic system
(254) studied in Chapter 3, we have introduced, following [164], the function a(⇢)
for the production rate of the chemoattractant factor.

Numerical simulations have been performed using a set of non-dimensional pa-
rameters proposed by [164] and reported in Table 7.

Table 7 Non-dimensional values of parameters adopted in simulation.

Parameter Value
✏ 10�8

↵ 0 or 0.2
µ 0.02
a 30
b 0.2
⇠ 100
� 0.015

A finite di↵erence Relaxation scheme with source term in explicit has been adopted
for the hyperbolic part of the system, and a simple implicit scheme has been used
for the equation of the chemical substance.

Periodic boundary conditions have been prescribed for all the state variables.
The initial condition on the cellular density corresponds to a set of M gaussian
bumps whose amplitude is assumed to be of the order of the non-dimensional average
cell radius �, centered randomly in xj , j = 1, . . . , M with a uniform distribution
over the square,

⇢(x, 0) =
0.01

2⇡�2

MX

j=1

exp

✓
�|x � xj |2

2�2

◆
(260)

u(x, 0) = 0, (261)

�(x, 0) = 0. (262)

We can observe in Figures 15 and 17 how the initial density of cells influences the
structure of the network. Indeed by varying the initial cells number we switch from
a phase with several disconnected structures to a phase with a single connected
structure.

Moreover we can notice how the presence of the dissipative term, �↵⇢u, a↵ects
the evolution of the network. This term physically represents a friction term between
endothelial cells and the substratum. Thus when the coe�cient ↵ 6= 0 we have a
more stable structure of the networks as shown by Figures 16 and 17.
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Figure 14 Simulation of the initial development of vascular network model (259) with initial
data (260) and M = 800 until the numerical time T = 1100. Here we take the coe�cient
↵ = 0. The other parameters values are indicated in Table 7.
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Figure 15 Dependence of the specific network structure on the initial condition. Here we
have three di↵erent values of M = 100, 800 and 4000. Here we take the coe�cient ↵ = 0.
The other parameters values are indicated in Table 7.
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Figure 16 Simulation of the initial development of vascular network model (259) with initial
data (260) and M = 800 until the numerical time T = 400. Here we take the coe�cient
↵ = 0.2. The other parameters values are indicated in Table 7.
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Figure 17 Dependence of the specific network structure on the initial condition. Here we
have three di↵erent values of M = 100, 800 and 4000. We take the coe�cient ↵ = 0.2.
The other parameters values are indicated in Table 7.
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As done in the previous section for the semilinear case, we perform some simula-
tions on the quasilinear hyperbolic-parabolic system studied analytically in Chap-
ter 3. We have proved a global existence result for small and smooth solutions,
but nothing is known for the moment for large initial data, or blow-up phenom-
ena. Our aim is to investigate the possible behavior of solutions to the following
system, 8

>><
>>:

@t⇢+ r · (⇢u) = 0,

@t(⇢u) + r · (⇢u ⌦ u) + r(⇢�) = �⇢u + ⇢r�,

@t� = D��+ ⇢� �,

(263)

with di↵erent initial conditions. We solve numerically system (263) on a bounded
domain⌦ ⇢ R2 with homogeneous Neumann boundary conditions for variable ⇢
and �:

r⇢ · n|@⌦ = 0, r� · n|@⌦ = 0 (264)

and zero boundary condition for the normal component of u

u · n|@⌦ = 0. (265)

The numerical scheme adopted is the relaxation scheme presented in the previous
section (240) adding the source term

F (w, w̄) =

0
@

0
⇢@x1

�� u1

⇢@x2�� u2

1
A .

Then we obtained

wn+1 =
5X

i=1

f
n+1/2
i + kF (wn, w̄).

On the other hand we solve the parabolic equation in (263) using a Crank Nicol-
son method for time discretization, and a Finite di↵erence method for the space
discretization, as done for the semilinear case in the previous section.

We can observe in Figure 18 that with small initial data, like a perturbation of
the zero state or a perturbation of a small constant state for the population density,
we obtain global existence of solution, while if we consider large initial data the
blow up of solution occurs.

It could be interesting to study this aspect from an analytical perspective, and
compare these results with the ones yet proved for the parabolic Patlak-Keller-Segel
system.
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Figure 18 Numerical simulations of the population density in (263) with three di↵erent
initial conditions u0 on a square domain [0, 20] ⇥ [0, 20]. On the left, we have the initial
conditions and on the right the final approximated solutions. In the first case we have a
compact support perturbation of 0 and the solution at time T = 70. In the middle the
initial condition, which is a compact support perturbation of the constant state equal to
0.02, and the solution at time T = 79 are displayed. In the final case the initial condition
is a compact support perturbation of the constant state equal to 0.2 and the solution at
time T = 35 are displayed. In this case we can observe that blow up occurs.
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5 – A model of inflammation during ischemic stroke

In this chapter we propose a model to describe the inflammatory process which oc-
curs during ischemic stroke [47]. Our purpose is to obtain in silico experiments (i.e.
simulations on a computer) to study and discuss the influence of the inflammation
during stroke and to propose some possible therapeutic approaches.

The chapter is organized as follows: first, an introduction to some basic concepts
about the biological phenomenon is given. Then, a detailed derivation of the model
and the numerical scheme used are presented. Finally, the studies of the model
robustness and sensitivity are showed and some numerical results on the time and
space evolution of the process are presented and discussed.

5.1 – Biological backgrounds

Strokes are the second worldwide death cause and the sixth source of handicap in
the world [112, 113]. They consist in a rapid developing loss of brain functions due
to a disturbance in the cerebral blood flow. This can be due to ischemia (80% of
stroke), when the lack of blood supply is caused by thrombosis or embolism, or due
to hemorrhage. During a stroke, the a↵ected area of the brain is unable to function,
leading to trouble moving, walking, seeing, speaking or understanding. It is a
medical emergency and can cause permanent neurological damage, complications,
and death.

We focus our study on one of the pathophysiological mechanisms involved in
ischemic stroke, the inflammatory process [45, 83]. In a general setting, inflam-
mation is a complex biological response of vascular tissues to harmful stimuli such
as pathogens, damaged cells or irritants. During ischemic stroke, inflammation is
triggered to eliminate the dead cells but can also lead to the death of some other
cells.

Ischemic stroke begins with the decrease of the cerebral blood flow which can
drop below 10 % of the normal blood flow. Cells around the occluded vessel begin
to die and create what we call the infarcted core. Around this infarcted core, we
can find the penumbra which is an area of moderate ischemia and which is able
to recover thanks to reperfusion or therapeutic intervention. In these two ischemic
areas, cells can die either through necrosis or through apoptosis. Necrosis occurs
mainly in the infarcted core and occurs very early after the stroke onset. It leads
to the rupture of cell membrane, the disintegration of intracellular organelles and
the release of intracellular contents in the extracellular space. As a consequence,
necrotic cells “pollute” the environment and damage the surrounding cells. On
the contrary, apoptosis appears later (from 30 minutes up to 2 or 3 days after the
stroke onset) and apoptotic death is much slower than necrosis as shown in Rupalla
et al. [146]. Moreover, apoptosis occurs mainly in the penumbra and is not dele-
terious for the neighboring cells. We can also notice that, as indicated in [10] by
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Ankarcrona et al., apoptosis can lead to the inflammatory process, even if it was
observed that inflammatory process is mainly induced by necrotic cells in the in-
farcted core. So, inflammation contribute to cell death by necrosis [98] and apoptosis
[145, 131].

During an ischemic stroke, the first phase of the inflammatory process consists
in the activation of microglia. Microglia are the resident immune cells aimed at
protecting brain cells. In ischemic conditions, microglia get activated: their shapes
change, which increases their abilities to phagocytosis and production of cytokines
and chemokines. Cytokines are proteins that trigger the accumulation of adhesion
molecules on the vascular endothelium leading to the entrance of leukocytes (i.e im-
mune cells circulating in the blood) into brain tissue. Among cytokines, chemokines
induce chemotaxis in nearby responsive cells to attract leukocytes from the blood.
Moreover, activated microglial cells are able to phagocytize necrotic and apoptotic
cells as showed by Vilhardt in [169] and by Schilling et al. in [147]. But, during
phagocytosis, microglia produce and release free radicals such as nitric oxide (NO)
which is deleterious for the surrounding cells. Thus, microglia have both deleteri-
ous roles through the production of toxic substances and beneficial ones through
the prevention of damage extension by phagocytosis and the production of trophic
molecules and anti-inflammatory cytokines that can mediate neuroprotection and
tissue repair [156].

The second phase of the inflammatory process consists in the infiltration of
leukocytes in brain tissue. The leukocytes involved in this process are neutrophils
and monocytes. The latter are called macrophages once they leave the blood to
enter the tissue. Neutrophils infiltrate the tissue about 12 hours after the stroke
onset and produce lots of deleterious substances (that are useful to slow down an
infection for example but that are totally counterproductive in an ischemic stroke).
Moreover, they are able to phagocytize small quantities of dead bodies and produce
free radicals like NO [67]. Macrophages infiltrate the tissue later, about 24 hours
after the stroke onset. Like microglia, they produce cytokines, chemokines and free
radicals and they are able to phagocytize necrotic and apoptotic cells. These leuko-
cytes enter cerebral tissue through their interactions with the adhesion molecules
located on endothelium. These cells have a beneficial role by cleaning the infarcted
core and allowing the tissue cicatrization but they can also increase the ischemic
damage by producing free radicals and pro-inflammatory cytokines as presented by
Hallenbeck and Dutka in [72]. So, as microglia, these cells have both beneficial and
deleterious e↵ects during the inflammatory process.

The two phases of inflammation influence both in a positive and a negative
way the survival of neurons and glial cells. In this study, we are interested in
understanding which influence dominates, depending on the situation. Our final
aim is to understand if and how it is possible to control the positive and negative
aspects of this biological process, which could be helpful for the development of new
therapeutic strategies in ischemic stroke.
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5.2 – Previous models

In the literature, there are several models of systemic inflammation. For example,
the models proposed by Ibragimov et al. [84], Kumar et al. [95], Lau↵enburger and
Kennedy [102] and Reynolds et al. [139] describe the behavior only of blood cells.
Instead Ladeby et al. in [96] and Lai and Todd [97] consider also glial cells. Adrian
and Marshall in [2], Eldestein-Keshet and Spiros in [54], Gray and Brookmeyer in
[69], Mentis et al. in [109] and Ridall et al. in [140] describe models for neurode-
generative diseases. These works are focused on the behavior of cell components at
subcellular level of a single cell type. In our model, we considered the cell level and
we modeled the behaviors of several types of cells (microglia, leukocytes, neurons
and astrocytes). As a starting point, we considered the cell model proposed recently
by T. Lekelov-Boissard et al. [33]. They proposed an ODEs model and took into
account the two phases of inflammation: activation of microglia and infiltration of
blood leukocytes. In their model, they studied the dynamics of the densities of cells
dead by necrosis and apoptosis, and of living cells. Moreover they considered the
proportion of activated and inactivated resident microglia and the proportion of
neutrophils and macrophages in the tissue. They also introduced the release of pro-
inflammatory molecules (like cytokines, chemokines and free radicals) by microglia
and leukocytes and their phagocytic abilities. But this model is “phenomenological”
and does not consider the space dimension. Using the methods proposed in [33],
we introduced in the model the space dimension. More precisely, we introduced the
di↵usion and the chemotaxis of proteins and leukocytes.

5.3 – The mathematical model

5.3.1 – The equations

In our model, we considered a macroscopic level with a cell population scale.
Thus, we used ordinary and partial di↵erential equations to describe inflammation.
The model reproduces the inflammatory process during the first 72 hours of the
stroke. Every function depends on the time t and on the space x. Figure 19
represents the mechanisms included in our model.

The functions of the model are:

H density of healthy brain cells in relation to the usual total number of brain
cells,

N density of necrotic cells in relation to the usual total number of brain cells,
As density of cells that have started the apoptosis process in relation to the

usual total number of brain cells,
Ae density of cells that have ended the apoptosis process in relation to the usual

total number of brain cells,
Mi density of inactivated microglia in relation to the usual total amount of mi-

croglia,
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Figure 19 Connections between the di↵erent cells. 1) When an ischemic stroke occurs,
neurons and glial cells die by necrosis or apoptosis. 2) These dead cells trigger the ac-
tivation of the resident microglia and, due to the toxic substances in the environment,
also to the death of other cells. 3) Activated microglia are able to phagocytize dead cells
but they also produce cytokines (triggering the accumulation of adhesion molecules) and
chemokines (attracting leukocytes). 4) Then, macrophages and neutrophils infiltrate brain
tissue. These cells are able to phagocytize but they also produce toxic substances which
are deleterious for healthy cells.

Ma density of activated microglia in relation to the usual total amount of mi-
croglia,

Lm density of macrophages in relation to the maximal number of macrophages
that can occupy a point of the space,
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Ln density of neutrophils in relation to the maximal number of neutrophils that
can occupy a point of the space,

[cy] concentration of pro-inflammatory cytokines,
[ch] concentration of chemokines,

Madh density of adhesion molecules.

Neurons and astrocytes Neurons and glial cells such as astrocytes are resident brain
cells which can be damaged during an ischemic stroke. We considered four di↵er-
ent states for these cells: healthy cells, two types of dying cells (through apoptosis
or through necrosis) and dead cells that have been eliminated from the tissue by
phagocytosis. Cell death can occur either by necrosis or by apoptosis. These two
di↵erent mechanisms have di↵erent roles, time scales and consequences in the in-
flammatory process. Thus, we modeled them separately. Moreover, to distinguish
the early reversible phase of the apoptotic cascade from the late irreversible phase,
we used two variables As and Ae for apoptotic cells. The cells beginning their apop-
totic cascade are denoted As and those ending their apoptotic cascade are denoted
Ae.

The biological facts we wanted to reproduce are the following ones:

• cells are mainly damaged by cytokines and other substances produced by neu-
trophils and by the deleterious substances released by the surrounding necrotic
cells (we neglected the di↵usion of the two last substances).

• When damage is important, cells die. Some of them die through necrosis and
the other through apoptosis.

• Apoptosis is not instantaneous and needs a delay tA.
• Microglial cells, macrophages and neutrophils phagocyte dead cells and eliminate

them of the tissue.

Finally, since neurons and astrocytes do not have any mobility, we proposed the
following laws:

@tN = pNDH � EN, (266)

@tAs = pADH � pAD(. � tA)H(. � tA), (267)

@tAe = pAD(. � tA)H(. � tA) � EAe, (268)

@tH = �DH, (269)

with D the dying cells density, E the density of cells which are phagocytizing, equal
to:

D =
⇥
(pN,[cy][cy] + pN,LnLn (N + Ae) + pN,NN) � D0

⇤+
, (270)

E = eN,MaMa + eN,LmLm + eN,LnLn + eN,MiMi. (271)

In equations (266) and (267), pN and pA represent respectively the proportion of
cells dying through necrosis or through apoptosis. Hence pN + pA = 1.
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Microglia The microglial behavior is not very clear in spite of many experimental
studies on these cells. In this model, we considered the following mechanisms:

• apoptotic and/or necrotic cells in the tissue trigger the activation of microglia.
• In absence of any stimulus, microglia get progressively inactivated.
• During stroke, inactivated microglial cells multiply by mitosis. This process

takes a long time (about 24 hours).

Also these cells do not have mobility, so their densities verify the following ODEs:

@tMa = (cAAe + cNN)Mi �
Ma

TM,1
, (272)

@tMi = �(cAAe + cNN)Mi +
Ma

TM,1
+ cMi

Mi(1 � Mi)1t>TM,2
. (273)

1t>TM,2
is a characteristic function hence is equal to 1 if t > TM,2 and equal to 0

otherwise.

Leukocytes The immune blood cells are called leukocytes. They circulate in the non
occluded vessels and enter the ischemic tissue from these vessels. So, in our model,
we assume that there is no infiltration of these cells through the obstructed vessel.
There are two cell species involved in this inflammation process: macrophages (Lm)
and neutrophils (Ln). The biological assumptions are the following ones:

• leukocytes are recruited in blood vessels by chemical signals.
• They can enter brain tissue only through adhesion molecules.
• The crossing of the blood-brain barrier takes about 12 hours for leukocytes and

24 hours for macrophages.
• Once in the cerebral tissue, leukocytes are attracted by chemokines (by chemo-

taxis).
• In absence of any stimulus, leukocytes progressively leave the tissue.

We proposed the following equations:

@tLm �
di↵usionz }| {

DLm
�Lm =

chemotaxisz }| {
�µmr · (Lm(1 � Lm)r[ch])

+

carrying by bloodz }| {
cLmB(. � TLmin)H̃(LM )�

natural decayz }| {
Lm

TLm

(274)

@tLn�DLn�Ln =�µnr·(Ln(1 � Ln)r[ch])+cLnB(.�TLnin)H̃(LM )� Ln

TLn

(275)
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where B quantify the permeability of the blood vessel (in a healthy brain, the
blood-brain barrier prevents the access to the brain) and H̃(x) a regularization of
the Heaviside function to model a saturation e↵ect:

B = Madh

H̃(x) =
1 � tanh R(0.75 � x)

2
,

where R=1000.
Since the number of leukocytes in a point of brain is limited, we introduced a

saturation in the chemotaxis term.

Chemical species Let us denote by [cy] and [ch] the cytokine and the chemokine con-
centrations. In our model, we considered that cytokines were pro-inflammatory and
their production, as for chemokines, was proportional to the number of macrophages
and activated microglia. Moreover, these substances are progressively absorbed/degraded
by the tissue.

Since these chemical species di↵use in the tissue, we proposed the following
equations:

@t[cy] �
di↵usionz }| {

Dcy�[cy] =

production by immune cellsz }| {
(pMa,cyMa + pLm,cyLm) (N + Ae)�

natural decayz }| {
ecy[cy], (276)

@t[ch] � Dch�[ch] = (pMa,chMa + pLm,chLm) (N + Ae) � ech[ch]. (277)

The parameters px,cy, x = Ma or Lm, are production rates. Since we only consid-
ered pro-inflammatory cytokines in this model, it was necessary to transform these
parameters into functions of time and cytokine concentration:

px,cy = px,cy,0
1 � [cy]

1 + t/t0
.

With this assumption, we considered that the anti-inflammatory cytokines were
less secreted than the pro-inflammatory ones at the beginning of the inflammatory
process, but that they were more secreted at the end of the process. This limits the
e↵ect of pro-inflammatory cytokines if they are too numerous.

Let us denote by Madh the density of adhesion molecules. From experimental
data we know that cytokines trigger a production of adhesion molecules on the vessel
endothelium. Moreover, without any cytokine, adhesion molecules progressively
disappear. Since these cells remain fixed in the blood vessel, their density follows
an ordinary di↵erential equation:

@tMadh =

2
4pMadh,[cy]

saturationz }| {
(1 � Madh)[cy] � eMadh

Madh

3
5

localisationz }| {
1blood vessels . (278)
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We finally obtained a close system of 13 equations. There are 7 ordinary di↵erential
equations to model fixed species:

@tN = pNDH � EN,

@tAs = pADH � pAD(. � tA)H(. � tA),

@tAe = pAD(. � tA)H(. � tA) � EAe,

@tH = �DH,

@tMa = (cAAe + cNN)Mi �
Ma

TM,1
,

@tMi = �(cAAe + cNN)Mi +
Ma

TM,1
+ cMiMi(1 � Mi)1t>TM,2

,

@tMadh =
⇥
pMadh,[cy](1 � Madh)[cy] � eMadh

Madh

⇤
1blood vessels.

And there are 4 reaction-di↵usion equations to describe mobile species:

@tLm�DLm�Lm=�µLmr·(Lm(1�Lm)r[ch])+cLmMadh(.�TLmin)H̃(LM )� Lm

TLm

,

@tLn�DLn
�Ln =�µLn

r·(Ln(1�Ln)r[ch])+cLn
Madh(. � TLnin

)H̃(LM ) � Ln

TLn

,

@t[cy] � Dcy�[cy] = pcy (Ma + Lm) (N + Ae) � ecy[cy],

@t[ch] � Dch�[ch] = pch (Ma + Lm) (N + Ae) � ech[ch].

33 parameters appear in our system. In the next section, we discuss how to deter-
mine the values of these parameters.

5.3.2 – Numerical approximation

There are three kinds of equations to solve: ordinary di↵erential equation, basic
reaction-di↵usion and reaction-di↵usion equations with a chemotaxis term. Thus
we had to implement three di↵erent solvers: one for the di↵usion terms, one for the
reaction terms, and one for chemotaxis parts.

For all these equations we used Strang splitting. For instance, for a reaction-
di↵usion equation @tf � K�f = P we proceeded as follows:

1. we solve @tf = P for a half time step,
2. then we solve @tf = K�f for a complete time step,
3. and finally we solve @tf = P for a half time step.

We used a finite volume discretization. It is classical for di↵usion equations [57]: by
integrating the di↵usion term and using Stokes formula, we obtain an exact space
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discretization, and thus we easily transform the di↵usion equation in a linear prob-
lem. Since the di↵usion coe�cient is constant, there is no discretization di�culties
to ensure flux continuity.

Being the di↵usion matrix constant, we preferred to solve the associated linear
problem by the inversion of the matrix by a LU method rather than an iterative
method. By this way we only had to compute the inverse once for each di↵usion
equation to solve it at each time step.

The exponential reaction term @tf = ↵f in the equations, was solved by recog-
nizing, after multiplication by exp(t↵) the exact time derivate of fexp(t↵). This
other source term was computed by using a simple Euler scheme.

The chemotaxis term was separated into a reaction term and a transport term:

@tf = � µr · (f(1 � f)r[ch])

= � (µ(1 � f)r[ch]) · rf � (�(µr · ((1 � f)r[ch]))f).
(279)

As usual, we used Strang splitting. Thus to solve equations (274) and (275), we
had to solve:

1. the reaction term for a half time step,
2. the di↵usion part for a half time step,
3. the advection term for a complete time step,
4. the di↵usion part for a half time step,
5. the reaction term for a half time step.

Solving two times the di↵usion part was not too expensive because we only had
to multiply by the inverse matrix, that is constant depending only on the di↵usion
coe�cient and we had already computed it in the initialization algorithm.

The advection part was solved by using an upwind scheme.

5.3.3 – Parameter adjustement

One of the main problems in modeling and simulating the inflammatory process
is that few parameter values are known. Some of these parameters have no biological
or chemical or physical reality. Other have been measured during in vitro or in vivo
experiments but, as the data come from various species, cells and experimental
conditions, they cannot be mixed and used in a single model.

At first, we listed the parameters which could be determined by experimental
data. The number of the other parameters had to be reduced to be able to perform
a simulation: too many parameters can not be determined by inverse problem and
the model would have too many freedom degrees. As a consequence, many sets of
parameters would be able to reproduce the same behaviors. For this reason we could
not attempt to fit them by inverse problem method. Moreover, our model would not
stay pertinent anymore: since the space of mathematical solution of our di↵erential
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system would be too high, we would not be able to distinguish “biological” solution
to unreasonable solution. We explain – and justify – in 5.3.3 the assumptions done
to reduce the number of unknown parameters.

Since there were still unknown parameters after these simplifications, we fitted
them by reproducing some behaviors which had been observed in in vitro or in vivo
experiments. We have determined some “rules” about the behaviors of the di↵erent
components involved in the biological phenomenon based on [67, 19, 3]. We chose
the values of our parameters in order that the model could respect these rules.

Parameter values determined on biological bases In this model, some values of the
parameters are well known.

• Experimental studies have shown that there is a duplication of microglial store
about 24 hours after the stroke onset, and this increase of microglial amount lasts
several days [27]. It is not possible to know exactly when this increase begins, just
after the stroke onset or just before 24 hours. So we assumed that the increase
of microglial cells began about 18 hours after the stroke onset (TM,2 = 18h) with
a rapid growth in the first hours.

• Garcia et al. in [67] observed that, in experiments performed on rats that un-
derwent permanent ischemia, neutrophils infiltrate the tissue after 12 hours.
Macrophages infiltrate the tissue later, after 24 hours. So, in our model, we
assumed the following delay times: TLnin

= 12 h and TLmin
=24 h.

• in vitro studies of leukocytes have shown that macrophages can remain in brain
tissue for 4 to 5 days while neutrophils remain only few hours in brain tissue
[147, 67]. Hence we fixed TLm= 90 h and TLn= 3 h.

Parameter values arbitrarily determined Activated microglia and macrophages have
been observed to have the same behaviors and the same features in brain tissue,
which make them di�cult to distinguish. So we assumed that their abilities of
phagocytosis were the same (eN,Lm

= eN,Ma
) and that their production rates of

chemokines - respectively cytokines - were also the same (pMa,cy,0 = pLm,cy,0 and
pMa,cy = pLm,ch). Neutrophils and inactivated microglial cells have also phagocytic
activities but these activities are lower than those of macrophages and activated
microglia. For simplicity, we assumed that eN,Ln

= eN,Mi
. Thus we obtained:

E = eN,1(Ma + Lm) + eN,2(Ln + Mi).

Moreover we fixed arbitrary that

eN,2 =
eN,1

4
.

The threshold of cell resistance to toxicity D0 was also fixed arbitrary.This threshold
is compulsory so that the resting state is stable but the quantification of damage
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is arbitrary. Thus we fixed D0 = 0.02. Moreover, we assumed that the di↵usion
coe�cients of macrophages and neutrophils were the same (DLm

= DLn
), that the

di↵usion coe�cients of chemokines and cytokines were the same (Dch = Dcy), that
the activations of microglia by necrotic or apoptotic cells were the same (cA = cN )
and finally that half the cells died through necrosis (pN = pA = 0.5).

Determination of the other parameter values With the simplifications established
above, there are still 19 parameter values to determine. We fixed the values of
these parameters in order to check the following biological assertions:

• the number of microglial cells doubles in 24 hours [27].
• The concentration of cytokines reaches its peak after 12 hours [170]. Cytokines

and chemokines are degradated and gradually eliminated.
• The density of neutrophils decreases after 48 hours [67].
• The density of macrophages does not decrease in the first 72h [67].
• The cytokine concentration reaches its peak in 12h [171].

In the following, the set of assertions listed above will be called the basis of rules.
The parameter values that meet this basis of rules are listed together to the others
values in Table 8. This set of parameter values is called reference set in the following
sections.

5.4 – Numerical simulations

5.4.1 – Simulation of inflammation during an ischemic stroke

We present here in silico experiments that represent an inflammatory process
which occurs during 72 hours of a typical ischemic stroke. The infarcted core after
30 minutes of ischemia is a disc of radius 5.5mm composed only of necrotic cells. In
our simulations we used the reference set of parameter values. Figure 20 presents
the numerical results obtained with a simulation over 72 hours. As required by
the determination of parameter values, these results reproduce the basis of rules of
Section 5.3.3.

In Figure 20(a), we can notice di↵erent behaviors related to the death process.
As a matter of fact, there is a constant decrease of necrotic cells while, for apop-
totic cells, there is first a growth and then a slower decrease due to the di↵erent
elimination times of phagocytosis.

Figure 20(c) shows the dynamics of activated microglia and of all the microglial
cells (activated and inactivated). We can notice a progressive activation of these
resident immune cells that lasts for the whole time of simulation. On the contrary,
we can observe a brutal increase of activated microglia due to its duplication.

In Figure 20(d), we can observe a similar behavior of macrophages and neu-
trophils with a delay due to di↵erent times of entrance into the tissue. We can
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Table 8 Reference set of parameter values: at the beginning there are the values deter-
minated on biological bases, then values arbitrary determinated and, at the end, values
determinated in accordance to the basis of rules.

Parameter Value in ref. set
tA duration of apoptotic process 12
TM,1 characteristic time of microglia deactivation 60
TM,2 characteristic time of microglia duplication 18
TLmin characteristic time of macrophages recruitment 24
TLnin characteristic time of neutrophils recruitment 12
TLm characteristic time of macrophages degradation 90
TLn characteristic time of neutrophils degradation 3
D0 threshold of cells resistance to toxicity 0.02
pN proportion of cells dead by necrosis 0.5
eN,2 elimination by neutrophils and inactivated microglia 0.0125
cN microglia activation by necrotic cells 0.06
DLn neutrophils di↵usion coe�cient 1.5
Dcy cytokines di↵usion coe�cient 0.2
pN,[cy] cytokines toxicity 0.1
pN,Ln neutrophils toxicity 0.4
pN,N necrotic cells toxicity 0.05
eN,1 elimination by macrophages and activated microglia 0.05
cA microglia activation by apoptotic cells 0.06
cMi mitosis rate of microglia 0.38
pMadh,[cy] adhesion molecules recruitment by cytokines 5
eMadh elimination rates of adhesion molecules 0.1
t0 charac. time of balance between pro/contra infla. cytokines 72/6
pcy,0 cytokines production rate 10
ecy cytokines elimination rate 0.1
pch chemokines production rate 4.5
ech chemokines elimination rate 0.18
cLm macrophages recruitment rate 24
cLn neutrophils recruitment rate 28
µm macrophages chemotaxis coe�cient 0.15
µn neutrophils chemotaxis coe�cient 0.3
DLm macrophages di↵usion coe�cient 1.5
Dch chemokines di↵usion coe�cient 0.2

also notice that, at the end of the simulation, when the dead bodies have been
eliminated, leukocytes begin to decrease in brain tissue.

Figure 20(e) shows that the dynamics of the maximal concentration of cytokines
is quite di↵erent from the dynamics of the maximal concentration of chemokines.
We can see that the concentration of cytokines rapidly increases and slowly decreases
whereas the concentration of chemokines slowly increases and decreases.

Figure 20(f) describes a rapid increase of adhesion molecules during the first 20
hours of the stroke. Then, we observe a stable level in the following 30 hours and,
at the end of the process, we can see a slow decrease of this density.
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Figure 20 Time evolution of the maximum over space variable of various functions of the
model.

5.4.2 – Robustness and sensitivity of parameters

Our model includes many parameters and their values were chosen following a
basis of rules as indicated in 5.3.3. We determined a reference set of parameter
values and, before exploring the parameter space, we studied the influence of these
parameters on the model. Thus we studied the robustness and the sensitivity of the
model to these parameter values.
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Robustness In this part we wanted to check if the model with di↵erent values of
parameters would still meet the basis of rules established in Section 5.3.3. Hence
we changed the value of one parameter keeping all the other parameter values
unchanged. Then we solved the equations and checked if the basis of rules was still
met. Results are summed up in Table 9.

Table 9 Robustness study. Range of values for each parameter where the model still meets
the basis of rules described in 5.3.3. Biologically fixed parameters at first, arbitrary fixed
at second and the others parameter at the end.

Parameter Value in the reference set Range of values where the rules are met
tA 12 ±50%
TM,1 60 ±50%
TM,2 18 [�90%; +250%]
TLmin 24 [�95%; +50%]
TLnin 12 [�90%; +300%]
TLm 90 [�97%; +100%]
TLn 3 [�66%; +3000%]
D0 0.02 [�20%; +13%]
pN 0.5 ±10%
eN,2 0.0125 [�10%; +20%]
cN 0.06 ±50%
DLn 1.5 [�50%; +3000%]
Dcy 0.2 [�50%; +600%]
pN,[cy] 0.1 [�50%; +30%]
pN,Ln 0.4 [�50%; +25%]
pN,N 0.05 [�20%; +120%]
eN,1 0.05 [�15%; +25%]
cA 0.06 ±66%
cMi 0.38 [�95%; +200%]
pMadh,[cy] 5 [�50%; +100%]
eMadh 0.1 [�50%; +650%]
t0 72/6 [�50%; +150%]
pcy,0 10 ±50%
ecy 0.1 [�90%; +400%]
pch 4.5 [�78%; +100%]
ech 0.18 [�94%; +200%]
cLm 24 [�84%; +150%]
cLn 28 [�92%; +115%]
µm 0.15 [�80%; +33%]
µn 0.3 [�90%; +150%]
DLm 1.5 [�84%; +3000%]
Dch 0.2 [�50%; +2500%]

We can sort the parameters in three classes:

• the parameters that have little influence on the model results (TLn
, TLm

, TLmin
,
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TLnin
,cA, cN , tA, TM,1, TM,2, t0, Dch, Dcy, pMadh,cy, CMi

, pch),
• the parameters that have a moderate influence on the model results (ech, cLm

,
cLn , µm, DLn , DLm , D0, pcy,0, ech, pN,cy, pN,Ln , pN,N ),

• The parameters that have a strong influence on the model results (µn, eN,1, eN,2,
eMadd

.).

We can notice that, even if we highly change the values of some parameters (ech,
cLm

, cLn
, µm, DLn

and DLm
), we obtain quite stable results. Therefore they a↵ect

mainly the related cells but do not influence the whole process. On the contrary,
the interval range found for the neutrophils chemotaxis coe�cient µn is [0.03; 0.75]
and its bigger modification brings to significant changes in the simulated results.
Concerning parameters related to time, such as TLn

, TLm
, TLmin

and TLnin
, we can

note that changes in their values lead to negligible consequences in the simulated
process.

Sensitivity In this section, we studied the sensitivity of the model results to the
parameter values. It is important to check this point before using the model for in
silico experiments in order to be aware of the limitations due to parameter values
used in the simulations. The sensitivity study can also give information for the
further exploration of the parameter space.

To study the sensitivity, we considered six outputs of the model: the final dead
area, the final density of macrophages, neutrophils, inactivated and activated mi-
croglia, cytokines, chemokines and adhesion molecules.

And we proceeded as follows: if s(p1, p2, · · · , pn) is one of the chosen outputs
obtained with the parameter values {p1, p2, · · · , pn}, the sensitivity of this output
for example to the parameter p1 is given by:

S =

✓
s(p1 + ", p2, · · · , pn) � s(p1, p2 · · · , pn)

s(p1, p2 · · · , pn)

◆�✓
"

p1

◆
.

In our study, we considered a change " equal to " = 5% of the parameter.
The sensitivity of the size of the final dead area is small (equal to 4.10�4) for all

the parameters except for the di↵usion coe�cient of the neutrophils DLn
where the

sensitivity is null. Similarly, the sensitivity of the final total density of inactivated
microglia is null for all the parameters. The results concerning the sensitivities of
the other output functions are presented in Table 10. We made other simulations
with a smaller change (" = 0.5% of the value of parameter) but the sensitivity
results were similar.

Most parameters appear to have small influences on the main outputs of the
model. As a consequence, we can introduce some small variations on the parameter
values without changing the simulation results. But few parameters (D0, pN,[cy],
pN,N , eN,1, eN,2, pN , cN , TM,1, pMadh,[cy], eMadh

, t0, ecy, pcy,0) have a strong
influence on the model outputs.
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Table 10 Sensitivity study with " = 5% of the parameter value in the reference set. In each
row, you find a symbol which indicates the value of S (with respect to each parameter)
regarding the output written on the first line. Here ”0” indicates that a parameter influ-
ences not at all the corresponding output variable, ” + ” that it influences a little, ” + +”
that it influences moderatly and finally ”+++” indicates that the paramenter influences
strongly the corresponding output. The thresholds chosen are the following 0  0 < 0.1,
0.1  + < 0.4, 0.4  ++ < 0.9 and + + + � 0.9.

Parameter Num. of Lm Num. of Ln Num. of Ma Mass of [cy] Mass of [ch] Mass of Madh

Ref. values 1.4707 1.0184 0.1514 0.0978 0.1876 0.0272

tA 0 0 0 0 0 0

TM,1 + + ++ + + +

TM,2 0 0 0 0 0 0

TLmin
0 0 0 0 0 0

TLnin
0 + 0 + + 0

TLm 0 0 0 0 0 0

TLn 0 + 0 0 0 0

D0 ++ ++ + + + + + + + ++

pN + + + + + + + + + + + + + + + + + +

eN,2 + ++ ++ + + + + + + ++

cN ++ ++ ++ + + +

DLn 0 0 0 0 0 0

Dcy + ++ + 0 + 0

pN,[cy] + + + ++ ++ ++

pN,Ln 0 0 0 + + 0

pN,N ++ ++ + + + + + + + ++

eN,1 + ++ + + + + + + + ++

cA 0 0 0 0 0 0

cMi
0 0 0 0 0 0

pMadh,[cy] ++ ++ 0 + + ++

eMadh
++ ++ 0 + + + + +

t0 ++ + + + 0 + + + ++ ++

pcy,0 ++ + + + + + + + ++ + + +

ecy ++ ++ 0 ++ + ++

pch 0 0 0 0 + + + 0

ech 0 0 0 0 ++ 0

cLm + + + 0 0 + + +

cLn 0 + + + 0 + + 0

µm 0 0 0 0 0 0

µn 0 0 0 0 0 0

DLm + + + 0 0 0 0 0

Dch 0 0 0 + + +

We can also notice that the proportion of cells dying by necrosis and apoptosis
(represented by parameters pN ) is very significant in the model, because a little
change of its value leads to important changes in the final quantities of leukocytes,
microglia, cytokines, chemokines and adhesion molecules.

Concerning the final number of macrophages, we can observe that this quantity
is sensible to several parameters such as pMadh,[cy] the production rate of adhesion
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molecules, eMadh
the natural decay of adhesion molecules, pcy,0 the production

rate of cytokines by macrophages and microglia, cLm
a measure of the quantity of

macrophages that filter into the tissue and DLm the di↵usion coe�cient of these
leukocytes. The final density of neutrophils has a similar response. It is sensitive
to small changes in parameters related to adhesion molecules, and of course to
the parameter cLn

which quantifies the neutrophils that infilter the tissue. It is
interesting to notice that a small variation of the di↵usion coe�cient DLn

does not
really influence them. Concerning activated microglia, we can note that they react
also to small changes in the values of cN , their activation rate by necrotic cells, and
of TM,1, the characteristic time of microglia deactivation. For proteins, cytokines
and chemokines, we notice similar behaviors. As a matter of fact, they react to
small changes of the following parameters: D0, a threshold of damage of living
cells, pN,N that estimates the e↵ects of necrotic cells on dead cells elimination, and
eN,1, eN,2 that are the elimination rates of dead cells by phagocytosis respectively of
macrophages, activated microglia and inactivated microglia and neutrophils. These
proteins are also a↵ected by changes in their production rates, t0, pcy,0, pch, and
natural decay ecy, ech.

Finally, we can note that the density of adhesion molecules is mainly sensitive
to changes in their production rate, pMadh,[cy], and natural decay, eMadh

, and in
addition to small changes in parameters related to cytokines t0, pcy,0 and ecy.

5.4.3 – Influence of the size of the initial infarct

We then used this model to carry out in silico experiments in order to explore
the beneficial and/or deleterious e↵ects of inflammation during stroke depending
on the size of the initial infarct.

Figures 21, 22 and 23 show the influence of initial dimension of the infarct in the
development of the inflammatory process. We can observe that the aggravation due
to inflammation is not a linear function of the initial size of the stroke. Therefore
even if we had considered an initial infarct twice smaller (or twice bigger) than the
standard stroke used in the previous simulations, the final size of the dead area
would not have been twice smaller (or twice bigger) than the final area previously
obtained. We can note that for small and medium initial data there is not an
increase of the dead area, but, in the case of big size of the infarct, Figure 23, we
have a significant increment of 235%. In this case the initial dead area is 3.5911,
while the final dead area is 12.0504, which correspond to 335% of the initial area.

5.5 – Discussion

In this study, we built a model based on a set of ordinary and partial di↵eren-
tial equations to represent the biological phenomena involved in the inflammatory
process during an ischemic stroke. In our model, we considered di↵erent types
of cells and of chemical substances. Therefore we represented the behavior of
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Figure 21 Initial and final dead areas obtained with an initial small size of the infarct.

Figure 22 Initial and final dead areas obtained with an initial medium size of the infarct.

Figure 23 Initial and final dead areas obtained with an initial large size of the infarct.

healthy, necrotic and apoptotic cells, and of immune cells like microglia, neutrophils,
macrophages. Moreover we have included the cytokines, chemokines and adhesion
molecules. The most important feature of the model is its spatial dimension, which
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allows to reproduce some mechanisms such as the di↵usion of proteins and the
recruitment of leukocytes by chemotaxis.

The model includes many parameters and one of the main problems was to
determine the values of these parameters. We fixed these values with di↵erent
methods (as explain in 5.3.3). Some parameters were determinated by fitting the
results of the model to real data coming from experiments on rats that under-
went permanent ischemia [67], other parameters thanks to biological knowledge
and the remaining parameters in order not to disturb the system. It was possi-
ble to find a set of parameter values that allows the model to respect the rules
detailed in Section 5.3.3. Thus, with this reference set of parameter values, we
could obtain realistic simulations of the biological phenomenon. However a further
study of the parameter space should be made to check if the qualitative behavior
of the model is completely determined by those rules or if we have to complete
them.

In the robustness study, Section 5.4.2, we mainly obtained narrow ranges of
parameter values, which guarantees a quite stable behavior of the whole system.
Another significant aspect underlined by the robustness study is the main role of
chemotaxis. As a matter of fact, alterations of chemotaxis coe�cients, especially
the neutrophil ones, highly a↵ect the behavior of the whole process, leading to a
system that does not meet the basis of rules any more.

In the sensitivity study, Section 5.4.2, we observed that no parameter influenced
the final total amount of inactivated microglia. It may be explained by the fact
that the mitosis rate of microglia (cMi

) is too high compared to the other terms of
equation (273). As a consequence, whatever the parameter values, the final amount
of inactivated microglia is always at its maximum value (Mi = 1). This behavior
could be modified with the introduction of some decay for inactivated microglia. In
this sensitivity study, we also noticed a quite stable behavior of adhesion molecules.
If we exclude the parameters directly related to this variable, significant changes in
the other parameters do not a↵ect the behavior of these molecules in blood vessels.
This sensitivity study is a first step in the exploration of the parameter space. Now
with this first set of parameters we are able to manage the system in order to
investigate the balance between positive and negative aspects of each components
in inflammation.

After determining and studying this reference set of parameter values, we used
it in the model in order to perform in silico experiments in di↵erent conditions.
We studied how the size of the initial infarct could influence the development of
the inflammatory process (see Section 5.4.3). The simulation results show that the
aggravation due to inflammation is not linearly correlated to the infarct size, which
is an interesting result. These results suggest that blocking inflammation would
be more interesting for severe ischemic stroke whereas the benefit of inflammation
could be stronger than the aggravation in small infarct. In this latter case, anti-
inflammatory drugs could aggravating the cell damage instead of bring to beneficial



326 CRISTIANA DI RUSSO [210]

e↵ects. This point needs to be confirmed by further experiments.

We can also use this model to simulate di↵erent therapeutic strategies. Cur-
rently, the only therapeutic approach used in the Stroke Units in hospitals is throm-
bolysis which is aimed at reopening the obstructed vessel. We could simulate a
reperfusion (i.e. a reopening of the obstructed vessel) in our model by including
the role of blood flow and of ATP on each mechanism involved in the inflammatory
process. Since thrombolysis can only be given to about 5 percents of stroke patients,
other therapeutic strategies have been developed for about twenty years. They are
called neuroprotective strategies and are aimed at blocking the biological process
leading to cell death. Anti-inflammatory drugs belong to these neuroprotective
approaches. The anti-inflammatory molecules already tested block either the first
phase (i.e. activation of microglia) or the second phase of inflammation (i.e. infil-
tration of leukocytes). With our model, we can simulate di↵erent anti-inflammatory
treatments acting on various targets (microglia, adhesion molecules, cytokines, neu-
trophils) and we can compare the e↵ects of these treatments. Moreover, since we
distinguished in the model the apoptotic cells at the beginning (reversible phase)
of the apoptotic cascade and those at the end (irreversible phase) of the apoptotic
cascade, we can also simulate the e↵ects of anti-apoptotic drugs and study their
roles on the ischemic damage.

The model can thus already be used to carry out in silico experiments that could
contribute to a better understanding of the mechanisms involved in the inflamma-
tory process (their influences and their connections) and of the e↵ects of various
therapeutic strategies. However, this model can also be prolonged and refined. First
of all, it could be interesting to introduce in the model the rupture of the blood-brain
barrier which occurs during a stroke and increases the infiltration of leukocytes in
brain tissue. This could be done by adding a function that would increase mem-
brane permeability when the density of adhesion molecules would increase (which
is currently the case in the model) and when the blood-brain barrier would disrupt.
Moreover, it could be interesting to add in the model a specific function describing
the dynamics of endogenous anti-inflammatory cytokines. This dynamics is cur-
rently taken into account in the global function representing cytokines but it could
be modeled in more details. This work is under development. Besides, we could
also model in more details the deleterious e↵ects of the free radicals (such as NO)
that are produced by microglia and leukocytes and that can also be therapeutic
targets. Finally, it could also be relevant to study the phenomenon in di↵erent
geometrical conditions, for example with other distributions of vessels. Moreover,
since the infarct size influences the e↵ects of the inflammatory process, it could be
interesting to perform simulations of realistic brain infarcts on a whole brain sec-
tion (by adding no-flux conditions on its boundaries). To perform these simulations
on brain sections, we should take into account brain geometry, brain heterogeneity
(white matter / grey matter) and brain anisotropy. These features are important
to study more precisely the propagation of the inflammatory process. This could
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also be the first step of a 3D study of the inflammatory process in ischemic stroke.

6 – A fluid dynamics model of the growth of phototrophic biofilms

In this chapter, a system of nonlinear hyperbolic partial di↵erential equations is
derived to model the formation of biofilms [38, 39]. In contrast with most of the
existing models, our equations have a finite speed of propagation, without using
artificial free boundary conditions. In addition, we are able to deal in a natural and
e↵ective way with regions where one of the phases is vanishing.

The plan of the chapter is the following. Firstly, an introduction to some basic
concepts about the biological phenomenon is given; then, in Section 6.3, we present a
detailed derivation of our fluid dynamics model, paying special attention to modeling
the influence of the light on the growth of the biofilms. An adapted numerical
scheme is described in details in Section 6.4. Finally, in the last section, we present
some numerical tests, with the aim of illustrating the power of our approach and
also the influence of the various parameters. Our tests are performed in one, two,
and three space dimensions, for a domain with no flux conditions. We study the
influence of light on the system and we detect how the estimate of the sound velocity
of the medium a↵ects the final output and in particular the speed of the front (it
should be noted that this is not an easy task from the experimental point of view).

We are interested in particular in the formation and evolution in several space
dimensions of cyanobacteria biofilms, with special attention to their development
on the stone surfaces of ancient monuments, as for instance fountains walls, i.e. on
stone substrates and under a water layer.

Here, our model refers essentially to the class of Chroococcales, in particular
Gleocapsa, which is a genus of photoautotrophic bacteria and is a prokaryote. The
cells secrete individual gelatinous sheaths which can often be seen as sheaths around
recently divided cells within outer sheaths. Notice that, even if our focus is on
phototropic species, like cyanobacteria, it is clear that most of the framework we
are going to deal with in this thesis can be extended to other species and mixed
colonies.

Our first goal is to introduce a model which keeps the physical finite speed of
propagation of the fronts. Starting from the ideas of the mixture theory [138, 14,
137], we write some balance equations which contain the main assumptions coming
from biophysical considerations (mass and momentum conservation, influence of
nutrients and light, ...). The inertial terms in the momentum equations guarantees
the hyperbolicity of the system and the finite speed of propagation. Actually, in
most of the models coming from the mixture theory approach, as for instance [137,
58], these terms are neglected, in order to simplify the analysis and the numerical
approximation. In fact, di↵usive terms stabilize the fluid and prevent possible
breakdowns or other instabilities. Nevertheless, this simplification introduces a
non-physical infinite speed of propagation in the problem, and makes it di�cult to
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study e↵ectively the evolution of interfaces between the solid (biofilm) and the liquid
(water) phases. A possible solution is to use moving fronts techniques, see [4, 137],
which however introduce other analytical and numerical di�culties and require a
further approximation in the model. We prefer to keep the inertial terms and to solve
the full hyperbolic problem using some robust and Riemann Solver-free scheme like
relaxation schemes [13]. However, there are two important di↵erences with respect
to a usual hyperbolic system. First, since we are dealing with a multiphase fluid,
it is di�cult to deal with regions where one of the phases may vanish. This is
usually solved by neglecting these regions, for instance by selecting special initial
conditions. In a biofilm these choice is not possible, since it is important to model
also the region where there is only the biofilm or the liquid. It turns out that this
problem of vanishing phases can be solved by approximating source terms just by
using an Implicit-Explicit scheme (see Section 6.4 for more details).

The other problem arises from the fact that our model is supplemented with
a constraint term due to the mass conservation, which implies that the average
hydrodynamic velocity of the mixture is divergence free. This constraint is needed
to compute the hydrostatic pressure. To enforce the divergence free constraint, we
used a fractional step approach similar to the Chorin-Temam projection scheme
[36, 161] for the Navier-Stokes equations, with a very accurate reconstruction of the
pressure term.

6.1 – Biological backgrounds

A biofilm is a complex gel-like aggregation of microorganisms like bacteria, cyanobac-
teria, algae, protozoa and fungi, embedded in an extracellular matrix of polymeric
substances, called EPS. Even if a biofilm contains water, it is mainly in a solid
phase. Biofilms can develop on surfaces which are in permanent contact with wa-
ter, i.e. on a solid/liquid interfaces, but the growth of microorganisms also occurs
on di↵erent types of interfaces such as air/solid, liquid/liquid or air/liquid.

Biofilms are not simply passive assemblages of cells that are stuck to surfaces,
but they are structurally and dynamically complex biological systems. Their de-
velopment is often characterized as a multistage process. First, some free-floating
bacteria approach the surface and within a few minutes they get attached. Then,
during a phase of colonization, bacteria loose flagella and produce EPS. During the
growth phase, bacteria build a 3D structure, influenced by a variety of environmen-
tal factors. In the end, a part of the biofilm may detach itself in order to colonize
other parts of the surface [63].

Biofilms are present in di↵erent contexts. Some biofilms are useful, providing
valuable services to human society or to the functioning of natural ecosystems.
Other biofilms are harmful, causing serious health and economic problems. For
example, in the subsurface bacteria normally grow as biofilms on the soil matrix
and can help to remove contaminants from the soil or ground waters. On the
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other hand, their propensity for attachment causes problems in many situations,
such as in industrial pipelines, ship hulls, nuclear power stations, space stations, air
conditioning systems, water distribution systems.

Since biofilms play a significant role in many natural and engineered systems,
understanding the mechanisms of biofilm formation, growth, and removal could be
the key in promoting good biofilms and contrasting bad ones. Since many of the
physiological characteristics of biofilm formation (like localized clusters of bacteria
adhering to a substratum and resistance to antibiotic therapy) are similar in the
natural environment and in an animal host, the knowledge of biofilm formation from
environmental studies helped to characterize biofilms growing on medical devices
and biofilm infections [71].

6.1.1 – Infectious diseases

Hospitals are susceptible to colonization by microorganisms growing in biofilms
as well. In many cases, harmful biofilms cannot be prevented and they develop
even under adverse conditions (extreme pH values or temperatures up to 95 C), so
removing them is often di�cult in technological systems without a direct access to
the exposed surfaces.

Biofilms associated with medical devices were first noted in the early 1980s when
electron microscopy revealed bacteria deposited on the surface of indwelling devices,
such as intravenous catheters and cardiac pacemakers [63].

Biofilm formation as a protective mechanism could have profound implications
for the host, because the microorganisms that are growing in these matrix-enclosed
aggregates are more resistant to antibiotics and host defences. Intravenous catheters,
prosthetic heart valves, joint prostheses, peritoneal dialysis catheters, cardiac pace-
makers, cerebrospinal fluid shunts and endotracheal tubes save millions of lives,
but they all have an intrinsic risk of surface-associated infections. The microorgan-
isms that are most frequently associated with medical devices are the staphylococci
(particularly S. epidermidis and S. aureus), followed by P. aeruginosa and other
environmental bacteria that infect a host who is compromised by invasive medical
intervention.

Biofilm formation on medical implants has even led to the characterization of
a new infectious disease called chronic polymer-associated infection. The most
noticeable characteristic of the adherent staphylococci colonizing medical implants
is the copious amount of EPS that encases and protects cells from host defences
and antibiotic treatment.

Biofilm infections within the human body, characterized by adherent bacteria
on tissue, might also include host cells and molecules as part of a surface-associated
infection such as bacterial endocarditis. Moreover, biofilms are a major problem
also in dental hygiene (caries, gingivitis, periodontitis) and persistent and chronic
infections (otitis media, cystic fibrosis, diabetic foot ulcers).
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6.1.2 – Biodeterioration

Since active biofilms can be found in any place where there are microorgan-
isms and humidity, a biofilm can develop also on external walls of buildings [43].
The microbiota on building stones represent a complex ecosystem which develops
in various ways, depending on environmental conditions and the physicochemical
properties of the material.

There is an increasing experimental evidence about the essential role of biolog-
ical agents in the deterioration of stone; it is clear that many physical, chemical,
and biological factors combine their e↵ects in a↵ecting the material. The colo-
nization of external surfaces of buildings, monuments and archeological sites by
microorganisms causes an unaesthetically appearance of staining of the stone sur-
faces and the production of extracellular polymeric substances (EPS), which cause
mechanical stresses onto the mineral structure inside the pore system. This can
lead to the alteration of pore size and distribution, together with changes in mois-
ture circulation patterns and temperature response. Microorganisms may also alter
the water permeability of the minerals by the deposition of surfactants. Moreover,
it has been shown that the early presence of biofilms on exposed stone surfaces
accelerates the accumulation of atmospheric pollutants [130, 163]. So this micro-
bial contamination acts as a precursor of the formation of detrimental crusts on
rock surfaces caused by acidolytic and oxidoreductive (bio-) erosion of the mineral
structure.

Organisms present on stone monuments can include photolithoautotrophs, such
as algae, cyanobacteria, mosses, and higher plants. Chemolithoautotrophic bac-
teria are also present; they can release acids such as nitrous acid, nitric acid, or
sulfuric acid, that change the local pH. Chemoorganotrophic bacteria and fungi,
instead, may release chelating organic compounds or weaken the mineral lattice by
the oxidation of metal cations.

The microbial colonization of stones starts with phototrophic organisms which
build up a visible biofilm of enriched organic biomass on the stone surface. The
growth and metabolic activity of these algae, cyanobacteria, and lichens, as well as
mosses and higher plants, is regulated by parameters such as light and moisture
[144]. Phototrophic microorganisms may grow on the stone surface (epilithic pho-
totrophs) or may penetrate some millimeters into the rock pore system (endolithic
phototrophs). These epilithic and endolithic organisms can potentially contribute to
the breakdown of rock crystalline structures such as sandstone, granite, gneiss, lime-
stone, dolomite, amphibolite, basalt, dolerite, bricks, or even
glazes.

As a lots of investigations have stressed the importance of phototrophs in the
physical and chemical deterioration of stones, we focused our attention on a partic-
ular class of phototrophs: the cyanobateria.

Cyanobacteria, also known as blue-green algae, blue-green bacteria or Cyanophyta,
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are a phylum of bacteria that obtain their energy through photosynthesis. Their
name comes from the color of the bacteria. They colonize a wide variety of terres-
trial habitats, including rocks, hot and cold desert crusts, as well as modern and
ancient buildings.

Cyanobacteria include unicellular and colonial species. Colonies may form fila-
ments, sheets or even hollow balls. Each individual cell of a cyanobacterium typi-
cally has a thick, gelatinous cell wall. Cyanobacteria have an elaborate and highly
organized system of internal membranes which allows photosynthesis.

The role of cyanobacteria in the deterioration of surfaces of historical buildings
has been the subject of several recent studies. These bacteria are generally adapted
to resist adverse conditions because of their thick outer envelopes and the presence
of protective pigments. Since they are phototrophs and require no more than light,
water, and mineral ions to grow, these microorganisms, along with algae, readily
colonize the external surfaces of ancient monuments and develop a biofilm, which,
in turn, alters the appearance of the building and serves as a substrate for the
growth of other deteriogens. Both these microorganisms and cyanobacteria can
cause aesthetic, chemical, and physical decay.

6.2 – Previous models

For a so huge topic, it is not surprising to find that there exist many mathematical
models. At the beginning, mathematical modeling of biofilm was mainly focused
on predicting growth balance, sometimes with practical applications in mind, as in
[34, 110, 173, 174]. These are generally 1-D models with reaction-di↵usion equa-
tions for nutrient and other substrates, sometimes with a moving boundary. The
first multidimensional models were discrete and based on cellular automata. For
example, models proposed by the Delft’s team [172] are mainly multidimensional,
multispecies and multisubstrates spatially discrete models, which have been solved
by individual-based approach or cellular automata. They are quite exhaustive from
the biological point of view, at least qualitatively, but not fully satisfactory, because
of the di�culties to simulate large colonies of millions of individuals with discrete
approach, and to give a precise description of the behavior of the solutions.

At the same time, fully continuum models have been considered. The recent
review by Klapper and Dockery [91], focus mainly on this kind of models, following
the idea of treating the biofilm as a viscoelastic material that expands in response to
growth-induced pressure. Among them, an important class of models was proposed
by Alpkvist and Klapper [4], and it is based on a multidimensional and multispecies
description, where biofilms are divided into biomass and liquid. Since all these mod-
els are based on di↵usion equations, they experience an unrealistic movement of the
fronts, since in priciple bacteria can move infinitely fast. Moreover, due to di↵u-
sivity, it is also di�cult to obtain sharp interfaces and finger-like structures which
characterize biofilms, which are usually recovered by supplementing the model with
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artificial interfaces which are solved by moving fronts techniques. Another model
has been proposed more recently by Zang, Cogan, and Wang [179]. They consider
two phases: the polymer network and the solvent, and analyze numerically the case
of detachment under di↵erent initial conditions. This model does not consider the
di↵erent biological components and it is unable to describe the evolution of specific
bacteria.

Another continuous model, including more biological details, was proposed by
Anguine, King and Ward [9]. It concerns the biofilm produced by the Pseudomonas
aeruginosa, a bacterium that causes serious infections. It is multispecies PDEs
model and four di↵erent phases are considered: live cells, dead cells, EPS, and
liquid. The influence of nutrients is also taken into account, as well as quorum
sensing, one of the various signaling mechanism of cells, and also some di↵erent
medical treatments, like antibiotics and antiQS drugs. Transport equations are
introduced to model the four phases and advection-di↵usion equations for nutrients,
antibiotics and antiQS. A common velocity for bacteria, dead bacteria and EPS is
assumed, while a di↵erent velocity is taken for the liquid. To close the system, the
no-void condition is assumed together with a supplementary relation between the
liquid and EPS, namely: a local increment of EPS causes a local increment of liquid.
Thanks to these assumptions, no equation for velocities is needed. For this reason,
the model works only in one space dimension.

6.3 – The fluid dynamics model

To describe the complex structure of biofilms, we have chosen to consider four
di↵erent components, see [9]: Live cyanobacteria (B), Dead cyanobacteria (D), EPS
(E), and Liquid (L). We denote the concentration of biomass by C� = ⇢��, where ⇢�
is the mass density of a phase in [g/cm3] and � = B, D, E, L is the volume fraction
of the phases. We assume that the biomasses are incompressible and Newtonian,
so that ⇢B , ⇢D, ⇢L and ⇢E are positive constants. We also assume that the phases
have all the same constant density.

We have reduced the composition of biofilm, which is usually composed by many
di↵erent types of organisms, to one single species of cyanobacteria (for example
Chroococcales, which have a sort of Eps sheats). Our four components can be
considered like a mixture. It is possible to describe a mixture as “mixed-state or
condition, co-existence of di↵erent ingredients or of di↵erent groups that mutually
di↵use through each other” [138]. When one of the components is preponderant
and the other are essentially insignificant, the body is usually assumed to be of
the predominant single component. In our case, however, we will consider the four
di↵erent components which equally describe the growth of biofilms. This approach
has been yet used by Preziosi et al. to model the formation of vascular tumors
[137, 8].
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6.3.1 – Mass balance equations

Since the EPS encompasses the cells for this class of cyanobacteria, we can
make the hypothesis that live cells, dead cells, and EPS have the same transport
velocity, called vS. We denote instead by vL the velocity of liquid, and by� � , with
(� = B, D,E, L), the mass exchange rates.

Consequently, the equations expressing the mass balance are:

@tB + r · (BvS) = �B , (280a)

@tD + r · (DvS) = �D, (280b)

@tE + r · (EvS) = �E , (280c)

@tL + r · (LvL) = �L. (280d)

We assume the following volume constraint:

B + D + E + L = 1, (281)

that is to say the mixture is saturated. This means that the liquid fills all interstices
of the mixture, so that no empty space is left.

From the mixture theory, we know that in addition to the balance of mass of
each component, we also have the total conservation of mass of the mixture, that
is to say:

�B + �D + �E + �L = 0. (282)

This states that the mixture is closed, i.e. there is no net production of mass for
the whole mixture.

6.3.2 – Biomass growth rates

Now let us precise and comment the form of the mass production terms. We
assume that

�B = kBBL � kDB, (283)

�D = ↵kDB � kND, (284)

�E = kEBf(L) � "E. (285)

The term� B , the mass exchange rate for the active bacterial cells, is the di↵erence
between a birth term with rate kB and a death term with rate kD; the birth of new
cells at a point highly depends on the quantity of liquid available in the neighbor-
hood of the point, that is why the birth term is a product between the volume ratio
B of active cells and the volume ratio L of liquid.

Now, the death term in the expression of� B gives rise to a creation term in the
mass exchange rate for dead cells� D, however with a proportional coe�cient ↵,
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since a part of the active cells becomes liquid when the cell dies. In� D, we also
find a natural decay of dead cells with a constant decay rate kN .

The EPS is produced by active cells in presence of liquid and therefore the
production term will be of the form kEf(L)B, where kE is the growth rate and
f(L) is a non-dimensional function of the liquid fraction with 0  f(L)  1. There
is also a natural decay of EPS with rate ".

In the end, we choose the mass exchange rate of liquid� L in order to enforce
condition (282), that is to say

�L = B ((1 � ↵)kD � kBL � kEf(L)) + kND + "E. (286)

All the coe�cients kB , kD, kE and kN may depend on temperature, light intensity
and concentration of nutrients.

Here, we want to estimate the growth rates of involved components (B, E,
D), which are influenced by several environmental conditions such as temperature
and light. Also, we would establish the optimal values for these parameters. In-
deed, light is a fundamental variable in the life of some types of cyanobacteria
(photoautotrophic cyanobacteria), allowing these organisms to photosynthesize in-
organic compounds. Because photosynthesis responds quantitatively to changes in
light, environmental variation in its quantity and quality potentially accounts for
much of the variation in the physiology and population growth of cyanobacteria.
In the same way, there exists a range of temperature, as well as a range of nutrient
concentrations, necessary to the survival of cyanobacteria.

Light and temperature directly influence the specific growth rates and can re-
duce them when optimal values are not reached [55, 162]. To estimate the growth
coe�cient of cyanobacteria, we write the coe�cient kB as

kB = kB0 · g(I, T ),

where kB0 is the optimal growth rate, and g(T, I) 2 [0, 1] is an e�ciency factor
given as a function of temperature and light.

Many authors have already formulated the e↵ect of light upon algae growth
with empirical mathematical functions, see [162]. In many models, the e↵ects of
the light and of the temperature are assumed independent, and the resultant growth
is taken as the product of two limiting factors, namely g1(T ) · g2(I). However, this
choice highly overestimates limitations. In absence of appropriated experiments, we
assume here that

g(T, I) = max(g1(T ) , g2(I)).

Here we assume that the death rate of cyanobacteria kD, which is also the produc-
tion rate of dead cells D, is independent of T and I, as well as EPS growth rate kE
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[121] and decay rate for dead cells kN , that is to say

kD = kD(I, T ) ⇡ kD0 (287)

kE = kE(I, T ) ⇡ kE0 (288)

kN = kN (T ) ⇡ kN0 (289)

where kD0, kE0 and kN0 are the optimal rates. Numerical values of these optimal
rates and other useful coe�cients are given at Table 11.

It would be interesting to consider also a variable growth rate for all these coef-
ficients, since they clearly also depend on the environmental conditions. However,
we keep the model as simple as possible, as far as experimental evidences is missing.

Light dependence To describe the light influence on the biofilm growth, we indicate
by I0 the light intensity on the upper surface of water, and by I(x, y, t) the intensity
in the water. We assume that the light intensity is attenuated following the law of
photon absorption in the matter. Thus, we assume that I(x, y, t) is constant in x
for every fixed y (vertical coordinate) and t. Then, assuming y 2 [0, H] we have:

I(y, t)

I0(t)
= e�

R y
0

µ(s)ds, (290)

where the absorption coe�cient µ depends on the matter and on the frequency of
radiation and s = H � y. By experimental observations, it has been estimated that
µ ⇡ 0.9 m�1 if the water is turbid, and µ ⇡ 0.2 m�1 if the water is clear.

We still need to find the form of the correction factor and we assume that

µ = µ0 (1 + hµ (B + E + D)) , (291)

where µ0 is the absorption coe�cient when the water is clear, and hµ is a coe�cient
in the biomasses.

Finally, following [162], [55] and references therein, we assume that the specific
growth rate as function of irradiation I(x, y, t) is given by

g2(I) = 2w2 (1 + �2)
Î

Î2 + 2�2Î + 1
, (292)

where Î = I/I0, w2 is the maximum specific growth rate and �2 is a shape coe�cient.

Temperature dependence We assume that cyanobacteria have an optimal growth
rate where the temperature is maximal and that the growth rate diminishes where
the temperature is far from this optimal value. Following [162], we choose the
specific growth rate as a function of temperature T , that is to say:

g1(T ) = 2w1 (1 + �1)
✓

✓2 + 2�1✓ + 1
, (293)
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where

✓ =
T � Tmin

Topt � Tmin
. (294)

Here w1 corresponds to the maximum growth rate, �1 is a shape parameter, and
Tmin is the minimal temperature for the model.

It can be easily added to the model a nutrient for cyanobacteria, using a classical
di↵usive equation.

6.3.3 – Force Balance equations

Adding the four equations of system (280) and using equations (281) and (282)
yields:

r · ((1 � L)vS + LvL) = 0, (295)

which means that the divergence of the average hydrodynamic velocity is equal to
zero. It can be seen as an average incompressibility.

Next, let us write the equations for the force balance. We denote by T̃� the
partial stress tensor relative to the component �, and by m̃� the respective inter-
action force. So we can write the equation of force balance for the component �
(� = B, D,E, L) as follows:

@t(�v�) + r · (�v� ⌦ v�) = r · T̃� + m̃� + ��v�. (296)

The total conservation of momentum yields:

X

�

(m̃� + ��v�) = 0. (297)

This equation means that the net momentum supply to the mixture due to all the
components is equal to zero. As a matter of fact, if the mixture is closed, it is
possible to prove that the sum of interaction forces and momentum transfers due
to mass exchanges is null.

If a saturation condition like (281) is assumed, equations for the partial stress
tensor and interaction forces are characterized by the presence of a Lagrange mul-
tiplier classically identified with the interstitial pressure of the liquid. So, from
the theory of mixtures [138], it is possible to decompose the interaction forces as
m̃� = Pr�+ m�, where P is the hydrostatic pressure, a scalar common to all the
phases, and m� is the force exerted by the phase � on the other phases. It is also

possible to decompose the partial stress tensor as T̃� = ��PI + �T�, where T� is
the excess stress tensor.

Hence, equation (296) can be rewritten as:

@t(�v�) + r · (�v� ⌦ v�) = m� � �rP + r · (�T�) + ��v�. (298)
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Now, let us sum equations (298) for � = B, D, E altogether. First, using equations
(281), (282) and (297), we find

X

� 6=L

m� + ��v� = �mL � �LvL

and therefore, using (281) once again, we obtain:

@t((1�L)vS)+r·((1�L)vS⌦vS)=�(1�L)rP+r·

0
@X

� 6=L

�T�

1
A�mL��LvL. (299)

For the liquid phase we have:

@t(LvL) + r · (LvL ⌦ vL) = �LrP + r · (LTL) + mL + �LvL. (300)

Now we make some assumptions on the form of the excess stress tensors, namely

X

� 6=L

�T� = ⌃I and TL = 0, (301)

where ⌃ is a monotone decreasing scalar function depending on the volume ratios
B + D + E = 1 � L. A first approximation, useful for numerical tests, is a linear
form of the stress function as

⌃ = ��(1 � L). (302)

Here negative values of ⌃ indicate compression. Let us notice that this choice of
the stress function is similar to the isothermal case of the isentropic gas equations.

We are assuming that the excess stress tensor is only present in the solid com-
ponent, so in the liquid there is only the hydrostatic pressure; this means that if
in the liquid there is no bacteria nor EPS, then the liquid is at rest. This type of
assumption is usually adopted in the theory of deformable porous media, where the
excess stress tensor TL is neglected in order to get Darcy like laws.

We also assume that the interaction forces for the liquid follow the Darcy law:
this is obtained taking mL proportional to the di↵erence between the relative ve-
locities of fluid and of component, namely:

mL = �M(vL � vS), (303)

where M is an experimental constant.
The assumptions are made following the works by Preziosi [8, 14], where the

theory of mixture is used to model tumour growth.
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Thanks to these assumptions, we can rewrite the equations for the velocities so
that using (280), (295) we can obtain a closed system of equations

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

@tB+r·(BvS)=B (LkB(I, T, N) � kD(I, T, N)) ,

@tD+r·(DvS)=↵BkD(I, T, N) � DkN (T ),

@tE+r·(EvS)=BLkE(I, T, N) � ✏E,

@tL+r·(LvL)=B((1 � ↵)kD(I, T, N) � LkB(I, T, N) � LkE(I, T, N))

+DkN (T ) + ✏E,

@t((1 � L)vS) + r·((1 � L)vS ⌦ vS) + (1 � L)rP

= r⌃+ (M � �L)vL � MvS,

@t(LvL) + r·(LvL ⌦ vL) + LrP = �(M � �L)vL + MvS,

r · ((1 � L)vS + L vL)=0.

(304)
Let us observe that in this model the inertial terms are not neglected.

To complete the system, we have to find the values of the coe�cients of the
source terms and of the Darcy constant M .

We impose Neumann boundary conditions for the volume ratios:

rB · n|@⌦ = rE · n|@⌦ = rD · n|@⌦ = 0, (305)

and no-flux boundary conditions for the velocities:

vS · n|@⌦ = vL · n|@⌦ = 0. (306)

In the following sections, we present first the numerical scheme we use and the
numerical di�culties we had to face to solve numerically this complex system of
equations. We then present some numerical simulations first in the one-dimensional
case, and then in the two and three-dimensional cases, to prove the e�ciency of our
model to reproduce a front propagation for the production of EPS, and also to
investigate the behavior of our model.

6.4 – The numerical scheme

Let us explain now how to solve the complete system (304) by a Finite Di↵erence
method in space and an explicit-implicit method in time in the two-dimensional
case. The same procedure can be easily adapted also to the three dimensional
case.

Let us consider a square ⌦ = [0; L] ⇥ [0; L] and denote by �x the space step.
We consider the discretization points x↵ = (↵1�x,↵ 2�x), 0  ↵i  N + 1. We
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denote the time step by �t and the discretization times will be given by tn =
n �t, n 2 N.

Let us denote by Y the volume ratio of one of the solid phase, i.e. Y = B, D
or E; its approximation at point x↵ 2 ⌦ and at time tn will be denoted by Y n,↵.
We also consider the time discretization vector Y n, which components are the N2

terms Y n,↵, 1  ↵i  N .

6.4.1 – Spatial discretization

We use a relaxation scheme for the spatial discretization of the transport part
[13], and, as a first approach, an explicit Euler scheme for the time discretization.
Using a relaxation method, we approximate the equations by a diagonal system,
easy to solve and easy to complement eventually with flux limiters. Relaxation is
also a convenient setting to extend the scheme to higher orders.

Let us explain this method with more details.

Let us consider a two-dimensional hyperbolic problem of d equations in a generic
form:

@tW + @x1
A1(W) + @x2

A2(W) = F(W),

where W 2 Rd, for a finite d 2 N.

We consider a simple 5-velocities relaxation scheme following [13]. Let us choose
the five velocities as

�1 = �(1, 0), �2 = �(0, 1), �3 = �(�1, 0), �4 = �(0,�1), �5 = (0, 0), (307)

for some � > 0.

Now we introduce the corresponding Maxwellians Mi(W) 2 Rd, i = 1, . . . , 5, of
the form

Mi(W) = aiW + bi1A1(W) + bi2A2(W), (308)

for some constants ai, bi1 and bi2 to be chosen.

The conditions of consistency of the Maxwellians are

5X

i=1

Mi(W) = W,
5X

i=1

�i,jMi(W) = Aj(W), j = 1, 2. (309)

Then, a possible choice for the coe�cients ai and bij is the following

a1 = · · · = a4 = a, a5 = 1 � 4a;

b11 = b22 = �b31 = �b42 =
1

2�
, bij = 0 otherwise.
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It is easy to see that these coe�cients satisfy conditions (309). Let us now denote
by Wn,↵ the approximation of W at point x↵ 2 ⌦ ⇢ R2 and time tn. We set the
discretization of Maxwellians (308) as

fn,↵
i = Mi(W

n,↵), for i = 1, · · · , 5. (310)

We evolve each of the functions fi, 1  i  5, in time by following the velocity
�i:

f
n+1/2,↵
i = fn,↵

i � µ
2X

j=1

�ij(f
n,↵j+1
i � f

n,↵j�1
i )

+ µ
2X

j=1

|�ij |(fn,↵j+1
i � 2fn,↵

i + f
n,↵j�1
i ),

where µ = �t
2�x and ↵j + 1 is a shift of the j-th component of the index ↵. Let

us remark that, in our case, thanks to the choice of velocities (307), the scheme
for one component fi becomes a one-dimensional scheme. Finally, we just end by
setting

Wn+1,↵ =
5X

i=1

f
n+1/2,↵
i + �tF(Wn,↵).

Here, following the results of Bouchut [21, 22] on the stability condition for BGK
approximation, we set the velocity � = max |✓i|, where ✓i 2 �(Ai) are the eigenval-
ues of the jacobian matrices of the fluxes and the time and space steps will have to
satisfy the stability condition � �t�x  1.

In our case the hyperbolic system (304) can be written as

@tW + @x1
A1(W) + @x2

A2(W) = F(W,rP ), (311)
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where:

W =

0
BBBBBBBB@

B
D
E

(1 � L)vS1

(1 � L)vS2

LvL1

LvL2

1
CCCCCCCCA

(312)

A1(W)=

0
BBBBBBBB@

BvS1

DvS1

EvS1

(1 � L)vS
2
1 + �(1 � L)

(1 � L)vS1vS2

LvL
2
1

LvL1vL2

1
CCCCCCCCA

, A2(W)=

0
BBBBBBBB@

BvS2

DvS2

EvS2

(1 � L)vS1vS2

(1 � L)vS
2
2 + �(1 � L)

LvL1vL2

LvL
2
2

1
CCCCCCCCA

, (313)

F(W,rP ) =

0
BBBBBBBB@

B(kBL � kD)
↵kDB � kND
kEBf(L) � ✏E

�(1 � L)@xP + (M � �L)vL1 � MvS1

�(1 � L)@yP + (M � �L)vL2 � MvS2

�L@xP � (M � �L)vL1 + MvS1

�L@yP � (M � �L)vL2 + MvS2

1
CCCCCCCCA

. (314)

Here, we used the obvious notations vL = (vL1, vL2)
T and vS = (vS1, vS2)

T . Let
us observe that the relevant eigenvalues ✓i of the jacobian matrices of the fluxes are
{2vL1,vS1�

p
�,vS1 +

p
�, 2vL2,vS2�

p
�,vS2 +

p
�}, so the coe�cient � assumes

an important role in the numerical resolution of the system. As a matter of fact we
use a variable time step which satisfies the CFL condition.

As for boundary conditions, we use Neumann boundary conditions (305) for
the generic component Y and no-flux boundary conditions (306) for the velocities
vS,vL.

We notice that L is computed using relation (281).
Two remarks have to be done regarding the scheme mentioned in previous sub-

section. The first one is that we did not mention how to compute the pressure P
appearing in the source term F. One solution would be to find an equation for P .
Summing the two force balance equations in (304) and using equation (295), we
find the elliptic equation satisfied by P , namely

��P = r · (r · ((1 � L)vS ⌦ vS + LvL ⌦ vL)) ��⌃.

However, the solution of this equation is not unique and it is known that it is not
an e�cient way to compute the pressure. We will rather use a projection method as
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the one proposed by Chorin [36] and Temam [161] to solve Navier-Stokes equation,
as explained in details in the following subsection.

6.4.2 – Time discretization

The vanishing phases problem A problem comes from the vanishing phases. In-
deed, using a discretization like the one of previous subsection, we compute (1 �
Ln+1)vS

n+1 and Ln+1vL
n+1, whereas we need vS

n+1 and vL
n+1 in order to com-

pute the sixth and seventh components of F in (312). However we cannot calculate
vS

n+1 if Ln+1 is equal to 1, or vL
n+1 if Ln+1 is equal to zero. Furthermore, we

cannot take the data to avoid vanishing phases, like in gas dynamic, because those
phases are physically relevant in our case corresponding respectively for pure liquid
or pure biofilm. We will therefore use an explicit-implicit time discretization for the
velocities in order to compute directly vS

n+1 and vL
n+1.

We can notice that these issues concern only the discretization of the force
balance equations in (304) and not the discretization of mass balance equations
(280).

Let us consider therefore only the equations of velocities in (304). Using an
explicit Euler scheme in time and omitting to detail the space discretization, we
obtain:

(1 � Ln+1vS
n+1) = Gn

1 � �t ((1 � L)rP )
n

+ �t(M � �n
L)vL

n � MvS
n,

Ln+1vL
n+1 = Gn

2 � �t(M � �n
L)vL

n � MvS
n,

where

Gn
1 = (1 � Ln)vS

n � �t (r · (1 � L)vS ⌦ vS))
n

+ �t (r⌃)
n

,

Gn
2 = LnvL

n � �t (r · (LvL ⌦ vL) + LrP )
n

.

However, it is not possible to compute vS
n+1 if Ln+1 = 1, nor vL

n+1 if Ln+1 = 0.
Here, we propose to overcome this problem by using an implicit approximation

for the reaction terms of the equations of velocities, which can be written as:
(

(1�Ln+1)vS
n+1 =Gn

1 ��t ((1�L)rP )
n
+�t(M��n+1

L )vL
n+1�MvS

n+1,

Ln+1vL
n+1 = Gn

2 � �t(M � �n+1
L )vL

n+1 � MvS
n+1.

(315)
In this way we obtain values of the velocities even in the particular cases when one
of the phases, liquid or solid, vanishes. To compute the terms Gn

1 and Gn
2 we adopt

the same relaxation scheme used to solve the equations for B, D, E.
Solving system (315) is possible under the condition

(1 � Ln+1,j)Ln+1,j + �t(M + (Ln+1,j � 1)�n+1,j
L ) 6= 0,

that is to say �t small enough.
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The pressure problem Projection method was introduced by Chorin [36] and Temam
[161] to solve equations for incompressible fluids, like Navier-Stokes equations

ut + rp = �(u · r)u + ⌫r2u,

r · u = 0.
(316)

This method is based on the observation that the left-hand side of the first equation
of (316) is the Hodge decomposition of the right-hand side, namely the sum of a
gradient term and of a divergence-free term. Its strategy is mainly focused on some
approximation of the momentum equation to determinate, in a prediction step, a
previsional velocity and then, in a correction step, to solve an elliptic equation that
enforces the divergence constraint and determines the pressure.

Let us now explain our scheme in two di↵erent steps, a prediction one and a
correction one.

• Step 1
At the beginning we use a relaxation scheme to solve system (311) and the
scheme can be written as follows:

Wn+1 = Wn � �t (r · (A(W)))
n

+ �tFn
ex + �tF⇤

im

where the source term F of (314) is considered without pressure and split into
two terms: an explicit term Fex, corresponding to the mass balance equations
and an implicit term Fim, corresponding to the force balance equations, more
precisely:

Fn
ex =

0
BBBBBBBB@

Bn(kBLn � kD)
↵kDBn � kNDn

kEBnf(Ln) � ✏En

0
0
0
0

1
CCCCCCCCA

, F⇤
im =

0
BBBBBBBB@

0
0
0

(M � �n+1
L )vL

⇤
1 � MvS

⇤
1

(M � �n+1
L )vL

⇤
2 � MvS

⇤
2

�(M � �n+1
L )vL

⇤
1 + MvS

⇤
1

�(M � �n+1
L )vL

⇤
2 + MvS

⇤
2

1
CCCCCCCCA

.

We solve easily the first three equations, the ones referred to the solid component
B, D and E. So we can approximate the values of these components at time tn+1.
Then, thanks to the condition (281), it is possible to compute an approximation
Ln+1 of the liquid volume ratio at time tn+1 as:

Ln+1 = 1 � (Bn+1 + Dn+1 + En+1).

Then, we calculate the values of vS
⇤ e vL

⇤ implicitly without any pressure solving
system (315).
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• Step 2
Then we pass to the second phase of the projection method for the hydrostatic
pressure. We set the Hodge decomposition of the average predicted velocity as

(1 � L)vS
⇤ + LvL

⇤ = (1 � L)vS
n+1 + LvL

n+1 + �trP, (317)

using the discretized version of average incompressibility (295)

r ·
�
(1 � L)vS

n+1 + LvL
n+1
�

= 0. (318)

Taking the divergence of equation (317) and using equation (318), we obtain the
following equation for the pressure P :

�t�Pn+1 = r ·
�
(1 � Ln+1)vS

⇤ + Ln+1vL
⇤� ,

rPn+1 · n = 0.

Since this problem does not possess a unique solution, we write the system
satisfied by rP , which is the quantity we need to conclude. Namely, we solve:

�t�rPn+1 = rr·
�
(1 � Ln+1)vS

⇤ + Ln+1vL
⇤� ,

rPn+1 · n = 0.

And, as a final step, we update velocities as :

vS
n+1 = vS

⇤ � �trPn+1,

vL
n+1 = vL

⇤ � �trPn+1.

6.5 – Numerical simulations

6.5.1 – Parameters estimations

In this section we discuss the values of parameters chosen in our simulations.
Some information can be found in the book [172], where a maximum specific biofilm
growth rate is assumed to be 5.88 d�1, where d = day and d�1 = 1

day , while in [162]

the biofilm growth of the two models presented varying between 1 � 2 d�1. For
this reason we choose kB0 = 1 d�1. Following [172], we find that the decay rate
coe�cient is about 5% of the growth coe�cient, thus we choose kD ⇡ 0.01�0.05kB0.
The estimate of the EPS growth rate depends on the specie of biofilm and the
environmental conditions, see for example [121, 50, 105]. Thus in absence of specific
experiments, and considering that we chose to follow the behavior of chrococcales
cyanobacteria, we assume that the order of magnitude of EPS growth is comparable
with cyanobacteria growth.
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Table 11 Parameters (dimensional) list

Param. Value Indications

kB0 8 · 10�6 [1/sec] Cyanob. growth rate
kD0 2 · 10�7 [1/sec] D growth rate
kE0 12 · 10�6 [1/sec] EPS growth rate
✏ 1 · 10�7 [1/sec] EPS death rate
kN0 1 · 10�6 [1/sec] D consumption rate
� 2.5 � 10 · 10�16

⇥
cm2/sec2

⇤
tensor coe�cient

↵ 0.25 [dimensionless] fraction dead cells
M 10�8 [1/sec] tensor coe�cient
Iopt 0.01

⇥
µmol · cm�2sec�1

⇤
optimal light intensity

I0 0.01
⇥
µmol · cm�2sec�1

⇤
average incident light

Topt 25 [�C] optimal temperature
T0 25 [�C] average temperature
w1 = w2 1 [dimensionless] constants light-temperature
�1 = �2 0.1 [dimensionless] constants light-temperature
µ0 0.002

⇥
cm�1

⇤
clear water coe↵.

µh 6 [dimensionless] biomasses coe↵.

We did not find an experimental estimation for the parameter � in current literature,
for this reason we assessed the value of

p
� as a sort of upper limit of bacteria

velocity; which is estimated to be around 10�4

3600
cm
sec , so

p
� =

10�4

3600

cm

sec
⇡ 2.7 · 10�8 cm

sec
,

therefore we fix � = 5 · 10�16
h

cm2

sec2

i
.

6.5.2 – Simulations

In this section we focus our attention on simulations in several space dimensions.
The main parameter to estimate is �, and, for this reason, it is appropriate studying
the biofilm evolution as function of �. Thus, simulations take into account several
value of � to reproduce the biofilm growth in several dimensions, in particular we
have realized simulations in one and two dimensions, and, finally, a simulation with
constant coe�cients in three dimensions.

The one-dimensional case In the one-dimensional case, we simulate the evolution
of cyanobacteria, EPS, dead cells and liquid. In this case, the single variable space
accounts for the height, that is to say we consider an homogeneous planar biofilm
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where volume fractions of the phases and velocities are independent of length and
width and only depends on height.

We give the evolution of the biofilm after 60 days, see Figure 24. Our domain is
the interval L = [0, 1] (cm) and we take spatial step h equal to 0.001 cm. We consider
as initial data Heaviside functions for cyanobacteria and EPS: B0 = 0.2 · �[0,0.007],
E0 = 0.008 · �[0,0.007]. The other variables are initially equal to zero.

Simulations are done with three di↵erent values of �: �1 = 10�16 (cm2/sec2),
�2 = 5 · 10�16 (cm2/sec2) and �3 = 10�15 (cm2/sec2) (respectively on the top, in
the middle and on the bottom of Figure 24) and with two di↵erent values of kB :
kB = kB0 and kB = kB(T, I) (respectively, on the left and on the right side of
Figure 24). Here, we can notice how the parameter � influences the di↵usion of the
biomass, that is to say the process is accelerated with bigger values of �. Also, with
the biggest value � = 10�15 (cm2/sec2), the front propagation reaches the highest
height (⇡ 0.3), while the heights reached with the values � = 10�16 (cm2/sec2) and
� = 5·10�16 (cm2/sec2) are respectively ⇡ 0.1, 0.2. Let us notice that computing the
height of the biofilm is particularly simple in the 1D case, since the sum B +D +E
is null for space variable x large enough.

Furthermore, we can observe the di↵erences in the cyanobacteria growth using
a constant coe�cient kB = kB0 or using a coe�cient kB = kB(T, I) which depends
on temperature and light. Since kB0 is the optimal growth rate of cyanobacteria,
the cyanobacteria growth is higher in the constant case whereas the growths of EPS
and liquid are greater in the case kB = kB(I, T ).

The two-dimensional case In this section, we simulate the biofilm growth in two-
dimension space case during 30 days. We used parameters listed in Table 11. As
first step we want to study the light response of the model.

Influence of Light We take for B as an initial condition the sum of 3 gaussian
functions, centered respectively in 0.35, 0.5 and 0.7 (cm) with a total fraction of vol-
ume for the cyanobateria BT0 = 1.0762 ·10�5. We choose an optimal light intensity
Iopt = 0.01 (µmol cm�2sec�1) in equation (292) and we change the incident light
intensity I0 defined at equation (290). Let us consider di↵erent cases listed below:

1. Case kB = kB0, and g = 1; we find a total fraction of volume of cyanobacteria
BT = 0.0029, i.e. the volume growth is about 269.5 times.

2. Case kB = kB0 · gI , with amplitude of daily light oscillations of 90%; we choose
Iopt = 0.01, I0 = 0.01 (µmol cm�2sec�1). We find a total fraction of volume of
cyanobacteria BT = 0.0019, i.e. the volume growth is about 177 times.

3. Case kB = kB0 · gI ; we choose Iopt = 0.01, I0 = 0.003. We find a total fraction
of volume of cyanobacteria BT = 0.0014, i.e. the volume growth is about 130.6
times.

4. Case kB = kB0 · gI ; we choose Iopt = 0.01, I0 = 0.001, ten times lower. We
obtain a total fraction of volume of cyanobacteria BT = 2.4481 · 10�4, i.e. the
volume growth is about 22.75 times.
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Figure 24 Volume fractions of the biofilm components as functions of height x after 60
days. We use three di↵erent values of the parameter �, �1 = 10�16 (cm2/sec2) (on the
top), �2 = 5 · 10�16 (cm2/sec2) (in the middle),�3 = 10�15 (cm2/sec2) (on the bottom).
On the left, we display the results for an optimal constant rate kB = kB0, while, on the
right, we show the results for a variable rate depending on light and temperature. Our
domain is the interval L = [0, 1] (cm) and the spatial step h is equal to 0.001 cm. We
consider as initial data Heaviside functions for cyanobacteria and EPS: B0 = 0.2 ·�[0,0.007],
E0 = 0.008 · �[0,0.007]. The variable D is initially equal to zero.
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Figure 25 Numerical simulation of the biofilm after 45 days with optimal rate (on the left)
and variable rate (on the right). Our numerical domain is the square ⌦ = [0, 1]⇥[0, 1] (cm2)
and the spatial steps hx, hy, hz are equal to 0.01 cm . We consider as initial data Heaviside
functions for cyanobacteria while the other variables are equal to zero.
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Figure 26 Numerical simulation of the biofilm after 30 days with variable rate. Our
numerical domain is the square ⌦ = [0, 1]⇥ [0, 1] (cm2) and the spatial steps hx, hy, hz are
equal to 0.01 cm. We consider as initial data Heaviside functions for cyanobacteria while
the other variables are equal to zero. On the left of the figure we have the biofilm growth
and on the right is presented the variation of light intensity

Influence of � The parameter � also has a great influence on the solution.
Here, we compare solutions with several values of � (maintaining constant all other
parameters), and with total initial fraction of volume of cyanobacteria equal to
1.0762 ·10�5, distributed as the sum of the same three gaussian functions as before.

1. For � = 1 · 10�16 (cm2/sec2), we obtain a final total fraction of volume for B
equal to 0.0027, which correponds to a mass growth of 250. A plot of the volume
fraction of cyanobacteria after 30 days is displayed at Figure 27.

2. For � = 1 · 10�15 (cm2/sec2), we obtain a final total fraction of volume for B
equal to 0.012, which correponds to a mass growth of 1115. A plot of the volume
fraction of cyanobacteria after 30 days is displayed at Figure 28.
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Figure 27 Case I. Biofilm evolution after 30 days, with coe�cient � = 10�16 (cm2/sec2),
and initial condition for B given by the sum of three gaussian functions centered in 0.35,
0.5 and 0.7, (cm). On the left, we display the fraction volume of cyanobacteria as a function
of length and height. On the upper right, we present the level curves of the function B
as a function of length and height and on the lower right, we show the level curves of the
light intensity variation. The light intensity is in µmol cm�2sec�1.

Figure 28 Case II. Biofilm evolution, with coe�cient � = 10�15, (cm2/sec2) and initial
condition for B given by the sum of three gaussian functions centered in 0.35, 0.5 and
0.7, (cm). On the left, we display the fraction volume of cyanobacteria as a function of
length and height. On the upper right, we present the level curves of the function B as a
function of length and height and on the lower right, we show the level curves of the light
intensity variation. The light intensity is in µmol cm�2sec�1.
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We can observe that the light intensity propagation in the biofilm phase is attenu-
ated by the biofilm mass itself, as expected by the model assumptions. It will be
possible to calibrate this attenuation with appropriated experiments of cyanobacte-
ria growth, measuring the number of photons emitted and the photons which pass
through the biofilm with a light sensor under the biofilm itself.

Now, adding an intermediate simulation with � = 5 · 10�15 (cm2/sec2), to the
previous two (illustrated in Figures 27 and 28, we have observed a total biofilm
mass increasing (from initial value), which is function of � values; the mass growth,
in these three cases, is presented in Figure 29.
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Figure 29 Mass growth: M/M0 as function of �, with � = 10�16 (cm2/sec2), � = 5 ·
10�16 (cm2/sec2) and � = 10 · 10�16 (cm2/sec2) with their corresponding mass growth.

Front velocity Now, let us describe the biofilm front velocity behavior as a
function of �, using as initial condition a single gaussian function centered in 0.5.
To do so, we have to define what is the biofilm front. Let us consider the ratio
between the biofilm volume fraction (that is to say the sum of B, D and E) and the
maximum of this volume fraction at the same time. We can define two regions, the
first one composed of the points where the value of this ratio is less than 1% and the
second one composed of the points where the value of this ratio is more than 1%. The
biofilm front will be the boundary between these two regions. Considering di↵erent
values for �, we can observe the behavior of the front in Figure 30. Using a linear
fit on the curves of Figure 30, we can find the velocity of the front movement and
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we plot it as a function of
p
� in Figure 31. This approximation can be compared

with experimental data in order to estimate the parameter �, once the values of
other parameters are known.
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The three-dimensional case In this last subsection, we present in Figure 32 a sim-
ulation in a three dimensional case with optimal constant rates (kB = kB0). We
use the numerical scheme proposed in the previous section in the 3D case solv-
ing the system on a domain ⌦ = [0, 1] ⇥ [0, 1] ⇥ [0, 0.5] (cm3). In our simulations
the initial condition for the cyanobacteria volume fraction B is a sum of Heaviside
functions whose amplitude is assumed to be of the order of the cell dimensions
hx = hy = hz = 0.02 (cm).

Figure 32 Numerical simulation of the biofilm after 45 days with optimal constant rates
and two di↵erent values of the parameter �. On the left, we use � = 10�16 (cm2/sec2)
and on the right � = 10�15 (cm2/sec2). Our numerical domain is ⌦ = [0, 1] ⇥ [0, 1] ⇥
[0, 0.5] (cm3) and the spatial steps hx, hy, hz are all equal to 0.02 (cm). We consider as
initial datum a sum of Heaviside functions randomly distributed for cyanobacteria while
the other variables are equal to zero.

Here, we see the dependence of the process velocity on the parameter �. Using
two di↵erent values for �, we can observe the influence of this parameter on the
process di↵usion. As a matter of fact, as observed in the previous cases a larger
value for � leads to a faster evolution. We can notice that, with the choice � =
10�15 (cm2/sec2), we get an homogeneous layer of the solid components by a quick
aggregation.
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Moreover some simulations with variable rates are displayed at Figure 33 and
compared with constant rates. We can notice that variable light intensity and
temperature clearly influence the growth of the biofilm. Infact in the case of optimal
rates, the biofilm growth is larger than in the case of variable rates.

Moreover we can observe in particular in Figure 34 a simulation of the light
intensity. Let us notice that, following equation (290) the light intensity I(x, y, z, t)

Figure 33 Numerical simulation of the biofilm at di↵erent times (T = 0, 15, 30 days)
with optimal constant rate (on the left) and variable constant rate (on the right) with
� = 10�15 (cm2/sec2). Our numerical domain is ⌦ = [0, 1] ⇥ [0, 1] ⇥ [0, 0.5] (cm3) and the
spatial steps hx, hy, hz are all equal to 0.02 (cm). We consider as initial datum for B a
sum of Heaviside functions randomly distributed, E0 = B0/25 and D0 = 0.
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is attenuated by the biofilm. Then a lower value of the light intesity is obtained
due to the presence of layer of solid components.

It has to be noticed that on these three last figures, namely Figures 32, 33 and
34, the scale for the volume of cyanobacteria changes since the variation in the
volume of biofilms is important, whereas the scale for intensity is fixed in order to
see better the variations.

Figure 34 Numerical simulation of the biofilm at di↵erent times (T = 15, 22, 30 days)
with variable constant rate with � = 10�15 (cm2/sec2). On the left, we show the evolution
of fraction volume of cyanobacteria B and on the right, we present the light intensity
variation. Our numerical domain is ⌦ = [0, 1]⇥ [0, 1]⇥ [0, 0.5] (cm3) and the spatial steps
hx, hy, hz are all equal to 0.02 (cm). We consider as initial datum for B a sum of Heaviside
functions randomly distributed, E0 = B0/25 and D0 = 0.
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E-mail: cristiana.di-russo@univ-orleans.fr


