Riemannian geodesics of semi Riemannian warped product metrics

ORIELLA M. AMICI - BIAGIO C. CASCIARO

AbStract: Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two C^{∞}-differentiable connected, complete Riemannian manifolds, $k: M_{1} \rightarrow \mathbb{R}$ a C^{∞}-differentiable function, having $0<k_{0}<k(x) \leq$ K_{0}, for any $x \in M_{1}$ and $g:=g_{1}-k g_{2}$ the semi Riemannian metric on the product manifold $M:=M_{1} \times M_{2}$.
We associate to g a suitable family of Riemannian metrics $G_{r}+g_{2}$, with $r>-K_{0}^{-1}$, on M and we call Riemannian geodesics of g the geodesics of g which are geodesics of a metric of the previous family, via a suitable reparametrization.
Among the properties of these geodesics, we quote:
For any $z_{0}=\left(x_{0}, y_{0}\right) \in M$ and for any $y_{1} \in M_{2}$ there exists a subset $A \neq \emptyset$ of M_{1}, such that all the geodesics of g joining z_{0} with a point $\left(x_{1}, y_{1}\right)$, with $x_{1} \in A$, are Riemannian. The Riemannian geodesics of g determine a "partial" property of geodesic connection on M. Finally, we determine two new classes of semi Riemannian metrics (one of which includes some FLRM-metrics), geodesically connected by Riemannian geodesics of g.

1 - Introduction

Let $\left(M_{1}, g_{1}\right)$ and (M_{2}, g_{2}) be two connected, complete, Riemannian manifolds.
For the greater part of the paper, we shall use the assumption of the completeness of the two manifolds only to avoid to write a long and trivial series of inequalities.

Let $k: M_{1} \rightarrow \mathbb{R}$ be a C^{∞}-differentiable function, bounded from below away from zero.

We consider the semi Riemannian warped product metric $g: g_{1}-k g_{2}$ and the family of Riemannian metrics $G_{r}+g_{2}$ on the manifold $M:=M_{1} \times M_{2}$, where $G_{r}:=\left(k^{-1}+r\right) g_{1}$ and $r>-K_{0}^{-1}:=k_{1}$, being $K_{0}:=\sup _{x \in M_{1}}\{k(x)\}$, if k is bounded from above and $r>0:=k_{1}$ in the other case.

[^0]Then we prove that M is complete with respect to the metric $G_{r}+g_{2}$ and that the geodesics of $G_{r}+g_{2}$, belonging to a suitable subset, determine geodesics of g, via a suitable reparametrization, for any $r>k_{1}$.

We call them Riemannian geodesics of g.
We prove some properties of these geodesics and here we quote some of them as examples.

Let us consider $z_{0}=\left(x_{0}, y_{0}\right) \in M$ and a geodesic $\zeta=(\gamma, \tau):[0,1] \rightarrow M$ of g, with $\gamma(0)=x_{0}, \tau(0)=y_{0}, \dot{\gamma}(0)=\widetilde{X}$ and $\dot{\tau}(0)=\widetilde{Y}$. If k is bounded and

$$
g_{1}(\widetilde{X}, \widetilde{X})>k\left(x_{0}\right) g_{2}(\widetilde{Y}, \widetilde{Y}) \frac{K_{0}-k\left(x_{0}\right)}{K_{0}}
$$

then ζ is a Riemannian geodesic of g.
An analogous statement holds, if k is unbounded from above.
A surprising property, being the Morse theory of Riemannian and semi Riemannian metrics quite different, is the following.

Since M_{1} and M_{2} are connected and complete with respect to the respective Riemannian metrics g_{1} and g_{2}, the manifold M_{1} is positive and negative geodesically connected with respect to g; i.e., for any real number $r>k_{1}$, for any $z_{0}=$ $\left(x_{0}, y_{0}\right) \in M$, for any $x_{1} \in M_{1}$ and for any geodesic $\nu: \mathbb{R} \rightarrow M_{2}$ of g_{2}, having $\nu(0)=y_{0}$, there exists $t_{0} \in \mathbb{R}$ such that the point z_{0} and the point $\left(x_{1}, \nu\left(t_{0}\right)\right)$ (and the point $\left.\left(x_{1}, \nu\left(-t_{0}\right)\right)\right)$ can be joined by a Riemannian geodesic of g, obtained by reparametrizing a suitable geodesic of $G_{r}+g_{2}$.

Analogously, the manifold M_{2} is positive and negative geodesically connected with respect to g, too.

Hence, we shall say that M is partially Riemannian connected with respect to g.
More surprising are the following two results.
If M_{1} and M_{2} are connected and complete with respect to the respective Riemannian metrics g_{1} and g_{2}, if the dimension of M_{1} is greater than one and M_{1} is simply connected, if g_{1} has a negative sectional curvature, if k is bounded from below away from zero and if the Hessian of k verifies a
suitable inequality (see (4.2), below), then M is geodesically connected by means Riemannian geodesic of g.

If $M_{1}=\mathbb{R}$, then g is an FLRW-metric (with speed of light $c=1$) and M is geodesically connected by Riemannian geodesic of g, provided M_{2} connected and complete with respect to g_{2} and k bounded from below away from zero.

The FLRW-metrics are used in cosmology to study the early universe (see, e.g., [9]).

The paper ends with an Appendix in which we determine a sufficient condition such that G_{r} has negative sectional curvature, for any $r \in\left(k_{1},+\infty\right)$.

We conclude by noticing that the Levi-Civita connection of g is not used in this paper, because it hides all the relations between the metric tensor g and the Riemannian metric $G_{r}+g_{2}$.

In this case, the Levi-Civita connection of $g_{1}+g_{2}$ allows us to use these relations.

Hence, we consider this paper as a first application of the results obtained in [1, 2] and [3].

2 - Preliminaries

This section contains the main geometric objects, which are needed in the following.
We also state some straightforward results.
Let $\left(M_{1}, g_{1}\right),\left(M_{2}, g_{2}\right)$ be two connected, complete, Riemannian manifolds and $\stackrel{1}{\nabla}, \stackrel{2}{\nabla}$ the Levi-Civita connections determined by the metrics g_{1} and g_{2}, respectively.

Let $k: M_{1} \rightarrow \mathbb{R}$ be a smooth map.
We suppose

$$
\begin{equation*}
0<k_{0}:=\inf _{x \in M_{1}}\{k(x)\} \tag{2.1}
\end{equation*}
$$

On the manifold $M:=M_{1} \times M_{2}$, we consider the tensor $g:=g_{1}-k \cdot g_{2}$, which defines a semi Riemannian warped product metric, having the signature equal to the dimension of M_{1}.

The geometry of warped product metrics is described in details in [7].
We shall set

$$
G_{r}:=\left(\frac{1}{k}+r\right) \cdot g_{1}
$$

and G_{r} is a Riemannian metric on M_{1}, for any $r>k_{1}$, being $k_{1}:=-K_{0}^{-1}$ if k is bounded and $K_{0}:=\sup _{x \in M_{1}}\{k(x)\}$, and $k_{1}:=0$ in the other case.

Finally, we set $I:=[0,1]$.
From [3], it follows.
Lemma 2.1. A differentiable curve $\zeta=(\gamma, \tau): I \rightarrow M$ is a geodesic of g, if and only if it satisfies the following system of ordinary differential equations

$$
\begin{align*}
& \stackrel{1}{\nabla}_{\dot{\gamma}} \dot{\gamma}=-\frac{1}{2} g_{2}(\dot{\tau}, \dot{\tau}) \cdot g_{1}^{\sharp}(d k) \circ \gamma \tag{2.2}\\
& \stackrel{\rightharpoonup}{\nabla}_{\dot{\tau}} \dot{\tau}=-\frac{1}{k \circ \gamma} d k(\dot{\gamma}) \cdot \dot{\tau} \tag{2.3}
\end{align*}
$$

where $g_{1}^{\sharp}: T^{*} M_{1} \rightarrow T M_{1}$ is the canonical isomorphism of bundles induced by g_{1}.
From [3], we also get:
Lemma 2.2. The map $\mu: I \rightarrow M_{1}$ is a geodesic with respect to the metric G_{r} if and only if

$$
\begin{equation*}
\nabla_{\dot{\mu}}^{1} \dot{\mu}=\frac{1}{2 k \circ \mu(1+r k \circ \mu)}\left\{2 d k(\dot{\mu}) \cdot \dot{\mu}-g_{1}(\dot{\mu}, \dot{\mu}) \cdot g_{1}^{\sharp}(d k) \circ \mu\right\} . \tag{2.4}
\end{equation*}
$$

We conclude this number by two lemmas needed in the following.

Lemma 2.3. Let \mathcal{M} be a topological space equipped with two distance functions d_{1} and d_{2}. Suppose that any Cauchy sequence of d_{2} is also a Cauchy sequence of d_{1}. Then the completeness of d_{1} implies the completeness of d_{2}.

A proof of the above lemma is straightforward and we omit it here.
We observe that if there exists a positive number L such that $d_{1}\left(x_{1}, x_{2}\right) \geq$ $L d_{2}\left(x_{1}, x_{2}\right)$, for each $x_{1}, x_{2} \in \mathcal{M}$, then each Cauchy sequence of d_{2} is also a Cauchy sequence of d_{1}.

Corollary 2.4. Suppose that the inequality (2.1) holds.
The manifold $\left(M_{1}, g_{1}\right)$ is complete, if there exists an $r>k_{1}$ such that $\left(M_{1}, G_{r}\right)$ is complete.

Vice versa, if $\left(M_{1}, g_{1}\right)$ is complete, then $\left(M_{1}, G_{r}\right)$ is complete, for any $r \in$ $\left(k_{1},+\infty\right)$.

Proof. We shall denote by $d_{g_{1}}, d_{G_{r}}$ the distance functions associated with the Riemannian metrics g_{1} and G_{r}, respectively.

For any $X \in T_{x_{0}} M_{1}$ and $x_{0} \in M_{1}$, we have

$$
g_{1}(X, X)=\frac{k\left(x_{0}\right)}{1+r k\left(x_{0}\right)} G_{r}(X, X) \text { and } G_{r}(X, X)=\frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} g_{1}(X, X)
$$

for any $r>k_{1}$.
The functions $f_{1}, f_{2}:\left(k_{0},+\infty\right) \rightarrow \mathbb{R}$ defined respectively by setting

$$
f_{1}(t)=\frac{t}{1+r t} \quad \text { and } \quad f_{2}(t)=\frac{1+r t}{t} ; \quad \forall r \in\left(k_{1},+\infty\right)
$$

are bounded.
Hence, there exist two positive real numbers k_{2} and k_{3} such that

$$
d_{g_{1}}\left(x_{1}, x_{2}\right) \leq \sqrt{k_{2}} d_{G_{r}}\left(x_{1}, x_{2}\right) \text { and } d_{G_{r}}\left(x_{1}, x_{2}\right) \leq \sqrt{k_{3}} d_{g_{1}}\left(x_{1}, x_{2}\right)
$$

for all $x_{1}, x_{2} \in M_{1}$.
Then our corollary follows immediately from Lemma 2.3.
Finally, we recall that connected, complete, Riemannian manifolds are geodesically connected (see, e.g., [5]).

3 - Geodesics of $\left(M, G_{r}+g_{2}\right)$ and (M, g)

In this Section we shall use the geometric objects and the notations introduced in the previous one.

Lemma 3.1. For any $\mu: I \rightarrow M_{1}$ and for any $r>k_{1}$, there is a uniquely determined diffeomorphism $\varphi_{r}: I \rightarrow I$ such that

$$
\begin{align*}
\varphi_{r}(0) & =0, \quad \varphi_{r}(1)=1 \\
\dot{\varphi}_{r} & =a_{r} \frac{1+r k}{k} \circ \mu \circ \varphi_{r} \tag{3.1}
\end{align*}
$$

where a_{r} is a suitable real number.
Proof. We shall determine φ_{r}^{-1} and then we shall obtain φ_{r} as the inverse of φ_{r}^{-1}.

Condition (3.1) is equivalent to

$$
\frac{d \varphi_{r}^{-1}}{d s}=\frac{k(\mu(s))}{a_{r}(1+r k(\mu(s)))}
$$

Hence the map φ_{r}^{-1} is defined by

$$
\begin{equation*}
\varphi_{r}^{-1}(s):=\frac{1}{a_{r}} \int_{0}^{s} \frac{k}{1+r k} \circ \mu d \xi, \quad a_{r}:=\int_{0}^{1} \frac{k}{1+r k} \circ \mu d \xi \tag{3.2}
\end{equation*}
$$

for any $s \in I$.
As a consequence, φ_{r}^{-1} is a smooth strictly increasing diffeomorphism from I onto I.

We need the following lemma, too.
Lemma 3.2. For any differentiable curve $\gamma: I \rightarrow M_{1}$, there is a uniquely determined diffeomorphism $\psi: I \rightarrow I$, such that

$$
\begin{align*}
\psi(0) & =0, \quad \psi(1)=1 \\
\dot{\psi} & =\frac{b}{k \circ \gamma}, \tag{3.3}
\end{align*}
$$

where b is a suitable positive real number.
Proof. The map ψ is defined by

$$
\begin{equation*}
\psi(s):=b \int_{0}^{s} \frac{1}{k \circ \gamma} d \xi, \quad b:=\left(\int_{0}^{1} \frac{1}{k \circ \gamma} d \xi\right)^{-1} \tag{3.4}
\end{equation*}
$$

for any $s \in I$.
The previous lemma implies:

Theorem 3.3. Let $\mu: I \rightarrow M_{1}$ and $\nu, \tau: I \rightarrow M_{2}$ be smooth curves and suppose $\tau=\nu \circ \psi$, being ψ defined by the previous lemma.

Then, τ satisfies (2.3), if and only if ν is a geodesic of g_{2}.
Moreover, it results $\tau(0)=\nu(0)$ and $\tau(1)=\nu(1)$.
Proof. In fact, it results

$$
\begin{aligned}
\stackrel{2}{\nabla}_{\dot{\tau}} \dot{\tau} & =(\dot{\psi})^{2} \cdot\left(\stackrel{2}{\nabla}_{\dot{\nu}} \dot{\nu}\right) \circ \psi+\ddot{\psi} \cdot \dot{\nu} \circ \psi \\
& \stackrel{(3.3)}{=}(\dot{\psi})^{2} \cdot\left(\stackrel{\rightharpoonup}{\nabla}_{\dot{\nu}} \dot{\nu}\right) \circ \psi+\frac{b}{k^{2} \circ \mu}((d k)(\dot{\mu})) \cdot \dot{\nu} \circ \psi \\
& =(\dot{\psi})^{2} \cdot\left(\stackrel{2}{\nabla}_{\dot{\nu}} \dot{\nu}\right) \circ \psi-\frac{1}{k \circ \mu} d k(\dot{\mu}) \cdot \dot{\tau}
\end{aligned}
$$

and we have the assertion.
Lemma 3.4. Let $\mu_{r}, \gamma_{r}: I \rightarrow M_{1}$ be two smooth curves, such that $\gamma_{r}=\mu_{r} \circ \varphi_{r}$, being φ_{r} the mapping defined by Lemma 2.3, with $\mu=\mu_{r}$.

Then, μ_{r} is a geodesic with respect to the metric G_{r}, if and only if the curve γ_{r} satisfies the equation:

$$
\begin{equation*}
\stackrel{1}{\nabla}_{\dot{\gamma}_{r}} \dot{\gamma}_{r}=\frac{-1}{2 k \circ \gamma_{r}\left(1+r k_{r} \circ \gamma_{r}\right)} g_{1}\left(\dot{\gamma}_{r}, \dot{\gamma}_{r}\right) g_{1}^{\sharp}(d k) \circ \gamma_{r} . \tag{3.5}
\end{equation*}
$$

Moreover, we have $\mu_{r}(0)=\gamma_{r}(0)$ and $\mu_{r}(1)=\gamma_{r}(1)$.
Proof. In fact, we have

$$
\begin{aligned}
& \stackrel{1}{\nabla}_{\dot{\gamma}_{r}} \dot{\gamma}_{r} \stackrel{\left(\dot{\varphi}_{r}\right)^{2} \cdot\left(\nabla_{\dot{\mu}_{r}} \dot{\mu}_{r}\right) \circ \varphi_{r}+\ddot{\varphi}_{r} \cdot\left(\dot{\mu}_{r} \circ \varphi_{r}\right)}{=} g_{1}^{2}\left(\dot{\mu}_{r}, \dot{\mu}_{r}\right) \circ \varphi_{r} \cdot g_{1}^{\sharp}(d k) \circ \mu_{r} \circ \varphi_{r} \\
& \stackrel{(2.4)}{=} \frac{-\dot{\varphi}_{r}}{2 k \circ \mu_{r} \circ \varphi_{r}\left(1+r k \circ \mu_{r} \circ \varphi_{r}\right)} d k\left(\dot{\mu}_{r}\right) \circ \varphi_{r} \cdot \dot{\mu}_{r} \circ \varphi_{r} \\
&+\frac{\dot{\varphi}_{r}^{2}}{k_{r} \circ \mu_{r} \circ \varphi_{r}\left(1+r k_{r} \circ \mu_{r} \circ \varphi_{r}\right)} \\
&+\ddot{\varphi}_{r} \cdot \dot{\mu}_{r} \circ \varphi_{r} \\
& \stackrel{(3.2)}{=} \frac{-1}{2 k_{r} \circ \gamma_{r}\left(1+r k_{r} \circ \gamma_{r}\right)} g_{1}\left(\dot{\gamma}_{r}, \dot{\gamma}_{r}\right) g_{1}^{\sharp}(d k) \circ \gamma_{r} \\
&+\frac{1}{k_{\circ} \gamma_{r}\left(1+r k \circ \gamma_{r}\right)} d k\left(\dot{\gamma}_{r}\right) \cdot \dot{\gamma}_{r}+\ddot{\varphi}_{h}\left(d k\left(\dot{\gamma}_{h}\right)\right) \cdot \dot{\mu}_{h} \circ \varphi_{h} \\
& \stackrel{(3.1)}{=} \frac{-1}{2 k_{r} \circ \gamma_{r}\left(1+r k_{r} \circ \gamma_{r}\right)} g_{1}\left(\dot{\gamma}_{r}, \dot{\gamma}_{r}\right) g_{1}^{\sharp}(d k) \circ \gamma_{r} .
\end{aligned}
$$

Since the vice versa can be proved in an analogous way, our lemma follows.

Lemma 3.5. Under the assumptions of the previous lemma, if either μ_{r} is a geodesic of G_{r} or γ_{r} verifies 3.5, we have

$$
\begin{equation*}
g_{1}\left(\dot{\gamma}_{r}, \dot{\gamma}_{r}\right)=a_{r}^{2} \frac{\left(1+r k\left(x_{0}\right)\right)\left(1+r k \circ \gamma_{r}\right)}{k\left(x_{0}\right) k \circ \gamma_{r}} \cdot g_{1}\left(X_{r}, X_{r}\right), \tag{3.6}
\end{equation*}
$$

being $\gamma_{r}(0)=x_{0}$ and $X_{r}=\dot{\mu}_{r}(0)$.
Proof. In fact, it results

$$
\begin{aligned}
g_{1}\left(\dot{\gamma}_{r}, \dot{\gamma}_{r}\right) & =\left(\dot{\varphi}_{r}\right)^{2} \cdot g_{1}\left(\dot{\mu}_{r} \circ \varphi_{r}, \dot{\mu}_{r} \circ \varphi_{r}\right) \\
& \stackrel{(3.2)}{=} a_{r}^{2}\left(\frac{1+r k}{k} \circ \mu_{r} \circ \varphi_{r}\right)^{2} \cdot g_{1}\left(\dot{\mu}_{r} \circ \varphi_{r}, \dot{\mu}_{r} \circ \varphi_{r}\right) .
\end{aligned}
$$

Then, under the assumptions of our lemma, it follows

$$
g_{1}\left(\dot{\gamma}_{r}, \dot{\gamma}_{r}\right)=a_{r}^{2} \frac{1+r k \circ \gamma_{r}}{k \circ \gamma_{r}} \cdot G_{r}\left(\dot{\mu}_{r} \circ \varphi_{r}, \dot{\mu}_{r} \circ \varphi_{r}\right) .
$$

From which (3.6) immediately follows.
From the above lemma and Lemma 3.4, we get the following
Lemma 3.6. Under the assumptions of the previous lemma, if $\mu_{r}: I \rightarrow M_{1}$ is a geodesic with respect to the metric G_{r} then

$$
\begin{equation*}
\nabla_{\dot{\gamma}_{r}}^{1} \dot{\gamma}_{r}=\frac{-a_{r}^{2}\left(1+r k\left(x_{0}\right)\right)}{2 k\left(x_{0}\right) k^{2} \circ \gamma_{r}} \cdot g_{1}\left(X_{0}, X_{0}\right) \cdot g_{1}^{\sharp}(d k) \circ \gamma_{r} . \tag{3.7}
\end{equation*}
$$

The next lemma characterizes the norm of the vector field $\dot{\tau}_{r}$. We skip the proof of this lemma for it is very similar to that one of Lemma 3.5.

Lemma 3.7. Let $\mu_{r}: I \rightarrow M_{1}$ and $\tau_{r}, \nu: I \rightarrow M_{2}$ be three smooth curves such that $\tau_{r}=\nu \circ \psi_{r}$, being ψ_{r} defined as in Lemma 3.2, by means of μ_{r}. If either ν_{r} is a geodesic of g_{2} or τ_{r} is a solution of Equation 2.2, then

$$
\begin{equation*}
g_{2}(\dot{\tau}, \dot{\tau})=\frac{b_{r}^{2}}{k^{2} \circ \gamma_{r}} \cdot g_{2}\left(Y_{0}, Y_{0}\right) ; \tag{3.8}
\end{equation*}
$$

with $\nu(0)=y_{0}$ and $\dot{\nu}(0)=Y_{0}$.
With the previous notations, we have:

Theorem 3.8. Suppose that the curve $\left(\mu_{r}, \nu_{r}\right): I \rightarrow M$ is a geodesic with respect to the metric $G_{r}+g_{2}$ and

$$
\begin{equation*}
a_{r}^{2} \frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} \cdot g_{1}\left(X_{0}, X_{0}\right)=b_{r}^{2} g_{2}\left(Y_{0}, Y_{0}\right) \tag{3.9}
\end{equation*}
$$

with $\mu_{r}(0)=x_{0}, \nu_{r}(0)=y_{0}, \dot{\mu}_{r}(0)=X_{0}$ and $\dot{\nu}_{r}(0)=Y_{0}$.
Then, the curve $\left(\gamma_{r}, \tau_{r}\right): I \rightarrow M$, obtained as in the previous Lemmas is a geodesic with respect to the metric g.

We have $\left(\mu_{r}(0), \nu_{r}(0)\right)=\left(x_{0}, y_{0}\right)$ and $\left(\mu_{r}(1), \nu_{r}(1)\right)=\left(\gamma_{r}(1), \tau_{r}(1)\right)$, too.
Proof. Since $\left(\mu_{r}, \nu_{r}\right): I \rightarrow M$ is a geodesic of the metric $G_{r}+g_{2}$ then $\mu_{r}: I \rightarrow M_{1}$ is a geodesic of G_{r} and $\nu_{r}: I \rightarrow M_{2}$ is a geodesic of g_{2}. Hence from Theorem 3.3 it follows that the curve (γ_{r}, τ_{r}) satisfies Equation (2.3).

As a consequence, we need only to prove that $\left(\gamma_{r}, \tau_{r}\right)$ satisfies Equation (2.2). In fact, we have

$$
\begin{aligned}
& \nabla_{\gamma_{r}} \dot{\gamma}_{r} \stackrel{(3.7)}{=} \\
& \stackrel{-a_{r}^{2}\left(1+r k\left(x_{0}\right)\right)}{2 k\left(x_{0}\right) k^{2} \circ \gamma_{r}} \cdot g_{1}\left(X_{0}, X_{0}\right) \cdot g_{1}^{\sharp}(d k) \circ \gamma_{r} \\
& \stackrel{(3.9)}{=} \frac{-b_{r}^{2}}{2 k^{2} \circ \gamma_{r}} g_{2}\left(Y_{0}, Y_{0}\right) \cdot g_{1}^{\sharp}(d k) \circ \gamma_{r} \\
& \stackrel{(3.8)}{=} \\
& \frac{-1}{2} g_{2}\left(\dot{\tau}_{r}, \dot{\tau}_{r}\right) \cdot g_{1}^{\sharp}(d k) \circ \gamma_{r} .
\end{aligned}
$$

Hence, we put the following definition.
Definition 3.9. Let $\left(\mu_{r}, \nu_{r}\right): I \rightarrow M$ be a geodesic of $G_{r}+g_{2}$ and let $\left(\gamma_{r}, \tau_{r}\right)$ be the geodesic of (M, g) obtained via the reparametrization by the functions φ_{r} and ψ_{r} from $\left(\mu_{r}, \nu_{r}\right)$.

Then, $\left(\gamma_{r}, \tau_{r}\right)$ is called Riemannian geodesic of (M, g).
Remark 3.10. Under the assumptions of the previous theorem we set:

$$
\begin{equation*}
\mu_{r}(0)=x_{0}=\gamma_{r}(0), \dot{\mu}_{r}(0)=X_{0}=X_{r}, \dot{\gamma}_{r}(0)=\widetilde{X}_{r} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{r}(0)=y_{0}=\tau_{r}(0), \dot{\nu}_{r}(0)=Y_{0}=Y_{r}, \dot{\tau}_{r}(0)=\widetilde{Y}_{r} . \tag{3.11}
\end{equation*}
$$

Then we have:

$$
\begin{equation*}
\widetilde{X}_{r}=a_{r} \frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} X_{r} \quad \text { and } \quad \tilde{Y}_{r}=\frac{b_{r}}{k\left(x_{0}\right)} Y_{r} \tag{3.12}
\end{equation*}
$$

With these notations, the first identity of 3.9 can be written as

$$
a_{r}^{2} \frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} \cdot g_{1}\left(X_{r}, X_{r}\right)=b_{r}^{2} g_{2}\left(Y_{r}, Y_{r}\right)
$$

and it is equivalent to

$$
\begin{equation*}
g_{1}\left(\widetilde{X}_{r}, \widetilde{X}_{r}\right)=k\left(x_{0}\right)\left(1+r k\left(x_{0}\right)\right) g_{2}\left(\widetilde{Y}_{r}, \widetilde{Y}_{r}\right) \tag{3.13}
\end{equation*}
$$

The previous equality implies that the geodesic $\left(\widehat{\nu}_{r}, \widehat{\tau}_{r}\right)$ of g, having $\left(x_{0}, y_{0}\right)$ and $\left(a \widetilde{X}_{r}, a \widetilde{Y}_{r}\right)$ as initial conditions, is a Riemannian geodesic of g, for any $a \in \mathbb{R}$.

From Equation (3.13) we get
Remark 3.11. Let $\zeta_{r}=\left(\gamma_{r}, \tau_{r}\right)$ and $\zeta_{s}=\left(\gamma_{s}, \mu_{s}\right)$ be two Riemannian geodesics of g, with $r, s>k_{1}$, such that $\zeta_{r}(0)=\zeta_{s}(0)$.

Then $\zeta_{r}=\zeta_{s}$, if and only if $r=s$.
Theorem 3.12. Suppose k bounded and let $\widetilde{\zeta}=(\gamma, \tau): I \rightarrow M$ be a geodesic of g, such that $\dot{\gamma}(0)=\widetilde{X}_{0}$ and $\dot{\tau}(0)=\widetilde{Y}_{0} \neq 0$.

If

$$
\begin{equation*}
g_{1}(\widetilde{X}, \widetilde{X})>k\left(x_{0}\right) g_{2}(\widetilde{Y}, \widetilde{Y}) \frac{K_{0}-k\left(x_{0}\right)}{K_{0}} \tag{3.14}
\end{equation*}
$$

the curve $\widetilde{\zeta}$ is a Riemannian geodesic of g.
Proof. We set

$$
r=\frac{g_{1}(\widetilde{X}, \widetilde{X})}{k^{2}\left(x_{0}\right) g_{2}(\widetilde{Y}, \widetilde{Y})}-\frac{1}{k\left(x_{0}\right)} .
$$

Then a symple calculation shows that $r>k_{1}$.
Now we consider the curve τ and we set $\nu_{r}=\tau \circ \psi_{r}^{-1}: I \rightarrow M_{2}$, being ψ_{r} defined by γ as in Lemma 3.2.

Since the curve τ verifies Equation (2.3), the curve ν_{r} is a geodesic of g_{2}.
Analogously, we set $\mu_{r}=\gamma \circ \varphi_{r}^{-1}$, with φ_{r} defined by Lemma 3.1, and μ_{r} is a geodesic of G_{r}, in the obvious way.

Finally, the previous contruction implies that (γ, τ) is a Riemannian geodesic of g obtained from the geodesic $\left(\mu_{r}, \nu_{r}\right)$ of $G_{r}+g_{2}$.

Remark 3.13. If k is unbounded from above and one replaces (3.14) by

$$
g_{1}(\widetilde{X}, \widetilde{X})>k\left(x_{0}\right) g_{2}(\widetilde{Y}, \tilde{Y})
$$

the previous theorem holds, again.

4 - Some properties of Riemannian geodesics

Remark 4.1. Let $\mu_{r}: I \rightarrow M_{1}$ be a geodesic of G_{r}, with $r>k_{1}$.
We recall that there exist a geodesic $\sigma_{r}: \mathbb{R} \rightarrow M_{1}$ of G_{r} and $t_{0} \in \mathbb{R}$ such that $\left(\sigma_{r}\left(\left[0, t_{0}\right]\right)=\mu_{r}(I)\right.$, being G_{r} a complete Riemannian metric.

Moreover, it results $\dot{\mu}_{r}(0)=t_{0} \dot{\sigma}_{r}(0)$.
An analogous statement holds for g_{2}.
This implies that the mappings φ_{r} and ψ_{r} defined respectively by Lemmas 3.1 and 3.2 can be extended to diffeomorphims from \mathbb{R} onto \mathbb{R}.

Theorem 4.2. Let $\left(\mu_{r}, \nu_{r}\right): \mathbb{R} \rightarrow M$ be a geodesic of $G_{r}+g_{2}$, with $r>k_{1}$.
Then, for any $\alpha \in \mathbb{R}$, there exist two real numbers $\pm \beta \in \mathbb{R}$, such that the point $\left(\mu_{r}(0), \nu_{r}(0)\right)$ and the point $\left(\mu_{r}(\alpha), \nu_{r}(\pm \beta)\right)$ can be joined by Riemannian geodesics of g.

Proof. We put $\dot{\mu}_{r}(0)=X_{r}$ and $\dot{\nu}_{r}(0)=Y_{r}$ and suppose $\left\|X_{r}\right\|_{1}=\left\|Y_{r}\right\|_{2}=1$, with the obvious meaning of the used symbols and without loss of generality.

Then, for any $\alpha \in \mathbb{R}(\beta \in \mathbb{R})$, the point $\mu_{r}(\alpha)\left(\nu_{r}(\beta)\right)$ is the end point of the geodesic of $G_{r}\left(g_{2}\right)$, determined by the vector $\alpha X_{r}\left(\beta Y_{r}\right)$.

We shall denote by $a_{\alpha r}$ and $b_{\alpha r}$ the constants of Lemmas 3.1 and 3.2 determined by means of the geodesic having $\left(x_{0}, \alpha X_{r}\right)$ as initial condition, respectively.

Then, $X_{\alpha r}$ and $Y_{\beta r}$ verify Condition (3.9), if and only if

$$
\begin{equation*}
a_{\alpha r}^{2} \frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} \alpha^{2}=b_{\alpha r}^{2} \beta^{2} . \tag{4.1}
\end{equation*}
$$

Hence, the assertion follows by computing β from (4.1).

Theorem 4.3. Let $\left(\mu_{r}, \nu_{r}\right): \mathbb{R} \rightarrow M$ be a geodesic of $G_{r}+g_{2}$, with $r>k_{1}$.
Then, for any $\beta \in \mathbb{R}$, there exist two real numbers $\pm \alpha \in \mathbb{R}$, such that the point $\left(\mu_{r}(0), \nu_{r}(0)\right)$ and the point $\left(\mu_{r}(\pm \alpha), \nu_{r}(\beta)\right)$ can be joined by Riemannian geodesics of g.

Proof. The proof is analogous to the previous one.

Corollary 4.4. For any $x_{0}, x_{1} \in M_{1}$, for any $r>k_{1}$, for any geodesic μ_{r} : $I \rightarrow M_{2}$ of G_{r} joining x_{0} and x_{1} and any geodesic $\nu_{r}: \mathbb{R} \rightarrow M_{2}$ of g_{2}, there exists $\beta \in \mathbb{R}$ such that the points $\left(x_{0}, \nu(0)\right)$ and $\left(x_{1}, \nu(\pm \beta)\right)$ can be joined by a Riemannian geodesic of g, obtained in the obvious way from the previous two geodesics.

An analogous statement holds for any $y_{0}, y_{1} \in M_{2}$.
Definition 4.5. Since Corollary 4.4 holds, we shall say that M_{1} is positively and negatively geodesically connected with respect to g.

Analogously, we shall say that M_{2} is positively and negatively geodesically connected with respect to g.

Finally, we shall say that M is partially geodesically connected, when the previous two definitions hold.

Theorem 4.6. Let us consider $x_{0}, x_{1} \in M_{1}$ and let us suppose that there exists a continuous map $X:\left(k_{1},+\infty\right) \rightarrow T_{x_{0}} M_{1}$, such that for any $r \in\left(k_{1},+\infty\right)$ the geodesic $\mu_{r}: I \rightarrow M_{1}$ of G_{r}, determined by the initial condition $\left(x_{0}, X(r)\right)$, joins x_{0} and x_{1} and that μ_{r} is minimizing.

Then, for any $y_{0}, y_{1} \in M_{2}$, there exists a Riemannian geodesic of g joining $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

Proof. Under the assumptions of the theorem, we consider the function $\beta:\left(k_{1}, \infty\right) \rightarrow \mathbb{R}$ defined by setting

$$
\beta(r)=\frac{a_{r}}{b_{r}}\left(\frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} \cdot g_{1}(X(r), X(r))\right)^{\frac{1}{2}}
$$

where a_{r} and b_{r} are obtained respectively by (3.2) and (3.4) along the geodesic $\mu_{r}: I \rightarrow M_{1}$ of G_{r}, for any $r \in\left(k_{1},+\infty\right)$.

Then, β is continuous, too.
Let $\gamma: I \rightarrow M_{1}$ be a minimizing geodesic of g_{1} joining x_{0} and x_{1} and let us set $\dot{\gamma}(0)=X$.

Since all the involved geodesics are minimizing, we have

$$
g_{1}(X, X) a_{r}^{-1} \leq \frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} g_{1}(X(r), X(r)) \leq g_{1}(X, X) \int_{0}^{1} \frac{1+r k(\gamma(t))}{k(\gamma(t))} d t
$$

and

$$
g_{1}(X, X) \frac{a_{r}}{b_{r}^{2}} \leq \beta^{2}(r) \leq g_{1}(X, X) \frac{a_{r}^{2}}{b_{r}^{2}} \int_{0}^{1} \frac{1+r k(\gamma(t))}{k(\gamma(t))} d t
$$

The first of the previous inequalities and $k_{0}>0$ imply

$$
\lim _{r \rightarrow k_{1}} \beta(r)^{2} \geq \lim _{r \rightarrow-K_{0}^{-1}} \frac{k_{0}}{K_{0}^{2}\left(1+r K_{0}\right)}=+\infty \quad \text { and } \quad \lim _{r \rightarrow+\infty} \beta(r)^{2}=0
$$

Hence, it results

$$
\lim _{r \rightarrow k_{1}} \beta(r)=+\infty \quad \text { and } \quad \lim _{r \rightarrow+\infty} \beta(r)=0 .
$$

As a consequence of the well known generalization of the Weistrass β is onto.
Now, we consider two points $y_{0}, y_{1} \in M_{2}$.
If $y_{0}=y_{1}$, the point $\left(x_{0}, y_{0}\right)$ and the point $\left(x_{1}, y_{1}\right)$ can be joined by a Riemannian geodesic of g in a trivial way.

Suppose $y_{0} \neq y_{1}$, then there exists a geodesic $\nu: \mathbb{R} \rightarrow M_{2}$ of g_{2} and there exists $\beta_{0} \in(0,+\infty)$, such that $\nu(0)=y_{0}, g_{2}(\dot{\nu}(0), \dot{\nu}(0))=1$ and $\nu\left(\beta_{0}\right)=y_{1}$.

Then, the geodesic of g_{2} having $\left(y_{0}, \beta_{0} \dot{\nu}(0)\right)$ joins y_{0} and y_{1}.
Finally, we can consider $r_{0} \in\left(k_{1},+\infty\right)$ such that $\beta\left(r_{0}\right)=\beta_{0}$. With this choice the vectors $X_{r_{0}}$ and $Y_{r_{0}}=\beta\left(r_{0}\right) \dot{\nu}(0)$ verify (3.9) and the assertion follows in a trivial way.

Theorem 4.7. Suppose that the manifold M_{1} is connected, has dimension higher than one, non positive sectional curvature and that it is simply connected.

Suppose that M_{2} is connected, too.
Moreover, suppose that $k_{0}>0$ and that

$$
\begin{equation*}
(\nabla d k)(e, e))<\frac{1+4 r k}{2 k(1+r k)} e(k)^{2}+\frac{1}{4 k(1+r k)}\|d k\|_{1}^{2}-k(1+r k) K(\sigma) \tag{4.2}
\end{equation*}
$$

for any $e, e_{2} \in T_{x} M_{1}$, such that $g_{1}(e, e)=1, g_{1}\left(e_{2}, e_{2}\right)=1$ and $g_{1}\left(e, e_{2}\right)=0$, and for any $x \in M_{1}$, being $\sigma=<e, e_{2}>$ the two dimensional subspace spanned by e and e_{2}.

If M_{1} and M_{2} are geodesically connected with respect to the metrics g_{1} and g_{2}, respectively, then for any $z_{0}, z_{1} \in M$ there exists a Riemannian geodesic of g joining z_{1} and z_{2}.

Proof. From the Appendix it follows that the sectional curvature of G_{r} is negative, for any $r>k_{1}$.

Since M_{1} is simply connected, the exponential mapping of G_{r}, $\exp _{x}^{r}: T_{x} M_{1} \rightarrow M_{1}$, is a diffeomorphism, for any $x \in M_{1}$ (see, e.g. [5]).

Because of a theorem on the families of systems of ordinary differential equations continuously depending on a parameter, $\exp _{x}^{r}$ is continuous with respect to $r>k_{1}$, too.

Let us consider $x_{0}, x_{1} \in M_{1}$ and the map $X:\left(k_{1}, \infty\right) \rightarrow T_{x_{0}} M_{1}$ defined by setting $X(r)=\left(\exp _{x_{0}}^{r}\right)^{-1}\left(x_{1}\right)$, for any $r \in\left(k_{1}, \infty\right)$.

Then, X is continuous and the assertion follows from the previous theorem.

REMARK 4.8. Obviously, under the assumption of the previous theorem, for r tending to k_{1} the contribution of $k(\sigma)$ is zero, but the contribution of the second summand tends to $+\infty$.

Suppose that $M_{1}=\mathbb{R}$ and that $g_{1}=d t^{2}$ is the standard metric on \mathbb{R}.
In this case the metric $g=d t^{2}-k(t) g_{2}$ coincides with the FLRW-metric (Friedman-Lemaitre-Robertson-Walker metric), with speed of light $c=1$, used in the Big Bang theories and we have:

Theorem 4.9. If M_{2} is complete with respect to the metric g_{2} and k is bounded from above and bounded from below away from zero, then for any $z_{0}, z_{1} \in M=$ $\mathbb{R} \times M_{2}$ there exists a Riemannian geodesic of g joining z_{1} and z_{2}.

Proof. In this case, the metric tensor G_{r} on \mathbb{R} is given by $G_{r}=\left(k^{-1}+r\right) d t^{2}$, for any $r>-K_{0}^{-1}$.

Let be $r>-K_{0}^{-1}$, then the Equation (2.4) of a geodesic of G_{r} becomes

$$
\ddot{\mu}_{r}=\frac{1}{2\left(k \circ \mu_{r}\right)\left(1+r k \circ \mu_{r}\right)}\left(k^{\prime} \circ \mu_{r}\right) \dot{\mu}_{r}^{2} .
$$

The previous equation admits a first integral given by

$$
\dot{\mu}_{r}=c_{r}\left(\frac{k \circ \mu_{r}}{1+r k \circ \mu_{r}}\right)^{\frac{1}{2}} .
$$

Because of Corollary 2.4, \mathbb{R} is complete with respect to the metric G_{r}.
Hence, we can determine c_{r} as a solution of the equation

$$
c_{r}=\left(x_{1}-x_{0}\right)\left(\int_{0}^{1}\left(\frac{k\left(\mu_{r}(t)\right)}{1+r k\left(\mu_{r}(t)\right)}\right)^{\frac{1}{2}} d t\right)^{-1} .
$$

As a consequence, the mapping $\mu_{r}: I \rightarrow \mathbb{R}$ is strictly increasing, for $x_{1}>x_{0}$ and strictly decreasing, for $x_{1}>x_{0}$, because the function k is bounded from below by $k_{0}>0$.

This implies that $\exp _{x_{0}}^{r}: \mathbb{R} \rightarrow \mathbb{R}$ is a diffeomorphism.
Since $\exp _{x_{0}}^{r}$ depends with continuity from $r \in\left(-K_{0}^{-1},+\infty\right)$, the proof follows as in the previous case.

REMARK 4.10. The previous theorem holds again, if one replaces the metric $d t^{2}$ on \mathbb{R} by the Riemannian metric $f d t^{2}$, being $f: \mathbb{R} \rightarrow \mathbb{R}$ a C^{∞}-differentiable function such that $0<f(t)<c$, for any $t \in \mathbb{R}$, with $c \in \mathbb{R}$.

Now we return to the general case.
Theorem 4.11. Let us consider $r \in\left(k_{1},+\infty\right)$, a geodesic $\mu_{r}: \mathbb{R} \rightarrow M_{1}$ of G_{r} and a geodesic $\nu_{r}: \mathbb{R} \rightarrow M_{2}$ of g_{2}.

If $\left(\mu_{r}\right)_{[0,+\infty)}$ has no auto intersections, there exists a map $\theta_{r}: \mu_{r}([0,+\infty)) \rightarrow$ $\nu_{r}([0,+\infty))$, such that the points $\left(\mu_{r}(0), \nu_{r}(0)\right)$ and $\left(\mu_{r}(t), \theta_{r}\left(\nu_{r}(t)\right)\right)$, can be joined by a Riemannian geodesic of g obtained from the geodesic $\left(\mu_{r}, \nu_{r}\right): \mathbb{R} \rightarrow M$ of $G_{r}+g_{2}$ in the obvious way and the mapping θ_{r} is onto.

Moreover, if ν_{r} has no auto intersections, the mapping θ_{r} is one to one, too.

Proof. Under the assumptions of the theorem, we set $\dot{\mu}_{r}(0)=X_{r}, \dot{\nu}_{r}(0)=Y_{r}$ and we suppose $\left\|X_{r}\right\|_{1}=\left\|Y_{r}\right\|_{2}=1$.

We recall that, for any $t \in \mathbb{R}$, the geodesic μ_{r}^{\prime} of G_{r} determined by the initial conditions $\left(\mu_{r}(0), t X_{r}\right)$, has $\mu_{r}^{\prime}(I) \subseteq \mu_{r}(\mathbb{R})$, joins $\mu_{r}(0)$ and $\mu_{r}(t)$ and the obvious quantities a_{r}^{\prime} and b_{r}^{\prime} are

$$
a_{r}^{\prime}:=\int_{0}^{1} \frac{k}{1+r k} \circ \mu(\xi t) d \xi \quad \text { and } \quad\left(b_{r}^{\prime}\right)^{-1}=\int_{0}^{1} \frac{1}{k \circ \mu_{r}(\xi t)} d \xi
$$

An analogous statement holds for ν_{r}.
Now, we notice that, since μ_{r} has no autointersections, we can consider the map $\mu_{r}^{-1}: \mu_{r}([0,+\infty)) \rightarrow[0,+\infty)$.

Moreover, the Condition (3.9) determines the mapping $\beta:[0,+\infty) \rightarrow \mathbb{R}$, defined by:

$$
\beta(t)=\frac{a_{r}^{\prime}}{b_{r}^{\prime}} \frac{1+r k\left(x_{0}\right)}{k\left(x_{0}\right)} t, \quad \forall t \in[0,+\infty) .
$$

Then, we can set $\theta_{r}=\nu_{r} \circ \beta \circ \mu_{r}^{-1}: \mu_{r}([0,+\infty)) \rightarrow \nu_{r}([0,+\infty))$.
Let us consider $x_{1} \in \mu_{r}([0,+\infty))$, then exists $t \in[0,+\infty)$, such that $\mu_{r}(t)=x_{1}$, hence $t=\mu_{r}^{-1}\left(x_{1}\right)$.

Then, $\beta(t)$ is such that the vectors $t X_{r}$ and $\beta(t) Y_{r}$ verify (3.9).
As a consequence, the points $\left(\mu_{r}(0), \nu_{r}(0)\right)$ and $\left(\mu_{r}(t), \nu_{r}(\beta(t))\right)$ can be joined by a Riemannian geodesic for g obtained from the geodesic $\left(\mu_{r}, \nu_{r}\right)$ of $G_{r}+g_{2}$, with $\nu_{r}(\beta(t))=\nu_{r}\left(\beta\left(\mu_{r}^{-1}\left(x_{1}\right)\right)\right)=\theta_{r}\left(x_{1}\right)$.

5 - Appendix

In this Appendix we prove the following lemma:
Lemma 5.1. Suppose that the dimension of M_{1} is higher than one and that g_{1} has negative sectional curvature.

Then, if k verifies (4.2), G_{r} has negative sectional curvature, for any $r \in$ $\left(k_{1},+\infty\right)$.

Proof. Let $\Xi\left(M_{1}\right)$ be the Lie algebra of vector fields on M_{1}.
Let us consider a connection ∇^{h} of M_{1} and let us suppose $\nabla^{h}=\nabla^{1}+\Pi$.
Then, the curvature tensor field R^{h} of ∇^{h} and the curvature tensor field $\stackrel{1}{R}$ of $\stackrel{1}{\nabla}$ are related by

$$
\begin{aligned}
& R^{h}(X, Y) Z=\stackrel{1}{R}(X, Y) Z+\Pi(X, \Pi(Y, Z))-\Pi(Y, \Pi(X, Z))+ \\
& \left(\nabla_{X} \Pi\right)(Y, Z)-\left(\nabla_{Y} \Pi\right)(X, Z), \quad \forall X, Y, Z \in \Xi\left(M_{1}\right) .
\end{aligned}
$$

Now we suppose that $h: M_{1} \rightarrow \mathbb{R}$ is a C^{∞}-differentiable function and that $h(x)>0$, for any $x \in M_{1}$.

We also suppose that ∇^{h} is the Levi-Civita connection of the metric tensor $h g_{1}$.
Then, we have

$$
\begin{aligned}
\Pi(X, Y)= & \frac{1}{2 h}\left[X(h) Y+Y(h) X-g_{1}(X, Y) g_{1}^{\sharp}(d \log h)\right] \\
& \forall X, Y \in \Xi\left(M_{1}\right) .
\end{aligned}
$$

The two previous identities imply

$$
\begin{aligned}
R^{h}(X, Y) Z= & \stackrel{1}{R}(X, Y) Z \\
& +\frac{1}{2 h}[(\stackrel{1}{\nabla} d h)(X, Z) Y-(\nabla d h)(Y, Z) X \\
& \left.-g_{1}(Y, Z) g_{1}^{\sharp}\left(\nabla_{X}^{1} d h\right)+g_{1}(X, Z) g_{1}^{\sharp}\left(\nabla_{Y}^{1} d h\right)\right] \\
& -\frac{1}{4 h^{2}}[3 Y(h) Z(h) X-3 X(h) Z(h) Y \\
& -Y(h) g_{1}(X, Z) g_{1}^{\sharp}(d h)+X(h) g_{1}(Y, Z) g_{1}^{\sharp}(d h) \\
& \left.+g_{1}(Y, Z)\|d \log h\|_{1}^{2} X-g_{1}(X, Z)\|d \log h\|_{1}^{2} Y\right], \quad \forall X, Y, Z \in \Xi\left(M_{1}\right) .
\end{aligned}
$$

Let $\sigma=<\left\{e_{1}, e_{2}\right\}>$ be a two dimensional subspace of $T_{x} M_{1}$, with $x \in M_{1}$ and let us suppose $\left\|e_{1}\right\|_{1}=\left\|e_{2}\right\|_{1}=1$ and $g_{1}\left(e_{1}, e_{2}\right)=0$.

Then, the sectional curvature of ∇^{h} is

$$
\begin{aligned}
K(\sigma)= & \frac{1}{h} \stackrel{1}{K}(\sigma)-\frac{1}{2 h^{2}}\left[(\stackrel{1}{\nabla} d h)\left(e_{1}, e_{1}\right)+\left({\left.\stackrel{1}{\nabla} d h)\left(e_{2}, e_{2}\right)\right]}-\frac{1}{4 h^{3}}\left[3 e_{1}(h)^{2}+3 e_{2}(h)^{2}-\|d h\|_{1}^{2}\right]\right.\right.
\end{aligned}
$$

being $\stackrel{1}{K}$ the sectional curvature of $\stackrel{1}{\nabla}$.
Now we suppose $h=k^{-1}+r$, where k is the mapping used in the previous numbers and $r>K_{0}^{-1}=k_{1}$.

Then, $d h=-k^{-2} d k$ and $\stackrel{1}{\nabla} d h=2 k^{-3} d k \otimes d k-k^{-2} \stackrel{1}{\nabla} d k$.
Hence, the sectional curvature of G_{r} is

$$
\begin{aligned}
K_{r}(\sigma)= & \frac{k}{1+r k} K^{1}(\sigma)+\frac{1}{2(1+r k)^{2}}\left[\left(\nabla^{1} d k\right)\left(e_{1}, e_{1}\right)+\left(\nabla^{1} d k\right)\left(e_{2}, e_{2}\right)\right] \\
& -\frac{1+4 r k}{4 k(1+r k)^{3}}\left[e_{1}(k)^{2}+e_{2}(k)^{2}\right] \\
& -\frac{1}{4 k(1+r k)^{3}}\|d k\|_{1}^{2}
\end{aligned}
$$

for any two dimensional subspace $\sigma \subseteq T_{x} M_{1}$, for any (e_{1}, e_{2}) basis of σ such that $\left\|e_{1}\right\|_{1}=\left\|e_{2}\right\|_{1}=1$ and $g_{1}\left(e_{1}, e_{2}\right)=0$ and for any $x \in M_{1}$.

As a consequence, the sectional curvature of G_{r} is negative, for any $r>k_{1}$, if and only if

$$
\begin{align*}
& (\nabla d k)\left(e_{1}, e_{1}\right)+(\stackrel{1}{\nabla} d k)\left(e_{2}, e_{2}\right) \\
& <\frac{1+4 r k}{2 k(1+r k)}\left[e_{1}(k)^{2}+e_{2}(k)^{2}\right] \tag{5.1}\\
& \quad+\frac{1}{2 k(1+r k)}\|d k\|_{1}^{2}-2 k(1+r k) K(\sigma)
\end{align*}
$$

We notice that, if the sectional curvature $\stackrel{1}{K}$ of g_{1} is positive, then the Inequality (5.1) can not hold for any $r>k_{1}$.

Hence, we are forced to suppose the g_{1} has either a negative or null sectional curvature.

In this case, the Inequality (5.1) holds, if and only if, it results

$$
\begin{equation*}
(\stackrel{1}{\nabla} d k)(e, e)<\frac{1+4 r k}{2 k(1+r k)} e(k)^{2}+\frac{1}{4 k(1+r k)}\|d k\|_{1}^{2}-k(1+r k) \stackrel{1}{K}(\sigma) ; \tag{5.2}
\end{equation*}
$$

for any $e \in T_{x} M_{1}$, such that $g_{1}(e, e)=1$, for any $e_{2} \in T_{x} M_{1}$, with $g_{1}\left(e_{2}, e_{2}\right)=1$ and $g_{1}\left(e_{1}, e_{2}\right)=0$, and any $x \in M_{1}$, being $\sigma=\left\langle e_{1}, e_{2}\right\rangle$.

REFERENCES

[1] O. M. Amici - B. C. Casciaro - M. Francaviglia: Covariant Second Variation for First Order Lagrangians on Fibred Manifolds II: Generalized Curvature and Bianchi Identities, Rend. Mat., 16 (1996), 637-669.
[2] B. C. Casciaro - M. Francaviglia: Covariant Second Variation for First Order Lagrangians on Fibred Manifolds I: Generalized Jacobi Fields, Rend. Mat., 16 (1996), 233-264.
[3] B. C. Casciaro - J. J. Konderak: Tensorial Formulation of the Calculus of Variation, Univ. Iagiellonicae Acta Math., 4 (2002).
[4] F. Giannoni - P. Piccione - R. Sampalmieri: On the Geodesical Connectedness of Semi Riemannian Manifolds, J. Math. Anal. Appl. (1) 252 (2000), 444-471.
[5] W. Klingenbeg: Riemannian Geometry, Walter de Gruyter, Berlin, 1982.
[6] S. Kobayashi - K. Nomizu: Foundations of Differential Geometry, Vol. I, II, Interscience Publishers 1964, 1967.
[7] B. O'Neill: Semi Riemannian Geometry, with Applications to Relativity, Academic Press, New York, 1983.
[8] H. Rund: The Hamilton-Jacobi Theory in the Calculus of Variations, D. Van Nostrand Company LTD, London, 1966.
[9] L. Bergström, G. Goober: Cosmology and Particle Astrophisycs, Springer Verlag, Berlin, 2004.

Lavoro pervenuto alla redazione il 26 febbraio 2013 ed accettato per la pubblicazione il 4 marzo 2013

Indirizzo Degli Autori:
Oriella M. Amici - Biagio C. Casciaro - Dipartimento di Matematica - Università di Bari Campus Universitario - Via Orabona 4-70125 Bari, Italy
E-mail: casciaro@dm.uniba.it - amici@dm.uniba.it

[^0]: Key Words and Phrases: Semi Riemannian warped product - Geodesics A.M.S. Classification: Primary 53C22, Secondary 53C50.

