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Sum of the generalized harmonic series
with even natural exponent

STEFANO PATRÌ

Abstract: In this paper we deal with real harmonic series, without considering their
complex extension to the Riemann zeta function.
It is well known that the generalized harmonic series are convergent if the exponent is
greater than one, while they are divergent if the exponent is one or less than one.
Further, if the exponent is an even natural number 2k, there exists the sum of the series
in closed form being equal to π2k times a rational number.
This sum was calculated for the first time by Euler (see, for example, [2]) through Taylor’s
expansion of the function sin x/x and then by Fourier through the expansion of suitable pe-
riodic functions. Further, the formula

∑∞
n=1 1/n2 = π2/6 can be proved by using Cauchy’s

Residue Calculus or Weierstraß’ Product Theorem (see, for example, the first five books
in the references of [1]).
In recent times the formula

∑∞
n=1 1/n2 = π2/6 has been proved in many other ways (see

[1, 3, 4, 5, 6]) through elementary goniometric arguments or simple properties of the se-
ries and product expansions. Many of these methods, however, apply only to the case∑∞

n=1 1/n2.
In this paper we obtain the sum of all generalized harmonic series with an even natural
exponent by calculating the eigenvalues of the differential operators derivative of order 2k
defined on a certain Hilbert space and then by inverting such operators, in order to obtain
the sum of the series as trace of the inverse operators.

1 – General Case

To calculate the sum of the generalized harmonic series
∑∞

n=1 1/
(
n2k

)
, let us con-

sider, for each fixed positive k ∈ N, the linear differential operator

T2k :=
d2k

dx2k
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defined on the set

D =

{
u ∈ L2[0, h] :

d2iu(0)

dx2i
=

d2iu(h)

dx2i
= 0 , ∀i = 0, 1, 2, . . . , k − 1

}
∩ C2k(0, h).

Since in this space the general eigenvalues equation

T2kψn(x) = λnψn(x) (1.1)

assumes the form

d2k

dx2k

[
C sin

(nπ

h
x
)]

=
(−1)kn2kπ2k

h2k

[
C sin

(nπ

h
x
)]

,

we recognize that the eigenvalues λn and the eigenfunctions ψn(x) of the linear
operators T2k are

λn =
(−1)kn2kπ2k

h2k
and ψn(x) = C sin

(nπ

h
x
)

respectively.

We observe that equation (1.1) defined on the set D can be seen, in the frame
of quantum mechanics, as a generalization of the time independent Schrödinger’s
equation associated to a free particle on the interval [0, h].

The inverse operator of a differential operator is an integral one and by virtue
of the properties of the inverse operator (in our case T−1), we have

∞∑

n=1

1

λn
=

∞∑

n=1

(−1)kh2k

n2kπ2k
= Tr(T−1

2k ) = Tr

[(
d2k

dx2k

)−1
]

(1.2)

where “Tr” indicates the trace of the operator.

To invert an operator T2k, for fixed k, we have to find the kernel G(x, s) such
that

∫ h

0

G(x, s)

[
d2k

dx2k
u(x)

]
dx = u(s) (1.3)

where G(x, s) is the Green’s function of the operator T2k .

By iterating an integration by parts and using the conditions on the derivatives
of even order for the functions u ∈ D, the left-hand side of the equation (1.3)
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becomes

∫ h

0

G(x, s)

[
d2k

dx2k
u(x)

]
dx

= G(x, s)
d2k−1u(x)

dx2k−1

∣∣∣∣
h

0

− dG(x, s)

dx

d2k−2u(x)

dx2k−2

∣∣∣∣
h

0

+
d2G(x, s)

dx2

d2k−3u(x)

dx2k−3

∣∣∣∣
h

0

− d3G(x, s)

dx3

d2k−4u(x)

dx2k−4

∣∣∣∣
h

0

+ · · · − d2k−1G(x, s)

dx2k−1
u(x)

∣∣∣∣
h

0

+

∫ h

0

[
d2kG(x, s)

dx2k

]
u(x) dx

= G(x, s)
d2k−1u(x)

dx2k−1

∣∣∣∣
h

0

+
d2G(x, s)

dx2

d2k−3u(x)

dx2k−3

∣∣∣∣
h

0

+ · · · +
d2k−2G(x, s)

dx2k−2

du(x)

dx

∣∣∣∣
h

0

+

∫ h

0

[
d2kG(x, s)

dx2k

]
u(x) dx.

By imposing on the Green’s function the 2k boundary conditions

d2iG(x, s)

dx2i

∣∣∣∣
x=0

=
d2iG(x, s)

dx2i

∣∣∣∣
x=h

= 0 (1.4)

for all i = 0, 1, 2, . . . , k − 1 , the left-hand side of the equation (1.3) becomes

∫ h

0

G(x, s)

[
d2k

dx2k
u(x)

]
dx =

∫ h

0

[
d2kG(x, s)

dx2k

]
u(x) dx. (1.5)

By substituting the (1.5) into the (1.3), we obtain

∫ h

0

[
d2kG(x, s)

dx2k

]
u(x) dx = u(s) =

∫ h

0

δ(x − s) u(x) dx (1.6)

from which the relation
d2kG(x, s)

dx2k
= δ(x − s) (1.7)

follows, where δ(x − s) is the Dirac’s δ-function.

The solution of (1.7) is

G(x, s) =

{
G−(x, s) if x ∈ [ 0, s ]

G+(x, s) if x ∈ [ s, h ]
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where G−(x, s) and G+(x, s) are two polynomials of degree 2k − 1 with respect to
the variable x, that is

G−(x, s) = P2k−1(x) and G+(x, s) = Q2k−1(x).

By integrating (1.7) with ε > 0, we obtain the equation

∫ s+ε

s−ε

d2kG(x, s)

dx2k
dx =

∫ s+ε

s−ε

δ(x − s) dx

from which, in the limit ε → 0+, the jump discontinuity condition

d2k−1Q2k−1(x)

dx2k−1

∣∣∣∣
s

− d2k−1P2k−1(x)

dx2k−1

∣∣∣∣
s

= 1 (1.8)

follows.
By substituting the solution G(x, s) of the equation (1.7) into the left-hand side

of the (1.6), we obtain

∫ s

0

[
d2kP2k−1(x)

dx2k

]
u(x) dx +

∫ h

s

[
d2kQ2k−1(x)

dx2k

]
u(x) dx = u(s). (1.9)

By iterating an integration by parts and using the 2k conditions (1.4) with the
properties of the set D, the equation (1.9) becomes

[P2k−1(x)−Q2k−1(x)]
d2k−1u(x)

dx2k−1

∣∣∣∣
s

−
[
dP2k−1(x)

dx
− dQ2k−1(x)

dx

]
d2k−2u(x)

dx2k−2

∣∣∣∣
s

+

[
d2P2k−1(x)

dx2
− d2Q2k−1(x)

dx2

]
d2k−3u(x)

dx2k−3

∣∣∣∣
s

− · · · + u(s) = u(s)

(1.10)

where the last term of the left-hand side has coefficient 1 by virtue of (1.8).
The kernel G(x, s) of the inverse operator given in the (1.3) is then

G(x, s) =

{
P2k−1(x) if x ∈ [ 0, s ]

Q2k−1(x) if x ∈ [ s, h ]

where the 4k parameters (2k parameters for each polynomial) are obtained as solu-
tion of the algebraic linear system consisting of the 4k linear equations representing
the boundary conditions (1.4) in 0 and h, the continuity in x = s of the derivatives
up to the order 2k − 2 for the (1.10) to be an identity and the jump discontinuity
in x = s of the derivative of order 2k − 1.
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This linear system is then of the form

d2iP2k−1(x)

dx2i

∣∣∣∣
0

=
d2iQ2k−1(x)

dx2i

∣∣∣∣
h

= 0 (1.11a)

djP2k−1(x)

dxj

∣∣∣∣
s

=
djQ2k−1(x)

dxj

∣∣∣∣
s

(1.11b)

d2k−1Q2k−1(x)

dx2k−1

∣∣∣∣
s

− d2k−1P2k−1(x)

dx2k−1

∣∣∣∣
s

= 1 (1.11c)

for all i = 0, 1, 2, . . . , k − 1 and for all j = 0, 1, 2, . . . , 2k − 2.
At this point, in analogy with the case of finite dimension in which the trace of

an endomorphism A = (aρσ) is given by the sum of its diagonal elements, that is

Tr(A) =
∑

σ aσσ, the trace of the inverse operator
(
d2k/dx2k

)−1
is then

Tr

[(
d2k

dx2k

)−1
]

=

∫ h

0

G(s, s) ds. (1.12)

By substituting the trace obtained in the right-hand side of (1.12) into the equation
(1.2) and simplifying the factors (−1)k, π2k, h2k, we finally obtain the sum of the
generalized harmonic series

∞∑

n=1

1

n2k
.

2 – First example: case of exponent m = 2

Let us consider the linear differential operator

T2 :=
d2

dx2

and its eigenvalues equation having the form

d2

dx2

[
C sin

(nπ

h
x
)]

= − n2π2

h2

[
C sin

(nπ

h
x
)]

,

with the eigenvalues

λn = − n2π2

h2
.

It then follows
∞∑

n=1

1

n2
= − π2

h2

{
Tr

[(
d2

dx2

)−1
] }

. (2.1)
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In order to invert the operator T2, we have to determine its Green’s function

G(x, s) =

{
ax + b if x ∈ [ 0, s ]

a′x + b′ if x ∈ [ s, h ]

and have to solve the corresponding algebraic linear system given by the equations
(1.11a), (1.11b) and (1.11c), whose form for this case is





b = 0

a′h + b′ = 0

as + b = a′s + b′

a′ − a = 1.

The solution of this algebraic linear system is

a =
s − h

h
, b = 0, a′ =

s

h
, b′ = −s.

Then we have

G(x, s) =





(s − h)x

h
if x ∈ [ 0, s ]

sx

h
− s if x ∈ [ s, h ].

According to (1.12), the trace of the inverse operator (T2)
−1 is then

Tr
[
(T2)

−1
]

=

∫ h

0

G(s, s) ds =

∫ h

0

(
s2

h
− s

)
ds = − h2

6
. (2.2)

By substituting (2.2) into (2.1), we finally obtain the well-known result

∞∑

n=1

1

n2
=

π2

6
.

3 – Second example: case of exponent m = 4

Let us consider the linear differential operator

T4 :=
d4

dx4

and its eigenvalues equation having the form

d4

dx4

[
C sin

(nπ

h
x
)]

=
n4π4

h4

[
C sin

(nπ

h
x
)]

,
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with the eigenvalues

λn =
n4π4

h4
.

It then follows
∞∑

n=1

1

n4
=

π4

h4

{
Tr

[(
d4

dx4

)−1
] }

. (3.1)

In order to invert the operator T4, we have to determine its Green’s function

G(x, s) =

{
ax3 + bx2 + cx + d x ∈ [ 0, s ]
a′x3 + b′x2 + c′x + d′ x ∈ [ s, h ]

and have to solve the corresponding algebraic linear system given by the equations
(1.11a), (1.11b) and (1.11c), whose form for this case is





d = 0

a′h3 + b′h2 + c′h + d′ = 0

b = 0

6a′h + 2b′ = 0

as3 + bs2 + cs + d = a′s3 + b′s2 + c′s + d′

3as2 + 2bs + c = 3a′s2 + 2b′s + c′

6as + 2b = 6a′s + 2b′

6a′ − 6a = 1.

The solution of this algebraic linear system is

a =
1

6

( s

h
− 1

)
, b = 0, c =

s3

6h
+

hs

3
− s2

2
, d = 0

a′ =
s

6h
, b′ =

−s

2
, c′ =

s3

6h
+

hs

3
, d′ =

−s3

6
.

Then we have

G(x, s) =





1

6

( s

h
− 1

)
x3 +

(
s3

6h
+

hs

3
− s2

2

)
x if x ∈ [ 0, s ]

sx3

6h
− sx2

2
+

(
s3

6h
+

hs

3

)
x − s3

6
if x ∈ [ s, h ].

The trace of the inverse operator (T4)
−1 is then

Tr

[(
d4

dx4

)−1
]

=

∫ h

0

(
s4

3h
− 2s3

3
+

hs2

3

)
ds =

h4

90
. (3.2)
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By substituting (3.2) into (3.1), we finally obtain the well-known result

∞∑

n=1

1

n4
=

π4

90

REFERENCES

[1] Boo Rim Choe: An Elementary Proof of
∑∞

k=1 1/k2 = π2/6, The American Mathe-
matical Monthly, (7) 94 (1987), 662–663.

[2] P. Eymard – J. P. Lafon: The Number π, American Mathematical Society, 2004.
[3] D. P. Giesy: Still Another Elementary Proof That

∑∞
k=1 1/k2 = π2/6, Mathematics

Magazine, (3) 45 (1972), 148–149.
[4] Y. Matsuoka: An Elementary Proof of the Formula

∑∞
k=1 1/k2 = π2/6, The Ameri-

can Mathematical Monthly, (5) 68 (1961), 485–487.
[5] I. Papadimitriou: A Simple Proof of the Formula

∑∞
k=1 1/k2 = π2/6, The American

Mathematical Monthly, (4) 80 (1973), 424–425.
[6] E. L. Stark: Proof of the Formula

∑∞
k=1 1/k2 = π2/6, The American Mathematical

Monthly, (5) 76 (1969), 552–553.

Lavoro pervenuto alla redazione il 8 maggio 2012
ed accettato per la pubblicazione il 20 settembre 2012

Indirizzo dell’Autore:
Stefano Patr̀ı – Methods and Models for Economics – Territory and Finance “Sapienza” University
of Rome – Italy – Email address: stefano.patri@uniroma1.it


