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Abstract: Let G be a finite group, K a subgroup and (σ, V ) an irreducible represen-
tation of K. Then the Hecke algebra associated with the triple (G, K, σ) is the commutant
of the induced representation IndG

Kσ. In [3] Curtis and Fossum derived several explicit ex-
pressions for the characters of Hecke algebras. In the present paper we give an exposition
of their results (see also [5], pp. 279-291) in the language of finite harmonic analysis. In
particular, we show the connection with the theory of finite Gelfand pairs.

1 – Introduction

Let K ≤ G be finite groups and denote by X = G/K the corresponding homoge-
neous space. A function f : G −→ C is said to be bi-K-invariant if f(k1gk2) = f(g)
for all g ∈ G, k1, k2 ∈ K. The bi-K-invariant functions form an algebra under con-
volution that coincides with the commutant of the permutation representation of G
on X. In other words, any G-invariant operator on X is given by the convolution
with a suitable bi-K-invariant kernel.

We recall that (G, K) is a (finite) Gelfand pair when the permutation repre-
sentation of G on the space G/K decomposes without multiplicity; equivalently,
when the algebra of bi-K-invariant functions is commutative. In this setting it is
possible to develop a harmonic analysis based on a particular basis of the space of
bi-K-invariant functions constitued by the so called spherical functions. The the-
ory of spherical functions has many applications; we refer to ([6, 13, 1]) for complete
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expositions. In [9, 10, 11] and [12] we extended the theory of spherical functions to
homogeneous spaces whose associated permutation representation decomposes with
multiplicity and gave several applications, mainly to probability and statistics. One
of the goals of the present paper is to show how the results in [3] may be seen as
generalizations of the theory of spherical functions associated with finite Gelfand
pairs.

The plan of the paper is the following. In Section 2 we give some basic results on
idempotents in a finite dimensional algebra focusing on the case of the commutant
of a representation of a finite group. In Section 3 we show the connection between
idempotents and ideals in the group algebra. In Section 4 we give the results in [3] for
general Hecke algebras, showing the connections between the irreducible characters
of the Hecke algebra and the irreducible characters of the group. In Section 4.1 we
focus to the case of Hecke algebras that are commutant of induced representations
of one-dimensional representations. In this case, the results of the general case may
be formulated in a form suitable for applications. The last two sections contain
new material with respect to our original sources. In Section 4.2, we show how the
results in [3] are even more transparent when the Hecke algebra is the commutant
of a permutation representation. In the final section we treat the case of a finite
Gelfand pair and we show that the main formulas in [3] generalized the well known
formulas that express a character in terms of the corresponding spherical function
and the spherical function in terms of the character.

In the present paper we assume that all representations are complex and unitary.
We use the notation in our books [1] and [2], where one can find introductions to
representation theory of both finite groups and finite dimensional associative alge-
bras and to finite harmonic analysis.

2 – Ideals and idempotents

We begin by recalling some basic facts on idempotents in unitary spaces (see [7]).
Let V be a complex vector space endowed with a hermitian scalar product and
denote by End(V ) the vector space of all linear operators T : V → V . E ∈ End(V )
is called an idempotent when E2 = E. If E is an idempotent then V = RanE ⊕
KerE (with direct sum) and E is the projection on RanE along KerE. Moreover,
Ran(I −E) = KerE, Ker(I −E) = RanE, I −E is also an idempotent and it is the
projection on KerE along RanE. Conversely, if V = V1⊕V2 then the projection of V1

along V2 is an idempotent. An idempotent E ∈ End(V ) is an orthogonal projection
when RanE ⊥ KerE and this is equivalent to E being selfadjoint. If E1, E2 are
idempotents we have E1E2 = 0 if and only if RanE2 ≤ KerE1; in particular, if
E1E2 = E2E1 = 0 then RanE1 ∩ RanE2 = {0}. From these observations we
immediately deduce the following fact.
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Lemma 2.1. Let E, E1 and E2 be idempotents and suppose that E1E2 = E2E1 =
0 and E = E1 + E2. Then RanE = RanE1 ⊕ RanE2.

Let G be a finite group and denote by (σ, U) an irreducible representations of
G. The commutant of (σ, U) is the algebra HomG(U, U) of all linear operators in
End(U) that commute with the action of G:

HomG(U, U) = {T ∈ End(U) : σ(g)T = Tσ(g), ∀g ∈ G}.

An idempotent E ∈ HomG(U, U) is primitive when the condition E = E1 + E2,
with E1, E2 idempotents in HomG(U, U) and E1E2 = E2E1 = 0, always implies
that either E1 = 0 or E2 = 0. If E is an idempotent in HomG(U, U) then

IE = {A ∈ HomG(U, U) : AE = A}

is a left ideal of HomG(U, U). It is easy to see that

IE = {A ∈ HomG(U, U) : KerA ⊇ KerE}

because AE = A if and only if KerA ⊇ KerE.
We introduce the Hilbert-Schmidt hermitian scalar product on HomG(U, U) by

setting, for A, B ∈ HomG(U, U),

〈A, B〉HS = tr(B∗A)

where B∗ is the adjoint of B and tr denotes the trace. Notice that if I is a left ideal
of HomG(U, U) then also I⊥ = {B ∈ HomG(U, U) : 〈A, B〉HS = 0, ∀A ∈ I} is a left
ideal.

Lemma 2.2. Let I be a left ideal of HomG(U, U) and denote by E the orthogonal
projection from HomG(U, U) onto I. Then

E(AB) = AE(B) (2.1)

for all A, B ∈ HomG(U, U).

Proof. It follows immediately from the following two observations:

AE(B) ∈ I;
AB − AE(B) = A[B − E(B)] ∈ I⊥,

for all A, B ∈ HomG(U, U). !
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If W ≤ U we denote by EW the orthogonal projection onto W . Note that
EW belongs to HomG(U, U) if and only if W is a σ-invariant subspace. In the
following propositions we will formulate certain results, that connect idempotents
E ∈ HomG(U, U) and σ-invariant subspaces in U .

Proposition 2.3.

1. The map W ,→ EW is a linear bijection between the σ-invariant subspaces and the
orthogonal projections in HomG(U, U). Moreover, W is irreducible if and only
if EW is primitive. This in turn is equivalent to the fact that every idempotent
E ∈ HomG(U, U), with RanE = W , is primitive.

2. The map E ,→ IE is a linear bijection between the space of orthogonal idem-
potents and the left ideals in HomG(U, U). Moreover, the ideal IE is minimal
(i.e. it does not contain nontrivial ideals) if and only if E is primitive. This in
turn is equivalent to the fact that every idempotent F ∈ HomG(U, U), such that
IF = IE, is primitive.

Proof. (1) The first part is obvious. Suppose that W is irreducible and that
E ∈ HomG(U, U) is an idempotent such that RanE = W . If E = E1 + E2 with
E1, E2 ∈ HomG(U, U) idempotent and E1E2 = E2E1 = 0 then by Lemma 2.1 we
have W = RanE1 ⊕ RanE2 and RanE1, RanE2 are σ-invariant. Therefore either
RanE1 = {0} or RanE2 = {0}, and E is primitive. Conversely, assume that E ∈
HomG(U, U) is a primitive idempotent and set W = RanE. Suppose that W1 ≤ W
is σ-invariant and let E1 : U → W1 be the orthogonal projection onto W1. Set
E2 = E −E1 so that E1, E2 ∈ HomG(U, U), they are idempotents E = E1 +E2 and
E1E2 = E2E1 = 0. Since E is primitive either E1 = 0 (and W1 = {0}) or E2 = 0
and W1 = W . Therefore W is irreducible.

(2) The proof is similar to (1) and we limit ourselves to prove that for every
ideal I there exists an idempotent E such that I = IE . Let E be as in Lemma 2.2.
Setting E = E(IU ) we have

A ∈ I ⇔ A = E(A) = E(AIU ) =(∗) AE(IU ) = AE

where =(∗) follows from (2.1). Moreover

E2 = E(IU )E(IU ) = E(E(IU )) = E(IU ) = E

proving that E is an idempotent and that I = IE . !

Proposition 2.4. Suppose that W1, W2 ≤ U are two σ-invariant subspaces and
that E1, E2 ∈ HomG(U, U) are two idempotents such that RanEi = Wi, i = 1, 2.
Then, setting

V = {T ∈ HomG(U, U) : E2TE1 = T} ≡ {E2TE1 : T ∈ HomG(U, U)},
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the map
V → HomG(W1, W2)
T ,→ T |W1

is a linear isomorphism. If W1 = W2 then it is also an isomorphism of algebras.

Proof. If T ∈ V then T |W1 ∈ HomG(W1, W2) and T |W1 = 0 if and only if T =
0. Suppose that T ∈ HomG(W1, W2) and extend it to an operator T̃ ∈ HomG(U, U)
by setting T̃ v = 0 for all v ∈ KerE1. Then we have

T̃ v = T̃E1v = E2T̃E1v, ∀v ∈ U,

that is T̃ ∈ V and certainly T̃ |W1
= T . !

Proposition 2.5. Suppose that E ∈ HomG(U, U) is an idempotent. Then the
following facts are equivalent:

1. W = RanE is σ-irreducible;
2. ETE is a multiple of E for all T ∈ HomG(U, U);
3. the algebra {T ∈ HomG(U, U) : ETE = T} is isomorphic to C.

Proof. By Schur’s Lemma we have RanE is irreducible if and only if
HomG(W, W ) ∼= C and by Proposition 2.4 HomG(W, W ) = {T ∈ HomG(W, W ) :
ETE = T} ≡ {ETE : T ∈ HomG(W, W )}. !

Let Ĝ be a complete system of pairwise inequivalent irreducible representations
of G. We recall [1, 2], that if U =

⊕
θ∈J mθVθ is the decomposition of U into

irreducible G-representations, where J ⊆ Ĝ and mθ = dim HomG(Vθ, U) is the
multiplicity of Vθ in U , then

HomG(U, U) ∼=
⊕

θ∈J

HomG(mθVθ, mθVθ) ∼=
⊕

θ∈J

Mmθ,mθ
(C), (2.2)

where Mmθ,mθ
(C) is the full matrix algebra of (mθ × mθ)-complex matrices. In

particular, if Eθ : U → mθVθ is the orthogonal projection from U onto mθVθ, then
{Eθ : θ ∈ J} is a basis for the center of HomG(U, U).

An idempotent E ∈ HomG(U, U) is central when it belongs to the center of
HomG(U, U). A central idempotent E ∈ HomG(U, U) is primitive when every de-
composition E = E1 +E2, with E1, E2 central idempotents and E1E2 = E2E1 = 0,
is trivial, that is E1 = 0 or E2 = 0. Note that a central primitive idempotent is
not necessarily a primitive idempotent. The following proposition is an immediate
consequence of the above considerations.

Proposition 2.6. If Eθ is as above, then {Eθ : θ ∈ J} are precisely the primitive
idempotents in HomG(U, U).



32 FABIO SCARABOTTI – FILIPPO TOLLI [6]

For the representation theory of HomG(U, U) we refer to the first chapter of [2].
Here we limit ourselves to point out that the irreducible character associated with
θ ∈ J is given by:

χθ(T ) =

mθ∑

i=1

tθi,i,

for all T ∈ HomG(U, U), where (tθi,j)i,j=1,...,mθ
∈ Mmθ,mθ

(C) is given by the iso-
morphism (2.2).

3 – Ideals and idempotents in a group algebra

In this section we apply the previous analysis to the particular case of the regular
representation of a finite group G. The group algebra L(G) is the vector space
{f : G → C} endowed with the convolution product:

f ∗ φ(g) =
∑

h∈G

f(gh)φ(h−1)

for all f, φ ∈ L(G) and g ∈ G. For g ∈ G, the Dirac function δg centered at g is

defined by setting δg(h) =

{
0 if h 3= g

1 if h = g.
Observe that the δ1G

is the unit element

of L(G).
We denote by λ the left regular representation of G on L(G), that is,

[λ(g)f ](t) = f(g−1t)

for all g, t ∈ G and f ∈ L(G). It is easy to see that a subspace V ⊆ L(G) is
λ-invariant if and only if it is a left ideal of L(G); if it is a minimal ideal if and only
if λ-irreducible. In what follows, we set

f̌(g) = f(g−1)

for all f ∈ L(G) and g ∈ G; moreover for φ ∈ L(G) we denote by Tφ the corre-
sponding convolution operator, that is

Tφf = f ∗ φ

for all f ∈ L(G). We recall the following fundamental isomorphism ([1]):

Theorem 3.1. The map

L(G) → HomG(L(G), L(G))
φ ,→ Tφ

(3.1)

is an antiisomorphism of algebras.
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A function ψ ∈ L(G) is called idempotent if ψ∗ψ = ψ. By the above theorem we
have that ψ is an idempotent if and only if the corresponding convolution operator
E = Tψ is an idempotent; moreover, it is easy to check that E is an orthogonal
projection if and only if ψ̌ = ψ. An idempotent is primitive if ψ = ψ1 + ψ2 with
ψ1, ψ2 idempotents such that ψ1 ∗ ψ2 = ψ2 ∗ ψ1implies that ψ1 = 0 or ψ2 = 0.

In the next proposition we collect the main properties of left ideals in the group
algebra L(G). They are just a reformulation of the results of the Section 2, taking
into account Theorem 3.1 (and other observations made in this section).

Proposition 3.2.

1. If ψ ∈ L(G) is an idempotent then V = L(G) ∗ ψ is a left ideal in L(G) and
every left ideal of L(G) may be represented in this way;

2. V = L(G)∗ψ is minimal (that is, it is λ-irreducible) if and only if ψ is primitive;
3. V = L(G) ∗ ψ is minimal if and only if the algebra ψ ∗ L(G) ∗ ψ is isomorphic

to C;
4. if ψ1, ψ2 are two idempotents and V1, V2 the respective ideals, then the map

ψ2 ∗ L(G) ∗ ψ1 → HomG(V1, V2)
φ ,→ Tφ

(3.2)

is a linear bijection and it is an antiisomorphism when V1 = V2.

Definition 3.3. Let (σ, U) be a representation of G and f ∈ L(G). The Fourier
transform of f at (σ, U) is the linear operator on U defined by setting

σ(f) =
∑

g∈G

f(g)σ(g).

We can reconstruct the function f from its Fourier transform by the Fourier inver-
sion formula ([1]):

f(g) =
1

|G|
∑

σ∈Ĝ

dσtr[σ(g−1)σ(f)]

for all g ∈ G, where dσ denotes the dimension of σ ∈ Ĝ.

Note that ψ ∈ L(G) is an idempotent (resp. orthogonal projector) if and only if
σ(ψ) is an idempotent (resp. orthogonal projector). Moreover the Fourier transform
is multiplicative: σ(f1 ∗ f2) = σ(f1)σ(f2) for all f1, f2 ∈ L(G).

We recall the following fundamental results (see [2]).
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Lemma 3.4. Let L(G) =
⊕

σ∈Ĝ dσUσ be the isotypic decomposition of the regular
representation. Then we have:

1. The orthogonal projection Eσ : L(G) → dσUσ is given by

Eσf(g) =
dσ

|G| tr[σ(g−1)σ(f)]

for all f ∈ L(G) and g ∈ G;
2. The map

dσUσ → Hom(Uσ, Uσ)
f ,→ σ(f)

(3.3)

is an (explicit) isomorphism of vector spaces;
3. The restriction of the map in Theorem 3.1 to the isotypic component dσUσ has

range isomorphic to HomG(dσUσ, dσUσ).

We end this section by introducing the following notation: given a G-representation
σ and a function f ∈ L(G) we set

χσ(f) =
∑

g∈G

χσ(g)f(g) = tr[σ(f)] (3.4)

where χσ denotes the character of the representation σ.

4 – Hecke algebras

In this section we introduce the notion of the Hecke algebra associated to the induced
representation from a subgroup.

Lemma 4.1. Let G be a group and K ≤ G a subgroup. Suppose that V is a left
ideal in L(K) and ψ ∈ L(K) an idempotent that generates V . Then IndG

KV ≡ {f ∈
L(G) : f ∗ ψ = f}. In other words, ψ (which is clearly an idempotents in L(G))
generates IndG

KV as a left ideal in L(G).

Proof. Recall that
L(G) → IndG

KL(K)
f ,→ F

(4.1)

where F (g, k) = f(gk), is an explicit linear isomorphism. Indeed, IndG
KL(K) is the

set of all functions F : G × K → C such that F (gk1, k) = F (g, k1k) and (4.1) is a
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particular case of transitivity of induction (see [2, Proposition 1.6.6]). Then, in the
correspondence f ,→ F , we have

f ∈ IndG
KV ⇔ F (g, k) =

∑

t∈K

F (g, kt−1)ψ(t)

⇔ f(gk) =
∑

t∈K

f(gkt−1)ψ(t)

⇔ f = f ∗ ψ. !

Lemma 4.2. Keeping the same assumptions of the previous lemma, suppose that
(σ, U) is a representation of G. Then the map

HomK(V, ResG
KU) → σ(ψ)U

T ,→ T (ψ)

is a linear isomorphism of vector spaces.

Proof. Denote by λK the left regular representation of K. Note that we have
TλK(k) = σ(k)T , for every T ∈ HomK(V, ResG

KU), and therefore

T (ψ) = T

(∑

k∈K

ψ(k)δk

)

=
∑

k∈K

ψ(k)T (δk)

=
∑

k∈K

ψ(k)T [λK(k)δ1K
]

=
∑

k∈K

ψ(k)σ(k)T (δ1K
)

= σ(ψ)T (δ1K
) ∈ σ(ψ)U.

Moreover, for every f ∈ V we have:

T (f) = T (f ∗ ψ)

= T

(∑

k∈K

f(k)λK(k)ψ

)

=
∑

k∈K

f(k)σ(k)T (ψ)

= σ(f)T (ψ),

and therefore T is determined by T (ψ) and the map T ,→ T (ψ) is injective.
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To prove that this map is also surjective, we show that, for u ∈ U , the map
T : V → U , T (f) = σ(f)σ(ψ)u for all f ∈ V , belongs to HomK(V, ResG

KU). Indeed,
we have

T (f) = σ(f ∗ ψ)u = σ(f)u

and therefore, for k ∈ K, we have

T [λK(k)f ] = σ[λK(k)f ]u

= σ(δk ∗ f)u

= σ(k)σ(f)u

= σ(k)T (f).
!

Corollary 4.3. If (σ, U) is irreducible, then the multiplicity of U in IndG
KV is

equal to

1. dim HomG(U, IndG
KV );

2. dim[σ(ψ)U ];
3. χσ(ψ).

Proof. (1) it is well known.

(2) it follows from (1), Frobenius reciprocity and the preceding lemma.

Since σ(ψ) : U → σ(ψ)U is the projection of U onto σ(ψ)U , we have also

dim[σ(ψ)U ] = tr[σ(ψ)] = χσ(ψ).

This proves (3). !

Definition 4.4. Let K ≤ G and ψ be an idempotent in L(K). Then the
Hecke algebra H(G, K, ψ) is the subalgebra ψ ∗ L(G) ∗ ψ of L(G). Clearly the
antiisomorphism (3.2), the decomposition in (2.2) and Lemma 4.1 ensure us that

H(G, K, ψ) ∼= HomG(IndG
KV, IndG

KV ).

Remark 4.5. Often, it is used the notation H(G, K, χ), where χ is the character
of the representation of K on L(K) ∗ ψ; see [4].

In the same notation of Lemma 4.1, suppose that IndG
KV =

⊕
σ∈J mσUσ is the

decomposition of IndG
KV into irreducible G-representations (i.e. J ⊆ Ĝ and mσ is

the multiplicity of σ in IndG
KV ). Let dσUσ be the σ-isotypic component in L(G).
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Lemma 4.6.

1. mσUσ = {f ∗ ψ : f ∈ dσUσ};
2. the map

{φ ∈ dσUσ : ψ ∗ φ ∗ ψ = φ} → HomG(mσUσ, mσUσ)
φ ,→ Tφ|mσUσ

is an antiisomorphism.

Proof. 1) Clearly, mσUσ ⊆ dσUσ and therefore from Lemma 4.1 we deduce
that

mσUσ = {f ∈ dσUσ : f ∗ ψ = f} = {f ∗ ψ : f ∈ dσUσ}.

2) dσUσ is a two sided ideals of L(G) (isomorphic to End(Uσ)) and therefore by
virtue of Proposition 3.4

dσUσ → HomG(dσUσ, dσUσ)
φ ,→ Tφ

is an antiisomorphism of algebras. Then we can apply (3.2) (mσUσ is a left ideal
in dσUσ) noting also that we can replace ψ with the orthogonal projection onto
dσUσ. !

Lemma 4.7. An idempotent ξ ∈ H := H(G, K, ψ) is primitive in H if and only
if it is primitive in L(G).

Proof. Since ξ = ψ ∗ ξ ∗ ψ = ξ ∗ ψ = ψ ∗ ξ, we have

ξ ∗ L(G) ∗ ξ = ξ ∗ ψ ∗ L(G) ∗ ψ ∗ ξ

= ξ ∗ H ∗ ξ.

Then the lemma is a consequence of Proposition 3.2 and Proposition 2.5. !

Lemma 4.8. Let φ ∈ H(G, K, ψ) and consider the convolution operator Tφ as-
sociated with φ. If the restriction of Tφ to the isotypic component mσUσ is the null
operator, then σ(φ) = 0.

Proof. Indeed, for all f ∈ dσUσ we have that f ∗ ψ ∈ mσUσ and thus

σ(f)σ(φ) = σ(f)σ(ψ ∗ φ)

= σ(f ∗ ψ ∗ φ)

= 0.

Since {σ(f) :f ∈dσUσ}∼=Hom(Uσ, Uσ) (see (3.3)) we necessarily have σ(φ)=0. !
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Corollary 4.9.

HomG(mσUσ, mσUσ) ∼= {φ ∈ dσUσ : ψ ∗ φ ∗ ψ = φ}.

In other words, if φ ∈ H(G, K, ψ) and

Tφ|mθUθ
= 0 (4.2)

for all θ ∈ J \ {σ}, then φ ∈ dσUσ.

Proof. Using Lemma 4.8 we deduce from (4.2) that θ(φ) = 0 if θ ∈ J \ {σ}.
If θ 3∈ J then we have that f ∗ ψ = 0 for all f ∈ mθUθ which immediately implies
that θ(φ) = 0. These facts force φ ∈ dσUσ (see (1) in Lemma 3.4). !

Let E be an idempotent on a vector space U of dimension d. Suppose that
T ∈ Hom(U, U) satisfies T = ETE. Then KerT ⊇ KerE and RanT ⊆ RanE.
Let {u1, u2, . . . , ud} be a basis of U such that {u1, u2, . . . , um} is a basis of RanE
and {um+1, um+2, . . . , ud} is a basis of KerE. Let (ti,j)i,j=1,2,...,d be the matrix
representing T in the basis {u1, u2, . . . , ud}, that is

Tui =

d∑

j=1

ti,juj .

Observe that ti,j = 0 if i > m or j > m and therefore

{T ∈ Hom(U, U) : T = ETE} ∼= Mm,m(C).

These considerations applied to the case E = σ(ψ) and T = σ(φ) lead to the proof
of the following lemma.

Lemma 4.10. Let {u1, u2, . . . , udσ
} be a basis of Uσ such that {u1, u2, . . . , umσ

}
is a basis of σ(ψ)Uσ and {umσ+1, umσ+2, . . . , udσ

} is a basis of Kerσ(ψ). Then the
map

{φ ∈ dσUσ : ψ ∗ φ ∗ ψ = φ} → Mmσ,mσ (C)

φ ,→ (tφi,j)i,j=1,2,...,mσ

where tφi,j are the coefficients of σ(φ) in the basis {u1, u2, . . . , udσ
}, is an explicit

isomorphism.

Corollary 4.11. The irreducible characters of H ∼=
⊕

σ∈J Mmσ,mσ (C) are
given by the restrictions of the characters of the representations in J .



[13] Hecke algebras and harmonic analysis on finite groups 39

For each σ ∈ J , we define ϕσ by setting (recall (3.4))

ϕσ(φ) = χσ(φ) =
∑

g∈G

φ(g)χσ(g) = tr[σ(φ)].

By virtue of Corollary 4.11 {ϕσ : σ ∈ J} are the irreducible characters of H. We
recall (see [1]) that an alternative expression of the orthogonal projection of L(G)
onto the isotypic component dσUσ

∼= Uσ ⊗ Uσ′ is given by

Eσf =
dσ

|G|f ∗ χσ =
dσ

|G|f ∗ χσ′
,

where σ′ is the adjoint of σ. Equivalently

Eσf =
dσ

|G|
∑

g∈G

χσ(g)λ(g−1)f.

Finally we observe that ψ ∗ χσ = χσ ∗ ψ ∈ IndG
KV (see Lemma 4.1).

Lemma 4.12. The orthogonal projection from IndG
KV onto mσUσ is given by

Eψ
σ f =

dσ

|G|f ∗ ψ ∗ χσ.

Proof. If f ∈ IndG
KV then f = f ∗ ψ and therefore

Eσf = Eψ
σ f.

If f ∈ mσUσ ⊆ dσUσ then f = Eσf = Eψ
σ f , while if θ 3∼ σ and f ∈ mθUθ then

0 = Eσf = Eψ
σ f . !

Corollary 4.13 ([8], Janusz). If the multiplicity of Uσ in IndG
KV is equal to 1,

then Eψ
σ is a primitive idempotent in L(G) whose range is a subspace isomorphic

to Uσ.

An idempotent ξ in H or in L(G) is called central when ξ∗φ = φ∗ξ for all φ ∈ H.
A central idempotent ξ is called primitive when every decomposition ξ = ξ1 + ξ2,
with ξ1, ξ2 central idempotents and ξ1 ∗ ξ2 = ξ2 ∗ ξ1 = 0, is trivial, i.e. ξ1 = 0 or
ξ2 = 0.

Corollary 4.14. The central primitive idempotents of H are given by
{

dσ

|G|ψ ∗ χσ : σ ∈ J

}
.

Proof. It is an immediate consequence of Proposition 2.6 and Lemma 4.12. !



40 FABIO SCARABOTTI – FILIPPO TOLLI [14]

In the following theorem the characters of the representations of G contained in
IndG

KV are expressed in terms of the characters of H.

Theorem 4.15. For g ∈ G, let C(g) be the conjugacy class of g and denote by
1C(g) the characteristic function of C(g). Then we have, ∀σ ∈ J ,

χσ(g) =
|G|

|C(g)|ϕσ(ψ ∗ 1C(g) ∗ ψ)

[∑

h∈G

ϕσ(ψ ∗ δh−1 ∗ ψ)ϕσ(ψ ∗ δh ∗ ψ)

]−1

.

Proof. Since the characteristic function 1C(g) is a central function, we have
ψ ∗ 1C(g) ∗ ψ = 1C(g) ∗ ψ. Therefore

σ(ψ ∗ 1C(g) ∗ ψ) = σ(1C(g))σ(ψ). (4.3)

Moreover, using again the centrality of 1C(g), we have σ(1C(g)) = λIσ and taking

the trace of both sides we get that λ = |C(g)|χσ(g)
dσ

and therefore

σ(1C(g)) =
|C(g)|χσ(g)

dσ
Iσ. (4.4)

Plugging (4.4) in (4.3) and taking the trace of both sides, we get

χσ(ψ ∗ 1C(g) ∗ ψ) =
|C(g)|χσ(g)

dσ
χσ(ψ). (4.5)

From the orthogonality relations for matrix coefficients it follows that σ(χσ) = Iσ
|G|
dσ

and therefore

σ(χσ ∗ ψ) = σ(χσ)σ(ψ) = σ(ψ)
|G|
dσ

.

Taking the trace of the first and the last term we get

χσ(χσ ∗ ψ) = χσ(ψ)
|G|
dσ

. (4.6)
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Being ψ = ψ ∗ ψ and recalling the notation δg for the Dirac function we have

χσ ∗ ψ = ψ ∗ χσ ∗ ψ

=
∑

g∈G

χσ(g−1)ψ ∗ δg ∗ ψ

=
∑

g∈G

χσ(g−1)ψ ∗ ψ ∗ δg ∗ ψ ∗ ψ

=
∑

g∈G

χσ(g−1)
∑

s,t∈G

(ψ ∗ δsgt ∗ ψ)ψ(s)ψ(t)

(setting h = sgt) =
∑

h∈G

χσ


 ∑

s,t∈G

ψ(s)ψ(t)δth−1s


 ψ ∗ δh ∗ ψ

=
∑

h∈G

χσ(ψ ∗ δh−1 ∗ ψ)ψ ∗ δh ∗ ψ.

(4.7)

Taking into account (4.6), we have

χσ(ψ) =
dσ

|G|
∑

h∈G

χσ(ψ ∗ δh−1 ∗ ψ)χσ(ψ ∗ δh ∗ ψ)

(by Corollary 4.11) =
dσ

|G|
∑

h∈G

ϕσ(ψ ∗ δh−1 ∗ ψ)ϕσ(ψ ∗ δh ∗ ψ).

(4.8)

Then the theorem follows from (4.5) and (4.8). !

4.1 – The Hecke algebra of a representation of G induced by a one-dimensional repre-
sentation of K

In this section we suppose that the K-representation V is one-dimensional. There-
fore, if we denote by χ its character, the idempotent generator is necessarily ψ =
1

|K|χ. In the following lemma we give in this particular setting an explicit descrip-

tion of the corresponding Hecke algebra H.

Theorem 4.16. In the above hypothesis, the Hecke algebra is given by

H = {f ∈ L(G) : f(k1gk2) = χ(k1)χ(k2)f(g), ∀k1, k2 ∈ K, g ∈ G}.
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Proof. Let f ∈ H, then f = 1
|K|2 χ ∗ f ∗ χ and therefore for k1, k2 ∈ K, g ∈ G,

we have

f(k1gk2) =
1

|K|2 [χ ∗ f ∗ χ](k1gk2)

=
1

|K|2
∑

t∈k−1
2 g−1K
k∈K

χ(k1gk2t)f(t−1k)χ(k−1)

(setting u = k2t) =
1

|K|2
∑

u∈g−1K
k∈K

χ(k1gu)f(u−1k2k)χ(k−1)

(setting h = k2k) =
1

|K|2
∑

u∈g−1K
h∈K

χ(k1gu)f(u−1h)χ(h−1k2)

=
1

|K|2
∑

u∈g−1K
h∈K

χ(k1)χ(gu)f(u−1h)χ(h−1)χ(k2)

=
1

|K|2 χ(k1) · [χ ∗ f ∗ χ](g) · χ(k2)

= χ(k1)f(g)χ(k2).

Vice versa, if f ∈ L(G) and f(k1gk2) = χ(k1)f(g)χ(k2) for all g ∈ (G), and
k1, k2 ∈ K, then

[χ ∗ f ∗ χ](g) =
∑

t∈g−1K
k2∈K

χ(gt)f(t−1k2)χ(k−1
2 )

(setting gt = k1) =
∑

k1,k2∈K

χ(k1)f(k−1
1 gk2)χ(k−1

2 )

=
∑

k1,k2∈K

χ(k1)χ(k−1
1 )f(g)χ(k2)χ(k−1

2 )

= |K|2f(g). !
Let G =

∐
s∈S KsK be the decomposition of G into double K-cosets, with respect

a system of representatives S, with 1G ∈ S. Then the theorem just proved ensures
that the values of f ∈ H on a double coset KsK is determined by the value of f
on s: f(k1sk2) = χ(k1)f(s)χ(k2). We should note that on certain double cosets, f
must necessarily vanish, as shown in the next lemma.

Lemma 4.17. For s ∈ S and x ∈ sKs−1 ∩ K, we set χs(x) = χ(s−1xs). Let
T = {s ∈ S : χs(x) = χ(x), ∀x ∈ sKs−1∩K}. Then a function f ∈ H is determined
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by its values on T by the relation:

f(k1sk2) =

{
χ(k1)f(s)χ(k2) if s ∈ T
0 if s ∈ S \ T

for all k1, k2 ∈ T .

Proof. Let s ∈ S, x = sks−1 ∈ sKs−1 ∩ K and f ∈ H. We have

f(s)χ(x) = f(s)χ(x−1) = f(x−1s)

= f(sk−1) = χ(k−1)f(s) = χ(k)f(s)

= f(s)χs(x).

Therefore, considering f ∈ H such that f(s) 3= 0, we deduce that necessarily χ(x) =
χs(s) for all x ∈ sKs−1 ∩ K and thus s ∈ T . Vice versa, let {αs : s ∈ T} be an
arbitrary set of complex numbers and define f by setting:

f(k1sk2) =

{
χ(k1)αsχ(k2) if s ∈ T
0 if s ∈ S \ T.

Let us show that f is well defined, i.e. if k1sk2 = h1sh2 with k1k2, h1, h2 ∈ K and
s ∈ T , then

χ(k1)χ(k2)f(s) = χ(h1)χ(h2)f(s). (4.9)

Since k1sk2 = h1sh2 implies that sk2h
−1
2 s−1 = k−1

1 h1 ∈ sKs−1 ∩ K and therefore

χ(k−1
1 h1) = χs(k

−1
1 h1) = χ(s−1k−1

1 h1s) = χ(k2h
−1
2 )

which gives
χ(h1)χ(h2) = χ(k1)χ(k2)

which in turn immediately gives (4.9). Since it is obvious that the function f belongs
to H, the proof is complete. !

Definition 4.18. The Curtis and Fossum basis of H is given by the elements
{as : s ∈ T} defined by setting

as(g) =

{
χ(k1)χ(k2)

1
|K| if g = k1sk2 (k1, k2 ∈ K)

0 if g /∈ KsK.
(4.10)

Note that changing the double coset representatives will multiply each basis element
by some root of 1 (in the case V is the trivial representation of K such a root is
just 1). Note also that a1G

≡ ψ and, more generally, as(k1sk2) = |K|ψ(k1)ψ(k2).
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Lemma 4.19. For all s ∈ T we have

as =
1

|sKs−1 ∩ K| · |K|χ ∗ δs ∗ χ.

Proof. First of all we observe that

[χ ∗ δs ∗ χ](g) =
∑

t,u∈G

χ(gt)δs(t
−1u)χ(u−1) (4.11)

with the conditions that gt ∈ K, t−1u = s and u ∈ K. In particular,

g = gt · t−1 = gt · s · u−1 ∈ KsK

(in other words, if g /∈ KsK the above convolution is 0). Let g = k1sk2 with
k1, k2 ∈ K. Then (4.11) becomes (setting t = us−1)

[χ ∗ δs ∗ χ](k1sk2) =
∑

u∈K

χ(k1sk2us−1)χ(u−1)

(x = sk2us−1) =
∑

x∈sKs−1∩K

χ(k1)χ(x)χ(s−1x−1sk2)

(χ(x) = χs(x)) = χ(k1)χ(k2)
∑

x∈sKs−1∩K

χ(x)χ(x)

= χ(k1)χ(k2)|sKs−1 ∩ K|. !
Clearly, there exist complex numbers µrst, r, s, t ∈ T , such that

ar ∗ as =
∑

t∈T

µrstat (4.12)

for all r, s ∈ T . These numbers are called the structure constants of the Hecke
algebra H relative to the basis {as : s ∈ T}.

Lemma 4.20. The structure constants µrst are given by the following formula:

µrst = |K|
∑

g∈(KrK)∩(tKs−1K)

ar(g)as(g
−1t).

Proof. On the one hand, from (4.10) and (4.12) we have

ar ∗ as(t) =
1

|K|µrst (4.13)



[19] Hecke algebras and harmonic analysis on finite groups 45

for all r, s, t ∈ T . On the other hand, just computing the convolution, we get:

ar ∗ as(t) =
∑

g∈G

ar(g)as(g
−1t)

=
∑

g∈(KrK)∩(tKs−1K)

ar(g) ∗ as(g
−1t).

(4.14)

Comparing (4.13) and (4.14), the lemma follows. !

Lemma 4.21. For all σ ∈ J and s ∈ T , we have:

χσ[χ ∗ δs−1 ∗ χ] = χσ[χ ∗ δs ∗ χ].

Proof. Since

[χ ∗ δs−1 ∗ χ](g)
∑

k1,k2∈K

χ(k1)δs−1(k−1
1 gk−1

2 )χ(k2)

and ∑

g∈G

χσ(g)δs−1(k−1
1 gk−1

2 ) = χσ(k1s
−1k2)

we have

χσ[χ ∗ δs−1 ∗ χ] =
∑

k1,k2∈K

χ(k1)χ(k2)χ
σ(k1s

−1k2)

= |K|
∑

k∈K

χ(k)χσ(s−1k)

(replacing k with k−1) = |K|
∑

k∈K

χ(k)χσ(ks).

Similarly,

χσ[χ ∗ δs ∗ χ] = |K|
∑

k∈K

χ(k)χσ(ks)

and the lemma follows. !
In the following we will use this technical result.

Lemma 4.22. For every s ∈ S, we have:

|KsK| =
|K|2

|K ∩ sKs−1| .

Proof. First note that the map k1sk2 ,→ k1sk2s
−1 is a bijection between KsK

and KsKs−1. Since sKs−1 is a group, then

|KsK| = |K · sKs−1| =
|K||sKs−1|
|K ∩ sKs−1| =

|K|2
|K ∩ sKs−1| . !
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Remark 4.23. Note also that, for every g ∈ KsK, we have

|K ∩ sKs−1| = |{(k1, k2) ∈ K × K : g = k1sk2}|.

Theorem 4.24.

1. For each σ ∈ J , the central primitive idempotent of H associated with σ is

dσ

|G|
∑

s∈T

|sKs−1 ∩ K|ϕσ(as)as. (4.15)

2. The irreducible characters ϕσ, σ ∈ J , satisfy the following orthogonality rela-
tions: ∑

s∈T

|sKs−1 ∩ K|ϕσ1
(as)ϕσ2

(as) = δσ1,σ2

|G|
dσ1

ϕσ1
(ψ).

3. The dimension dσ of σ is also given by

dσ = |G|mσ ·
[∑

s∈T

|sKs−1 ∩ K| · |ϕσ(as)|2
]−1

,

where mσ is the multiplicity of σ ∈ IndG
Kχ.

Proof. From Corollary 4.14 and (4.7), we get the following expression for the
central primitive idempotent associated with σ ∈ J :

dσ

|G|
∑

g∈G

χσ(ψ ∗ δg−1 ∗ ψ)ψ ∗ δg ∗ ψ. (4.16)

Since, for k ∈ K, u ∈ G,

ψ ∗ δk(u) = ψ(uk−1)

=
1

|K|χ(uk−1)

= ψ(u)χ(k),

if g = k1sk2, s ∈ S, we have

χσ(ψ ∗δg−1 ∗ψ)ψ ∗δg∗ψ=χ(k−1
1 )χ(k1)χ(k−1

2 )χ(k2)χ
σ(ψ ∗δs−1 ∗ψ)ψ ∗δs ∗ ψ

=





ϕσ(as)as
|sKs−1 ∩ K|2

|K|2 if s ∈ T

0 if s ∈ S \ T

(4.17)

where the last equality follows from Lemma 4.19 (and (4.11)) and Lemma 4.21.
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From (4.16) and (4.17), we get the following expression for the central primitive
idempotent associated with σ:

dσ

|G|
∑

s∈T

|KsK| |sKs−1 ∩ K|2
|K|2 ϕσ(as)as =

dσ

|G|
∑

s∈T

|sKs−1 ∩ K|ϕσ(as)as,

where the last equality follows from Lemma 4.22. This ends the proof of (1).
(2) On the one hand, from Corollary 4.14 and (1) we have (for σ1, σ2 ∈ J):

ϕσ1
(ψ ∗ χσ2) =

∑

s∈T

|sKs−1 ∩ K|ϕσ2
(as)ϕσ1

(as). (4.18)

On the other hand

ϕσ1
(ψ ∗ χσ2) = χσ1(ψ ∗ χσ2)

=
∑

h∈G

χσ1(h)
∑

g∈G

ψ(g)χσ2(h−1g)

=
∑

g∈G

(χσ1 ∗ χσ2)(g)ψ(g)

=
|G|
dσ1

δσ1,σ2

∑

g∈G

χσ1(g)ψ(g)

=
|G|
dσ1

δσ1,σ2
χσ1(ψ).

(4.19)

Comparing (4.18) and (4.19) (2) follows immediately.
(3) It follows immediately from (2) and Corollary 4.3. !

4.2 – The Hecke algebra associated with the trivial character

In this section we study the Hecke algebra associated to a permutation representa-
tion, that is we consider the case χ = ιK , where ιK is the trivial character of K.
We summarize the analysis of the previous section applied to this particular case in
the following theorem. Note that now T ≡ S and that, by virtue of Theorem 4.16,
H coincides with the algebra of bi-K-invariant functions.

Theorem 4.25. With the notation of the previous theorem suppose that χ = ιK .
Then:

1. The Curtis-Fossum basis for H is simply given by

{
as =

1

|K|1KsK : s ∈ S

}
;
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2. The structure constants are given by:

µrst =
1

|K| |(KrK) ∩ (tKs−1K)|;

3. Recalling that C(g) is the G-conjugacy class containing g, the character formula
in Theorem 4.15 now becomes:

χσ(g) =
|G|

|C(g)| · |K|

[∑

s∈S

|sKs−1 ∩ K|ϕσ(as)|C(g) ∩ KsK|
]

·
[∑

s∈S

|sKs−1 ∩ K||ϕσ(as)|2
]−1

.

(4.20)

Proof. (1) and (2) are left to the reader.
(3) Since ψ = 1

|K|1K , if u ∈ KsK we find that

ψ ∗ δu ∗ ψ = ψ ∗ δs ∗ ψ =
|sKs−1 ∩ K|

|K| as,

because, for g ∈ KsK we have (taking into account Remark 4.23)

[ψ ∗ δs ∗ ψ](g) =
1

|K|2
∑

k1,k2∈K

δs(k
−1
1 gk−1

2 ) =
|sks−1 ∩ K|

|K|2 .

Therefore,

χσ(ψ ∗ 1C(g) ∗ ψ) =
∑

s∈S

|sKs−1 ∩ K|
|K| |C(g) ∩ KsK|ϕσ(as) (4.21)

and

∑

h∈G

χσ(ψ ∗ δh−1 ∗ ψ)χσ(ψ ∗ δh ∗ ψ) =
∑

s∈S

|KsK| |sKs−1 ∩ K|2
|K|2 |ϕσ(as)|2

=
∑

s∈S

|sKs−1 ∩ K| · |ϕσ(as)|2
(4.22)

where the first equality follows from Lemma 4.21 and the second equality from
Lemma 4.22. By applying (4.21) and (4.22) to the formula in Theorem 4.15 the
proof is complete. !
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4.3 – Relation with Gelfand pairs

We recall that (G, K) is a Gelfand pair when IndG
KιK decomposes without multi-

plicity; equivalently when the Hecke algebra H(G, K, 1
|K| ιK) (which is isomorphic

to the algebra of bi-K-invariant functions) is commutative. If this is the case, let
(σ, Vσ) be an irreducible G-representation contained in IndG

Kιk and let uσ ∈ Vσ be
a K-invariant vector with ‖uσ‖ = 1. Then the spherical function associated with σ
is the bi-K-invariant function defined by

φσ(g) = 〈uσ, σ(g)uσ〉Vσ
.

We recall that, by Frobenious reciprocity, uσ is unique up to a constant α ∈ C with
|α| = 1. Moreover, {φσ, σ ∈ J} , where J ⊆ Ĝ are the representations contained in
IndG

KιK , is a vector space basis of H. In [1], Exercise 9.5.8 the following formulas
relating φσ and χσ are presented:

φσ(g) =
1

|K|
∑

k∈K

χσ(gk), χσ(g) =
dσ

|G|
∑

h∈G

φσ(h−1gh), (4.23)

for all g ∈ G. We want to show that these are particular cases of (4.15) and (4.20).
To show the equivalence, decompose the double coset KsK into disjoint union

of left cosets: KsK = k1sK
∐

k2sK
∐ · · · knsK, with k1 = 1G. By Lemma 4.22

we have that n = |K|
|K∩sKs−1| . Using the G-conjugacy invariance of the character χσ

we have that ∑

g∈kisK

χσ(g) =
∑

k∈K

χσ(kisk) =
∑

k∈K

χσ(sk).

Therefore the central primitive idempotents of Theorem 4.24 evaluated at KsK
equals

dσ

|G|
|K ∩ sKs−1|

|K| ϕσ(as) =
dσ

|G|
|K ∩ sKs−1|

|K|2 ϕσ(1KsK)

=
dσ

|G|
|K ∩ sKs−1|

|K|2
∑

g∈KsK

χσ(g)

=
dσ

|G|
|K ∩ sKs−1|

|K|2
∑

g∈∐n
i=1 kisK

χσ(g)

=
dσ

|G|
|K ∩ sKs−1|

|K|2
n∑

i=1

∑

k∈K

χσ(kisk)

=
dσ

|G|
1

|K|
∑

k∈K

χσ(sk)

which agrees with the formula of the spherical function φσ in (4.23).
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Indeed, the central idempotent is equal to dσ

|G|φσ, because φσ ∗ φσ = |G|
dσ

(see [2,

Lemma 1.5.7]). In particular,

φσ(h) =
|K ∩ sKs−1|

|K| ϕσ(as) (4.24)

for all h ∈ KsK, s ∈ S and σ ∈ J .
Let now show that (4.20) reduces, in the setting of Gelfand pairs, to the second

formula in (4.23). We first observe that

φσ(1K) =
∑

k∈K

χσ(k) = |K|

because the multiplicity of ιK in ResG
Kσ is equal to 1, and thus by Theorem 4.24

∑

s∈S

|sKs−1 ∩ K||ϕσ(as)|2 =
|G|
dσ

.

Therefore

χσ(g) =
dσ

|C(g)|

[∑

s∈S

|K ∩ sKs−1|
|K| ϕσ(as) · |C(g) ∩ KsK|

]

( by (4.24)) =
dσ

|C(g)|
∑

s∈S

φσ(s)|C(g) ∩ KsK|

=
dσ

|C(g)|
∑

s∈S

∑

h∈C(g)∩KsK

φσ(h)

=
dσ

|C(g)|
∑

h∈C(g)

φσ(h)

=
dσ

|G|
∑

h∈G

φσ(hgh−1).
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