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Some analytical contributions
to a mathematical model of resource curse

ANDREA GENOVESE

Abstract: In this paper we provide some simple generalizations, that generate all the
same results, of a model originally presented, along with its simplified version, in two
works of Robinson, Torvik and Verdier [13, 14] about the understanding of the resource
curse phenomenon, in particular we study how political objectives influence economical
choices. More specifically we show how the extraction rate of various public nonrenewable
resources, the rate of employment in the public sector and, last but most important, the
overall income of a country depend in some way on the aspiration of the politician in charge
to keep his power. In addition we analyze some particular cases, related to the same model,
in which extraction or employment rates are fixed to a boundary value. We give also a lot
of graphics about the results achieved in this extended work.

1 – Introduction

Scholars and economic historians traditionally emphasized the great benefits which
natural resources give to a nation (see for example [17] on the British case). However
in some cases it seems that resources are a sort of curse for currently developing
countries. In this regard the expression resource curse thesis was first used in 1993
by Auty in [4] to describe how countries rich in natural resources were unable to use
that wealth to boost their economies and how these countries had lower economic
growth than countries without an abundance of natural resources.

A fundamental question is to learn the mechanism linking natural resources
availability and their prices to development of countries. Empirical literature on
the resource curse suggests that many different reasons, for example government
mismanagement of resources or weak, ineffectual, unstable or corrupt institutions
can lead to an incorrect exploitation of abundant natural resources. The resources
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more often considered are especially those that are publicly owned like coal, natural
gas or oil. For such resources the rent accrues directly to the government and it
decides how to spend this rent.

The work in this paper draws inspiration by two works of Robinson, Torvik and
Verdier, namely [13] and its simplified version [14], in which they model a situation
with two politicians, an incumbent and a competitor, two periods with an election
in the middle, an amount of natural resource than can be extracted and sold in the
two periods at two (different) prices, a population of voters/workers which gives
to the incumbent a certain probability of reelection and an equilibrium policy to
choose that maximizes a given income.

In this work, like in the original one, we consider an incumbent that distribute
its rent as patronage to influence the outcome of the election. Patronage is to be
understood in the definition given by Weingrod in [16] that is the way in which
party politicians distribute public jobs or special favors in exchange for electoral
support. It is widely believed that public employing is, politically speaking, a very
profitable way to distribute rents (see for example [5], about the phenomenon of
political recommendation in Palermo, or [3]). So we choose to model patronage
as offering job in the public sector made by the incumbent to a voter to take the
favors. For an alterative form of patronage we can think to an incumbent who try to
influence the outcome of elections by investing in white elephants, as in [12], namely
valuable but burdensome possessions or investment projects whose costs are out of
proportion to its usefulness or worths or, in the definition given by the authors, a
project with a negative social surplus1.

The paper proceeds as follows. In the next section we describe the model under
consideration. It is basically the model contained in the simplified version of the
original work, but with some important changes. We consider in fact not only a
sigle natural resource but d stocks of different nonrenewable resources, each with
its own selling prices in the two periods. Moreover, for every resource we set an
upper bound which is the total amount of good available. On the function which
describes the reserves remaining for the second period we made further technical
assumptions to ensure consistency with the situation under study. The last change
concerns the function which describes the reelection probability. In fact we consider
the case in which the second derivative is not zero but less than or equal to zero to
model a sort of saturation phenomenon of the labor market.

Section 3 describes the mathematical tools used to obtain rigorous proofs of the
results already achieved by the authors. Section 4 is the main section. We consider

1An example of white elephant comes from the activities of the Industrial Development Cor-
poration of Zambia, that was subject to a series of political and most importantly uneconomic
directives on specific operational issues, including type and location of investments (see [15] for
further details). Other examples can be founded in [8].
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the case d = 1 and we analyze in the first subsection the situation in which the
maximum point of the income function is in the interior of the considered region,
as was done by the original authors. In the second subsection there are instead
some new results concerning a maximum point localized on the boundary of the
same region under consideration. Finally in Section 5 we consider the case of two
different natural resources. We show several graphical simulations showing both
expected and unexpected phenomena.

We want at the end to point out to readers two other interesting works about
resource curse. In [2] Andersen and Aslaksen studied the question about what form
of government, presidentialism or parliamentarism, leads to the resource curse phe-
nomenon, while in [11] Mehlum, Moene and Torvik studied what kind of institution,
grabber friendly or producer friendly, carries to the same phenomenon.

2 – Model overview

We deal with a model in which there are two politicians, an incumbent politician
wishing to be reelected and a competitor. The mass of voters is normalized to
1. There are two periods with an election occurring at the end of the first one
in which the incumbent is challenged by the alternative politician. There are also
d stocks of different nonrenewable natural resources E = (E1, . . . , Ed) and all the
income from selling E accrues directly to the government. The selling prices of the
natural resources in the two periods are p1 = (p1

1, . . . , p
d
1) in the first period and

p2 = (p1
2, . . . , p

d
2) in the second one and we assume are determined on world market2

and taken as given by the country under consideration.
The incumbent must decide how much of the resource to extract in the first

period, denoted e = (e1, . . . , ed), and consequently how much to left for the second
period. We denote R(e) = (R1(e1), . . . , Rd(ed)) the remaining resources available
in the second period. We assume that every Ri for i = 1, . . . , d is continuous
and R′

i, R
′′
i < 0. These assumptions on the derivatives mean that every Ri is a

strictly decreasing and concave function of ei respectively. This models the fact
that, obviously, more resources are extracted less remain and that the total amount
of resources that can be extracted depends in turn on the extraction rate in a way
such that if too much is taken in the first period the total stock over the two periods
falls down. Moreover, the sign of the second derivative implies that for every i there
exists a value ei < Ei such that Ri(ei) = 0. We make the further assumption that
R′

i(0) ≤ −1, and therefore R′
i(ei) < −1 for ei > 0 since R′′

i < 0, to ensure that
Ri(ei) ≤ Ei −ei, that is ei +Ri(ei) ≤ Ei and the equality holds if and only if ei = 0.
In conclusion for every different resource i the incumbent can extract a quantity
ei ∈ [0, ei] and we have Ri(0) = Ei and Ri(ei) = 0.

2We consider an open market, in which all economic actors have an equal opportunity of entry
in that market.
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To influence the outcome of the election the incumbent politician engages in
clientelism and offers to employ voters in the public sector. We denote the reelection
probability Π = Π(G) where G ∈ [0, 1] is the number of voters employed in the
public sector. We assume Π continuous and different from 0 and 1, Π′ > 0 and Π′′ <
0. These assumptions imply that Π is strictly increasing and concave function and
model a situation in which the reelection probability increases with respect to the
number of voters employed but in a way such that if the number of workers employed
is too high the reelection probability increases less if the incumbent assumes other
workers. We also assume Π(0) = 1

2 so that if the incumbent does not employ any
worker he has a fifty-fifty chance to be reelected.

Private sector individuals have a productivity H while productivity of public
sector, which is lower, is set to 0. Private sector workers receive a wage equal to
their productivity while public sector workers receive a wage W . We make the
assumption that W > H so that for a worker is better if he is offered a job in
the public sector. On the other hand employing people in the public sector will
be socially and economically inefficient because their productivity is lower than
productivity of private sector workers.

Resource income can be spent by the incumbent politician or can be redistributed
as patronage to increase reelection probability and to influence the outcome of
voting. So the incumbent chooses its economic policy, namely e ∈ [0, e1]×. . .×[0, ed]
and G ∈ [0, 1], in order to maximize his own expected income3

I(e, G; p1, p2) := p1 · e − WG + Π(G)(p2 · R(e) − WG). (2.1)

The first term p1e − WG in the expression above is the difference between the
income from the resource extraction and the outcome to employ workers while the
second term Π(G)(p2R(e) − WG) is the same for the second period yet discounted
by a factor that is the reelection probability.

3 – Mathematical tools

To give a more rigorous mathematical fundament to the main results we describe
first of all the tools used later in the paper, the most important of which are the
Karush-Kuhn-Tucker conditions [7, 10] that give necessary conditions so that x ∈ Rn

is a maximum point of f(x) in the region

E := {x ∈ Rn |ϕj(x) ≤ 0, j = 1, . . . , m}

where f, ϕ1, . . . ,ϕm : Rn → R are continuously differentiable functions.

3In the rest of the article we will omit the scalar product symbol for simplicity of notation.
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Theorem 3.1 (Karush-Kuhn-Tucker conditions). Let x ∈ Rn be a maximum
point for f in the region E. If the constraints satisfy some regularity conditions in
x then there exists λ ∈ Rm such that (x, λ) is a solution of the system

∇f(x) −
m∑

j=1

λj∇ϕj(x) = 0

ϕj(x) ≤ 0, j = 1, . . . , m

λj ≥ 0, j = 1, . . . , m

λjϕj(x) = 0, j = 1, . . . , m.

Remark 3.2. The well known first order conditions, that say that in an internal
maximum (or minimum) point x it results ∇f(x) = 0, are a particular case of
the KKT conditions when we consider a solution (x, λ) of the system such that
ϕj(x) < 0, i.e. x is an internal point of E, and consequently λ = 0.

The second important tool is the implicit function theorem that we give in its
general formulation.

Theorem 3.3 (General implicit function theorem). We suppose that we are
given a set of equations

fi(x1, . . . , xl, y1, . . . , yn) = 0, i = 1, . . . , n

where all the functions fi are continuously differentiable. We will assume that
(p, q) = (p1, . . . , pl, q1, . . . , qn) is a point such that all the equations hold and at
which we have

det

(
∂(f1, . . . , fn)

∂(y1, . . . , yn)

)
= det




∂f1

∂y1
· · · ∂f1

∂yn
...

. . .
...

∂fn

∂y1
· · · ∂fn

∂yn




(= 0.

Then there exist a neighborhood U ⊂ Rl of p and a continuously differentiable
function φ : U → Rn such that φ(p) = q and

fi(x, φ(x)) = 0, i = 1, . . . , n

holds for x ∈ U and we have

∂(φ1, . . . ,φn)

∂(x1, . . . , xl)
(x) = −

(
∂(f1, . . . , fn)

∂(y1, . . . , yn)
(x, φ(x))

)−1
∂(f1, . . . , fn)

∂(x1, . . . , xl)
(x, φ(x)). (3.1)
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A proof of this well known result, along with further generalizations and examples,
can be found for example in [9] and for the last part in [6].

Remark 3.4. The case n = 1 is of course the classic implicit function theorem
for one dependent variable and one equation.

To start the analytical study of the model we recall that the aim of the incumbent
is to maximize his own expected income (2.1) in the set Ω that can be described as

Ω = {(e, G) ∈ Rd+1 |ϕj(e, G) ≤ 0, j = 1, . . . , 2(d + 1)}

where

ϕj(e, G) = −ej ∇ϕj = (0, . . . , 0,

j−th︷︸︸︷
−1 , 0, . . . , 0) j = 1, . . . , d

ϕj(e, G) = ej−d − ej−d ∇ϕj = (0, . . . , 0,

(j−d)−th︷︸︸︷
1 , 0, . . . , 0) j = d + 1, . . . , 2d

ϕ2d+1(e, G) = −G ∇ϕ2d+1 = (0, . . . , 0, −1)

ϕ2(d+1)(e, G) = G − 1 ∇ϕ2(d+1) = (0, . . . , 0, 1)

and we observe that if the constraints are affine, like in this case, then they auto-
matically satisfy in every point the regularity conditions requested in Theorem 3.1
(see for example [1] for further details).

4 – Case d = 1: a single natural resource

The case d = 1 model the simplest situation in which there is only one natural
resource to extract, so we can omit the index associated with the variable e. The
goal of the incumbent is simply to maximize his expected income in the set

Ω = {(e, G) ∈ R2 |ϕj(e, G) ≤ 0, j = 1, . . . , 4}

where

ϕ1(e, G) = −e ∇ϕ1 = (−1, 0)

ϕ2(e, G) = e − e ∇ϕ2 = (1, 0)

ϕ3(e, G) = −G ∇ϕ3 = (0, −1)

ϕ4(e, G) = G − 1 ∇ϕ4 = (0, 1).

Theorem 3.1 says that if (e, G) is a maximum point for (2.1) in the set Ω and if the
constraints are qualified in this point4 then there exists λ = (λ1, . . . ,λ4) ∈ R4 such

4This is the case.
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that (e, G,λ) is a solution of

p1 + Π(G)p2R
′(e) + λ1 − λ2 = 0

− (1 + Π(G))W + Π′(G)(p2R(e) − WG) + λ3 − λ4 = 0

0 ≤ e ≤ e, 0 ≤ G ≤ 1 (4.1a)

λj ≥ 0, j = 1, . . . , 4

− λ1e = λ2(e − e) = −λ3G = λ4(G − 1) = 0. (4.1b)

To solve this system we can distinguish several cases by studying more deeply the
last line and this is the goal of the next two subsections.

4.1 – Maximum point in the interior

If we suppose that the maximum point is internal, this means that inequalities
(4.1a) become 0 < e < e and 0 < G < 1, then equations (4.1b) become λj = 0 for
all j. By virtue of Remark 3.2 the first two equations of system (4.1) are simply
the two first order necessary conditions for this maximization problem

F 1(e, G; p1, p2) := Ie = p1 + Π(G)p2R
′(e) = 0 (4.2a)

F 2(e, G; p1, p2) := IG = −(1 + Π(G))W + Π′(G)(p2R(e) − WG) = 0. (4.2b)

For simplicity of notation we define

D1 := F 1
e F 2

G − F 1
GF 2

e = p2(−2WΠΠ′R′′ + ΠΠ′′R′′(p2R − WG) − p2(Π
′)2(R′)2)

and we suppose that it is strictly positive5.
Starting from the two first order conditions (4.2) we can prove immediately an

important result whose proof is identical to that in [14].

Proposition 4.1. Let e0 be the socially optimal extraction rate in the first pe-
riod, namely

e0 := arg max
e∈[0,e]

{p1e + p2R(e)}.

Then e > e0, that is the resources are inefficiently over-extracted.

Proof. We recall that e is an internal point, and suppose that e0 is internal
too. We observe that e0 is simply the value that maximize the total income from
selling the resource over the two periods and that satisfies

p1 + p2R
′(e0) = 0.

5This hypothesis is related to the second order sufficient condition for this maximization prob-
lem.
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Now comparing (4.2a) with the last equality one has, since Π < 1 and R′ < 0,

R′(e0) = Π(G)R′(e) > R′(e)

which implies e > e0 because R′ is decreasing since R′′ < 0. !

The main tool to see how prices of the resource influence extraction and public
sector employment, in other words how the maximum point (e, G) changes with
respect to the parameters of the model p1 and p2, is the general implicit functions
theorem applied to equations (4.2a) and (4.2b). We state the first result on this.

Proposition 4.2. The resource extraction rate is an increasing function with
respect to p1, decreasing with respect to p2 and decreasing with respect to both p1

and p2 also if they vary simultaneously but proportionally.

Proof. We apply the result in Theorem 3.3 but in a constructive way. To do
this we consider

∂F 2

∂G
= −2Π′W + Π′′(p2R − WG)

which is negative, and in particular nonzero, if we require in addition the quite
natural hypothesis that D2 := p2R − WG > 0 if R (= 0. Equation (4.2b) implicitly
defines a function G = G(e; p1, p2). We substitute in (4.2a) and define

H(e; p1, p2) := F 1(e, G(e; p1, p2); p1, p2) = 0

We now consider

∂H

∂e
=

∂F 1

∂e
+

∂F 1

∂G

∂G

∂e
=F 1

e +F 1
G

(
−F 2

e

F 2
G

)
=Πp2R

′′ + Π′p2R
′
(
− Π′p2R

′

−2Π′W + Π′′D2

)
.

We suppose He (= 0 and then H = 0 implicitly defines a function e = e(p1, p2).
Denoting h(p1, p2) := G(e(p1, p2); p1, p2), the starting system is now

F 1(e(p1, p2), h(p1, p2); p1, p2) = 0

F 2(e(p1, p2), h(p1, p2); p1, p2) = 0.

Differentiating both equations by p1 one has

F 1
e

∂e

∂p1
+ F 1

G

∂h

∂p1
= −F 1

p1

F 2
e

∂e

∂p1
+ F 2

G

∂h

∂p1
= −F 2

p1
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and by Cramer’s rule we get

∂e

∂p1
=

∣∣∣∣
−F 1

p1
F 1

G

−F 2
p1

F 2
G

∣∣∣∣
∣∣∣∣
F 1

e F 1
G

F 2
e F 2

G

∣∣∣∣
=

−F 1
p1

F 2
G

D1
=

2Π′W − Π′′D2

D1
> 0.

Differentiating now both equations by p2 one has

F 1
e

∂e

∂p2
+ F 1

G

∂h

∂p2
= −F 1

p2

F 2
e

∂e

∂p2
+ F 2

G

∂h

∂p2
= −F 2

p2

and by Cramer’s rule we get

∂e

∂p2
=

∣∣∣∣
−F 1

p2
F 1

G

−F 2
p2

F 2
G

∣∣∣∣
D1

=
2WΠΠ′R′ − ΠΠ′′R′D2 + (Π′)2RR′p2

D1
< 0.

To consider a simultaneous but proportional variation of p1 and p2 we compute the
directional derivative of function e(p1, p2) along the direction −→u = c(p1, p2) with c
a normalizing constant6. One has

de

d−→u = 〈∇e, −→u 〉 = c

(
∂e

∂p1
p1 +

∂e

∂p2
p2

)
= c

(Π′)2RR′

D1
p2
2 < 0 (4.3)

after some calculation and using (4.2a) twice. !
We make now some considerations. The extraction rate is an increasing function

of p1 because if, for example, price in the first period increases the resources become
more valuable in the present than in the future, so the optimal response is to increase
the extraction.

Vice versa the extraction rate is decreasing with respect to p2. In fact if p2

increases resources become more valuable in the future than now, so the optimal
response is to decrease the extraction to leave more resources available for the second
period.

In the last case the situation is a little bit different. If both p1 and p2, for
example, increase the optimal response is not to leave the extraction rate unaltered
(as in Propositions 4.5 and 4.6) but to decrease the extraction (and to increase the

6In this case c = 1√
p2
1+p2

2

> 0.
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number of voters employed in the public sector, see Proposition 4.3) because this
situation makes more valuable to be in power in the future.

In order to present some graphical results, that show the correct behavior but
do not respect the constraints which has not been possible to implement in the
resolution of the system, we can choose for example the quadratic function R(e) =
− 5

16e2 −e+1 that satisfies all the hypothesis and models a situation in which E = 1
and e = 4

5 , so the incumbent can extract only 80% of the total in the first period
leaving nothing for the second one.

Figure 1 The function R(e) = − 5
16

e2 − e + 1.

Similarly we can choose for example the function Π(G) = − 3
10G2 + 3

4G + 1
2 that

satisfies all the hypothesis and at point G = 1 it is close to 1.

Figure 2 The function Π(G) = − 3
10

G2 + 3
4
G + 1

2
.

Now Figure 3 shows an example of function e(p1, p2) in the region 1 ≤ p1 ≤ 4 and
6 ≤ p2 ≤ 9 when we choose W = 1 and functions R and Π as in Figures 1 and 2.

The second result concerns how the public sector employment is affected by a
variation of prices of resource.
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Figure 3 The function e(p1, p2) when we choose W = 1 and functions R(e) and Π(G) as
in Figures 1 and 2.

Proposition 4.3. The rate of voters employed in the public sector is a decreas-
ing function with respect to p1, increasing with respect to p2 and increasing with
respect to both p1 and p2 also if they vary simultaneously but proportionally.

Proof. We apply again the result in Theorem 3.3 in the same way. To do this
we consider

∂F 1

∂e
= Πp2R

′′

which is negative, and in particular nonzero. Equation (4.2a) implicitly defines a
function e = e(G; p1, p2). We substitute in (4.2b) and define

H(G; p1, p2) := F 2(e(G; p1, p2), G; p1, p2) = 0.

We now consider

∂H

∂G
=

∂F 2

∂e

∂e

∂G
+

∂F 2

∂G
.

We suppose HG (= 0 and then H = 0 implicitly defines a function G = G(p1, p2).
Denoting h(p1, p2) := e(G(p1, p2); p1, p2), the starting system is now

F 1(h(p1, p2), G(p1, p2); p1, p2) = 0

F 2(h(p1, p2), G(p1, p2); p1, p2) = 0.
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Differentiating both equations by p1 one has

F 1
e

∂h

∂p1
+ F 1

G

∂G

∂p1
= −F 1

p1

F 2
e

∂h

∂p1
+ F 2

G

∂G

∂p1
= −F 2

p1

and by Cramer’s rule we get

∂G

∂p1
=

∣∣∣∣
F 1

e −F 1
p1

F 2
e −F 2

p1

∣∣∣∣
D1

=
Π′p2R

′

D1
< 0.

Differentiating now both equations by p2 one has

F 1
e

∂h

∂p2
+ F 1

G

∂G

∂p2
= −F 1

p2

F 2
e

∂h

∂p2
+ F 2

G

∂G

∂p2
= −F 2

p2

and by Cramer’s rule we get

∂G

∂p2
=

∣∣∣∣
F 1

e −F 1
p2

F 2
e −F 2

p2

∣∣∣∣
D1

=
−ΠΠ′p2RR′′+ΠΠ′p2(R

′)2

D1
=

ΠΠ′p2((R
′)2 − RR′′)

D1
> 0.

Considering a simultaneous but proportional variation of p1 and p2 we have

dG

d−→u = 〈∇G, −→u 〉 = c

(
∂G

∂p1
p1 +

∂G

∂p2
p2

)
= c

ΠΠ′RR′′

D1
p2
2 > 0 (4.4)

after some calculation and using (4.2a) again. !

Regarding this case, the situation is exactly the opposite. The rate of voters
employed in the public sector in a decreasing function of p1. In fact if, for example,
p1 increases more resources are extracted in the first period. So the incumbent has
less incentive to be in power in the second period and then to influence his reelection
probability by employing people in the public sector because there are less resources
remaining to exploit.

Vice versa the voters are increasing with respect to p2 because if, for example,
the price in the second period increases then it is more valuable to be in power in
this period so the incumbent is forced to increase the number of voters employed
to increase his reelection probability.
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Even in the latter case the optimal response is, if for example both p1 and p2

increase, to increase the number of voters employed in the public sector to increase
the reelection probability because it is more valuable (as in Proposition 4.2) to be
in power in the period after the elections.

In Figure 4 there is an example of function G(p1, p2) in the same region and
under the same choices made for the function e(p1, p2).

Figure 4 The function G(p1, p2) when we choose W = 1 and functions R(e) and Π(G) as
in Figures 1 and 2.

To conclude this subsection we present the most important result of the paper that
shows how prices, strength of institutions and total income in the economy of a
nation are mutually related.

Proposition 4.4. The behavior of the total income as function of resource prices
is strongly linked to the quality of institutions. In particular it is increasing if the
latter are sufficiently strong, conversely it is decreasing if they are not.

Proof. We consider for simplicity only the dependence with respect to both
prices simultaneously, namely we compute the directional derivative with respect
to −→u , but the reasoning and the conclusions are the same even if we consider the
dependence with respect to a single price. To quantify the total income Y we can
use the well known Gross Domestic Product, that measures the market value of all
final goods and services produced within a country in a given period of time, that
is in this case

Y := p1e + p2R(e) + 2(1 − G)H.
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We recall that we can see e and G as functions of p1 and p2, therefore one can prove
that the derivative along the direction −→u in given by

dY

d−→u = c(p1e + p2R) +
∂e

∂−→u (p1 + p2R
′) − 2H

∂G

∂−→u .

Now replacing expressions (4.3) and (4.4) in the previous formula, recalling the
definition of D1 and making a lot of computation one can show that it results

sgn
dY

d−→u = sgn

[
2R′′

(
−eW − p2

p1
(W − H)R

)
+ R′′ Π

′′

Π′ (p2R − WG)

(
e +

p2

p1
R

)

− Π′

Π
(ep2(R

′)2 − p2RR′)

]
.

Here the first and the last addendum, which are respectively positive and negative,
are the same contained in the original paper while the second, which is positive,
comes from considering a nonzero second derivative of the reelection probability. It
is in general not possible to say that this derivative is monotone but if we look at
as a function of Π′, the argument of sign function is of the form

a + b
1

Π′ − cΠ′

with a, b, c > 0. The largest zero of this function is

Π̃′ =
−a −

√
a2 + 4bc

−2c

which is positive7. Moreover it is easy to check that this function is decreasing
and continuous in the semiaxis Π′ > 0 (remember that it is an hypothesis of the

model). So Π̃′ is a sort of critical value for the derivative of Y because we have
dY
d−→u > 0 if Π′ < Π̃′, that means that if prices increase then the economy of the nation

increases and, on the contrary, dY
d−→u < 0 if Π′ > Π̃′, so to an increase in prices follows

a decrease of the total income. The function Π′ is in some sense related to the
robustness of institutions. A small value means that the incumbent has less chance
to influence his reelection probability by employing people in the public sector for
different reasons, consequently the institutions are less sensitive to the phenomenon
of clientelism. Exactly the contrary happens if Π′ is sufficiently big so the statement
is proved. !

7The other zero is negative.
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4.2 – Maximum point on the boundary

We want now to analyze the case in which the maximum point is on the boundary
of the set Ω. This set is a rectangle of R2 and so its boundary Γ is composed by
four subsets which are8 Γ1 := [0, e] × {0}, Γ2 := {e} × [0, 1], Γ3 := [0, e] × {1} and
Γ4 := {0} × [0, 1]. In the next propositions we show how the maximum point on
the boundary changes with respect to the parameters and the differences between
every piece of the boundary Γ.

In this case we exhibit some graphics that show the evolution of the maximum
point in the region 1 ≤ p1, p2 ≤ 2. We start assuming the maximum point is in the
interior of Γ1.

Proposition 4.5. If we assume that the maximum point is in the interior of Γ1

so G = 0 and 0 < e < e, then the resource extraction rate is an increasing function
with respect to p1, decreasing with respect to p2 and constant with respect to both p1

and p2 if they vary simultaneously but proportionally.

Proof. By looking at system (4.1), since G = 0 and 0 < e < e, equations
(4.1b) become λ1 = λ2 = λ4 = 0 so the system reduces to

F 1(e, λ3; p1, p2) := p1 + Π(0)p2R
′(e) = 0

F 2(e, λ3; p1, p2) := −(1 − Π(0))W + Π′(0)p2R(e) + λ3 = 0.
(4.5)

We apply again Theorem 3.3 and consider

∂F 2

∂λ3

which is identically 1, and in particular nonzero. The second equation implicitly
defines a function λ3 = λ3(e; p1, p2). We substitute in the first one and define

H(e; p1, p2) := F 1(e, λ3(e; p1, p2); p1, p2) = 0.

We consider now
∂H

∂e
=

∂F 1

∂e
+

∂F 1

∂λ3

∂λ3

∂e

and suppose He (= 0. So H = 0 implicitly defines a function e = e(p1, p2). Denoting
h(p1, p2) := λ3(e(p1, p2); p1, p2) the starting system is now

F 1(e(p1, p2), h(p1, p2); p1, p2) = 0

F 2(e(p1, p2), h(p1, p2); p1, p2) = 0.

8We chose to enumerate the subset anticlockwise starting from the bottom rather then in
analogy with the ϕ’s functions.
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Differentiating both equations by p1 one has

F 1
e

∂e

∂p1
+ F 1

λ3

∂h

∂p1
= −F 1

p1

F 2
e

∂e

∂p1
+ F 2

λ3

∂h

∂p1
= −F 2

p1

and by Cramer’s rule we get

∂e

∂p1
=

∣∣∣∣
−F 1

p1
F 1

λ3

−F 2
p1

F 2
λ3

∣∣∣∣
∣∣∣∣
F 1

e F 1
λ3

F 2
e F 2

λ3

∣∣∣∣
=

∣∣∣∣
−1 0
0 1

∣∣∣∣
∣∣∣∣
Π(0)p2R

′′ 0
F 2

e 1

∣∣∣∣
= − 1

Π(0)p2R′′ > 0.

Differentiating now both equations by p2 one has

F 1
e

∂e

∂p2
+ F 1

λ3

∂h

∂p2
= −F 1

p2

F 2
e

∂e

∂p2
+ F 2

λ3

∂h

∂p2
= −F 2

p2

and by Cramer’s rule we get

∂e

∂p2
=

∣∣∣∣
−F 1

p2
F 1

λ3

−F 2
p2

F 2
λ3

∣∣∣∣
∣∣∣∣
F 1

e F 1
λ3

F 2
e F 2

λ3

∣∣∣∣
=

∣∣∣∣
−Π(0)R′ 0

−F 2
p2

1

∣∣∣∣
∣∣∣∣
Π(0)p2R

′′ 0
F 2

e 1

∣∣∣∣
= − R′

p2R′′ < 0.

Lastly considering a simultaneous but proportional variation of p1 and p2 we have

de

d−→u = 〈∇e, −→u 〉 = −c
p1 + Π(0)p2R

′

Π(0)p2R′′ ≡ 0

when the last equality turns out from (4.5). !
We observe that since Ω is a rectangle, its boundary is easily parameterizable so

we can provide a more direct proof of this and the next results by reducing to the
case of maximization of function of only one variable.

Proof. [Alternative proof of Proposition 4.5] The boundary Γ1 = [0, e] × {0} is
parameterizable by e(s) = s with s ∈ [0, e] and G(s) ≡ 0 so the income to maximize
is, with an abuse of notation,

I1(e; p1, p2) := I(e, 0; p1, p2) = p1e + Π(0)p2R(e).
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If we look for an interior maximum point the first order condition says that

∂I1

∂e
= p1 + Π(0)p2R

′(e) = 0. (4.6)

We have

I1
ee = Π(0)p2R

′′(e) < 0

which is in particular nonzero9 then by the implicit function theorem equation (4.6)
implicitly defines a function e = e(p1, p2) which derivatives are

∂e

∂p1
= −I1

ep1

I1
ee

= − 1

Π(0)p2R′′ > 0

∂e

∂p2
= −I1

ep2

I1
ee

= − R′

p2R′′ < 0.

!

The next case deals with the maximum point in the interior of Γ3.

Proposition 4.6. If we assume that the maximum point is in the interior of Γ3

so G = 1 and 0 < e < e, then the resource extraction rate is an increasing function
with respect to p1, decreasing with respect to p2 and constant with respect to both p1

and p2 if they vary simultaneously but proportionally.

Proof. The proof in essentially the same of the last proposition. The boundary
Γ3 = [0, e] × {1} is parameterizable by e(s) = s with s ∈ [0, e] and G(s) ≡ 1 so the
income to maximize is

I3(e; p1, p2) := I(e, 1; p1, p2) = p1e − W + Π(1)(p2R(e) − W ).

If we look for an interior maximum point the first order condition says that

∂I3

∂e
= p1 + Π(1)p2R

′(e) = 0. (4.7)

We have

I3
ee = Π(1)p2R

′′(e) < 0

9It is negative so the second order condition for functions of only one variable is fulfilled. The
same for all the next two cases.
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which is in particular nonzero then by the implicit function theorem equation (4.7)
implicitly defines a function e = e(p1, p2) whose derivatives are

∂e

∂p1
= −I3

ep1

I3
ee

= − 1

Π(1)p2R′′ > 0

∂e

∂p2
= −I3

ep2

I3
ee

= − R′

p2R′′ < 0

de

d−→u = 〈∇e, −→u 〉 = −c
p1 + Π(1)p2R

′

Π(1)p2R′′ ≡ 0

when the last equality turns out from (4.7). !
The last two propositions show the same results. If the employment rate is fixed

the incumbent can not influence his reelection probability by employing voters in
the public sector. This fact is crucial to explain in particular the third result. In
fact while the first two results, and related consideration, are identical to those
of Proposition 4.2, the latter is different and says that the optimal response to
a simultaneous changing of prices is to leave unaltered the extraction rate. This
because since the incumbent can not influence his reelection probability the policy
is, in some sense, cut off. Consequently, since a proportional increase in both prices
keeps unchanged the ratio p1

p2
, the optimal response is what one would obtain by

reasoning from a merely economic perspective.
The difference with respect to the case in which the incumbent maximize also

over G variable is that an increase in p2 makes more valuable to be in power after
the elections so the politician is forced to employ voters to increase his chances of
success.

Figures 5 and 6 show the function e(p1, p2) when G is fixed and takes value on
the boundaries.

Now in the next two propositions we consider a maximum point on the sets
where e is fixed and G is variable, starting from the interior of Γ4.

Proposition 4.7. If we assume that the maximum point is in the interior of
Γ4 so e = 0, and consequently R(e) = E, and 0 < G < 1, then the rate of voters
employed in the public sector is a constant function with respect to p1, increasing
with respect to p2 and increasing with respect to both p1 and p2 also if they vary
simultaneously but proportionally.

Proof. In this case the boundary Γ4 = {0} × [0, 1] is parameterizable by
e(s) ≡ 0 and G(s) = s with s ∈ [0, 1] so the income to maximize is

I4(G; p1, p2) := I(0, G; p1, p2) = −WG + Π(G)(p2E − WG).

If we look for an interior maximum point the first order condition says that

∂I4

∂G
= −(1 + Π)W + Π′(p2E − WG) = 0. (4.8)
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Figure 5 The function e(p1, p2) in the case G = 0 when we choose W = 1 and functions
R(e) and Π(G) as in Figures 1 and 2.

Figure 6 The function e(p1, p2) in the case G = 1 when we choose W = 1 and functions
R(e) and Π(G) as in Figures 1 and 2.

We have

I4
GG = −2Π′W + Π′′(p2E − WG) < 0
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which is in particular nonzero then by the implicit function theorem equation (4.8)
implicitly defines a function G = G(p1, p2) which derivatives are

∂G

∂p1
= −

I4
Gp1

I4
GG

≡ 0

∂G

∂p2
= −

I4
Gp2

I4
GG

= − Π′E
−2Π′W + Π′′(p2E − WG)

> 0

dG

d−→u = 〈∇G, −→u 〉 = c
∂G

∂p2
p2 > 0.

!
If we prescribe that in the first period we have no resource extraction, a variation
in price p1 is obviously meaningless. Conversely the number of voters employed by
the incumbent is increasing in p2 and in p1 and p2 simultaneously because if, for
example, p2 increases the politician is forced to employ voter in the public sector
to guaranteed his victory.

Figure 7 shows the function G(p1, p2) when there is no extraction in the first
period.

Figure 7 The function G(p1, p2) in the case e = 0 when we choose W = 1 and functions
R(e) and Π(G) as in Figures 1 and 2.

The last case deals with the maximum point in the interior of Γ2.

Proposition 4.8. If we assume that the maximum point is on Γ2 so e = e and
consequently R(e) = 0, and 0 < G < 1, then the rate of voters employed in the
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public sector is a constant function with respect to p1, constant with respect to p2

and constant with respect to both p1 and p2 also if they vary simultaneously but
proportionally.

Proof. In this case the boundary Γ2 = {e} × [0, 1] is parameterizable by
e(s) ≡ e and G(s) = s with s ∈ [0, 1] so the income to maximize is

I2(G; p1, p2) := I(e, G; p1, p2) = p1e − (1 + Π(G))WG.

It is easy to see that the maximum with respect to G of I2 is obtained at G = 0
independently of p1 and p2, then the optimal rate of voters employed in the public
sector does not change. !

We can explain the last result considering that if all the resources are extracted
in the first period the incumbent has obviously no interest to be reelected. Therefore
the optimal response is to employ nobody in order to cancel hiring costs and this
choice does not change if prices p1 and p2 vary.

Figure 8 shows the function G(p1, p2) when the incumbent exploits all the ex-
tractable resource.

Figure 8 The function G(p1, p2) in the case e = 4
5

when we choose W = 1 and functions
R(e) and Π(G) as in Figures 1 and 2.

Remark 4.9. In the proof of the last result we can not follow the previous strategy
because the term

I2
GG = −2Π′W − Π′′WG

is not surely different from 0. Nevertheless if we suppose I2
GG (= 0 we can calculate

explicitly that all the derivatives are identically 0.
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5 – Case d = 2: two different natural resources

In this section we analyze the case in which the incumbent has two different resources
to exploit and the maximum point is located in the interior of the region under
consideration. We will just present the situation from a merely graphical point of
view because the explicit expression of the derivatives of functions e1, e2 and G
with respect to the prices can be obtained directly from (3.1).

We decided to take the same choices made for the case of one single resource, so
we set W = 1 and for the first resource we choose the same function, obviously now
indexed with index 1, R1(e1) = − 5

16e2
1 − e1 + 1 which describes the remaining. For

the second resource we choose the very similar function R2(e2) = − 10
9 e2

2 − e2 + 1
that models a situation in which again E = 1 and e = 3

5 , so the incumbent can
extract only 60% of the total in the first period leaving nothing for the second one
(see Figure 9).

Figure 9 The function R2(e2) = − 10
9

e2
2 − e2 + 1.

In this situation, with two different natural resources, the are two rates of extraction
and four selling prices, two for each period. We are going now to show six graphics
that illustrate the trend of the rates of extraction as a function of selling prices.
Obviously every rate will be plot as function of only two prices, ranging from 20
to 24 except in a case that will be indicated, so we set the other two prices to an
arbitrary value, in this case 28.

Figure 10 shows that the rate of extraction of the first resource e1 is increasing
with respect to its selling price in the first period and decreasing with respect to
its price in the second one. The same occurs to the rate of extraction of the second
resource e2 with respect to its selling prices, as shown in Figure 11. The explanation
of this behavior is the same provided for Proposition 4.2. We show now the trend
of extraction of a resource with respect to the prices of the other one.

Figure 12 shows that the rate of extraction of the first resource as function of
prices of the other has the opposite behavior compared to Figure 11. A possible
explanation is that if, for example, the price p2

1 of the second resource in the first
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Figure 10 The function e1(p
1
1, p

1
2) when we choose W = 1 and functions R1(e1), R2(e2)

and Π(G) as in Figures 1, 9 and 2.

Figure 11 The function e2(p
2
1, p

2
2) when we choose W = 1 and functions R1(e1), R2(e2)

and Π(G) as in Figures 1, 9 and 2. In this case we have 20 ≤ p2
1 ≤ 28.

period increases then the incumbent can afford to extract less resource of the first
type without compromising the overall gain. Vice versa if price p2

2 increases then
the incumbent has to increase the extraction of the first resource to balance the
lower extraction of the second one. The extraction rate of the second resource with
respect to the selling prices of the first one has the same behavior, as shown in
Figure 13.
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Figure 12 The function e1(p
2
1, p

2
2) when we choose W = 1 and functions R1(e1), R2(e2)

and Π(G) as in Figures 1, 9 and 2.

Figure 13 The function e2(p
1
1, p

1
2) when we choose W = 1 and functions R1(e1), R2(e2)

and Π(G) as in Figures 1, 9 and 2.

We focus at last on the rate of voters employed in the public sector as function of
the selling prices. In this case there is an unexpected phenomenon.

Figure 14 shows that the rate of voters G is increasing with respect to p1
1 and

decreasing with respect to p1
2, and the same happens if we consider the prices of

the second resource, as shown in Figure 15. A possible explanation is that since
in any case there is a resource whose extraction rate decreases, the incumbent has
interest to be reelected to extract the remaining in the second period, so the optimal
response is always to increase the rate of voters employed to guarantee his success.
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Figure 14 The function G(p1
1, p

1
2) when we choose W = 1 and functions R1(e1), R2(e2)

and Π(G) as in Figures 1, 9 and 2.

Figure 15 The function G(p2
1, p

2
2) when we choose W = 1 and functions R1(e1), R2(e2)

and Π(G) as in Figures 1, 9 and 2.

– Appendix: Some discontinuous behaviors

In Subsection 4.1 we studied, in the case d = 1, how the interior maximum point
(e, G) changes with respect to the prices p1 and p2, and Figures 3 and 4 shows the
graphs of e and G as function of prices in the region 1 ≤ p1 ≤ 4 and 6 ≤ p2 ≤ 9.
But if we consider a bigger region, for example 1 ≤ p1, p2 ≤ 25 we can see a quite
strange behavior of the two functions.

Figure 16 shows in fact that there are two sorts of shock curves in the plane
p1p2. The function e(p1, p2) remains increasing in p1 and decreasing in p2 but at
the two lines of shock there are two discontinuities.
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Figure 16 The function e(p1, p2) in the region 1 ≤ p1, p2 ≤ 25 when we choose W = 1 and
functions R(e) and Π(G) as in Figures 1 and 2.

The behavior of G(p1, p2) is totally different. In fact if we plot its graph in the same
region 1 ≤ p1, p2 ≤ 25 (see Figure 17) we can see that at the two lines of shock there
are again two discontinuities but in this case there is also a change of monotonicity.
There is a mathematical explanation of this phenomenon. In fact, as one can see
from Figures 18 and 19, exactly in correspondence of the two shock curve there is
a change of sign of D1 and D2 (again in a discontinuous way) contrary to what is
assumed in the model about their positivity.

Figure 17 The function G(p1, p2) in the region 1 ≤ p1, p2 ≤ 25 when we choose W = 1 and
functions R(e) and Π(G) as in Figures 1 and 2.
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Figure 18 The function D1(p1, p2) in the region 1 ≤ p1, p2 ≤ 25 evaluated at the maximum
point given from functions e(p1, p2) in Figure 3 and G(p1, p2) in Figure 4 when we choose
W = 1 and functions R(e) and Π(G) as in Figures 1 and 2.

Figure 19 The function D2(p1, p2) in the region 1 ≤ p1, p2 ≤ 25 evaluated at the maximum
point given from functions e(p1, p2) in Figure 3 and G(p1, p2) in Figure 4 when we choose
W = 1 and functions R(e) and Π(G) as in Figures 1 and 2.
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