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and Atiyah-Bott-Lefschetz trace formulas

for foliated spaces
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Abstract: Christopher Deninger has developed an infinite dimensional cohomological
formalism which would allow to prove the expected properties of the motivic L-functions
(including the Dirichlet L-functions). These cohomologies are (in general) not yet con-
structed. Deninger has argued that they might be constructed as leafwise cohomologies
associated to ramified leafwise flat vector bundles on suitable foliated spaces. In the case of
number fields we propose a set of axioms allowing to make this more precise and to moti-
vate new theorems. We also check the coherency of these axioms and from them we derive
“formally” an Atiyah-Bott-Lefschetz trace formula which would imply Artin conjecture for
a Galois extension of Q.

1 – Introduction

Christopher Deninger’s approach to the study of arithmetic zeta and motivic L-
functions proceeds in two steps (see for instance [8, 9]).

In the first step, he postulates the existence of infinite dimensional cohomology
groups satisfying some “natural properties”. From these data, he has elaborated a
formalism which would allow him to prove the expected properties for the arithmetic
zeta functions: functional equation, conjectures of Artin, Beilinson, Riemann...etc.
There it is crucial to interpret the so called explicit formulae for the zeta and motivic
L-functions as Lefschetz trace formulae.
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The second step consists in constructing these cohomologies. Deninger has
given some hope that for zeta functions these cohomologies might be constructed as
leafwise cohomologies of suitable foliated spaces. Moreover, in the case of motivic
L-functions, one should consider flat (ramified) vector bundles on the correspond-
ing foliated space, see Deninger [11]. Very little is known in this direction at the
moment, but this second step seems to be a good motivation to develop interesting
mathematics even if they remain far from the ultimate goal.

In Section 2 we recall Deninger’s cohomological formalism in the case of the
Riemann zeta and (primitive) Dirichlet L-functions ⇤(χ, s). We point out a dis-
symmetry in the explicit formulae (1) and (4) between the coefficients of δk log p and
δ−k log p, see Comment 1.

In Section 3 is devoted to the description of the Lefschetz trace formula for a flow
acting on a codimension one foliated space. In Section 3.1 we recall the Guillemin-
Sternberg trace formula which is indeed an important computational tool for this
goal.

In Section 3.2 we recall the theorem of Alvarez-Lopez and Kordyukov.
They consider a flow (φt)t2R acting on (X,F) where the compact three dimen-

sonal manifold X is foliated by Riemann surfaces. They assume that (φt)t2R pre-
serves globally the foliation and is transverse to the foliation. Then Alvarez-Lopez
and Kordyukov define a suitable leafwise Hodge cohomology on which φt acts and
they prove an Atiyah-Bott-Lefschetz trace formula (Theorem 3.2) which has some
similarities with (1) for t real positive. The dissymmetry mentioned above for (1)
does not hold here. Nevertheless, by comparison with (1), it suggests that there
should exist a flow (φt)t2R acting on a certain space SQ with the following property.
To each prime number p [resp. the archimedean place of Q] there should correspond
a closed orbit with length log p [resp. a stationary point] of the flow φt. But since
the dissymmetry mentioned above for (1) does not hold in Theorem 3.2, the space
SQ cannot be a foliated manifold but rather a so called laminated foliated space.
Its transverse structure might involve the p−adic integers or even the adeles (see
[16] and [24] for a simple example), but we shall not dwell here on this important
point.

In Section 3.3 we introduce the concept of a ramified flat line bundle L⇢ ! X
around a finite number of closed orbits, and define the associated leafwise Hodge
cohomology groups Hj

⌧ (X;L⇢), 0  j  2. We then prove a Lefschetz trace formula
where the ramified closed orbits of (X,φt) do not appear: see Theorem 3.4. This
trace formula has some similarities with the explicit formula (4) for Dirichlet L-
functions, the ramified closed orbits corresponding to the (ramified) prime numbers
which divide the conductor of the Dirichlet character.

In Section 4, we consider more generally the Dedekind zeta function b⇣K(s) of
a number field K and recall the associated explicit formula (12). Then, making
a synthesis of Deninger’s work, we state several assumptions for a laminated foli-
ated space (SK ,F , g, φt) which (if satisfied) would allow to construct the required
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(leafwise) cohomology groups for the Dedekind zeta function. In particular, the
explicit formula (12) should be interpreted as a (leafwise) Atiyah-Bott-Lefschetz
trace formula. We compare carefully the contributions of the archimedean places
of K in (12) with the contribution of a stationary point in the Guillemin-Sternberg
formula: we explain an apparent incompatibility in the case of real places. Next,
we come back to the case of a primitive Dirichlet character χ mod m and consider
the cyclotomic field K = Q[e

2i⇡
m ] associated to χ with Galois group G = (Z/mZ)⇤.

So χ defines a group homomorphism χ : G ! S1. We consider the ramified flat
complex line bundle over SQ:

Lχ =
SK ⇥ C

G
! SQ ,

and define leafwise cohomology groups H
j
(Lχ), 0  j  2.

Then, imitating the proof of our Theorem 3.4 and using the assumptions of
Section 4, we interpret “formally” the explicit formula (4) for the Dirichlet L-

function ⇤(χ, s) as a leafwise Lefschetz trace formula for the vectors spaces H
j
(Lχ),

0  j  2: see Theorem 4.5. We insist on the fact that it is not known whether or
not the assumptions of Section 4 are satisfied.

In Section 5, we assume that K is a (finite) Galois extension of Q with Galois
group G. We review the definition and properties of the Artin L-function ⇤(K,χ, s)
associated to an irreducible representation ⇢ : G ! GLC(V ). We recall the standard
explicit formula (29) for ⇤(K,χ, s): its spectral side involves the zeroes (with sign
−) and the poles (with sign +). These poles are not controlled because the Γ-factor
introduced in the definition (27) of ⇤(K,χ, s) is not associated to a mathematical
structure, this Γ-factor seems to come as a parachute. This situation is in sharp
contrast with the case of the Dirichlet L-functions recalled in Section 2: there the
Γ-factor is introduced in the Dirichlet L-function in order to express it as the Mellin
transform of a suitable theta function.

Next we consider the ramified flat vector bundle over SQ:

E⇢ =
SK ⇥ V

G
! SQ ,

and define leafwise cohomology groups H
j
(E⇢), 0  j  2.

Then, imitating the proof of our Theorem 3.4 and using the axioms of Section 4,
we “prove formally” a leafwise Atiyah-Bott-Lefschetz trace formula for the vectors

spaces H
j
(E⇢) (0  j  2) which provides an explicit formula (31). In this formula,

the Γ-factor of ⇤(K,χ, s) appears naturally in the computation of the contribution
of the fixed points. In the spectral side of (31), the numbers only appear with a
sign −. Since the geometric sides of (31) and (29) coincide, one then would get
formally that the Artin L-function has no poles!!
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Thus, the H
j
(E⇢) (0  j  2) seem “to provide” a construction of the cohomol-

ogy groups that Deninger’s cohomological formalism attributes to ⇤(K,χ, s). In [9,
Section 3], working in the general cohomological formalism that he elaborated and
using regularized determinants, Deninger has reduced the validity of Artin conjec-
ture for simple motives to the vanishing of H0 and H2. Our approach via the trace
formula is a bit di↵erent and possibly simpler in the sense that it seems to need less
foundational results.

It would be interesting to confront certain ideas from automorphic theory (see
e.g. [19, 22, 31]) with the axioms of Sections 4.3. Indeed, one of the goals of Lang-
lands programme is to identify ⇤(K,χ, s) with the L-function L⇡ of an automorphic
cuspidal representation ⇡. In the automorphic world, the Γ-factor of L⇡ appears
naturally in a mathematical structure. Therefore, one may ask if the axioms of
Section 4.3 and the data of ⇢ : G ! GLC(V ) could allow to construct “formally”
the desired automorphic cuspidal representation ⇡ associated to ⇤(K,χ, s).

Ralf Meyer [26] has provided a nice and new spectral interpretation of the explicit
formula (12) (actually Meyer considers all Hecke L-functions at the same time).
Unfortunately, the action of G on Meyer’s cohomology groups is trivial. The fact
that this action is not trivial in our (conjectural) setting is guaranted by the axioms
of Section 4.3.

In another direction, it should also be interesting to confront the properties
of the hypothetic foliated space (SK ,F , g, φt) with ideas from Topos theory. For
instance see Morin ([27] and [18]), Caramello [5], written talks by Laurent La↵orgue
[21] and, Connes’s lecture 2013 in Collège de France. In any case, we hope that this
paper will be useful to somebody else.

2 – Deninger’s Cohomological formalism in the case of the Dirichlet
L- functions

2.1 – Dirichlet L- functions ⇤(χ, s)

The (completed) Riemann zeta function is given by:

b⇣(s) = ⇡−s/2Γ(s/2)
Y

p2P

1

1− p−s

where P = {2, 3, 5, . . .} denotes the usual set of prime numbers. The following well
known explicit formulas express a connection between P [ {1} and the zeroes of
b⇣. Let ↵ 2 C1

compact(R,R) and for s 2 R, set Φ(s) =
R
R est↵(t)dt; Φ belongs to the
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Schwartz class S(R). Then one can prove the following formula:

Φ(0)−
X

⇢2b⇣−1{0},<⇢≥0

Φ(⇢) + Φ(1)

=
X

p2P
log p

0
@X

k≥1

↵(k log p) +
X

k−1

pk↵(k log p)

1
A+W1(↵),

(1)

where

W1(↵) = ↵(0) log ⇡ +

Z +1

0

✓
↵(t) + e−t↵(−t)

1− e−2t
− ↵(0)

e−2t

t

◆
dt.

Let m 2 N \ [3,+1[, a Dirichlet character χ mod m is a group homomorphism

χ : (Z/mZ)⇤ ! S1 .

Such a character is called primitive if there exists no non trivial divisor m0 of m
such that χ = χ0 ◦ ⇡ where χ0 is a Dirichlet character mod m0 and ⇡ : (Z/mZ)⇤ !
(Z/m0Z)⇤ denotes the projection. The great commun divisor f of all such divisors
m0 is called the conductor of χ, one can check that χ is induced by a primitive
Dirichlet character mod f .

A Dirichlet character χ mod m induces a multiplicative map, still denoted χ,
from Z to S1 [ {0} by the rules:

8n 2 Z, χ(n) = χ(n+mZ) if n ^m = 1, χ(n) = 0 if n ^m 6= 1 , χ(0) = 0 .

A Dirichlet character χ mod m is primitive if and only if for any non trivial divisor
m0 of m,

9a 2 Z, a ^m = 1, a = 1modm0, χ(a) 6= 1 . (2)

Consider a (non trivial) primitive Dirichlet character χ mod m, define q 2 {0, 1} by
χ(−1) = (−1)q. Then the following function, first defined on the half plane <s > 1,
extends as an entire holomorphic function on C:

⇤(χ, s) =
⇣m
⇡

⌘s/2
Γ

✓
s+ q

2

◆ Y

p2P, p^m=1

1

1− p−s
.

It satisfies the functional equation:

8s 2 C, ⇤(χ, s) =

m−1P
a=0

χ(a)e
2i⇡a
m

iq
p
m

⇤(χ, 1− s) . (3)
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The proof uses first the fact that ⇤(χ, s) is the Mellin transform at s+q
2 of the theta

function

✓(χ, y) =
1

2

⇣ ⇡
m

⌘q/2 X

n2Z
χ(n)nqe

−n2⇡y
m

and then a certain relation between ✓(χ, 1/y) and ✓(χ, y) which is established with

the help of the Gauss sums
Pm−1

a=0 χ(a)e
2i⇡an

m (n 2 Z).
Let ↵ 2 C1

compact(R,R) such that ↵(0) = 0 and for s 2 R, set Φ(s) =
R
R est↵(t)dt.

One then has:

−
X

⇢2⇤(χ,·)−1{0}
Φ(⇢)=

X

p2P, p^m=1

log p
X

n≥1

�
χ(p)n↵(n log p) + p−nχ(p)−n↵(−n log p)

�

+

Z +1

0

↵(x)e−qx + ↵(−x)e−x(1+q)

1− e−2x
dx .

(4)

By comparison with (1), “Φ(0) + Φ(1) has disappeared”, which means that ⇤(χ, ·)
has no poles.

The idea of the proof of (4) is the following: apply the residue theorem to the
integral of the function

s 7!
✓Z +1

0

↵(log t) ts
d t

t

◆
⇤0(χ, s)
⇤(χ, s)

along the boundary of the rectangle of C defined by the four points:

1 + ✏+ iT, −✏+ iT, −✏− iT, 1 + ✏− iT,

then use the functional equation (3) and the formula:

Γ0

Γ

⇣s
2

⌘
=

Z +1

0

✓
e−u

u
− e−u s

2

1− e−u

◆
du,

lastly let T goes to +1.

2.2 – Deninger’s cohomological formalism

Deninger’s philosophy is motivated by the fact that the left hand side of (1)

Φ(0)−
X

⇢2b⇣−1{0},<⇢≥0

Φ(⇢) + Φ(1)

is reminiscent of a Lefschetz trace formula of the form

TR

Z

R
↵(t)et⇥0 dt− TR

Z

R
↵(t)et⇥1 dt+TR

Z

R
↵(t)et⇥2 dt,

where the following two assumptions should be satisfied.
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• ⇥0 = 0 acts on H0 = R, ⇥2 = Id acts on H2 = R.
• The closed unbounded operator, ⇥1 acts on an infinite dimensional real vector
(pre-Hilbert) space H1 and has discrete spectrum. For any ↵ 2 C1

compact(R,R)
the operator

R
R ↵(t)e

t⇥1 dt is trace class. The eigenvalues of ⇥1 ⌦ IdC acting on

H1 ⌦R C coincide with the non trivial zeroes of b⇣.
For each primitive (non trivial) Dirichlet character χ, there should exist an infinite
dimensional complex (pre-Hilbert) space H1

χ endowed with a closed unbounded
operator ⇥1,χ : H1

χ ! H1
χ such that for any ↵ 2 C1

compact(R,R) the operatorR
R ↵(t)e

t⇥1,χ dt is trace class. Moreover, the eigenvalues of ⇥1,χ coincide with the
non trivial zeroes of Lχ.

In Deninger’s approach one first assumes the existence of a Poincaré duality
pairing:

H1
χ ⇥H1

χ ! H2

(↵, β) ! ↵ [ β

satisfying
8(↵, β) 2 H1

χ ⇥H1
χ, e

t⇥1,χ↵ [ et⇥1,χβ = et(↵ [ β), (5)

where the et is dictated by the fact that ⇥2 = Id on H2.
In order to (re)prove the functional equation (3), one combines the property (5)

and the following identity (which Deninger assumes to hold true):

⇤(χ, s) = C

det1

✓
s− ✓1,χ

2⇡
: H1

χ

◆

det1

✓
s− ✓1,χ

2⇡
: H0

χ

◆
det1

✓
s− ✓1,χ

2⇡
: H2

χ

◆ ,

where C is a constant depending on a choice of conventions. (Actually in this
particular case, the denominator is identically equal to 1).

Second, one assumes the existence of an anti-linear Hodge star ? operator:

? : H1
χ ! H1

χ, ? : H1
χ ! H1

χ

such that ?2 = Id and ?et⇥1,χ = et⇥1,χ? and h↵;βi = ↵[?β defines a scalar product
(anti-linear on the right) on the vector space H1

χ.
These data imply easily the following:

8↵, ↵0 2 H1
χ, het⇥1,χ↵; et⇥1,χ↵0i = eth↵;↵0i. (6)

Therefore,

d

dt
het⇥1,χ↵; et⇥1,χ↵it=0 = h⇥1,χ(↵);↵i+ h↵; ⇥1,χ(↵)i = h↵;↵i,
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and
h(⇥1,χ − 1/2)(↵);↵i+ h↵; (⇥1,χ − 1/2)(↵)i = 0.

Therefore, the eigenvalues s of ⇥1,χ (which coincide by (4) with the non trivial zeroes
of ⇤(χ, s)) satisfy s−1/2+s−1/2 = 0 or equivalently: <s = 1

2 . Therefore Deninger’s
formalism should imply the Riemann hypothesis for ⇤(χ, s)! This argument comes
from an idea of Serre [30] and has been formalized in the foliation case in [13]. Of
course, we have described only a very small part of Deninger’s formalism which deals
also with L-functions of motives, Artin conjecture, Beilinson conjectures....etc.

Comment 1. There is a dissymmetry in (1) and in (4) between the coefficients of
↵(k log p) and ↵(−k log p) for k 2 N⇤. In the framework of Deninger’s formalism the
explanation is the following. Equation (5) implies “formally” that the transpose of
et⇥1,χ is ete−t⇥1,χ . Therefore, if we have a Lefschetz cohomological interpretation
of (1) in Deninger’s formalism for a test function ↵ with support in ]0,+1[ then
we have also a cohomological proof of (1) for ↵ with support in ] − 1, 0[. In this
formalism, (5) (and the above dissymmetry) is quite connected to the Riemann
hypothesis.

Recall that Alain Connes [7] has reduced the validity of the Riemann hypothesis
(for the L-functions of the Hecke characters) to a trace formula.

3 – Analogy with the foliation case

3.1 – The Guillemin-Sternberg trace formula

Consider a smooth compact manifold X with a smooth action:

φ : X ⇥ R ! X, (x, t) ! φt(x),

so that φt+s = φt ◦ φs for any t, s 2 R. Let Dyφ
t denote (for fixed t 2 R) the

di↵erential of the map : y 2 X ! φt(y). One has: @sφ
t+s
|s=0(y) = Dyφ

t(@sφ
s
|s=0(y)).

Consider also a smooth vector bundle E ! X. Assume that E is endowed with
a smooth family of maps

 t : (φt)⇤E ! E, t 2 R,

satisfying the following cocycle condition:

8u 2 C1(X;E), 8t, s 2 R,  s( t(u ◦ φt) ◦ φs) =  t+s(u ◦ φt+s).

In other words, we require that the maps Kt : u !  t(u ◦ φt) = Kt(u) define an
action of the additive group R on C1(X;E). Notice that in the case of E = ^⇤T ⇤X
and  s =t Dφs (the transpose of the di↵erential Dφs of φs), this condition is
satisfied.
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We shall assume that the graph of φ (i.e. {(x, φt(x), t)}) meets transversally
the “diagonal” {(x, x, t), x 2 X, t 2 R}. Guillemin-Sternberg have checked ([20])
that the trace Tr(Kt|C1(X;E)) is defined as a distribution of t 2 R \ {0} by the
formula:

Tr(Kt|C1(X;E)) =

Z

X

Kt(x, x)

where Kt(x, y) denote Schwartz (density) kernel of Kt. We warn the reader that,
in general, for ↵ 2 C1

compact(R) \ {0}, the operator
R
R ↵(t)K

tdt is not trace class.
Now, we give the name T 0

x = @tφ
t(x)t=0 R to the real line generated by the

vector field @tφ
t(x)t=0 of φt at a point x where @tφ

t(x)t=0 6= 0.

Proposition 3.1 ([20], Guillemin-Sternberg). The following formula holds in
D0(R \ {0}).

T r(Kt |C1(X;E)) =
X

γ

l(γ)
X

k2Z⇤

Tr( 
kl(γ)
xγ ; Exγ

)

| det (1−Dyφkl(γ)(xγ) ; Txγ
X/T 0

xγ
) | δkl(γ)

+
X

x

Tr( t
x ; Ex)

| det (1−Dyφt(x) ; TxX)| .

In the first sum, γ runs over the periodic primitive orbits of φt, xγ denotes any
point of γ, l(γ) is the length of γ, φl(γ)(xγ) = xγ . In the second sum, x runs over
the fixed points of the flow: φt(x) = x for any t 2 R.

Comment 2. Recall that Dyφ
t denotes, for fixed t, the di↵erential of the map

y(2 X) ! φt(y). The non vanishing of the two determinants in Proposition 3.1
is equivalent to the fact that the graph of φ meets transversally the “diagonal”
{(x, x, t), x 2 X, t 2 R}.

Note that the following elementary observation is the main ingredient of the
proof the Proposition 3.1. Let A 2 GLn(R) and δ0(·) denote the Dirac mass at
0 2 Rn. Then one computes the distribution δ0(A·) in the following way. For any
f 2 C1

comp(Rn), one has:

hδ0(A·); f(·)i =
Z

Rn

δ0(Ax)f(x)dx =

Z

Rn

δ0(y)f(A
−1y)

1

Jac(A)
dy =

1

Jac(A)
f(0)

where dy denotes the Lebesgue measure. Therefore: δ0(A·) = 1
Jac(A)δ0(·).

3.2 – The Lesfchetz trace formula of Alvarez-Lopez and Kordyukov

Now we shall assume that X is a compact three dimensional oriented manifold and
endowed with a codimension one foliation (X,F). We shall also assume that the
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flow φt preserves the foliation (X,F), is transverse to it and thus has no fixed point.
Therefore (X,F) is a compact Riemannian foliation whose leaves are oriented. We
shall apply later Proposition 3.1 with E = ^⇤T ⇤F ! X.

Comment 3. A typical example is of the form X = L⇥R+⇤

⇤ , where ⇤ a subgroup
of (R+⇤,⇥) and φt(l, x) = (l, xe−t).

Now, we get a so called bundle like metric gX on (X,F) in the following way.
We require that gX(@tφ

t(z)) = 1, @tφ
t(z) ? TF for any (t, z) 2 R ⇥ X, and that

(gX)|TF is a given leafwise metric. By construction, with respect to gX , the foliation
(X,F) is defined locally by riemannian submersions.

In this setting, Alvarez-Lopez and Kordyukov [2] have proved the following
Hodge decomposition theorem (0  j  2):

C1(X,^jT ⇤F) = ker∆j
⌧ ⊕ Im∆j

⌧ (7)

where ∆j
⌧ denotes the leafwise Laplacian. Since we have ker dF

Im dF
= ker∆j

⌧ , we call

the vector space Hj
⌧ (X) = ker∆j

⌧ a reduced leafwise cohomology group.
Let ⇡j

⌧ denote the projection of the vector space of leafwise di↵erential forms
C1(X,^jT ⇤F) onto Hj

⌧ (X) = ker∆j
⌧ according to (7) with 0  j  2. Then

Alvarez-Lopez and Kordyukov [1] have proved the following Atiyah-Bott-Lefschetz
trace formula.

Theorem 3.2 ([1]). Let ↵ 2 C1
compact(R). Then the operators

Z

R
↵(s)⇡j

⌧ ◦ (φs)⇤ ◦ ⇡j
⌧ ds

are trace class for 0  j  2. Let χ⇤ denote the leafwise measured Connes Euler
characteristic of (X,F) ([6]). Then one has:

2X

j=0

(−1)jTR

Z

R
↵(s)⇡j

⌧ ◦ (φs)⇤ ◦ ⇡j
⌧ ds

= χ⇤↵(0) +
X

γ

X

k≥1

l(γ) (✏−kγ↵(−kl(γ)) + ✏kγ↵(kl(γ)))

(8)

where γ runs over the primitive closed orbits of φt, l(γ) is the length of γ, xγ 2 γ

and ✏±kγ = sign det(id−Dφ
±kl(γ)
|TxγF ).

Proof. (Sketch of the idea). The case where the support of ↵ is included in
a suitably small interval [−✏,+✏] is treated separately. So let us assume that the
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(compact) support of ↵ is included in R \ {0}. The authors show that the following
quantity:

H(t) =
2X

j=0

(−1)jTR

Z

R
↵(s) e−t�j

⌧ ◦ (φs)⇤ ds

does not depend on the real t > 0. Using non trivial arguments based on (7), the
authors then prove that

lim
t!+1

H(t) =
2X

j=0

(−1)jTR

Z

R
↵(s)⇡j

⌧ ◦ (φs)⇤ ◦ ⇡j
⌧ ds .

On the other hand, they show that:

lim
t!0+

H(t) =

2X

j=0

(−1)jTr

Z

R
↵(s)(φs)⇤ ds.

But Proposition 3.1 (with E = ^jT ⇤F and  s =t Dφs) shows that the right
handside is equal to:

X

γ

l(γ)
X

k2Z⇤

2X

j=0

(−1)j
Tr
�t
(Dyφ

kl(γ)(xγ)) : ^jT⇤
xγ
F 7! ^jT⇤

xγ
F
�

|det(id−Dyφ
kl(γ)
|TxγF )|

↵(kl(γ)).

Then, using the equality limt!+1 H(t) = limt!0+ H(t), one then gets immediately
the result. ⇤

Comment 4. If there exists a real hγ > 0 such that hγDφ
l(γ)
|TxγF belongs to

S02(TxγF) (i.e. Dφ
l(γ)
|TxγF is a direct similitude) then ✏±kγ = 1 for any integer

k.

Comment 5. The extension of Theorem 3.2 to the case where the flow has fixed
points is the subject of a work in progress [4].

3.3 – The case of a ramified flat line bundle on (X,F , (φt)t2R)

We consider now another compact (three dimensional) oriented riemannian foliation
(X̃,F , φt) of codimension 1 which defines a Galois ramified covering ⇡ : X̃ ! X with
finite automorphism group G such that the action of G commutes with φt, t 2 R
and permutes the leaves. We assume that for any real t, φt ◦ ⇡ = ⇡ ◦ φt and that ⇡
sends leaves onto leaves. We can also assume that G preserves a bundlelike metric
g0 of (X̃,F , φt) and we fix such one.
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Consider now a non trivial character ⇢ : G ! S1. Define an action of G on
X̃ ⇥ C by setting

8(h,m, λ) 2 G⇥ X̃ ⇥ C, h · (m,λ) = (h ·m, ⇢−1(h)λ) .

To this action we associate the ramified flat complex line bundle L⇢ = X̃⇥C
G ! X

over X, where any (m,λ) 2 X̃ ⇥ C is identified to (h ·m, ⇢−1(h)λ) for any h 2 G.
One defines a projection Pj acting on Hj

⌧ (X̃)⌦R C (0  j  2) by setting:

Pj =
1

|G|
X

h2G

h⇤ , cardG = |G| .

Definition 3.3. One then defines the leafwise cohomology group Hj
⌧ (X;L⇢)

with coefficient in L⇢ by:

Hj
⌧ (X;L⇢) = ImPj , 0  j  2 .

Since the flow (φt) commutes with G, it induces an action denoted (φt)⇤j (= ⇡j
⌧ (φ

t)⇤)
on each Hj

⌧ (X;L⇢).
The duality between L⇢ and L⇢ induces a map:

H1
⌧ (X;L⇢)⇥H1

⌧ (X;L⇢) ! H2
⌧ (X)

(↵, β) ! ↵ ^ β .

The leaves of (X̃,F) (and of (X,F)) are oriented. The restriction of theG−invariant
metric g0 along the leaves then induces the Hodge star operator:

Hj
⌧ (X;L⇢) ! H2−j

⌧ (X;L⇢)

! ! ?! .

Consider a closed orbit γ inX defined by t 2 [0, T ] ! φt(x0) where φ
T (x0) = x0. We

shall say that this closed orbit is ramified if the cardinal of ⇡−1(x0) is strictly smaller
than the cardinal of G. Since the action of G commutes with one of φt(t 2 R), this
definition does not depend on the choice of x0 2 γ. We shall assume that there
are only a finite number of closed ramified orbits. Moreover, for any such ramified
closed orbit, we shall make the following two assumptions:

• First, if x̃0 2 ⇡−1({x0}) then the restriction of ⇢ to Gx̃0 = {r 2 G/ r · x̃0 = x̃0}
is not trivial.

• Second, if T > 0 and h 2 G are such that φT (x̃0) = h · x̃0, then

8r 2 Gx̃0
, sign det

�
Id−D(h−1 r ◦ φT )

�
|Tx̃0F

= sign det
�
Id−D(h−1 ◦ φT )

�
|Tx̃0F

.
(9)
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Consider now the case where γ is an unramified closed orbit on X. Let x̃0 2
⇡−1({x0}), there exists h 2 G such that φT (x̃0) = h · x̃0. Then, for any λ 2 C,

h−1 · (φT (x̃0), λ) = (x̃0, ⇢(h)λ) .

Then the complex number ⇢(h) defines the monodromy action along γ on the flat
line bundle L⇢ and we denote it by ⇢(γ).

We then may state a leafwise Lefschetz trace formula (with coefficients in L⇢)
where, in analogy with the ramified primes of a Dirichlet character, the ramified
closed orbits do not contribute at all.

Theorem 3.4. Assume that for any h 2 G, the graph of h ◦ φt intersects
transversally the “diagonal” {(x̃, x̃, t)/ x̃ 2 X̃, t 2 R}. Let ↵ 2 C1

compact(R) be
such that ↵(0) = 0. Then for each 0  j  2, the operator

R
R ↵(s)(φ

s)⇤j ds acting

on Hj
⌧ (X;L⇢) is trace class. Moreover, one has:

2X

j=0

(−1)jTR

Z

R
↵(s) (φs)⇤j ds

=
X

γ

X

k≥1

l(γ)
�
✏−kγ ⇢(−kγ)↵(−kl(γ)) + ✏kγ ⇢(kγ)↵(kl(γ))

�

where γ runs over the primitive unramified closed orbits of φt, l(γ) is the length of

γ, xγ 2 γ and ✏±kγ = sign det(id−Dφ
±kl(γ)
|TxγF ).

Proof. We use Theorem 3.2 or rather its proof to compute, the alternate sum
of traces:

2X

j=0

(−1)j
1

|G|
X

h2G

TR

Z

R
↵(s)⇡j

⌧ (h
−1 ◦φs)⇤ ds : Hj

⌧ (X̃)⌦RC ! Hj
⌧ (X̃)⌦RC . (10)

So we have to consider the reals T 6= 0 and the points x̃0 2 X̃ such that h−1 ◦
φT (x̃0) = x̃0. We shall assume T > 0, the case T < 0 being similar. By considering
⇡(h−1 ◦φt(x̃0)), one obtains a closed orbit on X, γ⇡(x̃0) : t 7! φt(⇡(x̃0)) (0  t  T )
of length T . There exists k 2 N⇤, such that γ⇡(x̃0) is the k−iteration of the primitive

closed orbit of length T0 = T
k determined by φT0(⇡(x̃0)) = ⇡(x̃0). Upstairs on X̃,

this means that there exists h0 2 G such that h−1
0 φT0(x̃0) = x̃0. So φkT0(x̃0) =

hk
0 · x̃0 = h · x̃0 and hence h−1hk

0 2 Gx̃0 . We then distinguish two cases.

A) The case where γ⇡(x̃0) is unramified.

Then by considering the translates on the left of h−1 ◦ φt(x̃0), one obtains exactly
the |G| curves (of the flow) on X̃ which correspond (via ⇡) to γ⇡(x̃0). We write
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them in the following way, t 7! lh−1l−1 ◦ φt(l · x̃0) ( 0  t  T ), where l 2 G,
the corresponding monodromy being ⇢(lhl−1). Observe that l · x̃0 is a fixed point
of lh−1l−1 ◦ φT . Then the proof of Theorem 3.2 ([1]) shows that the geometric
contribution of γ⇡(x̃0) to (10) is computed according to Proposition 3.1 and is equal
to:

T0

|G|
X

l2G

2X

j=0

(−1)j
Tr
�t
D(lh−1l−1 ◦ φT )(l · x̃0) ; ^jT ⇤

l·x̃0
F
�

| det
�
id−D(lh−1l−1 ◦ φT )

�
|Tl·x̃0

F | ⇢(lhl−1)↵(kT0) .

We observe that all the following reals, where l runs over G, have the same sign:

det
�
id−D(lh−1l−1 ◦ φT )

�
|Tl·x̃0

F , det(id−DφT|T⇡(x̃0)F ) .

Therefore, the previous expression is clearly equal to T0 ✏kγ⇡(x̃0)
⇢(h)↵(kT0) which

yields the desired contribution.

B) The case where γ⇡(x̃0) is ramified.

So Gx̃0
= {u 2 G/u · x̃0 = x̃0} is not trivial. Then there are exactly |G/Gx̃0

|
curves (of the flow) upstairs on X̃ which correspond (via ⇡) to γ⇡(x̃0). They are

given by t 7! ljh
−1l−1

j ◦ φt(lj · x̃0) ( 0  t  T ), where the lj (1  j  m) run
over a system of representatives of cosets of G/Gx̃0

. Since the restriction of ⇢ to
Gx̃0

is not trivial, we have to count each such curve |Gx̃0
| times but with (possibly)

di↵erent monodromies (i.e. action on the line factor C). More precisely, for each
representative lj the curve labeled

t 7! ljh
−1l−1

j u ◦ φt(lj · x̃0), with u 2 ljGx̃0 l
−1
j (11)

has monodromy ⇢(u−1ljhl
−1
j ).

Thanks to the sign assumption (9), the proof given above in the unramified case
shows that the sum of the contributions to (10) of the |ljGx̃0

l−1
j | curves in (11) is

then equal to:

C
X

u2ljGx̃0
l−1
j

⇢(u−1ljhl
−1
j ) = C

� X

s2Gx̃0

⇢(s)
�
⇢(h) ,

where C is a suitable constant. But since the restriction of ⇢ to Gx̃0
is assumed to

be not trivial, this contribution is zero. ⇤
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3.4 – An explicit example

Now we describe an explicit example (communicated to us by Jesus Alvarez-Lopez)
of a ramified covering satisfying the conditions of Theorem 3.4. Denote by S the
Jacob ladder, a certain noncompact surface embedded in R3, and by L the real line
of symmetry of S. There is a group T of translations isomorphic to (Z,+), whose
vectors belong to L and which acts on S such that the quotient S/T is a smooth
compact Riemann surface. Let G = {Id,R} denote the group generated by the
rotation R of R3 whose axis is L and angle is ⇡. Observe that we have a ramified
covering S ! S/G where the set of ramification points is L \ S. Moreover, there
exists a vector field U on S whose fixed points are exactly the ones of the G−action
and which is invariant by G and T . Consider an action of T ' (Z,+) on the circle

S1 defined by a rotation of angle 2⇡↵ (↵ /2 Q). Now, set X̃ = S⇥S1

T , it is foliated
by the leaves induced by the sets S ⇥{ei✓}. Consider φt the flow of the vector field
U ⇥ @

@x
of X̃. Then we can choose U such that the hypothesis of Theorem 3.4 are

satisfied by X̃, (φt)t2R, X = X̃/G.

3.5 – The more general case of a flat ramified complex vector bundle

More generally, one can consider a unitary representation ⇢ : G ! U(E) where
E is a complex hermitian vector space. One then gets the ramified flat complex
hermitian vector bundle

E⇢ =
X̃ ⇥ E

G
! X

over X where (m, v) is identified with (h · m, ⇢(h)−1v) for any h 2 G. Similarly,
the dual representation t⇢−1 : G ! U(E⇤) allows to consider the dual flat complex
hermitian vector space E⇤

t⇢−1 ! X.

The duality between E⇢ and E⇤
t⇢−1 induces a map:

H1
⌧ (X; E⇢)⇥H1

⌧ (X; E⇤
t⇢−1) ! H2

⌧ (X)

(↵, β) ! ↵ ^ β .

Denote by J : E⇢ ! E⇤
t⇢−1 the antilinear vector bundle isomorphism provided by

the hermitian scalar product. Then, using leafwise Hodge star of the metric g0, one
gets the following Hodge star operator acting on the cohomology groups:

Hj
⌧ (X; E⇢) ! H2−j

⌧ (X; E⇤
t⇢−1)

! ! J ? ! .
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4 – Remarks about a conjectural dynamical laminated foliated space
(SK ,F , g, φt) associated to the Dedekind zeta function b⇣K

Much of the following Section is speculative in nature. It should be viewed as a
working programme or a motivation for developing interesting mathematics.

Let K be a number field and let OK denote its ring of integers. Let r1 (resp. 2r2)
denote the number of real (resp. complex) embeddings of K so that the dimension
of K as a Q-vector space is equal to r1+2r2. If σ : K ! C is a complex embedding
then of course |σ(z)| and |σ(z)| define the same archimedean absolute value on K.
Therefore the set S1 of all the archimedean absolute values of K has exactly r1+r2
elements.

We now set:

ΓR(s) = ⇡−s/2Γ(s/2), ΓC(s) = (2⇡)−sΓ(s) .

The Dedekind zeta function b⇣K is defined for <s > 1 by:

b⇣K(s) = |dK |s/2 Γr1R (s) Γr2C (s)
Y 1

1− (NP)−s
,

where dK denotes the discriminant of K over Q, P runs over the set of non zero
prime ideals of OK and NP (= card OK/P) denotes the norm of P.

The function b⇣K extends as a meromorphic function on C and admits a simple
pole at 0 and 1. It satisfies the functional equation b⇣K(s) = b⇣K(1− s).

We recall the explicit formula for the zeta function b⇣K as an equality between
two distributions in D0(R \ {0}) (t being the real variable).

1−
X

⇢2b⇣−1
K {0}, <⇢≥0

et⇢+et=
X

P
logNP

X

k≥1

(δk logNP + (NP)−kδ−k logNP)

+r1

 
1

1− e−2t
1{t>0}+

et

1− e2t
1{t<0}

!
+r2

 
1

1−e−t
1{t>0}+

et

1−et
1{t<0}

!
,

(12)

where P runs over the set of prime ideals of OK and NP denotes the norm of P.

4.1 – Structural assumptions and their consequences

We assume, following Deninger (e.g. [15, 14]), that to SpecOK [S1, one can asso-
ciate a (laminated) foliated space (SK ,F , g, φt) satisfying the following assumptions.

1) The leaves are Riemann surfaces, the path connected components of SK are three
dimensional and, g denotes a leafwise riemannian metric. The flow (φt)t2R acts on
(SK ,F), it sends leaves into (other) leaves and its graph intersects transversally the
“diagonal” {(x̃, x̃, t)/ x̃ 2 SK , t 2 R}.
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2) To each prime ideal P of OK there corresponds a unique primitive closed orbit
γP of φt of length logNP. There is a bijection between the set S1 of archimedean
absolute values and the set of fixed point y1 = φt(y1), 8t 2 R, of the flow. Each
leaf contains at most one fixed point and the flow is transverse to all the leaves
di↵erent from the ones containing the r1 + r2 fixed points.

3a) We assume that for any fixed point y1:

8t 2 R, e−t/2Dyφ
t(y1)|Ty1F 2 SO2(Ty1F) . (13)

3b) For any prime P of OK and any x̃ 2 γP :

e−
log NP

2 Dyφ
logNP(x̃)|Tx̃F 2 SO2(Tx̃F) . (14)

4) We have (Frechet) reduced real leafwise cohomology groups H
j

F,K (0  j  2),

on which (φt)t2R acts naturally, with the following properties. One has H
0

F,K ' R
(the space of constant functions) and H

2

F,K ' R[λg] where [λg] denote the class in

H
2

F,K of the leafwise kaehler metric λg associated to g. Moreover, we assume that

8t 2 R, (φt)⇤([λg]) = et[λg] , (15)

and that H
1

F,K is infinite dimensional.

5) The action of φt on H
1

F,K commutes with the Hodge star ? induced by g.
Moreover there exists a transverse measure µ on (SK ,F) such that

R
SK

(↵ ^ ?β)µ
defines a scalar product on H

1

F,K

6) For any ↵ 2 C1
compact(R \ {0};R),

R
R ↵(t)(φ

t)⇤dt acting on H
1

F,K is trace class
(possibly in some generalized sense, cf. [4]). The explicit formula (12) is interpreted
as an Atiyah-Bott-Lefschetz trace formula for the foliated space (SK ,F , g, φt) with

respect to the leafwise cohomology groups H
j

F,K (0  j  2). In particular, the in-

finitesimal generator ✓1 of (φt)t2R acting on H
1

F,K⌦C has discrete spectrum, its set

of eigenvalues coincide with the set of zeroes of b⇣K(s) (with the same multiplicities
on each side). Moreover:

H
1

F,K ⌦R C =
X

zq2b⇣−1
K {0}

ker(✓1 − zqId)n(zq) .

7) Let x1 2 SK be any fixed point corresponding (according to 2)) to a real
archimedan absolute value. Then x1 should be a limit point of a trajectory γ1:
limt!+1 φt(y) = x1 for any y 2 γ1. Moreover, γ1 should have the following
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orbifold structure. Define an orbifold structure on R≥0 by requiring the following
map to be an orbifold isomorphism:

Sq :
R

{1,−1} ! R≥0, Sq(z) = z2.

Notice that Sq transforms the flow φt R
{1,−1}

(z) = ze−t into the flow φtR≥0(v) = ve−2t.

Then we require that there exists an embedding  : R≥0 ! γ1 such that  (0) = x1
and

8(t, v) 2 R⇥ R≥0,  (φtR≥0(v) = ve−2t) = φt( (v)). (16)

Lastly we require that γ1 is transverse at x1 to Tx1F .
8) Let z1 2 SK be any fixed point corresponding (according to 2)) to a complex
archimedean absolute value. Then there exist two trajectories γ± of the flow φt

with end point z1. For any z± 2 γ±, limt!+1 φt(z±) = z1. These two trajectories
γ± are transverse to F at z1. Moreover there exists an embedding:

 : R ! γ− [ γ+,

such that  (0) = z1, γ±\{0} =  (R±\{0}). Lastly, 8v, t 2 R,  (ve−t) = φt( (v)).

Comment 6. The stronger assumption 8t 2 R, (φt)⇤(g) = etg implies (13) (be-
cause φ0 = Id), (15) and the fact that φt commutes with the Hodge star not only

on H
1

F,K but also on the vector space of leafwise di↵erential 1-forms. Deninger
told us privately that this assumption (φt)⇤(g) = etg might be too strong. As-

sumption 5. and (15) implies the analogue of Equation (6) for b⇣K in Deninger’s
formalism. Therefore, the first six Assumptions imply the Riemann hypothesis for
b⇣K as explained in Section 2!

Comment 7. The disymmetry mentionned in Comment 1 might be explained in
the following way. For each prime ideal P of OK with norm pf , (SK ,F) should
exhibit a transversal of the type ]0, 1[⇥Zp and possibly the ring of finite Adeles AQ
might enter into the picture. See [24] for a simple case.

4.2 – Remarks about the contribution of the archimedean places in (12)

Now we apply formally the Guillemin-Sternberg trace formula for the distribution
of the real variable t:

2X

j=0

(−1)jTr((φt)⇤ ; Γ(SK ; ^jT ⇤F)) (17)

where Γ(SK ; ^jT ⇤F) denotes the set of “smooth” sections.
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Lemma 4.1 (Deninger [14]).

1) The contribution of a fixed point y1 corresponding to an archimedean place of
K in the Guillemin-Sternberg trace formula for (17) is:

1

| det(1−Dyφt(y1) ; Ty1SK/Ty1F)| .

2) In the case of a fixed point x1 corresponding to a real archimedean place of K
one has:

8t 2 R \ {0}, 1

| det(1−Dyφt(x1) ; Tx1SK/Tx1F)| =
1

|1− e−2t| .

3) In the case of a fixed point z1 corresponding to a complex archimedean place of
K one has:

8t 2 R \ {0}, 1

| det(1−Dyφt(z1) ; Tz1SK/Tz1F)| =
1

|1− e−t| .

Proof. 1. Using Proposition 3.1, one sees that the contribution of the fixed
point y1 is equal to:

2P
j=0

(−1)jTr((Dyφ
t)⇤(y1) ; ^jT ⇤

y1F)

| det(1−Dyφt(y1) ; Ty1SK)|

=
det(1−Dyφ

t(y1) ; Ty1F)

| det(1−Dyφt(y1) ; Ty1F)|
1

| det(1−Dyφt(y1) ; Ty1SK/Ty1F)| .

Using property (13) one checks easily that

det(1−Dyφ
t(y1) ; Ty1F)

| det(1−Dyφt(y1) ; Ty1F)| = 1.

One then gets immediately 1).
2) Since Tx1SK/Tx1F is a real line, there exists  2 R such that:

8t 2 R, | det(1−Dyφ
t(x1) ; Tx1SK/Tx1F)| = |1− et|.

By Assumption 7), γ1 is transverse at x1 to Tx1F and (16) shows that Dyφ
t(x1)

acts as e−2t Id on the real line Tx1SK/Tx1F . One then gets 2) immediately. One
proves 3) in the same way, using Assumption 8). ⇤
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Recall that we wish to test the interpretation of (12) as a Lefschetz trace formula
via the Guillemin-Sternberg formula. Part 2) of the next Proposition is a priori
embarrassing...

Proposition 4.2 (Deninger [14]).

1) The contribution of a real archimedean absolute value in (12) coincides for any
real positive t with the contribution of the corresponding fixed point x1 in the
Guillemin-Sternberg formula for (17).

2) The contributions of the fixed point x1 for t real negative in the Guillemin-
Sternberg formula for (17) and of the corresponding real archimedean absolute
value in (12) do not coincide. (This riddle will be resolved in Section 4.4).

Proof. 1) This is part 2) of the previous Lemma.
2) Indeed, the Guillemin-Sternberg formula gives

1

|1− e−2t| =
e2t

1− e2t
,

whereas (12) gives
et

1− e2t
for t < 0. ⇤

Comment 8. It was in order to explain the factor −2 (instead of −1) in 1
1−e−2t

for t > 0 for a real archimedean place in (12) that Deninger has proposed in [15,
Section 3] the Assumption 7).

The following Proposition shows that the contribution of a complex archimedean
place in the explicit formula (12) is better understood than the one of a real
archimedean place (cf. Proposition 4.2. 2)).

Proposition 4.3 ([14], Section 5). Let z1 be a fixed point corresponding to a
complex archimedean place of K. The contribution of z1 in the Guillemin-Sternberg
trace formula (for (17)) coincides, for t 2 R \ {0}, with the contribution of the
corresponding complex archimedean place in (12).

Proof. This is an easy consequence of Lemma 4.1. 3). ⇤

4.3 – More precise assumptions when K is a Galois extension of Q with Galois group G

In this subsection we assume that K is a Galois extension of Q of degree n with
Galois group G. We then require the existence of a ramified Galois covering map
⇡K : SK ! SQ whose automorphism group coincides with G and which satisfies the
following properties.



[21] Analogy between L-functions and foliated spaces 21

For any real t, φt ◦ ⇡K = ⇡K ◦ φt, the map ⇡K [resp. G] sends leaves to leaves.
The leafwise metric g is assumed to be G−invariant and, the actions of G and

φt (t 2 R) on SK and H
1

F,K commute. Moreover the action of G on the set of
curves γP coincides with the action of G on the set of (non zero) prime ideals P.
More precisely, consider a prime number p and the decomposition of pOK in prime
ideals:

pOK = Pe
1 . . .Pe

r .

Therefore, n = e r f where NPj = pf for j 2 {1, . . . , r}.
Consider DPj

= {h 2 G/h · Pj = Pj} 1 , we then have a natural surjective
homomorphism:

⇥j : DPj ! Aut
OK

Pj

h 7! ⇥j(h) = (Fr )aj(h)

(18)

where Fr denote the Frobenius automorphim z 7! zp of OK

Pj
and aj(h) is a suitable

integer (modulo f). One has |DPj
| = ef . The fact that ⇥j is natural means that

8(h, v) 2 G⇥OK , h · v − vpaj(h) 2 Pj . (19)

Recall that e is the common cardinal of the inertia groups IPj
= ker⇥j and that

e ≥ 2 if and only if p divides the discriminant of K. We then require that each
point of γPj

is fixed by IPj
and that ⇡K induces the covering map

⇡K : γPj
' R

f log pZ
! γp ' R

log pZ
x 7! x .

(20)

Moreover, we require the following three properties:

8h 2 DPj
, 8x 2 γPj

' R
f log pZ

, h · x = x+ aj(h) log p . (21)

The restriction of φt to γPj
' R

f log pZ (resp. γp) is assumed to be the translation

by t: φt(x) = x+ t. Lastly we state a strengthening of Assumption 3a):

if h−1φT (x̃)= x̃ for x̃ 2 SK , h2G, thenD(h−1φT )(x̃)|Tx̃F 2R+⇤SO2(Tx̃F) . (22)

Now we state the required conditions for the archimedean places of K. Observe
that if | | is such a place then all the other archimedean places of K are of the form

1When G is abelian, the DPj
are all equal for 1  j  r.
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z ! |h(z)| where h runs over G. Therefore either they are all real or all complex.
If they are all real, then r1 = n and the group G acts freely and transitively
on the set S1 of archimedean places of K. We then require that the action of
G on S1 coincides with the one of G on the set of corresponding fixed points
{x1,1, . . . , xn,1}.

If the archimedean places are all complex, then n = 2r2. We require that the
transitive action of G on S1 coincides with the (transitive) action of G on the set of
corresponding fixed points {z1,1, . . . , zr2,1}. For each j 2 {1, . . . , r2} there exists
a unique element hj 2 G \ {1} such that hj(zj,1) = zj,1. The hj are all conjugate
to each other and satisfy h2

j = 1, where j 2 {1, . . . , r2}. In some sense each hj

represents a non canonical model of the complex conjugation. Moreover we assume
that for any j 2 {1, . . . , r2}

Dhj(zj,1)|Tzj,1F = Id, Dhj(zj,1)
|
Tzj,1SK

Tzj,1F
= −Id. (23)

4.4 – Explanation of the incompatibility at the archimedean place of Q between the
Guillemin-Sternberg trace formula and the explicit formula (1).

A priori, Proposition 4.2. 2) seems to raise an “objection” in Deninger’s approach.
We are going to explain that the Guillemin-Sternberg trace formula and the explicit
formula (1) are actually compatible. Proposition 4.2. 2) is due to the fact that SQ
has a mild singularity at x1, whereas SQ[i] is “smooth” at z1.

We apply the previous subsection with K = Q[i]. Thus we require the existence
of a degree two ramified covering ⇡Q[i] : SQ[i] ! SQ with structural group G =
{Id, h1} such that h1(z1) = z1, Dh1(z1)|Tz1F = IdTz1F , Dh1(z1) induces −Id
on Tz1SQ[i]/Tz1F and h1 ◦ φt = φt ◦ h1 for any real t.

Then we have (at least formally) the following equality between distributions of
the real variable t:

2X

j=0

(−1)jTr
⇣
(φt)⇤ ; Γ(SQ ; ^jT ⇤F)

⌘

=
2X

j=0

(−1)jTr

 
(φt)⇤ + h⇤

1(φ
t)⇤

2
; Γ(SQ[i] ; ^jT ⇤F)

!
= B(t) .

We observe that z1 is also a fixed point for h1 ◦ φt = φt ◦ h1, t 2 R.

Proposition 4.4. The contribution of z1 in the Guillemin-Sternberg trace for-
mula for the term B(t) above is equal to:

1

1− e−2t
if t > 0 ,
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and to
et

1− e2t
if t < 0 .

This contribution matches perfectly with the contribution of the real archimedean
place in the explicit formula (1).

Proof. The axioms of Section 4.3 (recalled in the beginning of this subsection)
and the proof of Lemma 4.1 allow to check formally that the contribution of z1
(for t 2 R \ {0}) in

2X

j=0

(−1)jTr
⇣
h⇤
1(φ

t)⇤ ; Γ(SQ[i] ; ^jT ⇤F)
⌘

is equal to:

1

| det(1−Dy(h1 ◦ φt(z1)) ; Tz1SK/Tz1F)| =
1

1 + e−t
.

Now we can compute the contribution of the fixed point x1 2 SQ in B(t).
For t > 0 we find:

1

2

✓
1

1− e−t
+

1

1 + e−t

◆
=

1

1− e−2t
.

For t < 0 we find:
1

2

✓
et

1− et
+

et

1 + et

◆
=

et

1− e2t
.

The proposition is proved. ⇤

4.5 – Primitive Dirichlet characters and leafwise flat ramified lines bundles

Let χ be a primitive Dirichlet character mod m (≥ 3), so χ is defined by a group
homomorphism:

χ : G = (Z/mZ)⇤ ! S1 .

Consider the cyclotomic field K = Q[e
2i⇡
m ], it is a Galois extension of Q whose

Galois group is equal to G and has cardinal φ(m) (φ being the Euler function).
Then define an action of G on SK ⇥ C by h · (z, λ) = (h · z, χ(h)−1λ) for any
(h, z, λ) 2 G⇥ SK ⇥ C.

Using the axioms of Section 4.1, we are going to argue that the following leafwise
ramified flat line bundle over SQ:

Lχ =
SK ⇥ C

G
! SQ
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should provide the relevant cohomology allowing to interpret the explicit formula
(4) as a Lefschetz trace formula. We set for j 2 {0, 1, 2}:

H
j
(Lχ) =

1

|G|
X

h2G

h⇤(H
j

F,K ⌦R C) = (H
j

F,K ⌦R C)G .

Since χ is a non trivial (primitive) character, G acts trivially onH
0

F,K ' R, H2

F,K '
R[λg], and we get that H

j
(Lχ) = 0 for j = 0 or j = 2. Recall that the actions

of (φt)t2R and G on SK commute, so the flow φt induces an action (still) denoted

(φt)⇤ on H
1
(Lχ). Now we are going to give a formal proof an Atiyah-Bott-Lefschetz

trace formula whose geometric side coincides with the one of the explicit formula
(4) associated to ⇤(χ, s).

Theorem 4.5. (“informal” theorem) Consider ↵ 2 C1
compact(R+⇤). We then

have:

− TR

✓Z

R
↵(t)(φt)⇤dt : H

1
(Lχ) ! H

1
(Lχ)

◆

=
X

p2P, p^m=1

log p

0
@X

k≥1

χ(p)k↵(k log p)

1
A+

Z +1

0

↵(x)e−qx

1− e−2x
dx ,

(24)

where q 2 {0, 1} is such that χ(−1) = (−1)q.

Proof. We proceed as in the proof of Theorem 3.4 and write the left handside
of (24) as:

− 1

|G|
X

h2G

TR

Z

R
↵(s)⇡1

⌧ (h
−1 ◦ φs)⇤ ds : H1

F,K ⌦R C ! H
1

F,K ⌦R C . (25)

First we compute (formally) the contributions of the closed orbits according to
Guillemin-Sternberg trace formula. Let p be a prime number such that p ^m = 1.
Then p is unramified in K = Q[e

2i⇡
m ] (e = 1) and, with the notations of (18), the

residue class [p] 2 (Z/mZ)⇤ belongs to DPj
and is such that ⇥j [p] = Fr. See [29,

page 109]. Notice that since here G is abelian, the DPj
are all equal for 1  j  r.

We then consider the closed orbit kγp for k 2 N⇤, γp being iterated k times. Pick
up a point x 2 γp, for each j 2 {1, . . . , r} we select a point x̃j 2 γPj such that
⇡K(x̃j) = x. Then using (18) and (21) one immediately gets:

8(j, t) 2 {1, . . . , r} ⇥ R, [p]−kφt(x̃j) = (x̃j + t− k log p) .

Now we recall Assumption 6 in Section 4.1. Then, proceeding as in the proof of
Theorem 3.4 and using the equality rf = |G| (= φ(m)) one checks easily that the
contribution of kγp to the expression (25) is equal to

log pχ(p)k ↵(k log p) ✏kγp
.



[25] Analogy between L-functions and foliated spaces 25

But thanks to Assumption 3a) in Section 4.1 (or (22)), the sign ✏kγp
is equal to 1

(the determinant of a direct similitude being positive). Therefore the contribution
of kγp is the one expected in (24).

In order to deal with the ramified closed orbits, we use the following:

Lemma 4.6. Assume that the prime number p divides m so that p is ramified
in K and the inertia groups IPj

(introduced near (18)) are not trivial. Then the
restriction of χ to any of the IPj (1  j  r) is not trivial.

Proof. We follow [28, Proposition 10.3, page 61]. Let m =
Q

l l
⌫l be the prime

factorization of m and let fp be smallest positive integer such that

pfp ⌘ 1mod (m/p⌫p) .

Then one has in K = Q[e
2i⇡
m ] the factorization:

pOK = (P1 · · · Pr)
φ(p⌫p ) ,

where P1, . . . ,Pr are distinct prime ideals, all of norm pfp . Using the Chinese
remainder isomorphism:

✓
Z
mZ

◆⇤
'
 

Z
m
p⌫p Z

!⇤

⇥
✓

Z
p⌫pZ

◆⇤
,

an inspection of the proof of [28, Proposition 10.3, page 61] allows to see that for
any j 2 {1, . . . , r}

DPj
= DP1

'< p > ⇥
✓

Z
p⌫pZ

◆⇤
, IPj

= IP1
' {1} ⇥

✓
Z

p⌫pZ

◆⇤
.

Now, the fact that χ is primitive implies clearly that the restriction of χ to IPj is

not trivial (use (2) with m0 = p
m
⌫p ). ⇤

Suppose now that the prime number p divides m so that γp is a ramified closed
orbit. Observe that Condition (22) implies that the analogue of (9) is satisfied with
all the signs being positive. The previous Lemma, Assumption 6 of Section 4.1 and
the proof of Theorem 3.4 then show formally that the geometric contribution of the
ramified γp in (25) is zero as expected in (24).

Consider now the archimedean places. Assume first that they are all complex,
then φ(m) = 2r2. Recall the associated fixed points z1,1, , . . . , zr2,1 of φt in
Section 4.1 and the elements h1, . . . , hr2 of the end of Section 4.3; they satisfy
hj(zj,1) = zj,1, (1  j  r2). Since G is abelian, the elements hj (1  j  r2)
all equal and actually they are equal to −1 (see [29, Page 109]). Then for any
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h 2 G \ {1,−1}, h(zj,1) 6= zj,1 (1  j  r2). The z1,1, , . . . , zr2,1 are fixed
points of h1φ

t, φt for all t 2 R. So we are reduced to analyze the contributions of
z1,1, . . . , zr2,1 to:

− 1

|G|
X

h2{1,−1}
TR

Z

R
↵(s)⇡1

⌧ (h
−1 ◦ φs)⇤ ds : H1

F,K ⌦R C ! H
1

F,K ⌦R C . (26)

We recall the axioms of Section 4.1 and 4.3 (for h1 = −1). Then, using the argu-
ments of the proof of Proposition 4.4 and the Guillemin-Sternberg trace formula,
one shows formally that the geometric contributions (for t > 0) of the fixed points
of φt in (25) (or (26)) is given by:

Z +1

0

1

2r2

r2X

j=1

✓
1

1− e−t
+

χ(−1)

1 + e−t

◆
↵(t)dt .

But this is exactly the contribution of the archimedean place of SQ in (24).
Assume now that the archimedean places are all real so that r1 = φ(m). Then

e
2i⇡
m is real which implies that m = 2. But this case is excluded by assumption. ⇤
We have reproved incidentally the fact that a primitive Dirichlet L-function is a

special case of an Artin L-function. The general Artin L-functions will be the topic
of the next Section.

5 – Artin conjecture as a consequence of an hypothetic Atiyah-Bott-
Lefschetz proof of the explicit formula for b⇣K

The following Section should be viewed as a working programme or a motivation for
developing interesting mathematics. We shall perform computations using the vari-
ous Assumptions of Section 4. But, notice that we shall not use here Assumption 5)
of Section 4.1 (the one which would imply the Riemann Hypothesis).

5.1 – The Artin L-function ⇤(K,χ, s)

Let K be a finite Galois extension of Q with Galois group G. Consider a complex
representation ⇢ : G ! GL(V ) where V is a complex vector space of dimension
N . Its character χ : G ! GL(V ) is defined by χ(h) = Tr ⇢(h), h 2 G. We are
going to recall the definition of the Artin L-function ⇤(K,χ, s) associated to ⇢ (⇢
is determined up to isomorphism by χ).

Let p 2 P be a prime number, we use the notations of Section 4.3 and (18).
Let Pj ,P be two prime ideals of OK lying over p, there exists h 2 G such that
hPj = P. Choose ΦPj 2 DPj (modulo IPj ) and ΦP 2 DP such that ⇥j(ΦPj ) =

Fr and ⇥(ΦP) = Fr. Denote now by V IPj the subset of vectors V which are
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invariant under the action of IPj
. It is then clear that det (Id − p−s⇢(ΦPj

);V IPj )
and det (Id−p−s⇢(ΦP);V IP ) do not depend on the choice of respectively ΦPj

, ΦP .
Therefore, we can assume that ΦP = hΦPjh

−1. Then since, hDPjh
−1 = DP and

hIPjh
−1 = IP , we obtain:

8s 2 C, det (Id− p−s⇢(ΦPj );V
IPj ) = det (Id− p−s⇢(ΦP);V

IP ) .

If all the archimedean absolute values of K are real we set n+
σ = N = dimV ,

n−
σ = 0. If all the archimedean absolute values of K are complex, we set:

n+
σ = dim ker(⇢(hj)− Id), n−

σ = dim ker(⇢(hj) + Id) ,

where hj is any of the elements h1, . . . , hr2 of G introduced at the end of Section 4.3
(they are all conjugate to each other and satisfy h2

j = 1).
Now, for s 2 C such that <s > 1, we define the Artin L-function as:

⇤(K,χ, s)=(N (K,χ))s/2ΓR(s)
n+
σ ΓR(s+1)n

−
σ

Y

p2P

1

det (Id− p−s⇢(ΦP);V IP )
, (27)

where the positive integer N (K,χ) denotes the norm of the Artin conductor of χ.
Recall that ΓR(s) = ⇡−s/2Γ(s/2).

Now we recall Brauer’s theorem in order to explain the meromorphic continua-
tion of ⇤(K,χ, s). The character χ is an integral linear combination χ =

Pk
i=1 niχi⇤

where the ni 2 Z and the χi⇤ are induced from characters χi of degree 1 on sub-
groups Hi = Gal(K : Li), Li a suitable subfield of K. From this, one can deduce
that:

⇤(K,χ, s) =
kY

i=1

⇤(K,χi⇤, s)
ni =

kY

i=1

⇤( eχi, s)
ni , (28)

where ⇤( eχi, s) is the L-function attached to the Groessencharakter eχi associated
to χi. From these identities, one deduces that ⇤(K,χ, s) admits a meromorphic
continuation to C with zeroes and poles all belonging to the critical strip 0  <s  1.
Moreover, it satisfies the functional equation:

⇤(K,χ, s) = W (χ)⇤(K,χ, 1− s) ,

where W (χ) is a complex constant of modulus 1.

Artin Conjecture. If the representation ⇢ is irreducible then ⇤(K,χ, s) is entire
(without any pole).

So Artin conjecture means that each zero of ⇤( eχi, s) for negative ni in (28) is
compensated by a zero of another ⇤(fχj , s) for positive nj . This conjecture is proved
when G is abelian. In the non abelian case, it is proved in several particular cases
using deep methods (see Taylor’s survey [31]), but it remains widely open in the
general case.
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5.2 – Explicit Formulas and Trace Formulas

Theorem 5.1. Let {λk, k 2 I} (resp. {µj , j 2 J}) be the set of zeroes (resp.
poles) of ⇤(K,χ, s). Let ↵ 2 C1

compact(R+⇤). Then one has:

−
X

k2I

Z +1

0

↵(s)esλk ds +
X

j2J

Z +1

0

↵(s)esµj ds

=
X

p2P
log p

X

n≥1

↵(n log p)Tr (Φn
P : V IP ) +

Z +1

0

↵(x)

1− e−2x
(n+

σ + n−
σ e

−x) dx .

(29)

Proof. One proceeds exactly as for the proof of the explicit formula (4), using
the functional equation for ⇤(K,χ, s) and its Eulerian product. ⇤

Now we define an action of G on SK ⇥ V by

h · (z, v) = (h · z, ⇢−1(h) · v), 8(h, z, v) 2 G⇥ SK ⇥ V .

Then using the axioms of Section 4.1, we are going to argue that the following
leafwise ramified flat vector bundle over SQ:

E⇢ =
SK ⇥ V

G
! SQ

should provide the relevant cohomology allowing to exhibit an explicit formula for
⇤(K,χ, s) via a Lefschetz trace formula. We set for j 2 {0, 1, 2}:

H
j
(E⇢) =

1

|G|
X

h2G

h⇤(H
j

F,K ⌦R V ) = (H
j

F,K ⌦R V )G .

Recall that the actions of (φt) and G on SK are assumed to commute. We shall

still denote by (φt)⇤ the action on H
j
(E⇢) induced by the flow (φt).

Next we recall and use Assumption 6) of Section 4.1. According to the hypothesis

of Section 4.3, for each zero zq of b⇣K , G leaves each

ker(✓1 − zqId)
n(zq) ⌦C V = Wq

globally invariant and commutes with ✓1⌦C IdV (which we shall denote simply ✓1).
Next, observe that ✓1− zqId induces a nilpotent endomorphism of 1

|G|
P

h2G h ·Wq,

therefore:

8t 2 R, Tr

 
et✓1 :

1

|G|
X

h2G

h ·Wq

!
= dq e

tzq , (30)

where dq = dim 1
|G|
P

h2G h ·Wq. Notice that a priori some of the dq may be equal
to 0.
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Theorem 5.2 (“Informal” Theorem). Assume that the representation ⇢ is irre-
ducible. Let ↵ 2 C1

compact(R+⇤). Then one has:

−
X

zq2b⇣−1
K {0}

dq

Z +1

0

↵(s)eszq ds

=
X

p2P
log p

X

k≥1

↵(k log p)Tr (Φk
P : V IP ) +

Z +1

0

↵(x)

1− e−2x
(n+

σ + n−
σ e

−x) dx .

(31)

Comment. Actually, we can only assume that V G = {0}, which is of course

weaker than ⇢ irreducible. The Γ factor ΓR(s)n
+
σ ΓR(s+1)n

−
σ comes in the definition

of ⇤(K,χ, s) as a parachute and is not well motivated by a mathematical structure.
It was introduced there (by Artin himself?) in order to get (28). That is why in the
spectral side of (29) we have “uncontroled poles”. This Γ factor appears naturally
in the computation of the contribution of the fixed points in (31) and that is why
the spectral side of (31) is better “controled”.

Proof. We shall use the arguments of the proofs of Theorems 3.4 and 4.5.

Since G acts trivially on H
0

F,K ' R and H
2

F,K ' R[λg], one gets that H
j
(E⇢) = {0}

for j = 0, 2. Therefore, using (30), one gets:

2X

j=0

(−1)jTR

✓Z

R
↵(t)(φt)⇤dt : H

j
(E⇢)

◆
= −

X

zq2b⇣−1
K {0}

dq

Z +1

0

↵(s)eszq ds .

We now write the left hand side of this equality under the form:

1

|G|
X

h2G

2X

j=0

(−1)j TR

✓Z

R
↵(s)⇡j

⌧ (h
−1 ◦ φs)⇤ ds : Hj

F,K ⌦R V

◆

= − 1

|G|
X

h2G

TR

✓Z

R
↵(s)⇡1

⌧ (h
−1 ◦ φs)⇤ ds : H1

F,K ⌦R V

◆ (32)

where ⇡j
⌧ (written for ⇡j

⌧⌦IdV ) denotes the Hodge projection onto leafwise harmonic
forms. We now proceed to compute formally the geometric contributions in (32) of
the closed orbits and of the fixed points of (φt) according to the Guillemin-Sternberg
trace formula.

Thus, we consider a prime number p 2 P and the contribution of the closed
orbit kγp, k 2 N⇤. Let P be any of the prime ideals P1, . . . ,Pr of OK such that
pOK = Pe

1 . . .Pe
r . Fix x0 2 γp and x̃0 2 γP such that ⇡K(x̃0) = x0. The axioms of

Section 4.3 and (21) imply that:

8t 2 R, Φ−k
P φt(x̃0) = (x̃0 + t− k log p) .



30 ERIC LEICHTNAM [30]

First assume that p is not ramified in K (e = 1). Then, there are exactly |G|
curves (of the flow) in SK lying (via ⇡K) over kγp. They are given by

t ! l · Φ−k
P l−1 · φt(l · x̃0), 0  t  k log p, l 2 G .

Then the proof of Theorem 3.2 ([1]) shows that the geometric contribution of kγp
to (32) is computed according to Proposition 3.1 and is equal to:

log p

|G|
X

l2G

2X

j=0

(−1)j
Tr
�t
D(lΦ−k

P l−1 ◦ φk log p)(l · x̃0); ^jT ⇤
l·x̃0

F
�

| det
�
id−D(lΦ−k

P l−1 ◦ φk log p)
�
|Tl·x̃0

F |
χ(lΦk

P l
−1)↵(k log p) .

The sign assumption (22) shows that all these determinants are positive. There-
fore, the geometric contribution of kγp to (32) is equal to log pχ(Φk

P)↵(k log p) as
expected in (31).

Next assume that p is ramified in K (e > 1). So IP = Gx̃0
= {u 2 G/u·x̃0 = x̃0}

is not trivial. Then there are exactly |G/Gx̃0
| curves (of the flow) upstairs on X̃

which correspond (via ⇡) to kγlog p. They are given by t 7! ljΦ
−k
P l−1

j ◦ φt(lj · x̃0)
(0  t  k log p), where the lj (1  j  rf) run over a system of representatives of
cosets of G/Gx̃0 . We have to count each such curve |Gx̃0 | times but with (possibly)
di↵erent monodromies (i.e. action on the vector space factor V ). More precisely,
for each representative lj the monodromy of the curve labeled

t 7! ljΦ
−k
P l−1

j u ◦ φt(lj · x̃0), withu 2 ljGx̃0
l−1
j , (33)

is equal to ⇢(u−1ljΦ
k
P l

−1
j ). The proof given above in the unramified case, with a

more precise use of the sign assumption (22), allows to check that the geometric
contribution of kγp to (32) is equal to

log p↵(k log p)

|G|

frX

j=1

X

u02IP

Tr (⇢(ljΦ
k
P l

−1
j lju

0l−1
j )

= log p↵(k log p) Tr

 
⇢(Φk

P)
1

e

X

u02IP

⇢(u0)

!
.

Since 1
e

P
u02IP

⇢(u0) is a projection of V onto V IP which commutes with ⇢(Φk
P),

this contribution coincides with

log p↵(k log p) Tr (⇢(Φk
P) : V

IP )

as expected in (31).
Now we come to the contribution to (32) of the fixed points (i.e. the archimedean

places of K). We proceed as in the proof of Theorem 4.5 and give only a sketch.
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First assume that all the archimedean places are complex. Then |G| = 2r2, recall
the associated fixed points z1,1, , . . . , zr2,1 of φt in Section 4.1 and the associated
elements hj of G in Section 4.3. Then for each j 2 {1, . . . , r2}, zj,1 is a fixed point
of hjφ

t, φt for all t 2 R, and for any h 2 G \ {1, hj}, h(zj,1) 6= zj,1. Thus we have
to determine the contributions of z1,1, . . . , zr2,1 to:

− 1

|G|
X

h2{1,h1,...,hr2}
TR

✓Z

R
↵(s)⇡1

⌧ (h
−1 ◦ φs)⇤ds : H1

F,K ⌦R V !H
1

F,K ⌦RV

◆
. (34)

We recall the axioms of Sections 4.1 and 4.3 (for the hj). Then, using the arguments
of the proof of Proposition 4.4 and the Guillemin-Sternberg trace formula, one shows
formally that the geometric contributions (for t > 0) of the fixed points of φt in
(32) (or (34)) is given by:

Z +1

0

1

2r2

r2X

j=1

✓
Tr ⇢(IdV )

1− e−t
+

Tr ⇢(hj)

1 + e−t

◆
↵(t)dt .

Recall that ⇢(hj) is a symmetry of V such that Tr ⇢(hj) = n+
σ − n−

σ . One then
computes that for any real x > 0:

Tr ⇢(IdV )

1− e−x
+

Tr ⇢(hj)

1 + e−x
=

n+
σ + n−

σ

1− e−x
+

n+
σ − n−

σ

1 + e−x
=

2n+
σ

1− e−2x
+

2n−
σ e

−x

1− e−2x
.

One then proves easily that the contribution to (32) of the fixed points coincides
with Z +1

0

↵(x)

1− e−2x
(n+

σ + n−
σ e

−x) dx

as expected in (31).
When all the archimedean places are real, the situation is much simpler. Recall

the set of fixed points {x1,1, . . . , xr1,1} associated to the real archimedean places,
then for any h 2 G \ {1}, h(xj,1) 6= xj,1 (1  j  r1). So we are reduced to
analyze the contributions of x1,1, . . . , xr1,1 to:

− 1

|G|TR
✓Z

R
↵(s)⇡1

⌧ (φ
s)⇤ ds : H

1

F,K ⌦R V ! H
1

F,K ⌦R V

◆
. (35)

Therefore, the axioms of Section 4.1 and the Guillemin-Sternberg trace formula
show formally that the geometric contributions (for t > 0) of the fixed points of φt

in (32) (or (35)) is given by:

Z +1

0

1

r1

0
@

r1X

j=1

Tr ⇢(IdV )

1− e−2t

1
A ↵(t)dt .

But, since here Tr ⇢(IdV ) = N = n+
σ and n−

σ = 0, this is exactly the expected
contribution in (31). ⇤
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Theorem 5.3. Let (uk)k2A and (vl)l2B be two sequences of points (with possible
multiplicity) of the critical strip {z 2 C, 0  <z  1}, A and B being two subsets
of N. Assume that

P
k2A

1
1+|uk|2 +

P
l2B

1
1+|vl|2 < +1 and that for any ↵ 2

C1
compact(R+⇤):

X

k2A

Z +1

0

↵(s)esuk ds =
X

l2B

Z +1

0

↵(s)esvl ds . (36)

Then, there exists a bijection ⇠ : A ! B such that for any k 2 A, uk = v⇠(k) with
the same multiplicity.

Proof. We give only a sketch. First, in (36) we can replace ↵(s) by ↵(s)e−2s.
Then, two successive integration by parts allow to see that:

Z +1

0

↵
00
(s)
X

k2A

es(uk−2)

(uk − 2)2
ds =

Z +1

0

↵
00
(s)
X

l2B

es(vl−2)

(vl − 2)2
ds .

Therefore there exists two constants M1,M2 such that:

8s 2 [0,+1[,
X

k2A

es(uk−2)

(uk − 2)2
=
X

l2B

es(vl−2)

(vl − 2)2
+M1 + sM2 .

Letting s ! +1, one gets M1 = M2 = 0. Now applying inductively
R s

+1 to the
previous identity, one obtains for every r 2 N:

X

k2A

1

(uk − 2)2+r
=
X

l2B

1

(vl − 2)2+r
.

In order to finish the proof, we use an elegant argument pointed out to us by Vincent
La↵orgue. The previous equality implies that all the derivatives at 0 of the following
meromorphic function vanish:

z 7!
X

k2A

1

(z + uk − 2)2
−
X

l2B

1

(z + vl − 2)2
.

Hence this function is identically zero, which proves the theorem. ⇤



[33] Analogy between L-functions and foliated spaces 33

The conjunction of the three last Theorems (formally) would imply Artin con-

jecture and that the zeroes of ⇤(K,χ, s) are the zeroes zq of b⇣K with multiciplity
dq. Of course it is understood that if dq = 0 then zq is not a zero of ⇤(K,χ, s).
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