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Subharmonic functions with a Bergman type growth

RAPHAELE SUPPER

Abstract: Subharmonic functions with a Bergman-type growth on the unit ball of RN

(N 2 N, N ≥ 2) are studied jointly with their Riesz measure. Various estimations are
obtained which generalize previous results due to C. Horowitz and A. A. Dolgoborodov con-
cerning holomorphic functions in the unit disk of C, belonging for instance to the Bergman
space.

1 – Introduction

Given N an integer ≥ 2, let | . | denote the Euclidean norm in RN . The growth of a
function u subharmonic on the open unit ball BN = {x 2 RN : |x| < 1} impacts on
the Riesz measure µ associated to u, as well as on its repartition function ⇢ given by
⇢(r) =

R
|⇣|r

dµ(⇣) and on Pµ defined by Pµ(r) =
R
|⇣|<sµ(r)

h(|⇣|) dµ(⇣) 8r 2]0, 1[
where both functions sµ and h will be explicitly defined in Section 2.

Definition 1.1. Let dσ denote the area element on the unit sphere SN =
{x 2 RN : |x| = 1}. The area of SN is written σN =

R
SN

dσ. For information

σN = 2⇡N/2

(N/2) (see [3, page 29]). Let Mu(r) =
1

σN

R
SN

u(r⌘) dσ⌘ for any r 2 [0, 1[

and any function u subharmonic in BN .

This article studies subharmonic functions u under such a growth condition as
for instance: Z 1

0

Mu(r) [−'0(r)] dr < +1

with a decreasing weight function ' which will be detailed later. In this case both
Mu(r) and Pµ(r) appear as = o( 1

'(r) ) as r ! 1−, together with ⇢(r2) = o( 1
'(r)h(r) ).
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Besides that, for any increasing function g such that
R!1

0
g(t) dt diverges, it turns

out that:

sup
r2[s,1[

✓
1

1− r
mes

⇢
t 2 [r, 1[ : Mu(t) <

g(t)

−'0(t)

�◆
= 1 8s 2 [0, 1[

and the same holds for the sets
n
t2 [r,1[:⇢(t2)< −g(t)

'0(t)h(t)

o
and

n
t2 [r,1[:Pµ(t)<

−g(t)
'0(t)

o
.

Theorems 4.3, 4.9, 5.1 and 5.4 (in Sections 4 and 5) establish these results and
refine them when u is subject to the stricter assumption:

Z 1

0

eMu(r) [−'0(r)] dr < +1 (1.1)

Corollary 4.4, Proposition 4.8, Proposition 4.10 and Example 5.5 pay a particular
attention to the special weight ' defined by '(r) = (1 − r2)↵+1 8r 2 [0, 1[ with
some fixed ↵ > −1. For instance, we obtain that ePµ(r) = o( 1

(1−r)↵+1 ) as r ! 1−

and that

sup
r2[s,1[

0
@ 1

1− r
mes

8
<
:t 2 [r, 1[ : ePµ(t) <

1

2(↵+ 1)(1− t)↵+1 log
⇣

1
1−t

⌘

9
=
;

1
A = 1

8s 2 [0, 1[.

A motivation for the study of Pµ was its link (in the case N = 2) with products of
the kind

Qn
k=1

1
|zk| involving zeros of some function f holomorphic in the unit disk

of C. When f belongs to the Bergman space of parameters p > 0 and ↵ > −1, that
is when f fulfills

Z 1

0

✓Z 2⇡

0

|f(r ei✓)|p d✓
◆

(1− r2)↵ r dr < +1 (1.2)

it was already known (see [2, page 103]) that the number of zeros zk with moduli  r

was a O
⇣

1
1−r log 1

1−r

⌘
. Here we improve the estimate to O

⇣
1

1−r

⇣
λ(r) + log 1

1−r

⌘⌘

where λ is a function with limit −1 (see Example 4.7 in Section 4 for the ex-
plicit expression of λ). Corollary 4.12 evaluates when this number of zeros is

<2/p
1−t

h
(↵+ 1) log( 1

1−t )−log log( 1
1−t )

i
.

Several known results about Bergman spaces thus appear as particular cases
when N = 2 of the theorems established for N ≥ 2 in Sections 4 and 5. For
instance, in Example 5.3, we recover

Qn
k=1

1
|zk| = o(n(↵+1)/p) as n ! +1 (the

estimation with O was proved by Horowitz [4], the refinement with o was shown
by Dolgoborodov[1]).
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Theorem 5.7 and Theorem 5.8 of Section 5 are building subsequences of integers

n for which
Qn

k=1
1

|zk|p may be majorized by n↵+1

(log n)(log log n) . A similar result had

been obtained by Dolgoborodov [1] who provided a majorant of the kind n↵+1

log n . In

these applications to Bergman spaces, we do not make a full use of condition (1.2).
Actually we only use (1.1) with u = p log |f |. Hence all statements concerning

Bergman spaces in Sections 4 and 5 remain valid for the set H log
p,β introduced by

Dolgoborodov [1] with p > 0 and β > 0 (containing the Bergman space of parame-
ters p and ↵ when β = (↵+ 1)/p):

f 2 H log
p,β ()

Z 1

0

eMu(r) (1− r)pβ−1 dr < +1 (again with u = p log |f |).

The paper is organized as follows:

– Section 2 gathers preparatory results about Mu, ⇢ and sµ.
– Section 3 is devoted to a technical comparison between two functions on [0, 1[,

one of which giving rise to a convergent integral and the other to a divergent
one.

– Section 4 collects the results relative to the growth of Mu and ⇢.
– Section 5 deals with the growth of Pµ.

2 – Auxiliary lemmas

Lemma 2.1. Let ⌧N = max(1, N − 2). The function h :]0,+1[! R given by

h(s) =

(
log 1

s if N = 2
1

sN−2 − 1 if N ≥ 3

)
8s > 0

fulfills limr!1
h(r)
1−r = ⌧N , together with h(r)

1−r ≥ ⌧N and
R r

r2
dt

tN−1 = 1
⌧N

h(r)
rN−2 8r 2]0, 1[.

Proof. In the case N = 2, the inequality merely follows from the well-known
estimation − log r ≥ 1− r > 0 8r 2]0, 1[. When N ≥ 3, we have

h(r)

1− r
=

1

rN−2

1− rN−2

1− r
=

1

rN−2

N−3X

k=0

rk =
N−2X

j=1

1

rj
≥ N − 2 since

1

rj
≥ 1.

If N = 2, then
R r

r2
t1−N dt =

h
log t

ir
r2

= log r − log(r2) = − log r = h(r).

If N>2, then
R r

r2
t1−Ndt=

h
t2−N

2−N

ir
r2
= 1

N−2

⇣
1

(r2)N−2 − 1
rN−2

⌘
= 1

⌧N
1

rN−2

⇣
1

rN−2 −1
⌘
. ⇤
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Definition 2.2. A related function hr : RN \{O} ! R will also be used outside
of O the origin of RN . It is defined (for a given r > 0) by

hr(⇣) = h(|⇣|)− h(r) =

Z r

|⇣|

⌧N
tN−1

dt =

8
<
:
log r

|⇣| if N = 2

1
|⇣|N−2 − 1

rN−2 if N ≥ 3

9
=
;

8⇣ 2 RN , ⇣ 6= O.

Throughout the paper, adjectives “increasing” and “decreasing” are meant non-
strictly: there may be some flat levels.

Given a function u subharmonic in BN , this paragraph is devoted to some tech-
nical results related to the Riesz measure µ associated to u (see [3, page 81]). It
is assumed that u is harmonic in some neighborhood of O: there exists " > 0 such
that u is harmonic in "BN .

Lemma 2.3 (see [6]). For any r 2]0, 1[ and any r0 2]0, 1[, the following hold:

Z

|⇣|r0
hr(⇣) dµ(⇣) 

Z

|⇣|r

hr(⇣) dµ(⇣) = ⌧N

Z r

0

⇢(t)

tN−1
dt

with the repartition function ⇢ defined by: ⇢(t) =
R
|⇣|t

dµ(⇣).

Remark 2.4. The function ⇢ is increasing and right-continuous on [0, 1[. This
probabilistic name “repartition function” is inspired from the situation in the special
case µ(BN ) = 1: then µ may be used to describe the law of some random variable
X with values in BN , thus ⇢(t) appears as the probability of the event {|X|  t}.
More precisely, ⇢ is the repartition function of the variable |X|.

Jensen–Privalov formula (see [5, page 44]).

Mu(r) =
1

σN

Z

SN

u(rx) dσx = ⌧N

Z r

0

⇢(t)

tN−1
dt+ u(O) 8r 2 [0, 1[.

Lemma 2.5. If u(O) ≥ 0, then Mu(r) ≥ ⇢(r2)h(r) for all r 2 [0, 1[.

Proof. We have Mu(r) ≥ ⌧N
R r

r2
⇢(t)
tN−1 dt ≥ ⌧N⇢(r

2)
R r

r2
t1−N dt. The result

proceeds from Lemma 2.1 since 1
rN−2 ≥ 1. ⇤
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Remark 2.6. For a subharmonic function v (harmonic in some neighborhood of
the origin) whose Riesz measure has a repartition function % satisfying: %(t)  ⇢(t)
8t 2 [0, 1[, it obviously holds that: Mv(r)  Mu(r)− u(O) + v(O) 8r 2 [0, 1[.

Lemma 2.7. For any r 2]0, 1[, let sµ(r) = sup{t 2]0, 1[ : ⇢(t)  1
h(r)}. The

function sµ is increasing and right-continuous at any point r0 2]0, 1[. Moreover
"  sµ(r)  1 8r 2]0, 1[. The sup-bound is not necessarily attained but

⇢(sµ(r)) ≥
1

h(r)
and ⇢(t)  1

h(r)
8t < sµ(r) 8r 2]0, 1[.

Proof. The sup-bound sµ(r) is well-defined since 1
h > 0 and ⇢ ⌘ 0 on ]0, "[.

Since 1
h is increasing, it follows that sµ increases. Since µ is a positive measure,

then ⇢ is increasing. Thus ⇢(t)  1
h(r) 8t 2 [0, sµ(r)[. Besides that ⇢(t) > 1

h(r)

8t 2]sµ(r), 1[ from the definition of sµ(r). The right-continuity of ⇢ ensures that
⇢(sµ(r)) ≥ 1

h(r) .

If sµ was not right-continuous at the point r0, there would exist ↵ > 0 and a
sequence (rn)n2N⇤ of numbers > r0, with limit r0, such that sµ(rn) > sµ(r0)+↵ for
any n 2 N⇤. From the above observations with t = sµ(r0) + ↵ and r = rn, we get
⇢( sµ(r0) + ↵ )  1

h(rn)
. Letting n ! +1, we would obtain ⇢( sµ(r0) + ↵ )  1

h(r0)

since h is continuous.
Besides that, ⇢( sµ(r0) + ↵ ) > 1

h(r0)
, hence a contradiction. ⇤

Remark 2.8. The function sµ is not left-continuous, as shown by the following
counter-example: if ⇢ ⌘ 1

h(r1)
on [a, b[ and ⇢ ⌘ 1

h(r2)
on [b, c[ with 0 < a < b < c < 1

and r1 < r2, then sµ(r) = b 8r 2 [r1, r2[ and sµ(r2) ≥ c, hence sµ is not left-
continuous at the point r2.

3 – Comparison between functions under two integrals

Definition 3.1. A function ' is said to fulfill the L-condition if:

(i) ' is C1 on [0, 1[
(ii) both ' and (−'0) are decreasing on [0, 1[, with values in ]0,+1[ and

limt!1− '(t) = 0
(iii) there exist constants L > 0 and λ 2]0, 1[ such that

'(1− λk)− '(1− λk+1)

−λk−1 '0(1− λk−1)
≥ L 8k 2 N⇤. (3.1)

Example 3.2. Given γ ≥ 1, the function ' defined by '(t) = (1− t)γ 8t 2 [0, 1[
fulfills the L-condition: we have −'0(t) = γ(1 − t)γ−1 thus the fraction in (3.1)

equals λkγ−λkγ λγ

λk−1γ λkγ λ−γ λ−(k−1) = 1−λγ

γ λ−γ for any λ 2]0, 1[.
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Remark 3.3. Conditions (i) and (ii) alone imply a majoration for the fraction
in (3.1), but not necessarily a strictly positive minoration uniform relatively to k.
More precisely, given λ 2]0, 1[ and k 2 N⇤, there exists c such that 1 − λk−1 <
1− λk < c < 1− λk+1 and

'(1− λk)− '(1− λk+1) = [(1− λk)− (1− λk+1)]'0(c) = [λk+1 − λk]'0(c)

= −λk(1− λ)'0(c).

Now −'0(1− λk−1) ≥ −'0(c) ≥ −'0(1− λk+1) > 0. Thus

λ(1− λ)
−'0(1− λk+1)

−'0(1− λk−1)
 '(1− λk)− '(1− λk+1)

−λk−1 '0(1− λk−1)
 λ(1− λ)

but this minorant may tend towards 0 as k ! +1, as it occurs in the following
counter-example.

Example 3.4. Given λ 2]0, 1[, let  be the function defined by  (1−λk) = λk
2

8k 2 N, with  affine on [1 − λk, 1 − λk+1]. Thus  is continuous, decreasing and

> 0 on [0, 1[. The function ' defined by '(t) =
R 1

t
 (r) dr > 0 8t 2 [0, 1[ satisfies

'(1) = 0 and '0 = − , thus ' is C1 and decreasing on [0, 1]. Both (i) and (ii) are

fulfilled, but the fraction in (3.1) is majorized by λ(1 − λ) λk2

λ(k−1)2
= λ(1 − λ)λ2k

which tends towards 0 as k ! +1.

The purpose of the next example is to show that the L-condition may be fulfilled
by functions other than polynomials.

Example 3.5. Given γ > 1, let a = 1 − exp(− 2γ−1
γ(γ−1) ) and  the continuous

function defined by:  (t) = (1− t)γ−1[γ log(1− t) + 1] 8t 2 [a, 1[ and  (t) =  (a)
8t 2 [0, a].

We have  < 0 on [0, 1[ since 1−t  1−a = exp(− 2γ−1
γ(γ−1) ) < exp(− 1

γ ) 8t 2 [a, 1[,

because of 2γ − 1 > γ − 1 > 0. The increasingness of  follows from:

 0(t) = −(1− t)γ−2[γ(γ − 1) log(1− t) + 2γ − 1] > 0 8t 2 [a, 1[.

Let ' be the function defined on [0, 1[ by: '(t) =
R t

0
 (r) dr −C where the constant

C stands for: C = a (a) + (1 − a)γ log(1 − a). Now '0(t) =  (t) 8t 2 [0, 1[,

thus ' is decreasing and C1 on [0, 1[. Moreover '(t) = a (a) +
R t

a
 (r) dr − C =

−(1− t)γ log(1− t) 8t 2 [a, 1[. Thus ' fulfills (i) and (ii).
Given λ 2]0, 1[, we have 1 − λk−1 > a for any integer k > 1 − 2γ−1

γ(γ−1) log λ , for

which the integral in (3.1) equals:

−λkγ log(λk) + λ(k+1)γ log(λk+1)

−λk−1(λk−1)γ−1[γ log(λk−1) + 1]
=

−(log λ) [k − λγ(k + 1)]

−λ−γ [γ(k − 1)(log λ) + 1]
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which tends towards log λ
λ−γ

1−λγ

γ(log λ) = (1−λγ)λγ

γ > 0 as k tends towards +1. More-

over (3.1) never equals zero, for no integer k, otherwise we would have ' constant
on [1 − λk, 1 − λk+1] thus  ⌘ 0 there, which is not true. Hence (iii) holds and '
satisfies the L-condition.

The next result generalizes a statement of Dolgoborodov [1, Lemma 2] who
treated the case where ' was a polynomial:

Theorem 3.6. Let f and g be positive increasing functions on [0, 1[ such that

Z !1

0

f(t) [−'0(t)] dt converges and

Z !1

0

g(t) dt diverges,

with ' a function fulfilling the L-condition. Let F = {t 2 [0, 1[ : f(t) [−'0(t)] <
g(t)}. Then the Lebesgue measure of the set F \ [r, 1[ is evaluated through:

sup
r2[s,1[

mes(F \ [r, 1[)

1− r
= 1 8s 2 [0, 1[.

In other words: there exists a sequence (ak)k2N of points in [0, 1[ tending towards 1

as k ! +1, such that mes(F\[ak,1[)
1−ak

! 1 as k ! +1.

Proof. Given L and λ as in Definition 3.1, let Ji = [1− λi−1, 1− λi[ for any
i 2 N⇤. We introduce the sets: I1 = {i 2 N⇤ : Ji \ E = ;} and I2 = {i 2 N⇤ :
Ji \ E 6= ;} with E = F c = {t 2 [0, 1[ : f(t) [−'0(t)] ≥ g(t)}.

When I2 is a finite set, there exists an i0 2 N⇤ such that i 2 I1 8i > i0
hence f(t) [−'0(t)] < g(t) 8t 2 [1 − λi0 , 1[ and the proposition holds trivially. In
the following, I2 will be assumed an infinite set. It will now be shown that I1
is infinite too, proceeding as follows: since N⇤ = I1

Ṡ
I2 (disjoint reunion), the

following argument will establish both the divergence of the series
P

i2N⇤ ui and
the convergence of

P
i2I2

ui with ui = λi−1g(1− λi−1). Chasles’ relation provides:

Z 1

0

g(t) dt =
X

i2N⇤

Z 1−λi

1−λi−1

g(t) dt.

Since g is increasing, the following holds for any i 2 N⇤:

Z

Ji

g(t) dt  g(1− λi) [λi−1 − λi] = λi g(1− λi) (λ−1 − 1) = (λ−1 − 1)ui+1

hence the divergence of
P

i≥2 ui.
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Given i 2 I2, there exists i0 2 I2 with i0 ≥ i + 2. Let a 2 Ji \ E and b 2 Ji0 .
Since f is increasing and −'0 > 0, it follows that

Z b

a

f(t) [−'0(t)] dt ≥ f(a)

Z b

a

[−'0(t)] dt ≥ g(a)

−'0(a)
['(a)− '(b)]

because a 2 E. Now '(a) ≥ '(1− λi) and '(b)  '(1− λi+1) because ' decreases
and b ≥ 1 − λi

0−1 ≥ 1 − λi+1. Similarly g(a) ≥ g(1 − λi−1) and 0 < −'0(a) 
−'0(1− λi−1) since g increases and −' decreases on Ji. Thus, for any i 2 I2:

Z b

a

f(t) [−'0(t)] dt ≥ g(1− λi−1)
'(1− λi)− '(1− λi+1)

−'0(1− λi−1)

≥ g(1− λi−1)Lλi−1 = Lui.

The elements of I2 will now be sorted by reading them in increasing order and
picking some of them out of I2 into a new set I 002 , obtaining thus a splitting I2 =
I 02
Ṡ

I 002 as follows:

– if an integer i 2 I2 but i+ 1 /2 I2, then i stays in I 02
– if the integers i and i+ 1 both belong to I2, then i is kept in I 02 and i+ 1 is put
in I 002

Thus, if for instance i, i+ 1, i+ 2, i+ 3 all belong to I2, then i and i+ 2 remain in
I 02 but i+ 1 and i+ 3 go into I 002 .

Hence |i− j| ≥ 2 for all i and j in I 02 (and the same holds in I 002 ). Thus the above
integral estimation holds for a 2 Ji \ E and b 2 Ji0 as soon as the integers i and i0

belong to I 02 with i < i0. Note that I 02 is an infinite set, since I2 is.
The convergence of

P
i2I0

2
ui can now be proved. For any i 2 I 02, let ai 2 Ji \E.

These points ai form a subdivision of [0, 1[, allowing to apply Chasles’ formula.
The subinterval with lower bound ai gives rises to an integral of the previous

kind (with a = ai), so that

Z 1

0

f(t) [−'0(t)] dt ≥
X

i2I0
2

Lui

hence the convergence of this series.

– If I 002 is a finite set, the convergence of
P

i2I2
ui is obvious

– If I 002 is an infinite set, the same reasoning works with other points a0i 2 Ji \ E
(with now i 2 I 002 ), proceeding as before in order to establish the convergence ofP

i2I00
2
ui.
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The convergence of
P

i2I2
ui leads to the affirmations: I1 is infinite and

P
i2I1

ui

diverges.
Now I1 can be splitted into packs of consecutive integers. The next step of the

proof considers one of these packs: ]i, i0[\N, with i 2 I2, i
0 2 I2, i

0 ≥ i + 2 and
j 2 I1 for any integer j 2]i, i0[.
X

i<j<i0

uj=
X

i<j<i0

λj−1 g(1− λj−1) =
X

iji0−2

λj g(1− λj)  g(1− λi
0−1)

X

iji0−2

λj

since the function g is increasing and the sequence (1− λj)j2N increases too. Thus

X

i<j<i0

uj  g(1− λi
0−1)λi

0−1
X

iji0−2

λj−(i0−1)

= ui0
X

iji0−2

✓
1

λ

◆i0−1−j

= ui0
X

1mi0−i−1

✓
1

λ

◆m

.

If the packs (of consecutive integers) constituting I1 had a bounded number of
terms, there would exist a constant K, independant of i and i0, such that

X

1mi0−i−1

✓
1

λ

◆m

 K.

Hence
P

i<j<i0 uj  K ui0 , thus
P

j2I1
uj  K

P
i02I2

ui0 and the convergence of
the second series leads to a contradiction.

Hence it is possible to extract from I1 a sequence of packs (of consecutive in-
tegers) whose length tends towards +1. These packs will be noted ]ik, ik + lk[\N
(with k 2 N) where ik 2 I2, ik + lk 2 I2, j 2 I1 for any integer j such that
ik < j < ik + lk, and with moreover limk!+1 lk = +1.

For any k, let Fk =
S

ik<i<ik+lk
Ji = [1− λik , 1− λik+lk−1[⇢ [1− λik , 1[. These

integers i belong to I1 hence Ji ⇢ Ec, thus Fk ⇢ Ec = F . Besides that

mesFk = 1− λik+lk−1 − (1− λik) = λik − λik+lk−1.

For r = 1− λik (with a given k) the following holds:

1 ≥ mes(F \ [r, 1[)

1− r
≥ mes(Fk \ [r, 1[)

1− r
=
λik(1− λlk−1)

λik
= 1− λlk−1.

Given s 2 [0, 1[, we have supr≥s
mes(F\[r,1[)

1−r ≥ 1 − λlk−1 for all k sufficiently large.

Now limk!+1(1− λlk−1) = 1 and the conclusion is immediate. ⇤
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4 – Behaviour of the repartition function

Definition 4.1. A subharmonic function u in BN is said to satisfy the H-
condition if u is moreover harmonic in some neighborhood of the origin, with u(O) =
0.

Remark 4.2. As soon as u fulfills the H-condition, we have Mu(r) ≥ 0 8r 2
[0, 1[. The increasingness of Mu ensues for instance from Jensen-Privalov formula,
since ⇢ ≥ 0.

Theorem 4.3. Let ⇢ be the repartition function associated to some subharmonic
function u in BN , satisfying the H-condition. Let ' denote a C1 decreasing function
on [0, 1[ such that limt!1− '(t) = 0.

(i) If
R 1

0
Mu(t) [−'0(t)] dt < +1 then Mu(r) = o( 1

'(r) ) and ⇢(r2) = o( 1
'(r)h(r) )

as r tends towards 1−.
(ii) If

R 1

0
eMu(t) [−'0(t)] dt < +1 then eMu(r) = o( 1

'(r) ) as r ! 1− and

⇢(r2)  1

h(r)

✓
`(r) + log

1

'(r)

◆
8r 2]0, 1[,

where ` is a function defined on [0, 1[ such that limr!1− `(r) = −1. More
precisely, ` is explicited by (4.1) below.

Proof of (i). The estimation of Mu(r) follows from 0  Mu(r)'(r) R 1

r
Mu(t) [−'0(t)] dt which tends towards 0 as r ! 1−. The estimation of ⇢(r2)

follows from Lemma 2.5. ⇤
Proof of (ii). Similarly we have eMu(r)  1

'(r)

R 1

r
eMu(t) [−'0(t)] dt for all

r 2 [0, 1[. Thus Mu(r) 
⇣
log 1

'(r)

⌘
+ `(r) where

`(r) = log

✓Z 1

r

eMu(t) [−'0(t)] dt

◆
(4.1)

and the conclusion follows from Lemma 2.5. ⇤

Corollary 4.4. When ' is defined by '(r) = (1− r2)↵+1 8r 2 [0, 1[ for some
↵ > −1, then the repartition function ⇢ of any subharmonic function u under the
assumptions of Theorem 4.3 (ii) fulfills:

⇢(r) = O

✓
1

1− r

✓
λ(r) + log

1

1− r

◆◆
as r ! 1−,

where λ denotes a function defined on [0, 1[ such that limr!1− λ(r) = −1.
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Remark 4.5. In this growth estimation of ⇢(r), the term λ(r) is not to be
neglected: the Proposition 4.8 below will provide an example of subharmonic func-

tion u for which ⇢(r) = O
⇣

1
1−r log log

1
1−r

⌘
which is more accurate than a mere

O
⇣

1
1−r log

1
1−r

⌘
.

Proof of Corollary 4.4. Theorem 4.3 gives:

⇢(r2)  1

h(r)

✓
`(r) + (↵+ 1) log

1

1− r2

◆
.

Whence ⇢(t)  ↵+1
h(

p
t)

⇣
`(
p
t)

↵+1 + log 1
1−t

⌘
. Now h(r) ≥ ⌧N (1−r) and 1−

p
t = 1−t

1+
p
t
>

1−t
2 , thus

⇢(t) <
2(↵+ 1)

⌧N (1− t)

✓
`(
p
t)

↵+ 1
+ log

1

1− t

◆
8t 2 [0, 1[.

Remark 4.6. Later, in Proposition 4.10, we will study the size of the set of

those t in [0, 1[ for which ⇢(t) < 2(↵+1)
⌧N (1−t)

h
log
⇣

1
1−t

⌘
− 1

↵+1 log log
⇣

1
1−t

⌘i
.

Example 4.7. With N = 2, let u = log |f | with f a function holomorphic in
the unit disk of C, assuming that f(0) = 1. Then the Riesz measure µ of u is a
sum of Dirac masses: µ =

P
k2N⇤ δzk where the zk denote the zeros of f , repeated

according to their multiplicities and indexed by increasing moduli. Thus ⇢(r) is the
number of points zk located in the disk {z 2 C : |z|  r}. Let p > 0, then

1

2⇡

Z 2⇡

0

|f(r ei✓)|p d✓ = 1

2⇡

Z 2⇡

0

exp
⇥
p log |f(r ei✓)|

⇤
d✓

≥ exp

✓
1

2⇡

Z 2⇡

0

p log |f(r ei✓)| d✓
◆

through Jensen’s inequality. Thus 1
2⇡

R 2⇡

0
|f(r ei✓)|p d✓ ≥ exp (Mp u(r)).

When f belongs to the Bergman space of parameters p > 0 and ↵ > −1, it
means that: Z 1

0

✓
1

2⇡

Z 2⇡

0

|f(r ei✓)|p d✓
◆

(1− r2)↵ r dr < +1,

thus Corollary 4.4 applies to the function p u. The Riesz measure associated to the
subharmonic function p u is p µ and its repartition function is p⇢. It leads to:

⇢(r) = O

✓
1

1− r

⇣
λ(r) + log

1

1− r

⌘◆
as r ! 1−



58 RAPHAELE SUPPER [12]

where λ(r) = 1
↵+1 log

⇣R 1p
r
eMpu(t) [−'0(t)] dt

⌘
. We note that

λ(r)  1

↵+ 1
log

 
2(↵+ 1)

Z
p
r|z|<1

|f(z)|p(1− |z|2)↵dA(z)

!
8r 2 [0, 1[,

with dA(z) the normalized area element on the unit disk of C. This growth estima-
tion for ⇢(r) completes the traditional result (see [2, page 103]), according to which

⇢(r) is a O
⇣

1
1−r log 1

1−r

⌘
.

Proposition 4.8. Let g :]0, 1[! R be defined by g(t) = log log
q

1
1−t . The

function v defined by v(O) = −1 and v(x) = g(|x|) for all x 2 BN \ {O} is
subharmonic on BN . The function u defined by u(x) = max{0, v(x)} 8x 2 BN is

subharmonic on BN , fulfills the H-condition, together with
R 1

0
eMu(t) [−'0(t)] dt <

+1 for the same function ' as in Corollary 4.4. Its repartition function ⇢ satisfies

⇢(r) = O
⇣

1
1−r log log 1

1−r

⌘
as r ! 1−.

Proof. The function g is well-defined on ]0, 1[ since log 1
1−t > 0. Moreover

g(t)  0 for all t  1 − e−2 = 0, 86466 . . . Since ∆v(x) = g00(t) + N−1
t g0(t) for

t = |x| 6= 0 (see [3, page 26]), we need some derivatives from g(t) = log( 12 ) +
log log 1

1−t = log( 12 ) + log(− log(1− t)):

• g0(t) = 1/[(1− t) log 1
1−t ]

• g00(t) = −
⇣
− log

�
1

1−t

�
+ (1− t) 1

1−t

⌘
[(1 − t) log 1

1−t ]
−2 =

⇣
log
�

1
1−t

�
− 1
⌘
[(1 −

t) log 1
1−t ]

−2

Whence ∆v(x) =
⇣
log
�

1
1−t

�
− 1 + N−1

t (1− t) log 1
1−t

⌘
[(1 − t) log 1

1−t ]
−2. Thus

∆v(x) has the same sign than

t

✓
log

1

1− t

◆
− t+ (N − 1)(1− t) log

1

1− t

= −t+ (N − 1− (N − 2)t) log
1

1− t
≥ −t+ log

1

1− t

since N −1− (N −2)t > 1 (as (N −2)t < N −2 < N −1) and log 1
1−t > 0 8t 2]0, 1[.

Now log(1− t)  −t 8t < 1, thus log 1
1−t = − log(1− t) ≥ t. Finally ∆v(x) ≥ 0 and

subsequently v is subharmonic on BN .
The subharmonicity of u proceeds from [3, page 41]. The H-condition holds

since u ⌘ 0 on some neighborhood of O. For t ≥ 1− e−2, we have eMu(t) = eg(t) =
1
2 log

1
1−t .
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There exists r0 2 [1 − e−2, 1[ such that log 1
1−t ≥ t+1

(↵+1)t 8t 2 [r0, 1[, since

log 1
1−t ! +1 as t ! 1−, whereas the right-hand term remains bounded. Now

'(t)
'0(t) = −(1− t) 1+t

2t(↵+1) . Thus
1
2 log

1
1−t ≥ − '(t)

'0(t) (1−t) and

eMu(t) =

✓
log

1

1− t

◆
− 1

2
log

1

1− t

✓
log

1

1− t

◆
+

'(t)

'0(t) (1− t)
8t 2 [r0, 1[

hence eMu(t) [−'0(t)]  [−'0(t)]
⇣
log 1

1−t

⌘
− '(t)

1−t 8t 2 [r0, 1[, since −'0(t) > 0.

In other words eMu(t) [−'0(t)]  − 0(t) 8t 2 [r0, 1[, with  defined by  (t) =
'(t) log 1

1−t 8t 2]0, 1[. For any r 2 [r0, 1[, we obtain:
Z r

r0

eMu(t) [−'0(t)] dt  − [ (t)]
r
r0

=  (r0)− (1− r2)↵+1 log
1

1− r
.

The right-hand side tends towards  (r0) as r ! 1− because ↵ + 1 > 0. In other

words:
R 1

r0
eMu(t) [−'0(t)] dt < +1.

Similarly
R 1

r
eMu(t) [−'0(t)] dt =  (r) 8r 2 [r0, 1[, which leads to:

eMu(r)  1

'(r)

Z 1

r

eMu(t) [−'0(t)] dt   (r)

'(r)
= log

1

1− r
8r 2 [r0, 1[.

Now log 1
1−r 

⇣
log 1

1−r2

⌘2
as soon as r > 0, 873106 . . . Hence there exists r1 2

[r0, 1[ such that eMu(r) 
⇣
log 1

1−r2

⌘2
8r 2 [r1, 1[, thus Mu(r)  2 log log 1

1−r2 .

Lemma 2.5 provides ⇢(r2)  2
h(r) log log

1
1−r2 8r 2 [r1, 1[. Besides that h(r) ⇠

⌧N
2 (1− r2) as r ! 1− and the conclusion follows. ⇤

Theorem 4.9. Given ' and g two positive functions on [0, 1[such that
R!1

0
g(t)dt

diverges, with g increasing and ' fulfilling the L-condition, let u denote a subhar-
monic function on BN (satisfying the H-condition) and ⇢ its repartition function.
For any r 2 [0, 1[, we define the following sets:

F1(r) = {t 2 [r, 1[ : Mu(t) [−'0(t)] < g(t)}

G1(r) =

⇢
t 2 [r, 1[ : ⇢(t2) [−'0(t)] <

g(t)

h(t)

�

G2(r) =

⇢
t 2 [r, 1[ : ⇢(t2) <

log[g(t)]− log[−'0(t)]
h(t)

�

H1(r) =

⇢
t 2 [r, 1[ :

Z t

t2
Mu(s) [−'0(s)] ds <

g(t)'(t2)

−'0(t)

�
.

Let the set F2(r) (resp. H2(r)) be defined on the same way than F1(r) (resp. H1(r)),
only with Mu replaced by eMu .
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(i) If
R 1

0
Mu(r) [−'0(r)] dr < +1 then there exists a sequence (ak)k2N of points in

[0, 1[, with limit 1, such that mesF1(ak) ⇠ mesG1(ak) ⇠ mesH1(ak) ⇠ 1−ak
as k ! +1.

(ii) If
R 1

0
eMu(r) [−'0(r)] dr < +1 then there exists a sequence (bk)k2N of points in

[0, 1[, with limit 1, such that mesF2(bk) ⇠ mesG2(bk) ⇠ mesH2(bk) ⇠ 1− bk
as k ! +1.

Proof of (i). Theorem 3.6 provides the sequence (ak)k and the estimation of
mesF1(ak). If some point t belongs to F1(r), it implies that t 2 G1(r) through
Lemma 2.5. Thus F1(r) ⇢ G1(r) ⇢ [r, 1[, hence mesF1(r)  mesG1(r)  1 − r
8r 2 [0, 1[ and the estimation of mesG1(ak) follows. Remark 4.2 implies for every
t 2 [0, 1[:

Z t

t2
Mu(s)[−'0(s)] dsMu(t)

Z t

t2
[−'0(s)] ds=Mu(t) ['(t

2)− '(t)]  Mu(t)'(t
2).

We deduce F1(r) ⇢ H1(r) ⇢ [r, 1[ 8r 2 [0, 1[ and the estimation of mesH1(ak)
follows on the same way as above.

Proof of (ii). The sequence (bk)k and the estimation of mesF2(bk) are ob-

tained through Theorem 3.6 again. Now t 2 F2(r) implies Mu(t) < log
⇣

g(t)
−'0(t)

⌘

and Lemma 2.5 leads to t 2 G2(r). Similarly F2(r) ⇢ H2(r). The argument ends
as in (i), up to obvious adaptations. ⇤

Proposition 4.10. Given a real number ↵ ≥ −1/2, let ' and g be defined by

'(t) = (1−t2)↵+1 and g(t) = −t2

(1−t2) log(1−t2) 8t 2]0, 1[ (with g continuously extended

by g(0) = 1).
Given ⇢ the repartition function associated to some subharmonic function u on

BN under the assumptions of Theorem 4.9 (ii), let G(r) denote for any r 2 [0, 1[
the set:

G(r) =

⇢
t 2 [r, 1[ : ⇢(t) <

2

⌧N (1− t)


(↵+ 1) log

✓
1

1− t

◆
− log log

✓
1

1− t

◆��
.

Then there exists a sequence (bk)k2N of points in [0, 1[, tending towards 1, such that
mesG(bk) ⇠ 1− bk as k ! +1.

Proof. First we make sure that the integral
R!1

0
g(t) dt diverges. This integral

has the same nature as
R!1

1/2
g1(t) dt with g1(t) =

−2t
(1−t2) log(1−t2) , since g1(t) ⇠ 2 g(t)

as t ! 1. Now g1(t) =
u0(t)
u(t) with u(t) = − log(1− t2). hence

Z r

1/2

g1(t) =
h
log u(t)

ir
1/2

=

✓
log log

1

1− r2

◆
− log log(4/3)
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which tends towards +1 as r ! 1−. Next, we have to establish that g increases on
[0, 1[. It is enough to show the increasingness of g2 defined by: g2(t) =

−t
(1−t) log(1−t) .

For any t 2]0, 1[, we compute g02(t) =
−(1−t) log(1−t)+t[− log(1−t)+(1−t) −1

1−t ]

[(1−t) log(1−t)]2 . Hence

g02(t) has the same sign than − log(1 − t) − t ≥ 0 from the well-known estimation
log(1 + x)  x 8x > −1.

Theorem 4.9 (ii) applies and provides the sequence (bk)k2N as well as the esti-
mation of mesG2(bk). The following holds for all t 2]0, 1[:

log[g(t)]− log[−'0(t)]

= log(t2) + log
1

1− t2
− log log

1

1− t2
− log[2t(↵+ 1)]− ↵ log(1− t2)

= (↵+ 1) log
1

1− t2
− log log

1

1− t2
+ log

t

2(↵+ 1)
.

Now log t
2(↵+1)  log 1

2(↵+1) = − log[2(↵+ 1)]  0 since 2(↵+ 1) ≥ 1. Thus

log[g(t)]− log[−'0(t)]
h(t)

 2

⌧N (1− t2)


(↵+ 1) log

✓
1

1− t2

◆
− log log

✓
1

1− t2

◆�

for all t 2]0, 1[, because of h(t) ≥ ⌧N (1− t2)/2.

If t 2 G2(r) then ⇢(t
2) < 2

⌧N (1−t2)

h
(↵+ 1) log

⇣
1

1−t2

⌘
− log log

⇣
1

1−t2

⌘i
, in other

words t 2 G(r). Hence G2(r) ⇢ G(r) ⇢ [r, 1[ 8r 2 [0, 1[ and the estimation of
mesG(bk) follows. ⇤

Remark 4.11. When −1 < ↵ < −1/2, Proposition 4.10 still works, the defini-
tion of G(r) only requiring an additional term log t

2(↵+1) inside the square brackets.

The same remark holds for the following statement: a particular situation where
N = 2 and u = p log |f |.

Corollary 4.12. For a holomorphic function f from the Bergman space of pa-
rameters p > 0 and ↵ ≥ −1/2, there exists a sequence (bk)k2N of points in [0, 1[, with

limit 1, such that mes
n
t 2 [bk, 1[ : ⇢(t) <

2/p
1−t

h
(↵+ 1) log

⇣
1

1−t

⌘
−log log

⇣
1

1−t

⌘io
⇠

1 − bk as k ! +1 where ⇢(t) is counting (with multiplicities) the zeros of f with
modulus  t.

Proof. The subharmonic function p log |f | fulfills the conditions of Theo-
rem 4.9 (ii), as noticed in Example 4.7. Its repartition function is p ⇢, thus Propo-
sition 4.10 applies, with ⇢ replaced by p ⇢. ⇤
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5 – Behaviour of the Riesz measure

Theorem 5.1. Given µ the Riesz measure associated to a subharmonic function
u in BN , satisfying the H-condition, let Pµ(r) =

R
|⇣|<sµ(r)

h(|⇣|) dµ(⇣) 8r 2]0, 1[,
with sµ(r) from Lemma 2.7. Let ' denote a C1 decreasing function on [0, 1[ such
that limt!1− '(t) = 0.

(i) If
R 1

0
Mu(r) [−'0(r)] dr < +1 then Pµ(r) = o( 1

'(r) ) as r ! 1−.

(ii) If
R 1

0
eMu(r) [−'0(r)] dr < +1 then ePµ(r) = o( 1

'(r) ) as r ! 1−. More

precisely:

ePµ(r)  e

'(r)

Z 1

r

eMu(t) [−'0(t)] dt 8r 2 [0, 1[.

Remark 5.2. In the case (ii), it obviously holds that Pµ(r) = o( 1
'(r) ) as e

Pµ(r) ≥
Pµ(r) 8r.

Proof of Theorem 5.1. Since h ≥ 0 on ]0, 1[ and µ is a positive measure,
then Pµ is an increasing function on ]0, 1[ since sµ is (but not necessarily strictly in-
creasing). Given r 2]0, 1[, it follows from Lemma 2.3 together with Jensen-Privalov
formula that:

Mu(r) ≥
Z

|⇣|r0
hr(⇣) dµ(⇣)=

Z

|⇣|r0
h(|⇣|) dµ(⇣)− h(r)

Z

|⇣|r0
dµ(⇣) 8r0 2]0, 1[.

For any r0 < sµ(r), we have:
R
|⇣|r0 dµ(⇣) = ⇢(r0)  1

h(r) according to Lemma 2.7,

hence Z

|⇣|r0
h(|⇣|) dµ(⇣)  Mu(r) + 1.

The left-hand term tends towards Pµ(r) as r
0 ! sµ(r), with r0 < sµ(r), since h ≥ 0

on ]0, 1[. Hence 0  Pµ(r)  Mu(r) + 1 8r 2]0, 1[.

Proof of (i). The above estimation leads to
R 1

0
Pµ(r) [−'0(r)] dr < +1 since

−'0 ≥ 0. Consequently
R 1

t
Pµ(r) [−'0(r)] dr tends towards 0 as t ! 1−. Besides

that,

Z 1

t

Pµ(r) [−'0(r)] dr≥Pµ(t)

Z 1

t

[−'0(r)] dr = Pµ(t)['(t)− lim
r!1−

'(r)]=Pµ(t)'(t)≥0

for all t 2]0, 1[. Thus finally Pµ(t)'(t) ! 0 as t ! 1−.

Proof of (ii). From ePµ(r)  e.eMu(r), it follows that
R 1

0
ePµ(r) [−'0(r)] dr <

+1. Hence the conclusion since
R 1

t
ePµ(r) [−'0(r)] dr ≥ ePµ(t) '(t). ⇤
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Example 5.3. In the case N = 2, let u = log |f | with f a function holomorphic
in the unit disk of C, assuming that f(0) = 1. Here again we make use of the
notations introduced in Example 4.7. When f belongs to the Bergman space of
parameters p > 0 and ↵ > −1, Theorem 5.1 (ii) applies to the function p u, with
' defined by: '(r) = (1− r2)↵+1. The Riesz measure relative to the subharmonic

function p u is p µ, thus exp[Ppµ(r)] = o
⇣

1
(1−r)↵+1

⌘
since 1

1+r  1. Now Ppµ(r) =

p
P

|zk|<spµ(r)
log 1

|zk| for every r 2 [0, 1[, thus

exp(Ppµ(r)) =
Y

|zk|<spµ(r)

1

|zk|p
= o

✓
1

(1− r)↵+1

◆
,

in other words:

Y

|zk|<spµ(r)

1

|zk|
= o

✓
1

(1− r)(↵+1)/p

◆
as r ! 1−.

For all n 2 N⇤ let rn = e−1/np = 1 − 1
np (1 + "n) with limn!+1 "n = 0. Hence

1− rn = 1
n

1+"n
p thus (1− rn)

−(↵+1)/p = n(↵+1)/p( p
1+"n

)(↵+1)/p.

Given n 2 N⇤, let m denote the largest integer such that |zm| < |zn|.
Then ⇢(|zm|) = m < n thus p ⇢(|zm|) < pn = −1/ log rn = 1/h(rn), hence

|zm| < spµ(rn), the strict inequality following from Lemma 2.7, since p ⇢(spµ(rn)) ≥
1

h(rn)
.

Whence
Qm

k=1
1

|zk| 
Q

|zk|<spµ(rn)
1

|zk| since
1

|zk| > 1. Finally:

Y

|zk|<|zn|

1

|zk|
= o(n(↵+1)/p) as n ! +1

which completes the result of Horowitz[4] according to whom
Qn

k=1
1

|zk| =O(n(↵+1)/p)
as n ! +1.

In order to refine our estimation, we introduce (for a fixed integer n 2 N⇤) the
holomorphic function g given by g(z) =

Qn
k=1(z − zk) 8z 2 C.

The subharmonic function v = p log |g|− p log |g(0)| fulfills the H-condition. Its
Riesz measure is ⌫ = p

Pn
k=1 δzk and its repartition function % satisfies: %(t) = pn

8t ≥ |zn|, together with %(t)  p ⇢(t) 8t 2 [0, 1[, thus Mv(r)  Mpu(r) 8r 2 [0, 1[
through Jensen-Privalov formula.

Besides that, s⌫(r) = sup{t 2]0, 1[ : %(t)  1
h(r)} ≥ spµ(r) 8r 2 [0, 1[ since

⇢
t 2]0, 1[ : p⇢(t)  1

h(r)

�
⇢
⇢
t 2]0, 1[ : %(t)  1

h(r)

�
.
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With rn as above, we get s⌫(rn) = sup{t 2]0, 1[ : %(t)  np} = 1. Hence it turns
out that P⌫(rn) = p

Pn
k=1 log

1
|zk| , thus exp(P⌫(rn)) =

Qn
k=1

1
|zk|p .

We have
R 1

0
eMv(t) [−'0(t)] dt < +1 hence Theorem 5.1 (ii) provides for any

r 2 [0, 1[:

eP⌫(r)  e

'(r)

Z 1

r

eMv(t) [−'0(t)] dt  e

(1− r2)↵+1

Z 1

r

eMpu(t) [−'0(t)] dt

 e

(1− r)↵+1

Z 1

r

✓
1

2⇡

Z 2⇡

0

|f(t ei✓)|p d✓
◆

[−'0(t)] dt

 2e(↵+ 1)

(1− r)↵+1

Z

r|z|<1

|f(z)|p(1− |z|2)↵dA(z).

With r := rn, the above integral tends towards 0 when n ! +1. We have finally
recovered that

Qn
k=1

1
|zk| = o(n(↵+1)/p) as n ! +1, stated in [1, page 257].

Theorem 5.4. Given ' and g two positive functions on [0, 1[such that
R!1

0
g(t)dt

diverges, with g increasing and ' fulfilling the L-condition, let u denote a subhar-
monic function on BN (satisfying the H-condition) and µ its Riesz measure. For
any r 2 [0, 1[, we define the following sets:

Φ1(r) = {t 2 [r, 1[ : Pµ(t) [−'0(t)] < g(t)}
Φ2(r) =

n
t 2 [r, 1[ : ePµ(t) [−'0(t)] < g(t)

o
.

(i) If
R 1

0
Mu(r) [−'0(r)] dr < +1 then there exists a sequence (a0k)k2N of points

in [0, 1[, with limit 1, such that mesΦ1(a
0
k) ⇠ 1− a0k as k ! +1.

(ii) If
R 1

0
eMu(r) [−'0(r)] dr < +1 then there exists a sequence (b0k)k2N of points

in [0, 1[, with limit 1, such that mesΦ2(b
0
k) ⇠ 1− b0k as k ! +1.

Proof. During the proof of Theorem 5.1, we outlined Pµ  Mu + 1.
Thus Theorem 5.4 is a straightforwardapplication of Theorem 3.6 to the integralR 1

0
Pµ(r) [−'0(r)] dr in the case (i) and

R 1

0
ePµ(r) [−'0(r)] dr in the case (ii). ⇤

Example 5.5. When ' and g are defined by '(t) = (1 − t2)↵+1 and g(t) =
−t

(1−t) log(1−t) 8t 2 [0, 1[ (for a fixed ↵ > −1), we notice that

g(t)

−'0(t)
=

−t

2t(↵+ 1)(1− t2)↵(1− t) log(1− t)
 1

2(↵+ 1)(1− t)↵+1 log

✓
1

1− t

◆
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since 1
1+t  1. For every r 2]0, 1[, it turns out that:

Φ2(r) ⇢ Φ(r) :=

8
>><
>>:
t 2 [r, 1[ : ePµ(t) <

1

2(↵+ 1)(1− t)↵+1 log

✓
1

1− t

◆

9
>>=
>>;

.

Thus mesΦ(b0k) ⇠ 1 − b0k as k ! +1 for a function u under condition (ii) of
Theorem 5.4.

Lemma 5.6. Let c denote the solution on ]1,+1[ of 1 + (1 − c) log c = 0 (for
information c = 2, 23998 . . .) and γ = 1− e−c = 0, 89354 . . .

Given p > 0 and ↵ > −1, let rn = exp(−1
np ) 8n 2 N⇤. For functions ' and g

defined on [0, 1[ by '(t) = (1− t2)↵+1 8t 2 [0, 1[ and g(t) = 1
(1−t) log( 1

1−t ) log log( 1
1−t )

8t 2 [γ, 1[ (with g(t) = g(γ) for t  γ), there is a constant K (depending only on ↵
and p) such that:

0 < e
g(rn)

−'0(rn)
 K

n↵+1

(logn)(log log n)
8n 2 N such that n ≥ max

⇢
3,

−1

p log γ

�
.

Moreover g increases on [0, 1[ and
R!1

0
g(t) dt diverges.

Proof. As 1 − e−c > 1 − e−1, we know that 1
1−t > e 8t 2 [γ, 1[ hence

log log( 1
1−t ) > 0 thus g(t) is well-defined and positive. The increasingness of g will

follow from the decreasingness of g0 defined by g0(t) = (1− t) (log 1
1−t ) (log log

1
1−t ).

Its derivative is:

g00(t)=−
✓
log

1

1− t

◆✓
log log

1

1− t

◆
+ (1− t)

+1

1− t

✓
log log

1

1− t

◆

+(1− t)

✓
log

1

1− t

◆ 1

1− t

log
1

1− t

=

✓
1− log

1

1− t

◆✓
log log

1

1− t

◆
+ 1  0

because of log 1
1−t ≥ c 8t 2 [γ, 1[ and 1 + (1− y) log y  0 8y ≥ c.

Furthermore we have to check that
R!1

0
g(t) dt diverges: since g(t) = u0(t)

u(t) 8t 2
[γ, 1[ with u(t) = log log 1

1−t and u0(t) =
− −1

1−t

log 1
1−t

,we obtain for every r 2 [γ, 1[:

Z r

γ

g(t) dt =
h
log u(t)

ir
γ
= log

⇣
log log

1

1− r

⌘
− log

⇣
log log

1

1− γ

⌘
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which tends towards +1 as r ! 1−. Now

g(t)

−'0(t)
=

1

2t(↵+ 1)(1− t2)↵(1− t)

✓
log

1

1− t

◆✓
log log

1

1− t

◆

=
1

2t(↵+ 1)(1 + t)↵(1− t)↵+1

✓
log

1

1− t

◆✓
log log

1

1− t

◆ 8t 2 [γ, 1[.

We already worked with rn in Example 5.3. We had 1
1−rn

= n p
1+"n

where

limn!+1 "n = 0. Therefore log 1
1−rn

⇠ logn and log log 1
1−rn

⇠ log log n as

n ! +1. Here rn ≥ γ as soon as −1
pn ≥ log γ. This leads to

g(rn)

−'0(rn)
⇠ (np)↵+1

2(↵+ 1) 2↵(logn) (log logn)
as n ! +1. ⇤

Theorem 5.7. Given f a holomorphic function belonging to the Bergman space
of parameters p > 0 and ↵ > −1 (with f(0) = 1), there exists a set F ⇢ [0, 1[ such
that

sup
r2[s,1[

mes(F \ [r, 1[)

1− r
= 1 8s 2 [0, 1[

and such that the zeros (zk)k of f (indexed by increasing moduli and taking mul-

tiplicities into account) satisfy
Qn

k=1
1

|zk|p  K n↵+1

(log n)(log log n) for any integer n ≥
max{3, −1

p log γ } such that rn := exp(−1
np ) 2 F (the constants K and γ both stemming

from Lemma 5.6).

Proof. In Example 4.7, we have already seen that the subharmonic function
pu = p log |f | fulfills the condition (ii) of Theorem 4.3 as well as Theorem 4.9,
applied with N = 2 together with ' and g defined as in Lemma 5.6.

Let F =
n
t 2 [0, 1[ : eMpu(t) < g(t)

−'0(t)

o
. Thus F \ [r, 1[= F2(r) of Theorem 4.9

(ii) applied to pu, hence the estimation of mes(F \ [r, 1[).
Given n a fixed integer, let v be the subharmonic function defined in Example 5.3,

where we noticed that Mv(r)  Mpu(r) 8r 2 [0, 1[. We also outlined that its Riesz
measure ⌫ satisfies exp(P⌫(rn)) =

Qn
k=1

1
|zk|p with rn = exp(−1

np ).

Besides that P⌫(r)  Mv(r)+ 1 8r 2 [0, 1[ according to an argument performed

at the beginning of the proof of Theorem 5.1. Therefore eP⌫(t)  e.eMv(t) < e. g(t)
−'0(t)

provided that t 2 F . Lemma 5.6 provides the required majoration for
Qn

k=1
1

|zk|p
as soon as rn 2 F . ⇤
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Theorem 5.8. With the same notations as in Theorem 5.7, we also have a

constant K 0 (depending only on p and ↵) such that
Qn

k=1
1

|zk|p  K 0 n↵+1

(log n)(log log n)

for any integer n ≥ max{3, −1
p log γ } such that ]rn, rn+1] \ F 6= ; and |zn| < |zn+1|.

Proof. Given such an integer n for which there exists b 2 F such that rn <
b  rn+1 and moreover |zn| < |zn+1|, the Riesz measure p µ of the subharmonic
function p u = p log |f | (explicited in Example 4.7) gives rise to exp(Ppµ(b)) =Q

|zk|<spµ(b)
1

|zk|p (see Example 5.3). The repartition function p ⇢ associated to p u

leads to the computation of

spµ(b) = sup

⇢
t 2]0, 1[ : p ⇢(t)  1

h(b)

�
.

On one hand exp(−1
np ) < b means that − log b = h(b) < 1

np . Now |zn| < |zn+1|
implies p ⇢(|zn|) = pn < 1

h(b) hence |zn|  spµ(b). But |zn| = spµ(b) is impossible:

otherwise Lemma 2.7 would assert p ⇢(|zn|) ≥ 1
h(b) hence a contradiction. Finally

|zn| < spµ(b) thus exp(Ppµ(b)) ≥
Q

1kn
1

|zk|p .

On the other hand exp(Ppµ(b))  e. eMpu(b) < e. g(b)
−'0(b) since b belongs to the

same set F as in the previous proof. Moreover g and ' still stem from Lemma 5.6,
thus g(b)  g(rn+1) because g increases. Besides that

−'0(b) = 2b(↵+ 1)(1− b2)↵ ≥ 2 rn(↵+ 1)(1− r2n+1)
↵ = −'0(rn+1)

rn
rn+1

= −'0(rn+1) exp

−1

p

✓
1

n
− 1

n+ 1

◆�
= −'0(rn+1) exp

✓ −1

pn(n+ 1)

◆
.

Consequently

Y

1kn

1

|zk|p
 e.

g(rn+1)

−'0(rn+1)
exp

✓
1

pn(n+ 1)

◆

 K e1/pn(n+1) (n+ 1)↵+1

[log(n+ 1)] [log log(n+ 1)]

and the conclusion follows. ⇤
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