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Remark on a magnetically confined plasma
with infinite charge

SILVIA CAPRINO – GUIDO CAVALLARO – CARLO MARCHIORO

Abstract: We consider a one-species plasma moving in an infinite cylinder in R3, in
which it is confined by means of a magnetic field diverging on the walls of the cylinder. In
a recent paper [4] we have supposed that the plasma satisfies the Vlasov equation with a
Yukawa mutual interaction (i.e. Coulomb at short distance and exponentially decreasing at
infinity). Assuming that initially the particles have bounded velocities and are distributed
according to a bounded density without any hypothesis on its decreasing at infinity, we
have proved the global in time existence and uniqueness of the time evolution of the plasma
and its confinement. In the present paper we extend this result to a Coulomb interaction,
making on the initial density some assumption of slight decreasing on average at infinity,
which however does not imply that the density belongs to any Lp space. The proof is
similar, but slightly simpler.

1 – Introduction

In the present paper we study a plasma described by the Vlasov-Poisson equation.
This equation has been largely studied for the thermonuclear fusion and for some
geophysics problems. Classical results on the existence and uniqueness of the solu-
tion in case of L1 \L1 data can be found in many papers as [1, 12, 14, 15, 16] and
[19]. For a nice review of the mathematical results on this topic see also [10].

In some recent papers ([3, 4, 5]) the Vlasov-Poisson equation has been studied
in presence of a singular magnetic field that produces a confinement by means
of a magnetic mirror. Actually it is well known that a concentrated and very
high magnetic field reflects charged particles as a mirror. A classical e↵ect of this
phenomenon can bee seen in the aurora borealis.
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In particular in [4] we have studied a plasma contained in an unbounded cylin-
der and confined by an external magnetic field parallel to the symmetry axis which
becomes infinite on the border. This plasma may have infinite charge and occupy
the whole cylinder with an initial bounded density. The plasma particles mutually
interact via a Yukawa potential, i.e. Coulomb-like at short distances and exponen-
tially decreasing at large distances. This decreasing can be caused by the Debye
screening e↵ect, or by the presence of a surrounding conductor. In that paper it has
been proved the existence and uniqueness of the time evolution of data belonging
to L1 and the confinement of the solution.

In the present paper we make a stronger assumption on the initial density (see
definition (2.8)), which leads to some improvements: we can extend the result to
a real Coulomb interaction (without the exponential decreasing), and the proof
is slightly simpler. Anyway, also in the present case, initial data which are not
contained in any Lp are included.

For the convenience of the reader the present paper is self-contained, that is
some Lemmas already proved in [4] are reported here in detail.

Finally we quote some other papers which study a Vlasov fluid with an infinite
mass: [6, 2, 7, 8, 11, 13, 17], and [18].

The plan of the paper is the following: in Section 2 we state the problem and the
main result; in Section 3 we give the proof, and finally in the Appendix we collect
some technical tools.

2 – Position of the problem and statement of the main result

We consider a Vlasov plasma in R3 constituted by particles of the same charge, on
which an external magnetic fieldB is acting, whose role is to confine the plasma in an
unbounded cylinder. If f(x, v, t) denotes the distribution of charge (or equivalently
mass) at the point (x, v) of the phase-space at time t, the time evolution of the
plasma is described by the Vlasov-Poisson system

8
>>>>>>><
>>>>>>>:

@tf(x, v, t) + v · rxf(x, v, t) + (E(x, t) + v ^B(x)) · rvf(x, v, t) = 0

E(x, t) =

Z

R3

x− y

|x− y|3 ⇢(y, t) dy

⇢(x, t) =

Z

R3

f(x, v, t) dv

f(x, v, 0) = f0(x, v),

(2.1)

where E(x, t) is the electric field produced by the plasma and B(x) the external
magnetic field.
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Equation (2.1) is a conservation equation for the density f along the character-
istics of the system, that is the solutions to the following problem:

8
><
>:

Ẋ(t) = V (t)

V̇ (t) = E(X(t), t) + V (t) ^B(X(t))

(X(0), V (0)) = (x, v),

(2.2)

where (X(t), V (t)) = (X(x, v, t), V (x, v, t)) denote position and velocity of a particle
starting at time t = 0 from (x, v). Since f is time-invariant along this motion, it is:

kf(t)kL1 = kf0kL1 = C0. (2.3)

As it is well known, solutions along the characteristics produce a weak solution of
the Vlasov-Poisson system, which becomes a classical solution when f(x, v, 0) is
assumed smooth. We also remark that the Lebesgue measure dxdv is conserved
along the motion.

In what follows we indicate by ui, i = 1, 2, 3, the i-th component of a vector
u 2 R3. We will also put u? = (u2, u3).

We assume that an external magnetic field B is acting in order to keep the
plasma inside an infinite cylinder with x1 as symmetry axis. It is defined as

B =
�
h(|x?|2), 0, 0

�
(2.4)

where the function h is defined in the cylinder:

D = {x 2 R3 : −1 < x1 < +1, 0  |x?| < L}. (2.5)

This choice implies that the first component of a particle velocity is not a↵ected by
the presence of the magnetic field. The function h is assumed to be nonnegative,
smooth in D and diverging together with its primitive as |x?| ! L.

We introduce the cylinder D0 ⇢ D

D0 = {x 2 R3 : −1 < x1 < +1, 0  |x?|  L0} (2.6)

for some L0 < L and the set

S0 = {(x, v) : x 2 D0, |v|  V0}. (2.7)

For any ↵ > 0 we define now the following family of states:

F↵ = {⇢ : D0 ! R+ such that Mi  M|i|−↵} (2.8)

with M a positive constant, i 2 Z− {0} and

Mi =

Z

{ix1<i+1}
⇢(x) dx. (2.9)
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Remark 2.1. The requirement for the density ⇢ to belong to F↵ implies a very
weak decreasing in average and so ⇢ could be constant in some regions as |x| ! 1;
in this case these regions have to be very small in order that Mi is small for large
|i|. We stress that these states do not necessarily belong to any Lp space.

In what follows we put ⇢0(x) = ⇢(x, 0). Moreover sometimes we will put ⇢(t)
and f(t) in place of ⇢(x, t) and f(x, v, t), when needed for the sake of conciseness.

We prove the following result:

Theorem 2.2. Let us fix an arbitrary positive time T. Let f0 2 L1 be supported
on the set S0 defined in (2.7) and ⇢0 2 F↵ with ↵ arbitrary and positive. Then there
exists a solution to system (2.2) in [0, T ] and continuous functions V(t), L(t) and
M(t) from [0, T ] ! R+, satisfying V(0) = V0, L(0) = L0, 0  supt2[0,T ] L(t) < L
and M(0) = M such that, for all times t 2 [0, T ], f(t) is supported on the set:

St = {(x, v) : x 2 Dt, |v|  V(t)} (2.10)

with
Dt =

�
x 2 R3 : −1 < x1 < +1, 0  |x?|  L(t)

 
. (2.11)

Moreover ⇢(t) 2 F↵
t where

F↵
t = {⇢ : Dt ! R+ such that Mi  M(t)|i|−↵}. (2.12)

This solution is unique in the class of the characteristics distributed with f(t) 2 L1,
supported on St and belonging to F↵

t 8t 2 [0, T ].

3 – Proof of Theorem 1

To prove this theorem we consider a partial dynamics, obtained by putting in system
(2.1) the initial condition

fN
0 (x, v) = f0(x, v)χDN

0
(x), (3.1)

being χA the characteristic function of the set A and

DN
0 = D0 \ {x 2 R3 : |x1|  N}.

Then we have:

Theorem 3.1. Let us fix an arbitrary positive time T and let fN
0 be defined in

(3.1) with f0 satisfying the hypotheses of Theorem 1. Then there exists a solution
(XN (t), V N (t)) of system (2.2) on the interval [0, T ] such that fN (t) is supported
on the set

SN
t = {(x, v) : x 2 DN

t , |v|  VN (t)}
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with

DN
t =

�
x 2 R3 : |x1|  CN , 0  |x?|  LN (t)

 
(3.2)

for some constant CN and some continuous functions VN (t) and LN (t) < L. More-

over ⇢N (t) 2 (F↵
t )

N
with:

(F↵
t )

N
= {⇢ : DN

t ! R+ such that Mi  MN (t)|i|−↵} (3.3)

with MN (t) a continuous function. This solution is unique in the class of the
characteristics distributed with fN (t) 2 L1, supported on SN

t and belonging to

(F↵
t )

N 8t 2 [0, T ].

Proof. Since fN
0 has compact support, the existence and uniqueness of the

solution is contained in [3]. The property (3.3) can be deduced from the following
observation:

Z

ix1i+1

fN (x, v, t) dxdv =

Z

i−BNx1i+1+BN

fN
0 (x, v) dxdv  MN (t)

1

|i|↵

which follows from the invariance of f along the characteristics and the conservation
of the measure dxdv, being BN a bound on the maximal displacement of any plasma
particle. ⇤

Our aim is to obtain the solution of eq. (2.2) by a local limit (i.e. for fixed
(x, v, t)) of fN (x, v, t) as N ! 1. In the sequel of the paper we will obtain estimates
independent of N , which will allow us to perform the limit (for details see [8]).

The confinement The main step in the proof is to show that the time evolved
velocities of the plasma particles have a finite bound (independent of N). Once we
get this bound, then the confinement follows immediately. We sketch the proof of
this fact.

We put for simplicity l(t) = |X?(t)|. Writing by components equations (2.2)
with initial datum (3.1), after elementary calculation we get:

(V2X2 + V3X3)h(l
2) = V̇2X3 − V̇3X2 +X2E3 −X3E2.

Denoting by H a primitive of h and integrating in time we obtain,

1

2

Z t

0

d

ds
H(l2(s))ds =

1

2

⇥
H(l2(t))−H(l2(0))

⇤
=

Z t

0

ds
h
V̇2(s)X3(s)− V̇3(s)X2(s) +X2(s)E3(s)−X3(s)E2(s)

i
.

(3.4)
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By the hypotheses on f0 we have H(l2(0))  C, while the assumptions on h imply
that H(l2(t)) ! 1 as l ! L. Hence, the left hand side in eq. (3.4) goes to infinity
as l ! L. On the other hand, by integrating by parts the right hand side we have,

Z t

0

ds
h
V̇2(s)X3(s)− V̇3(s)X2(s) +X2(s)E3(s)−X3(s)E2(s)

i
=

[V2(s)X3(s)− V3(s)X2(s)]
t
0 +

Z t

0

[X2(s)E3(X(s), s)−X3(s)E2(X(s), s)] ds.

(3.5)

Since V(T ) is bounded, also the field E does (see Proposition 3.6), so that by (3.5)
the latter term in (3.4) is bounded. Hence the plasma does remain confined in a
cylinder properly contained in D, as stated before.

We discuss the strategy of the further steps in the proof. In order to get a uniform
bound on the particle velocities v, we observe that, as well known, the magnetic
field changes only the direction, not the intensity of v, so that the magnetic force
does not contribute to the variation of |v|. In facts, from eqns. (2.2) it follows:

d

dt
v2 = 2v · v̇ = 2v · (E + v ^B) = 2v · E, (3.6)

which shows that in order to find a bound for |v| it is sufficient to find a bound
for the electric field E. Unfortunately, we are not able to prove exactly this for any
fixed time t, but we prove a bound on the average of the electric field over a short
time interval ∆, which anyway is sufficient to control |v|.

We proceed in the following way: we fix N and we study this approximated
system. In [2] we have proved the existence,uniqueness and confinement of the
solution using an a priori bound on the total energy. Of course this bound goes
to infinity as N goes to infinity. To overcome this difficulty we introduce a sort
of local energy, which is our fundamental tool to deal with the infiniteness of the
charge. We then study the electric field at a fixed point x, and we observe that the
main contribution to its growth does not come from far away particles, nor from
those nearby, but from particles in a very large region around x, whose radius is
proportional to the maximum displacement that a particle can make. At this point
the proof involves the local energy of this region, quantity that, by hypothesis, is
initially finite. We prove that, in spite of the infinity of the system, the local energy
remains finite at any later time and this allows us to achieve the result.

We go now into details and define the local energy. For µ 2 R and R > 0 we
define the function,

'µ,R(x) = '

 
|x1 − µ|

R

!
, (3.7)
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with ', assumed to be smooth for technical purposes, as it will be clear in the
following, such that:

'(r) = 1 if r 2 [0, 1] (3.8)

'(r) = 0 if r 2 [2,+1) (3.9)

−2  '0(r)  0. (3.10)

The local energy is defined as

W (µ,R, t) =
1

2

Z
dx 'µ,R(x)

Z
dv |v|2f(x, v, t)+

1

2

Z
dx 'µ,R(x)⇢(x, t)

Z
dy

⇢(y, t)

|x− y| .
(3.11)

The function W, already introduced in [8], can be seen as a sort of energy of a
bounded region interacting with the rest of the system. Note that (recalling (3.6))
it does not take into account the e↵ects of the magnetic force, nevertheless it will
be the most important tool to deal with the unboundedness of the plasma. The
assumptions on ⇢0 allow to give meaning to the function W at time t = 0, otherwise
it would have been infinite, had we assumed only L1 data. Indeed, the following
holds:

Proposition 3.2.
W (µ,R, 0)  CR1−↵.

Proof. We consider R integer for simplicity. It is easily seen that

Z
dx'µ,R(x)⇢0(x)  CR1−↵. (3.12)

Indeed, it is:

Z

|x−µ|R

⇢0(x) dx =

Z

|x−µ|1

⇢0(x) dx+
R−1X

|i|=1

Z

µ+ixµ+i+1

⇢0(x) dx.

Now, since ⇢0 2 F↵, if |µ|  2R it is:

Z

|x−µ|R

⇢0(x) dx  C +

Z

|x|3R

⇢0(x) dx 

C +
3R−1X

|i|=1

Z

ixi+1

⇢0(x) dx  C

3R−1X

|i|=1

1

|i|↵  CR1−↵
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while, if |µ| > 2R:

Z

|x−µ|R

⇢0(x) dx  C +
R−1X

|i|=1

1

|µ+ i|↵  CR1−↵

since |µ+ i| ≥ R, which proves (3.12).
Now we estimate the potential energy of a single particle. We have:

Z
⇢0(y)

|x− y| dy  C. (3.13)

Indeed it is:

Z
⇢0(y)

|x− y| dy 
Z

|x−y|1

⇢0(y)

|x− y| dy +
X

|i|≥1

1

|i|

Z

x1+iy1x1+i+1

⇢0(y) dy

 C

0
@1 +

X

|i|≥1:|x1+i|≥1

1

|i||x1 + i|↵

1
A .

(3.14)

By applying the Holder inequality we get

X

|i|≥1:|x1+i|≥1

1

|i||x1 + i|↵



0
@ X

|i|≥1:|x1+i|≥1

1

|i|p

1
A

1
p
0
@ X

|i|≥1:|x1+i|≥1

1

|x1 + i|↵q

1
A

1
q

 C

(3.15)

having chosen p such that 1 < p < 1
1−↵ , which implies ↵q > 1. Hence (3.13) is

proved and this, together with (3.12), proves the proposition. ⇤

We note that we would have proved Theorem 1 also with the weaker estimate

W (µ,R, 0)  CR.

However, the result of the above Proposition allows to make a shorter and more
fluent demonstration.

In the following we set

Q(R, t) = max

⇢
1, sup

µ2R
W (µ,R, t)

�
. (3.16)
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Moreover we introduce the maximal velocity of a plasma particle,

V(t) = max

(
eC, sup

s2[0,t]

sup
(x,v)

|V (s)|
)
, (3.17)

where eC is a constant that will be chosen large enough, and the maximal displace-
ment:

R(t) = 1 +

Z t

0

V(s) ds. (3.18)

We also put

Q(t) = sup
s2[0,t]

Q(R(s), s). (3.19)

In what follows we will prove some estimates on the partial dynamics which, we
notice, is such that |XN

? (t)| < L. It will be clear from the demonstrations that all
constants, denoted generically by C and changing from line to line, depend only on
kf0kL1 and the arbitrary time T, but not on N. For this reason we will omit the
index N. Some constants are indexed by an integer n = 1, 2, 3 . . . in order to quote
them elsewhere.

3.1 – Preliminary estimates

We fix arbitrarily a time T. All the subsequent estimates hold for any t 2 [0, T ]. To
simplify the notation we assume that the motion of the fluid, initially arranged in
D0, remains over the time interval [0, T ] in a cylinder strictly contained inD. Indeed,
once we find a bound on the velocities, then the observation on the confinement
made at the beginning of this section ensures that such assumption is justified.

We state the most important result on the local energy, whose proof is given in
the Appendix:

Proposition 3.3. There exists a constant C independent of N such that

Q(R(t), t)  CQ(R(t), 0).

As consequence of Proposition 3.2 we have:

Corollary 3.4.

Q(R(t), t)  CR(t)1−↵. (3.20)

Now we give a first estimate on the electric field E, which will be refined in the
following Proposition 3.6.
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Proposition 3.5. There exists a constant C1 independent of N such that:

|E(x, t)|  C1V(t)
4
3Q(R(t), t)

1
3 . (3.21)

Proof. We premise an estimate on the spatial density: for any µ 2 R and any
positive number R it is:

Z

|µ−x1|R

dx ⇢(x, t)
5
3  CW (µ,R, t). (3.22)

In facts:

⇢(x, t) 
Z

|v|a

dvf(x, v, t) +
1

a2

Z

|v|>a

dv v2f(x, v, t)

 Ca3 +
1

a2

Z
dv v2f(x, v, t).

By minimizing over a, taking the power 5
3 of both members and integrating over

the set {x : |µ− x1|  R} we get (3.22).
Now we choose a sequence of positive numbers A0, A1, A2, . . . Ak, . . . such that

A0 = 0, A1 < 1 has to be chosen suitably in the following and Ak = (k− 1)R(t) for
k = 2, 3, . . . Then:

|E(x, t)| 
+1X

k=0

Jk(x, t) (3.23)

with

Jk(x, t) =

Z

Ak<|x−y|Ak+1

dy
⇢(y, t)

|x− y|2 .

We estimate the terms in (3.23). We have:

J0(x, t)  Ck⇢(t)kL1A1  CV(t)3A1. (3.24)

Moreover by (3.22) we get:

J1(x, t)

 C

 Z

|x−y|A2

dy ⇢(y, t)
5
3

! 3
5
 Z

A1<|x−y|A2

1

|x− y|5 dy
! 2

5

 CW (x1, R(t), t)
3
5

h
A

− 4
5

1 +R(t)−
4
5

i
 CQ(R(t), t)

3
5A

− 4
5

1 .

The minimum value of J0(x, t) + J1(x, t) is attained at

A1 = CV(t)− 5
3Q(R(t), t)

1
3
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so that we get

J0(x, t) + J1(x, t)  CV(t) 4
3Q(R(t), t)

1
3 . (3.25)

For the remaining terms, for any k = 2, 3, . . . we observe that from the defini-
tion (3.18) of maximal displacement it follows that if Ak < |x − y|  Ak+1, then
Ak−1 < |x − Y (t)|  Ak+2. Then by the invariance of f along the character-
istics and the assumptions on the support S0 of f0, by the change of variables
(y, w) ! (Y (t),W (t)) we get:

Jk(x, t) =

Z

Ak<|x−y|Ak+1

f(y, w, t)

|x− y|2 dydw

 C
1

K2R(t)2

Z

Ak�1<|x−y|Ak+2

⇢0(y)dy  C
1

K2R(t)

(3.26)

since the volume of the cylinder {y : Ak−1 < |x− y|  Ak+2} is proportional to R.
Hence:

+1X

k=2

Jk(x, t)  C. (3.27)

The proof is achieved by (3.23), (3.25) and (3.27). ⇤

3.2 – The estimate of E

We want to prove that V(T ) is bounded. We recall, for further purposes, that V(T )
has been chosen sufficiently large (see (3.17)). The estimate we are going to prove
is the following:

Proposition 3.6.

Z T

0

|E(X(s), s)|ds  CV(T )1−"

where " 2 (0, ↵
3 ).

To prove Proposition 3.6 we need to control the time average of E over a suitable
time interval. Setting

hEi�̄ :=
1

∆̄

Z t+�̄

t

|E(X(s), s)| ds

we have the following result:
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Proposition 3.7. There exists a positive number ∆̄ such that:

hEi�̄  C2V(T )1−" (3.28)

for any t 2 [0, T ] such that t  T − ∆̄.

Proof. We define a time interval

∆1 :=
1

4C1V(T ) 4
3Q(T )

1
3

(3.29)

where C1 is the constant in (3.21). (Note the di↵erent choice of ∆1 from [4], where
it was dependent on t). For a positive integer ` we set:

∆` = ∆`−1G = · · · = ∆1G`−1, (3.30)

denoting by
G = Intg

�
V(T )δ

�
(3.31)

where Intg(x) is the integer part of x and δ 2 (0, 2
3↵].

We claim that the following estimate holds, for any positive integer ` (putting
for brevity V := V(T ), Q := Q(T )),

hEi�`
 C

"
V 2

3Q
1
3 logV +

V 4
3Q

1
3

V 2
3↵ Vδ(`−1)

logV.
#

(3.32)

The proof of (3.32) is done in the following subsection. Note that, since R(t) 
CV(t), Corollary 3.4 implies

hEi�`
 C

"
V1−↵

3 logV +
V 5

3−↵

Vδ(`−1)
logV

#
. (3.33)

Hence, defining ¯̀ as the smallest integer such that

Vδ(`−1) ≥ V 2
3 , (3.34)

estimate (3.33) implies (3.28) with ∆̄ = ∆¯̀. ⇤
Such time interval is of the order

∆̄ ⇡ C

V 2
3Q

1
3

. (3.35)
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3.3 – Proof of (3.32)

Before starting with the proof of (3.32) we give some preliminary results.
Let us consider two solutions of the partial dynamics, (X(t), V (t)) and (Y (t),W (t)).
By Proposition 3.5 and the definition (3.30) of ∆` the following lemmas can be
stated, whose proofs are given in the Appendix.

Lemma 3.8. Let t 2 [0, T ] such that t+∆` 2 [0, T ] 8`  ¯̀.

If |V1(t)−W1(t)|  (logV) 3
2

then
sup

s2[t,t+�`]

|V1(s)−W1(s)|  2(logV) 3
2 . (3.36)

If |V1(t)−W1(t)| ≥ (logV) 3
2

then

inf
s2[t,t+�`]

|V1(s)−W1(s)| ≥
1

2
(logV) 3

2 . (3.37)

Lemma 3.9. Let t 2 [0, T ] such that t+∆` 2 [0, T ] 8`  ¯̀.

If |V?(t)|  V 1
4

then
sup

s2[t,t+�`]

|V?(s)|  2V 1
4 . (3.38)

If |V?(t)| ≥ V 1
4

then

inf
s2[t,t+�`]

|V?(s)| ≥
V 1

4

2
. (3.39)

Lemma 3.10. Let t 2 [0, T ] such that t + ∆` 2 [0, T ] 8`  ¯̀ and assume that

|V1(t) − W1(t)| ≥ h
�
logV

� 3
2 for some h ≥ 1. Then it exists t0 2 [t, t + ∆`] such

that for any s 2 [t, t+∆`] it holds:

|X(s)− Y (s)| ≥ h(logV) 3
2

4
|s− t0|.

Lemma 3.11. There exists a positive constant C such that, for any µ 2 R and
for any couple of positive numbers R < R0 we have:

W (µ,R0, t) < C
R0

R
Q(R, t).
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Now we are ready to start the proof of (3.32). It is based on an inductive procedure,
whose steps are the following:

Step i) we prove (3.32) for ` = 1;

Step ii) we show that if (3.32) holds for `− 1 it holds also for `;

Proof of step i). We show that the following estimate holds:

hEi�1  C

"
V 2

3Q
1
3 logV +

V 4
3Q

1
3

V 2
3↵

logV
#
. (3.40)

For any t 2 [0, T ] such that t + ∆1  T , we consider the time evolution of the
system over the time interval [t, t+∆1]. For any s 2 [t, t+∆1] we set

(Y (s),W (s)) := (Y (s, t, y, w),W (s, t, y, w))

being
Y (t) = y, W (t) = w.

The time-invariance of f and of the measure dydw along the characteristics allows
to write, by the change of variables (y, w) ! (Y (s),W (s)):

|E(X(s), s)| 
Z

dydw
f(y, w, s)

|X(s)− y|2 =

Z
dydw

f(y, w, t−∆t)

|X(s)− Y (s)|2 . (3.41)

We decompose the phase space in the following way. We define

T1 = {y : |y1 −X1(t)|  2R(T )} (3.42)

S1 = {w : |v1 − w1|  (logV) 3
2 } (3.43)

S2 = {w : |w?|  V 1
4 } (3.44)

S3 = {w : |v1 − w1| > (logV) 3
2 } \ {w : |w?| > V 1

4 }. (3.45)

We have

|E(X(s), s)| 
4X

j=1

Ij(X(s)) (3.46)

where for any s 2 [t, t+∆1]

Ij(X(s)) =

Z

T1\Sj

dydw
f(y, w, t)

|X(s)− Y (s)|2 , j = 1, 2, 3

and

I4(X(s)) =

Z

T c
1

dydw
f(y, w, t)

|X(s)− Y (s)|2 .
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Let us start by the first integral. Putting (Y (s),W (s)) = (ȳ, w̄), by the invariance
of f along the trajectories, Lemma 3.8 implies

I1(X(s)) 
Z

T 0
1\S0

1

dȳdw̄
f(ȳ, w̄, s)

|X(s)− ȳ|2 (3.47)

where T 0
1 = {ȳ : |ȳ1 −X1(s)|  4R(T )} and S0

1 = {w̄ : |V1(s) − w̄1|  2
�
logV

� 3
2 }.

Now it is:

I1(X(s)) 
Z

T 0
1\S0

1\{|X(s)−ȳ|"}
dȳdw̄

f(ȳ, w̄, s)

|X(s)− ȳ|2

+

Z

T 0
1\S0

1\{|X(s)−ȳ|>"}
dȳ

f(ȳ, w̄, s)

|X(s)− ȳ|2 .
(3.48)

Notice thatZ

S0
1

dwf(y, w, s)  2C0(logV)
3
2

Z

|w?|a

dw?

+

Z

|w?|>a

dw?

Z
dw1 f(y, w, s)

 Ca2(logV) 3
2 +

1

a2

Z
dw|w|2f(y, w, s) = Ca2(logV) 3

2 +
1

a2
K(y, s)

where K(y, s) =
R
dw|w|2f(y, w, s). Minimizing in a we obtain

Z

S0
1

dwf(y, w, s)  C(logV) 3
4K(y, s)

1
2 . (3.49)

Hence, setting

⇢1(y, s) =

Z

S0
1

dwf(y, w, s),

by (3.49) and Lemma 3.11 we get
 Z

T 0
1

dy ⇢1(y, s)
2

! 1
2

 C(logV) 3
4

 Z

T 0
1

dy K(y, s)

! 1
2

 C(logV) 3
4

p
W (X1(s), 4R(s), s)  C

�
logV

� 3
4
p

Q.

(3.50)

Going back to (3.48), this bound implies:

I1(X(s))  CV2(logV) 3
2 "

+

 Z

T 0
1

dy⇢1(ȳ, s)
2

! 1
2
 Z

T 0
1\{|X(s)−ȳ|>"}

dȳ
1

|X(s)− ȳ|4

! 1
2

 C
⇣
V2(logV) 3

2 "+ (logV) 3
4

r
Q

"

⌘
.
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Minimizing in " we obtain:

I1(X(s))  CQ
1
3V 2

3 logV. (3.51)

Now we pass to the term I2. Arguing as in (3.48), defining S0
2 = {w : |w?|  2V 1

4 },
by Lemma 3.9 we have:

I2(X(s)) 
Z

T 0
1\S0

2

dȳdw̄
f(ȳ, w̄, s)

|X(s)− ȳ|2


Z

T 0
1\S0

2\{|X(s)−y|"}
dȳdw̄

f(ȳ, w̄, s)

|X(s)− ȳ|2 +

Z

T 0
1\{|X(s)−ȳ|>"}

dȳ
⇢(ȳ, s)

|X(s)− ȳ|2

 CV 3
2 "+

 Z

T 0
1

dȳ ⇢(ȳ, s)
5
3

! 3
5
 Z

{|X(s)−ȳ|>"}
dȳ

1

|X(s)− ȳ|5

! 2
5

.

The bound 3.22 implies

I2(X(s))  CV(t) 3
2 "+ CQ(t)

3
5 "−

4
5 .

By minimizing in " we get:

I2(X(s))  CV 2
3Q

1
3 . (3.52)

For the third term we cover S3 \ T1 by means of the sets Ah,k and Bh,k, with
k = 0, 1, 2, . . . ,m and h = 1, 2, . . . ,m0, defined in the following way:

Ah,k =
�
(y, w, s) : h

�
logV

� 3
2 < |v1 − w1|  (h+ 1)

�
logV

� 3
2 ,

↵k+1 < |w?|  ↵k, |X(s)− Y (s)|  lh,k
 (3.53)

Bh,k =
�
(y, w, s) : h(logV) 3

2 < |v1 − w1|  (h+ 1)(logV) 3
2 ,

↵k+1 < |w?|  ↵k, |X(s)− Y (s)| > lh,k
 (3.54)

where:

↵k =
V
2k

lh,k =
22kQ

1
3

hV 4
3 (logV) 5

2

(3.55)

Since we are in S3, it is immediately seen that

m  3

4
log2 V m0  2V

(logV) 3
2

− 1. (3.56)

Consequently we put

I3(X(s)) 
m0X

h=1

mX

k=0

(I 0
3(h, k) + I 00

3 (h, k)) (3.57)
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being

I 0
3(h, k) =

Z

T1\Ah,k

f(y, w, t)

|X(s)− Y (s)|2 dydw (3.58)

and

I 00
3 (h, k) =

Z

T1\Bh,k

f(y, w, t)

|X(s)− Y (s)|2 dydw. (3.59)

By adapting Lemma 3.8 and Lemma 3.9 to this context it is easily seen that
8 (y, w, s) 2 Ah,k it holds:

(h− 1)(logV) 3
2  |V1(s)−W1(s)|  (h+ 2)(logV) 3

2 , (3.60)

and
↵k+1

2
 |W?(s)|  2↵k. (3.61)

Hence, setting

A0
h,k =

�
(ȳ, w̄, s) : (h− 1)(logV) 3

2  |V1(s)− w̄1|  (h+ 2)(logV) 3
2 ,

↵k+1

2
 |w̄?|  2↵k, |X(s)− ȳ|  lh,k

 
.

(3.62)

we have

I 0
3(h, k) 

Z

T 0
1\A0

h,k

f(ȳ, w̄, s)

|X(s)− ȳ|2 dȳdw̄. (3.63)

By the choice of the parameters ↵k and lh,k made in (3.55) we have:

I 0
3(h, k)  C lh,k

Z

A0
h,k

dw̄  Clh,k↵
2
k

Z

A0
h,k

dw̄1

 C lh,k↵
2
k(logV)

3
2  C

V 2
3Q

1
3

h logV .

(3.64)

Hence by (3.56)

m0X

h=1

mX

k=0

I 0
3(h, k)  C

V 2
3Q

1
3

logV
mX

k=0

m0X

h=1

1

h
 CV 2

3Q
1
3 logV. (3.65)

Now we pass to I 00
3 (h, k), for which we need to make the time average over the

interval [t, t+∆1]. Setting

B0
h,k =

�
(y, w) : (y, w, s) 2 Bh,k for some s 2 [t, t+∆1]

 
(3.66)
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we have:

Z t+�1

t

I 00
3 (h, k) ds

Z t+�1

t

ds

Z

T 0
1\B0

h,k

dydw
f(y, w, t)

|X(s)− Y (s)|2


Z

T 0
1\B0

h,k

f(y, w, t)

 Z t+�1

t

χB0
h,k

(y, w)

|X(s)− Y (s)|2 ds

!
dydw.

(3.67)

By Lemma 3.10, putting a =
4 lh,k

h(logV)3/2
we have:

Z t+�1

t

χB0
h,k

(y, w)

|X(s)− Y (s)|2 ds


Z

{s:|s−t0|a}

χB0
h,k

(y, w)

|X(s)− Y (s)|2 ds+

Z

{s:|s−t0|>a}

χB0
h,k

(y, w)

|X(s)− Y (s)|2 ds

 1

l2k

Z

{s:|s−t0|a}
ds+

16

h2(logV)3
Z

{s:|s−t0|>a}

ds

|s− t0|2
ds

 2a

l2h,k
+

32

h2(logV)3
Z +1

a

1

s2
ds =

16

lh,kh(logV) 3
2

.

(3.68)

Moreover:
Z

T 0
1\B0

h,k

f(y, w, t) dydw  C

↵2
k

Z

T 0
1\B0

h,k

w2f(y, w, t) dydw. (3.69)

Now it is:
Z

T 0
1\B0

h,k

w2f(y, w, t) dydw 
Z

T 0
1\Ch,k

w2f(y, w, t) dydw (3.70)

where

Ch,k =
�
w : (h− 1)

�
logV

� 3
2  |v1 − w1|  (h+ 2)

�
logV

� 3
2 ,

↵k+1  |w?|  ↵k

 
,

so that:

m0X

h=1

mX

k=0

Z

T 0
1\B0

h,k

w2f(y, w, t) dydw  C

Z

T 0
1

K(y, t) dy

 CW (X1(t), 5R(t), t)  CQ

(3.71)

by Lemma 3.11.
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Taking into account (3.55), by (3.67), (3.68), (3.69) and (3.71) we get:

m0X

h=1

mX

k=0

Z t+�1

t

I 00
3 (h, k) ds  C

Q
2
3

V 2
3

logV. (3.72)

By multiplying and dividing by ∆1 defined in (3.29) we obtain, recalling Corollary
3.4:

m0X

h=1

mX

k=0

Z t+�1

t

I 00
3 (h, k) ds  C

V 4
3Q

1
3

V 2
3↵

logV ∆1. (3.73)

Finally the bounds (3.51), (3.52), (3.57), (3.65) and (3.73) imply:

3X

j=1

Z t+�1

t

Ij(X(s)) ds  C∆1

"
V 2

3Q
1
3 logV +

V 4
3Q

1
3

V 2
3↵

logV
#
. (3.74)

It remains the estimate of the last term I4(X(s)). It can be done by the same
procedure we used in Proposition 3.5 for the bound (3.27) with k ≥ 2 to obtain

I4(X(s))  C. (3.75)

Hence by (3.41), (3.46) and (3.74), this last bound implies:

Z t+�1

t

|E(X(s), s)| ds  C∆1

"
V 2

3Q
1
3 logV +

V 4
3Q

1
3

V 2
3↵

logV
#
,

so that we have proved (3.32) for ` = 1. ⇤
Proof of step ii). In the previous step we have seen that, starting from estimate
(3.21), we arrive at (3.32) on ∆1. Let us now assume that (3.32) holds at level `−1
over an interval of size ∆`−1, ` > 1. Then it can be seen that it holds over an interval
of size ∆` (see Remark 2 in the Appendix). In particular we get, analogously to
(3.72),

X

h

X

k

Z t+�`

t

I 00
3 (h, k) ds  C

∆`

∆`

Q
2
3

V 2
3

logV  C
V 4

3Q
1
3

V 2
3↵V(`−1)δ

logV ∆` (3.76)

and consequently

hEi�`
 C

"
V 2

3Q
1
3 logV +

V 4
3Q

1
3

V 2
3↵V(`−1)δ

logV
#

(3.77)

which proves the second step. Hence (3.32) is proved. ⇤
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3.4 – Proof of Proposition 3.6

We recall that Proposition 3.7 is proved by choosing ∆̄ = ∆¯̀. We divide now the
interval [0, T ] by n subintervals [ti−1, ti], i = 1, . . . , n, with t0 = 0, tn = T and
1
2∆̄  ti − ti−1  ∆̄. Hence it is:

Z T

0

|E(X(s), s)| ds 
nX

i=1

Z ti

ti−1

|E(X(s), s)| ds  C

nX

i=1

∆̄hEi�̄. (3.78)

Proposition 3.7 implies:

Z T

0

|E(X(s), s)| ds  C
nX

i=1

∆̄V1−"  C T V1−" (3.79)

with " > 0, which proves the Proposition.

3.5 – Proof of Theorem 2.2

Formula (3.6) and Proposition 3.6 easily imply that V(T ) is bounded. As we have
seen at the beginning of the section, this in turn implies that for any N the solution
remains confined in the same inner cylinder Dt ⇢ D, independently of N. This
argument implies also that the magnetic force is bounded uniformly in N. Moreover
in the Appendix it is proved the quasi-Lipschitz property for the electric field, which
is uniform in N. From these facts the existence and uniqueness of the solution to
eq. (2.2) and its belonging to the class F↵

t follow. For the limit N ! 1 we address
to [8].

4 – Appendix

Proof of Lemma 3.11. It follows from the definition of the function 'µ,R that,
for any µ 2 R and any couple R,R0 such that 0 < R < R0, it is:

'µ,R0
(x) = '

✓ |x1 − µ|
R0

◆


X

i2Z:|i|R0
R

'

✓ |x1 − (µ+ iR)|
R

◆
.

Hence, since both terms in the function W are positive, we have:

W (µ,R0, t) 
X

i2Z:|i|R0
R

W (µ+ iR,R, t)  C

✓
R0

R

◆
Q(R, t).
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Proof of Proposition 3.3. For any s and t such that 0  s < t  T we define

R(t, s) = R(t) +

Z t

s

V(⌧) d⌧. (4.1)

Then, it is:

R(t, t) = R(t) and R(t, 0) = R(t) +

Z t

0

V(⌧)  2R(t). (4.2)

Let (X(s), V (s)) and (Y (s),W (s)) be two characteristics starting at time s = 0
from (x, v) and (y, w) respectively. Since the flow preserves the measure in the
phase space and f is invariant along the characteristics we have:

W (µ,R(t, s), s) =
1

2

Z
dx

Z
dv 'µ,R(t,s)(X(s))|V (s)|2fN

0 (x, v)

+
1

2

ZZ
dxdv


'µ,R(t,s)(X(s))fN

0 (x, v)

ZZ
dydwfN

0 (y, w)|X(s)− Y (s)|−1

�
.

(4.3)

Deriving the function W with respect to the time s we get:

@sW (µ,R(t, s), s) = A1(t, s) +A2(t, s) (4.4)

with

A1(t, s) =

ZZ
dxdv 'µ,R(t,s)(X(s))fN

0 (x, v)
h
V (s) · V̇ (s)

+
1

2

ZZ
dydwfN

0 (y, w)r|X(s)− Y (s)|−1 · (V (s)−W (s))
i (4.5)

and

A2(t, s) =
1

2

ZZ
dxdv fN

0 (x, v) @s

h
'µ,R(t,s)(X(s))

i

h
V 2(s) +

ZZ
dydw fN

0 (y, w) |X(s)− Y (s)|−1
i
.

(4.6)

We see that the A2(t, s) is negative. Indeed the quantity in square brackets is
positive. On the other hand, by the definition of the function ' it is:

@s

h
'µ,R(t,s)(X(s))

i

= '0
✓ |X1(s)− µ|

R(t, s)

◆
X1(s)− µ

|X1(s)− µ| ·
V1(s)

R(t, s)
− @sR(t, s)

R2(t, s)
|X1(s)− µ|

�
.
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Now, '0(r) 6= 0 only if 1  r  2 and by definition @sR(t, s) = −V(s), so that:

−@sR(t, s)

R2(t, s)
|X1(s)− µ| ≥ V(s)

R(t, s)
.

Hence

X1(s)− µ

|X1(s)− µ| ·
V1(s)

R(t, s)
− @sR(t, s)

R2(t, s)
|X1(s)− µ| ≥ −|V1(s)|+ V(s)

R(t, s)
≥ 0.

Thus, being '0  0, we have proved that

A2(t, s)  0. (4.7)

In the term A1 we observe that, by (3.6), V (s) · V̇ (s) = V (s) ·E(X(s), s). Noticing
that r|x − y|−1 is an odd function, by the change of variables (x, v) ! (y, w) we
obtain:

A1(t, s) = −1

2

ZZ
dxdv

ZZ
dydw fN

0 (x, v)fN
0 (y, w)

⇥
'µ,R(t,s)(X(s))

r|X(s)− Y (s)|−1 · (V (s) +W (s))
⇤

= −1

2

ZZ
dxdv

ZZ
dydw fN

0 (x, v)fN
0 (y, w)

⇥,
n
r|X(s)− Y (s)|−1 · V (s)

⇥
'µ,R(t,s)(X(s))− 'µ,R(t,s)(Y (s))

⇤o
.

By the definition of 'µ,R(t,s) it follows

|'µ,R(t,s)(X(s))− 'µ,R(t,s)(Y (s))|  2
|X(s)− Y (s)|

R(t, s)
,

and then:

|A1(t, s)| 
V(s)
R(t, s)

ZZ
dxdv

ZZ
dydw fN

0 (x, v)fN
0 (y, w)

��r|X(s)− Y (s)|−1
�� |X(s)− Y (s)|

⇥
χB(s)(x, v) + χB̄(s)(y, w)

⇤

where, by the definition of ',

B(s) = {x : |X1(s)− µ|  2R(t, s)} and B̄(s) = {y : |Y1(s)− µ|  2R(t, s)}.
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By symmetry we have:

|A1(t, s)|  2
V(s)
R(t, s)

ZZ
dxdv

ZZ
dydw fN

0 (x, v)fN
0 (y, w)

��r|X(s)− Y (s)|−1
�� |X(s)− Y (s)| χB(s)(x, v).

For the obvious fact

r
��r|r|−1

�� = 1

r
,

we have,

|A1(t, s)|  2
V(s)
R(t, s)

ZZ
dxdv

ZZ
dydw

fN
0 (x, v)fN

0 (y, w)

|X(s)− Y (s)| χB(s)(x, v).

We make the change of variables (X(s), V (s)) ! (x, v) and (Y (s),W (s)) ! (y, w);
then the conservation of the measure and the invariance of fN along the character-
istics imply, after integrating out the velocities:

|A1(t, s)|  C
V(s)
R(t, s)

Z

B0(s)
dx

Z
dy

⇢(x, s)⇢(y, s)

|x− y|

where

B0(s) = {x : |x1 − µ|  3R(t, s)}.

Let us put

I1(t, s) =

Z

B0(s)
dx

Z
dy

⇢(x, s)⇢(y, s)

|x− y| .

Then, setting

B0(s) =
[

i2Z:|i|3

Bi(s)

and

Bi(s) = {x : |x1 − µi|  R(t, s)}, µi = µ+ iR(t, s),

by the definition of ' we get:

I1(t, s) =
X

i2Z:|i|3

Z

Bi(s)

dx

Z
dy 'µi,R(t,s)(x)

⇢(x, s)⇢(y, s)

|x− y|

 C
X

i2Z:|i|3

W (µi, R(t, s), s)  CQ(R(t, s), s).
(4.8)
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In conclusion, being by definition

|A1(t, s)|  C
V(s)
R(t, s)

I1(t, s)),

we have,

|A1(t, s)|  C
V(s)
R(t, s)

Q(R(t, s), s). (4.9)

Going back to (4.4), we see that (4.7) and (4.9) imply:

@sW (µ,R(t, s), s)  C
V(s)
R(t, s)

Q(R(t, s), s). (4.10)

Notice that

Z t

0

V(s)
R(t, s)

ds = −
Z t

0

@sR(t, s)

R(t, s)
ds = log

R(t, 0)

R(t, t)
 log 2,

so that, by integrating in s both members and taking the supremum over µ in (4.10)
we get, by the Gronwall lemma,

Q(R(t, s), s)  CQ(R(t, 0), 0).

The thesis follows by putting s = t, since by (4.2) Q(R(t, t), t) = Q(R(t), t),
while the monotonicity of the function Q and Lemma 3.11 imply Q(R(t, 0), 0) 
Q(2R(t), 0)  CQ(R(t), 0).

Proof of the quasi-Lipschitz property of E. We put D := |x − y|. Since
kE(t)kL1  C, if D ≥ 1 we have

|E(x, t)− E(y, t)|  2kE(t)kL1  C  CD.

If D < 1, we define z̄ = x+y
2 and decompose the space in the following way:

|E(x, t)− E(y, t)|  C
⇥
I1(x, y, t) + I2(x, y, t) + I3(x, y, t)

⇤

with

I1(x, y, t) =

Z

|z−z̄|2D

✓
1

|x− z|2 +
1

|y − z|2
◆
⇢(z, t)dz

I2(x, y, t) =

Z

2D<|z−z̄| 2
D

����
1

|x− z|2 − 1

|y − z|2
���� ⇢(z, t)dz

I3(x, y, t) =

Z

|z1−z̄1|≥ 2
D

✓
1

|x− z|2 +
1

|y − z|2
◆
⇢(z, t)dz.
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Note that if |z − z̄|  2D then |x − z|  3D and |y − z|  3D. Hence the first
integral can be bounded by

I1(x, y, t)  Ck⇢(t)kL1

 Z

|x−z|3D

dz

|x− z|2 +

Z

|y−z|3D

dz

|y − z|2

!
 CD. (4.11)

For the term I2 we have:

I2(x, y, t)  CD

Z

2D<|z−z̄| 2
D

1

|z − ⇠|3 dz  CD logD, (4.12)

with ⇠ = ↵x + (1 − ↵)y and ↵ 2 [0, 1]. Finally, if |z1 − z̄1| ≥ 2
D , then min{|x1 −

z1|, |y1 − z1|} ≥ 1
D , so that

I3(x, y, t)  C

Z

|x1−z1|≥ 1
D

1

|x− z|2 ⇢(z, t) dz

+ C

Z

|y1−z1|≥ 1
D

1

|y − z|2 ⇢(z, t) dz

 CD

Z

|x1−z1|≥ 1
D

1

|x− z|⇢(z, t) dz

+ CD

Z

|y1−z1|≥ 1
D

1

|y − z|⇢(z, t) dz  CD.

(4.13)

The bounds (4.11), (4.12) and (4.13) prove the estimate.

Remark 4.1. We premise the following remark to the proofs of Lemmas 3.8,
3.9, and 3.10. We have,

hEi�`
 hEi�`−1

, 8 `  ¯̀. (4.14)

In fact, ∆` = G∆`−1, hence recalling (3.31),

⇥
t, t+∆`

⇤
=

G[

i=1

h
t+ (i− 1)∆`−1, t+ i∆`−1

i
(4.15)
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and so,

1

∆`

Z t+�`

t

|E(X(s), s)| ds  max
i

1

∆`−1

Z t+i�`−1

t+(i−1)�`−1

|E(X(s), s)| ds, (4.16)

whence we get (4.14), since the estimate (3.32) is built with the maximal time T .

Proof of Lemma 3.8. We give first the proof for ` = 1, that is ∆` = ∆1.
Since the magnetic force gives no contribution to the first component of the

velocity, by (3.21) and (3.29) we get, for any s 2 [t, t+∆1],

|V1(s)−W1(s)|  |V1(t)−W1(t)|

+

Z t+�1

t

h
|E(X(s), s)|+ |E(Y (s), s)|

i
ds

 (logV) 3
2 + 2C1V

4
3Q

1
3∆1  2(logV) 3

2 .

Analogously we prove the second statement:

|V1(s)−W1(s)| ≥ |V1(t)−W1(t)|

−
Z t+�1

t

h
|E(X(s), s)|+ |E(Y (s), s)|

i
ds

≥ (logV) 3
2 − 2C1V

4
3Q

1
3∆1 ≥ 1

2
(logV) 3

2 .

We show now that Lemma 3.8 holds true also over a time interval ∆`, ` > 1,
supposing for the electric field the estimate (3.32) at level ` − 1. Proceeding as
before we get by Remark 2, for any s 2 [t, t+∆`],

|V1(s)−W1(s)|  |V1(t)−W1(t)|

+

Z t+�`

t

h
|E(X(s), s)|+ |E(Y (s), s)|

i
ds

 (logV) 3
2 + C

"
V 2

3Q
1
3 logV +

V 4
3Q

1
3

V 2
3γ Vδ(`−2)

logV
#

Vδ(`−1)

4C1V 4
3Q

1
3

 (logV) 3
2 + C

Vδ(`−1) logV
4C1V 2

3

+ C
Vδ

4C1V 2
3↵

logV

 2(logV) 3
2 ,

using (3.34) and recalling that δ 2 (0, 2
3↵].

We proceed analogously for the lower bound.
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Proof of Lemma 3.9. We begin with the case ` = 1, that is ∆` = ∆1.
By (3.6) and the definition of B it is:

d

ds
V 2
?(s) = 2V?(s) · E?(X(s), s). (4.17)

We prove the thesis by contradiction. Assume that there exists a time interval
[t⇤, t⇤⇤] ⇢ [t, t+∆1), such that |V?(t⇤)| = V 1

4 , |V?(t⇤⇤)| = 2V 1
4 and V 1

4 < |V?(s)| <
2V 1

4 8s 2 (t⇤, t⇤⇤). Then from (4.17) it follows, by (3.21):

|V?(t
⇤⇤)|2  |V?(t

⇤)|2 + 2

Z t⇤⇤

t⇤
ds |V?(s)| |E?(X(s), s)|

 V 1
2 + 4V 1

4

Z t⇤⇤

t⇤
ds |E(X(s), s)|

 V 1
2 + 4V 1

4∆1C1V
4
3Q

1
3 < 2V 1

2 .

(4.18)

The contradiction proves the thesis.
Now we prove (3.39). As before, assume that there exists a time interval

[t⇤, t⇤⇤] ⇢ [t, t + ∆1), such that |V?(t⇤)| = V 1
4 , |V?(t⇤⇤)| = 1

2V
1
4 and 1

2V
1
4 <

|V?(s)| < V 1
4 8s 2 (t⇤, t⇤⇤). Then from (4.17) it follows, by (3.21):

|V?(t
⇤⇤)|2 ≥ |V?(t

⇤)|2 − 2

Z t⇤⇤

t⇤
ds |V?(s)| |E?(X(s), s)| ≥

V 1
2 − 2V 1

4

Z t⇤⇤

t⇤
ds |E(X(s), s)| ≥

V 1
2 − 2V 1

4∆1C1V
4
3Q

1
3 >

1

2
V 1

2 .

(4.19)

Hence also in this case the contradiction proves the thesis.

The same argument works also in an interval [t, t + ∆`], ` > 1, supposing for
the electric field the estimate (3.32) at level ` − 1. In fact we have the bound (see
before, at the end of the proof of Lemma 3.8),

hEi�`−1
∆`  C logV

which, used in (4.18) and (4.19), allows to achieve the proof.

Proof of Lemma 3.10. We treat first the case ` = 1, that is ∆` = ∆1.
Let t0 2 [t, t+∆1] be the time at which |X1(s)−Y1(s)| has the minimum value.

We put Γ(s) = X1(s)− Y1(s). Moreover we define the function

Γ̄(s) = Γ(t0) + Γ̇(t0)(s− t0).
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Since the magnetic force does not act on the first component of the velocity it is:

Γ̈(s)− ¨̄Γ(s) = E1(X(s), s)− E1(Y (s), s)

Γ(t0) = Γ̄(t0), Γ̇(t0) =
˙̄Γ(t0)

from which it follows

Γ(s) = Γ̄(s) +

Z s

t0

d⌧

Z ⌧

t0

d⇠
⇥
E1(X(⇠), ⇠)− E1(Y (⇠), ⇠)

⇤
.

By (3.21)

Z s

t0

d⌧

Z ⌧

t0

d⇠|E1(X(⇠), ⇠)− E1(Y (⇠), ⇠)|  2C1V
4
3Q

1
3
|s− t0|2

2

 C1V
4
3Q

1
3∆1|s− t0| 

|s− t0|
4

.

(4.20)

Hence,

|Γ(s)| ≥ |Γ̄(s)| − |s− t0|
4

. (4.21)

Now we have:

|Γ̄(s)|2 = |Γ(t0)|2 + 2Γ(t0)Γ̇(t0)(s− t0) + |Γ̇(t0)|2|s− t0|2.

We observe that Γ(t0)Γ̇(t0)(s − t0) ≥ 0. Indeed, if t0 2 (t, t + ∆1) then Γ̇(t0) = 0
while if t0 = t or t0 = t+∆1 the product Γ(t0)Γ̇(t0)(s− t0) ≥ 0. Hence

|Γ̄(s)|2 ≥ |Γ̇(t0)|2|s− t0|2.

By Lemma 3.8 (adapted to this context with a factor h ≥ 1), since t0 2 [t, t+∆1]
it is

|Γ̇(t0)| ≥ h
(logV) 3

2

2

hence

|Γ̄(s)| ≥ h
(logV) 3

2

2
|s− t0|

and finally by (4.21),

|Γ(s)| ≥ h
(logV) 3

2

4
|s− t0|.

From this the thesis follows, since obviously |X(s)− Y (s)| ≥ |Γ(s)|.
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We note that the same proof works also considering the interval [t, t+∆`], ` > 1,
and for the electric field the estimate (3.32) at level ` − 1. In fact we have for the
product (see at the end of the proof of Lemma 3.8),

hEi�`−1
∆`  C logV

which, used in (4.20), allows to achieve the proof.
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