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An elliptic system with degenerate coercivity

LUCIO BOCCARDO – GISELLA CROCE – CHIARA TANTERI

a Bernard, nostro maestro1

Abstract:We study the existence of solutions of a class of degererate elliptic systems.

1 – Introduction

1.1 – Setting

In this paper we study the existence of solutions of the degererate elliptic system

8
>>>><
>>>>:

−div

✓
a(x)ru

(b(x) + |z|)2
◆
+ u = f(x),

−div

✓
A(x)rz

(B(x) + |u|)2
◆
+ z = F (x),

(1.1)

where ⌦ is a bounded, open subset of RN , with N > 2, a(x) and A(x) are measur-
able matrices such that, for ↵, β 2 R+,

↵|⇠|2  a(x)⇠⇠, ↵|⇠|2  A(x)⇠⇠; | a(x)|  β, |A(x)|  β. (1.2)

Moreover we assume
0 < λ  b(x), B(x)  γ, (1.3)

for some λ, γ 2 R+ and
f(x), F (x) 2 L2(⌦). (1.4)
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1 (see [14, 15, 6, 7, 13, 16, 17]).
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Theorem 1.1. Under the assumptions (1.2), (1.3), (1.4), there exist u2W 1,1
0 (⌦)

and z2W 1,1
0 (⌦), distributional solutions of the system (1.1).

1.2 – Comments

First of all, we note that existence of solutions belonging to the nonreflexive space
W 1,1

0 (⌦) is not so usual in the study of elliptic problems. Recently the existence
of solutions in W 1,1

0 (⌦) was proved in [3, 4, 5], for elliptic scalar problems with
degenerate coercivity (so that this paper is an extension to the systems of some
of those results) and in some borderline cases of the Calderon-Zygmund theory of
nonlinear Dirichlet problems in [9].

The main difficulty of the problem is that even if the di↵erential operator is well
defined between W 1,2

0 (⌦) and its dual, it is not coercive on W 1,2
0 (⌦): degenerate

coercivity means that when |v| is “large”, 1
(b(x)+|v|)2 goes to zero: for an explicit

example see [18].

The study of problems involving degenerate equations begins with the paper [8]
and it is developed in [1, 10, 11, 12, 3, 4, 5] (see also [2])

2 – Existence

2.1 – A priori estimates

The first existence result is concerned with the case of a bounded data.

We recall the following definitions.

Tk(s) =

⇢
s, if |s|  k;

k s
|s| , if |s| > k;

Gk(s) = s− Tk(s).

Proposition 2.1. Let ⇢ > 0, σ > 0 and g, G 2 L1(⌦). Then there exist weak
solutions w, W belonging to W 1,2

0 (⌦) of the system

8
>>>><
>>>>:

w 2 W 1,2
0 (⌦) \ L1(⌦) : −div

✓
a(x)rw

(b(x) + |T⇢(W )|)2
◆
+ w = g(x),

W 2 W 1,2
0 (⌦) \ L1(⌦) : −div

✓
A(x)rW

(B(x) + |Tσ(w)|)2
◆
+W = G(x).

Proof. The existence is a consequence of the Leray-Lions theorem (or Schauder
theorem) since the principal part is not degenerate, thanks to the presence of T⇢ and
Tσ. Moreover, if we take Gh(w) as test function in the first equation and Gk(W )
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as test function in the second equation, we have, dropping two positive terms,

8
>>><
>>>:

Z

⌦

[|w|− |g(x)|]|Gh(w)|  0,

Z

⌦

[|W |− |G(x)|]|Gk(w)|  0.

Then the choice h = kgk
L1(⌦)

, k = kGk
L1(⌦)

implies

( |w|  kgk
L1(⌦)

,

|W |  kGk
L1(⌦)

.

Thus, if we set ⇢ = kgk
L1(⌦)

and σ = kGk
L1(⌦)

, we can say that w and W are

bounded weak solutions of the system

8
>>>><
>>>>:

w 2 W 1,2
0 (⌦) \ L1(⌦) : −div

✓
a(x)rw

(b(x) + |W |)2
◆
+ w = g(x),

W 2 W 1,2
0 (⌦) \ L1(⌦) : −div

✓
A(x)rW

(B(x) + |w|)2
◆
+W = G(x). ⇤

Now we define

fn =
f

1 + 1
n |f |

, Fn =
F

1 + 1
n |F | ,

so that

kfn − fk
L2(⌦)

! 0, kFn − Fk
L2(⌦)

! 0. (2.1)

Thanks to the Proposition 2.1, there exists a solution (un, zn) of the system

8
>>>><
>>>>:

un 2 W 1,2
0 (⌦) : −div

✓
a(x)run

(b(x) + |zn|)2
◆
+ un = fn(x),

zn 2 W 1,2
0 (⌦) : −div

✓
A(x)rzn

(B(x) + |un|)2
◆
+ zn = Fn(x),

(2.2)

Now we prove our first estimates.

Lemma 2.2. The sequences {un} and {zn} are bounded in L2(⌦).
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Proof. We take Gk(un) as a test function in the first equation and we have

↵

Z

⌦

|rGk(un)|2
(b(x) + |zn|)2

+

Z

⌦

|Gk(un)|2 
Z

⌦

|f | |Gk(un)| (2.3)

If we drop the first positive term and we use the Hölder inequality, then we have

 Z

⌦

|Gk(un)|2
� 1

2


 Z

{k|un|}
|f |2

� 1
2

. (2.4)

Similar estimates hold true for zn. In particular, taking k = 0, we have the bound-
edness of the sequences {un} and {zn} in L2(⌦). So we have that there exist u, z
such that, up to subsequences,

un * u, zn * z weakly in L2(⌦). (2.5)

Then if we drop the second term in (2.3), we have

↵

Z

⌦

|rGk(un)|2
(b(x) + |zn|)2


Z

{k|un|}
|f |2. (2.6)

A similar estimate for zn comes from the second equation. ⇤

Lemma 2.3. The sequences {un} and {zn} are bounded in W 1,1
0 (⌦).

Proof. A consequence of (2.6) and of the Hölder inequality is

Z

⌦

|rGk(un)| =
Z

⌦

|rGk(un)|
(b(x) + |zn|)

(b(x) + |zn|)


 Z

{k|un|}

|f |2
↵

� 1
2 �
kbk

L2(⌦)
+ kfk

L2(⌦)

�
.

Similar estimates hold true for zn. In particular, with k = 0, we have

Z

⌦

|run| 
kfk

L2(⌦)

�
kbk

L2(⌦)
+ kfk

L2(⌦)

�

↵
1
2

,

Z

⌦

|rzn| 
kFk

L2(⌦)

�
kbk

L2(⌦)
+ kfk

L2(⌦)

�

↵
1
2

.

(2.7)

⇤

Now we improve the convergence (2.5).
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Lemma 2.4. The sequences {un} and {zn} are compact in L2(⌦).

Proof. The estimates (2.7) imply, thanks to the Rellich embedding Theorem,
the L1 compactenss and then the a.e. convergences

un(x) ! u(x), zn(x) ! z(x). (2.8)

Now we use the Vitali Theorem: since we have the a.e. convergences (2.8), the
compactness is achieved if we prove the equiintegrability.

Let E be a measurable subset of ⌦. Since un = Tk(un) + Gk(un), we have (we
use (2.4)) Z

E

|un|2  2

Z

E

|Tk(un)|2 + 2

Z

E

|Gk(un)|2

 2 k2 |E|+ 2

Z

⌦

|Gk(un)|2

 2 k2 |E|+ 2

Z

{k|un|}
|f |2,

where |E| denotes the measure of E. Now we recall that a consequence of Lemma 2.3
is that the sequence {un} is bounded in L1(⌦), so that if we fix ✏ > 0, there exists
k✏ such that (uniformly with respect to n)

Z

{k|un|}
|f |2  ✏, k ≥ k✏.

Then Z

E

|un|2  2 k2 |E|+ 2✏

implies

lim
|E|!0

Z

E

|un|2  2✏, uniformly with respect to n.

Similar inequality holds true for zn. ⇤

Lemma 2.5. The sequences {un} and {zn} are weakly compact in W 1,1
0 (⌦).

Proof. Here we follow [4, 5]. Let again E be a measurable subset of ⌦, and
let i be in {1, . . . , N}. Then

Z

E

|@iun| 
Z

E

|run| =
Z

E

|run|
b(x) + |zn|

(b(x) + |zn|)


 Z

⌦

|run|2
(b(x) + |zn|)2

� 1
2
 Z

E

(b(x) + |zn|)2
� 1

2



1

↵

Z

⌦

|f |2
� 1

2
⇢Z

E

b(x)

� 1
2

+

 Z

E

|zn|2
� 1

2
�
,
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where we have used the inequality (2.6) in the last passage. Since the sequence {un}
is compact in L2(⌦), we have that the sequence {@iun} is equiintegrable. Thus, by
Dunford-Pettis theorem, and up to subsequences, there exists Yi in L1(⌦) such that
@iun weakly converges to Yi in L1(⌦). Since @iun is the distributional derivative of
un, we have, for every n in N,

Z

⌦

@iun φ = −
Z

⌦

un @iφ , 8 φ 2 C1
0 (⌦) .

We now pass to the limit in the above identities, using that @iun weakly converges
to Yi in L1(⌦), and that un strongly converges to u in L2(⌦); we obtain

Z

⌦

Yi φ = −
Z

⌦

u @iφ , 8 φ 2 C1
0 (⌦) ,

which implies that Yi = @iu, and this result is true for every i. Since Yi belongs to
L1(⌦) for every i, u belongs to W 1,1

0 (⌦). A similar result holds true for zn. ⇤
Thus, thanks to Lemma 2.4 and Lemma 2.5, we can improve the convergence

(2.5):
⇢
un converges weakly in W 1,1

0 (⌦) and strongly in L2(⌦) to u,

zn converges weakly in W 1,1
0 (⌦) and strongly in L2(⌦) to z.

(2.9)

2.2 – Proof of Theorem 1.1

First of all, we use the equiintegrability proved in Lemma 2.5: fix " > 0, there exists
δ(") > 0 such that, for every measurable subset E with |E|  δ("), we have

Z

E

|run|  ".

Taking into account the absolute continuty of the Lebesgue integral, we have, for
some δ̃(") > 0, Z

E

|run|  ",

Z

E

|ru|  ",

for every measurable subset E with |E|  δ̃(").
On the other hand, since |⌦| is finite and the sequence

Dn =
a(x)

(b(x) + |zn|)2

converges almost everywhere (recall (2.9)), the Egorov theorem says that for every
q > 0, there exists a measurable subset F of ⌦ such that |F | < q , and Dn converges
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to D uniformly on ⌦ \ F . We choose q = δ̃ so that we have, for every ' 2 Lip(⌦),
����
Z

⌦

[Dnrunr'−Drur']
����

[−1pt] 
����
Z

⌦\F
[Dnrunr'−Drur']

����+
����
Z

F

[Dnrunr'−Drur']
����


���
Z

⌦\F
[Dnrunr'−Drur']

���+ β

λ2
k |r'| k

L1(⌦)

Z

F

|run|+
Z

F

|ru]

�


���
Z

⌦\F
[Dnrunr'−Drur']

���+ 2"
β

λ2
k |r'| k

L1(⌦)
,

which proves that Z

⌦

a(x)runr'
(b(x) + |zn|)2

!
Z

⌦

a(x)rur'
(b(x) + |z|)2 . (2.10)

Thus, thanks to the above limit, (2.1) and Lemma 2.4, it is possible to pass to the
limit in the weak formulation of (2.2), for every ',  2 Lip(⌦),

8
>><
>>:

Z

⌦

a(x)runr'
(b(x) + |zn|)2

+

Z

⌦

un ' =

Z

⌦

fn(x)',

Z

⌦

A(x)rznr 
(B(x) + |un|)2

+

Z

⌦

zn  =

Z

⌦

Fn(x);

(2.11)

and we prove that u and z are solutions of our system, in the following distributional
sense 8

>><
>>:

Z

⌦

a(x)rur'
(b(x) + |z|)2 +

Z

⌦

u' =

Z

⌦

f(x)', 8 ' 2 Lip(⌦);

Z

⌦

A(x)rzr 
(B(x) + |u|)2 +

Z

⌦

z  =

Z

⌦

F (x) , 8  2 Lip(⌦).

(2.12)

⇤

Now we show that, in the above definition of solution, it is possible to use less
regular test functions: it possible to use functions only belonging to W 1,2

0 (⌦).

Proposition 2.6. The above functions u and z are solutions of our system, in
the following sense

8
>><
>>:

Z

⌦

a(x)rurv

(b(x) + |z|)2 +

Z

⌦

u v =

Z

⌦

f(x) v, 8 v 2 W 1,2
0 (⌦);

Z

⌦

A(x)rzrw

(B(x) + |u|)2 +

Z

⌦

z w =

Z

⌦

F (x)w, 8 w 2 W 1,2
0 (⌦).

(2.13)

Proof. In order to avoid technicalities, here we also assume that

a(x) and A(x) are scalar functions. (2.14)
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We start with the following inequalities (we use (2.6) with k = 0)

Z

⌦

����
a(x)run

(b(x) + |zn|)2
����
2

 ↵2

λ2

Z

⌦

|run|2
(b(x) + |zn|)2

 ↵2

λ2

Z

⌦

|f |2.

Thus, up to subsequences, we can say that, for some  2 (L2(⌦))N ,

Z

⌦

a(x)run

(b(x) + |zn|)2
Φ !

Z

⌦

 Φ, (2.15)

for every Φ 2 (L2(⌦))N . Now we compare the limit (2.10) with the limit (2.15),
taking Φ = r', and we deduce that

Z

⌦


a(x)ru

(b(x) + |z|)2 − 
�
Φ = 0.

Thus we proved that

a(x)run

(b(x) + |zn|)2
weakly converges in (L2(⌦))N to

a(x)ru

(b(x) + |z|)2 ,

which allows us to pass to the limit in (2.11) only assuming ',  2 W 1,2
0 (⌦).
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