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Concentrated Euler flows and point vortex model

LORENZO CAPRINI – CARLO MARCHIORO

Abstract: This paper is an improvement of previous results on concentrated Euler
flows and their connection with the point vortex model. Precisely, we study the time
evolution of an incompressible two dimensional Euler fluid when the initial vorticity is
concentrated in N disjoint regions of diameter ✏. We show that the evolved vorticity is
concentrated in N regions of diameter d, d  b ✏↵ (b independent of ✏) for any ↵ < 1/2.
The connection is obtained as ✏ ! 0.

1 – Introduction and main result

In the present paper we study the time evolution of an incompressible inviscid fluid
with a planar symmetry, governed by the Euler equation, that in R2 in term of
vorticity reads:

@t!(x, t) + (u ·r)!(x, t) = 0 , x = (x1, x2) , (1.1)

r · u(x, t) = 0 , (1.2)

!(x, 0) = !0 , (1.3)

where !(x, t) = @1u2 − @2u1 is the vorticity and u = (u1, u2) denotes the velocity
field. We assume that u decays at infinity and so we can reconstruct the velocity
by means of ! as

u(x, t) =

Z
dy K(x− y) !(y, t) , (1.4)

K = r?G , r? = (@2,−@1) , G(x) = − 1

2⇡
log |x| . (1.5)
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Eq. (1.1) means that the vorticity remains constant along the particle paths which
are the characteristic of the Euler Equations:

!(x(x0), t) = !(x0, t) , (1.6)

where (x(x0), t) is the trajectory of the fluid particle, initially in x0, that satisfies

d

dt
x(x0, t) = u(x(x0, t)) . (1.7)

It is possible to extend the Euler Equation and to consider initial data with weak
regularity, assuming directly equations(1.6),(1.7); a formal integration by parts on
(1.1) gives:

d

dt
![f ] = ![u ·rf ] + ![@tf ] , (1.8)

where f(x, t) is a bounded smooth function and

![f ] =

Z
dx !(x, t)f(x, t) . (1.9)

It is well-known that there exists a unique solution !(x, t) 2 L1 \ L1 to the initial
value problem associated to (1.8) provided that !0 2 L1 \L1. Moreover the diver-
gence free condition (1.2) implies that the time evolution preserves the Lebesgue
measure in R2.

In the present paper we study the fluid when the initial vorticity of finite global
intensity is concentrated in N small disjoint regions of the plane ⇤i(0) of diameter
2✏ around the points zi. As well known in the literature, this system can be ap-
proximated by a system of N di↵erential equations in two dimensions, called point
vortex model:

żi(t) = −r?
i

1

2⇡

NX

j=1;j 6=i

aj log |zi(t)− zj(t)| ; zi(0) = zi 2 R2 . (1.10)

This model has been introduced by Helmholtz [9] as a particular ”solution” of the
Euler equation and investigated by several authors; for a review see [20, 21] and
references quoted in.

Actually the connection between the fluid mechanics and this model is more
complex, as we will see. The more natural, but not correct, way to study this
connection, would be consider the time evolution of each particle of fluid (i.e. the
characteristics of the Euler equation) and to investigate the limit as the initial
vorticity is very concentrated (i.e. ✏ ! 0). Actually the modulus of the velocity of
each trajectory (and indeed its length) becomes infinite as ✏ ! 0, since each particle
turns fast. Hence the point vortex model may approximate the Euler flow at most
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in average. The difficulties arise in computing the velocity field produced by the
particles very closed to a tagged one (a sort of self-interaction). The textbooks on
the argument (see for instance [3]) neglect this contribution for symmetry reason.
Obviously, if the initial support of the vorticity is the union of circles, the self-
interactions are zero, but the time evolution destroys this symmetry. We can neglect
this term for more deep reasons, as we will see. In conclusion, we do not follow the
motion of each particle of the fluid, but the time evolution of the center of the
vorticity supported in each small region. These are the quantities approximated by
the point vortex model.

The first rigorous proof of this connection have been given for short times [18].
In that paper the authors study the time evolution of the support of the vorticity.
Initially, by assumption, this support is composed by N disjoint small regions and
in that paper it is proved that the growth of the diameters is bounded. As a
consequence, for small times these regions remain disjoint; the other steps in the
proof are simple. The main tool is the control of moment of inertia of each blob of
vorticity with respect to its center.

Secondly, it has been studied the motion of a single concentrated blob of vorticity
which moves in a bounded domain of the plane. It has been proved globally in time
that the main part to the vorticity converges as the concentration increases to the
generalization of the point vortex model in presence of borders [23]. In that paper
the main tool is the conservation of the energy of the system. This result has been
extended by using a similar technique to two vortices of the same sign in [17].

It has been reasonable to prove this connection for N vortices globally in time.
The first step has been made in the case of point vortices of the same sign. In
[11] it has been proved the convergence globally in time to the point model vor-
tex, by proving that the vorticity far from point vortices becomes in the limit
negligible.

When the point vortices have di↵erent signs the problem is more complicated
for two reasons: in some case the equation (1.10) has not a global solution, i.e.
two di↵erent vortices can collapse in the same point in finite time, and the right
hand side of the equation becomes infinite; moreover the positive and the negative
vorticities must remain separated, otherwise the system becomes very unstable. On
the first point, the collapses may happen but are exceptional ([6] and [20]). We
overcome the second point proving that the initial localization holds globally in
time.

Precisely we consider an initial datum of the form:

!✏(x, 0) =

NX

i=1

!✏;i(x, 0) , (1.11)
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where !✏;i(x, 0) is a function with a definite sign supported in a region ⇤✏;i such
that

⇤✏;i = supp !✏;i ⇢ ⌃(zi|✏) ; ⌃(zi|✏) \ ⌃(zj |✏) = 0 if i 6= j , (1.12)

for ✏ small enough. Here ⌃(z|r) denotes a circle of center z and radius r.
We denote by Z

dx !✏;i(x, 0) = ai 2 R , (1.13)

the vortex intensity (independent of ✏) and we assume

|!✏;i(x, 0)|  M✏−γ , M > 0 , γ > 0 . (1.14)

We discuss the following

Proposition 1.1. Denote by !✏;i(x, t) the time evolution of !✏;i(x, 0) according
the Euler equation. Then for any fixed T > 0 there exists C(↵, T ) such that for any
0  t  T

supp !✏;i(x, t) ⇢ ⌃(zi(t)|d) where d = C(↵, T ) ✏↵ , (1.15)

and zi(t) is the solution of the ordinary di↵erential system (1.10) provided such a
solution exists up to the time T .

This proposition states that the blobs of vorticity remain localized until the
time T .

A Corollary states that for any continuos bounded function f(x)

lim
✏!0

Z
dx !✏;i(x, t) f(x) =

NX

i=1

ai f(zi(t)) , (1.16)

and

!✏;i(x, 0) −!✏!0

NX

i=1

ai δ(zi(t)) . (1.17)

weakly in the sense of measures, where δ(·) denotes the Dirac measure. This last
statement gives a rigorous justification of the point vortex model.

The Proposition has been proved in [19] for any ↵ < 1/300 and any γ < 8/3
(see also [20]). The rapidity of the convergence has been improved in [12] proving
the result for any ↵ < 1/3 and any positive γ. In the present paper we obtain:

Theorem 1.2 (aa). We prove the Proposition and the Corollary for any ↵ < 1/2
and any positive γ.

This result gives a rigorous bound on the evolution of concentrated vorticity and
it improves the known property of localization . We believe that fact is interesting
in itself, independently of the connection with the point vortex model.
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2 – Proof

The proof is a mixture of the previous proofs and some new ideas. First we study
the motion of a single blob of vorticity in a Lipschitz external field. Then we observe
that the other vortices produce a regular field and this concludes the proof.

Let us state the reduced problem. We consider a single blob of unitary vorticity
moving in an external, divergence-free, uniformly bounded, time dependent vector
field F (x, t), satisfying the Lipschitz condition

|F (x, t)− F (y, t)|  L|x− y| , L > 0 . (2.1)

Equation (1.7) becomes

d

dt
x(x0, t) = u(x(x0, t)) + F (x, t) , (2.2)

while eq. (1.6) remains unchanged. The Euler equation in weak form reads

d

dt
![f ] = ![(u+ F ) ·rf ] + ![@tf ] . (2.3)

Define the center of vorticity as

B✏(t) =

Z
x !✏(x, t) dx. (2.4)

We prove

Theorem 2.1. Suppose that

supp !✏(x, 0) ⇢ ⌃(x⇤|✏) , (2.5)

and
|!✏(x, 0)|  const ✏−γ , (2.6)

where from now on const denotes a constant independent of ✏.

Z
dx !✏(x, t) = 1 . (2.7)

Then for any ↵ < 1/2 there exists C(↵, T ) > 0 such that for 0  t  T

supp !✏(x, t) ⇢ ⌃(B✏(t)|d), (2.8)

where
d = C(↵, T ) ✏↵ . (2.9)
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Moreover

|B✏(t)−B(t)| !✏!0 0 at least as ✏ , uniformly in t 2 [0, T ] (2.10)

where B(t) is the solution of the ordinary di↵erential equation

d

dt
B(t) = F (B(t), t) , B(0) = x⇤ . (2.11)

Proof. The strategy of the proof is similar to that one used in [12] plus a
sharper estimate on the radial field produced by a blob of vorticity. First we prove
that the main part of the vorticity remains close to B✏(t). Then we study the radial
velocity field on the farthest part of the blob of vorticity and we give a bound on it
that vanishes as ✏ ! 0. From now on, without lack of generality, we assume ✏ < 1.

We introduce the moment of inertia I✏ with respect of B✏:

I✏(t) =

Z
dx |x−B✏(t)|2 !✏(x, t) . (2.12)

We study the growth in time of B✏(t) and I✏(t) by using eq. (2.3):

d

dt
B✏(t) =

Z
dx F (x, t) !✏(x, t) , (2.13)

d

dt
I✏(t) = 2

Z
dx (x−B✏(t)) · F (x, t) !✏(x, t) , (2.14)

where we have taken into account the antisymmetry of K.

We will see, that these equations impose a sort of localization. Actually using
the Lipschitz condition on F and the fact that

Z
dx (x−B✏(t)) · F (B✏(t), t) !✏(x, t) = 0 , (2.15)

we have:

| d
dt

I✏(t)|  2L

Z
dx (x−B✏(t))

2 !✏(x, t) , (2.16)

from which

I✏(t)  I✏(0) exp(2 L t)  const ✏2 . (2.17)

Therefore

lim
✏!0

I✏(t) = 0 at least as ✏2 uniformly in t 2 [0, T ] . (2.18)
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We prove now eq. (2.10). The integral equations give:

|B(t)−B✏(t)|  |x⇤ −B✏(0)|+
Z t

0

ds

����F (B(s), s)−
Z

dx F (x, s) !✏(x, s)

���� (2.19)

 |x⇤ −B✏(0)|+
Z t

0

ds


|F (B(s), s)− F (B✏(s), s)| (2.20)

+

����F (B✏(s), s)−
Z

dx F (x, s) !✏(x, s)

����
�

 |x⇤ −B✏(0)|+ L

Z t

0

ds


|B(s)−B✏(s)|+

Z
dxkB✏(s)− x| !✏(x, s)|

�
(2.21)

 |x⇤ −B✏(0)|+ L

Z t

0

ds |B(s)−B✏(s)|+ L T sup
0tT

p
I✏(t) . (2.22)

The first and the third terms of the right hand side of this equation are bounded
by a quantity proportional to ✏. So, by use of the Gronwall Lemma we achieve the
proof of eq. (2.10).

In the previous steps we have proved that the main part of the vorticity remains
concentrated around its center, but a priori small filaments of vorticity could go far.
We shall exclude this fact by studying the radial velocity field on the fluid particle
which is farthest from the center B✏(t) and by proving that it vanishes as ✏ ! 0.

The growth of the distance of a fluid particle in x 2 supp !✏(x, t) farthest from
B✏(t) reads:
����

u(x, t) + F (x, t)− d

dt
B✏(t)

�
· x−B✏(t)

|x−B✏(t)|

���� (2.23)


����F (x, t)−

Z
dy !✏(y, t) F (y, t)

����+
����
x−B✏(t)

|x−B✏(t)|
·
Z

dyK(x− y) !✏(y, t)

���� (2.24)

=

����
Z

dy !✏(y, t) [F (x, t)− F (y, t)]

����+
����
x−B✏(t)

|x−B✏(t)|
·
Z
dy K(x− y) !✏(y, t)

���� . (2.25)

To bound the first term of the right hand side, due the external field, is easy by
using the Lipschitz condition:

 const R , R = |x−B✏(t)| . (2.26)

Now we study the second term. In this point there is an improvement with respect
to [12]. We divide the integration region into two parts: a circle of radius R/2
centered in B✏(t) denoted by A1 and an annulus A2 = ⌃(B✏(t)|R)− ⌃(B✏(t)|R/2).
We evaluate the contribution of the integration in A1, i.e.:

H1 =
x−B✏(t)

|x−B✏(t)|
·
Z

A1

dy K(x− y) !✏(y, t) . (2.27)
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Denote by x0 = x−B✏(t) and y0 = y −B✏(t) , we have:

H1 =
1

2⇡

Z

|y0|R/2

dy0

x0

|x0| · (x
0 − y0)?

|x0 − y0|2
�

!✏(y
0 +B✏(t)) , (2.28)

where x? = (x2,−x1). Using the fact that x0 · (x0 − y0)? = −x0 · y0? we can write:

H1 = − 1

2⇡

Z

|y0|R/2

dy0
x0 · y0?

|x0||x0 − y0|2 !✏(y
0 +B✏(t)) . (2.29)

We observe that Z

R2

dy0 y0? !✏(y
0 +B✏(t))| = 0 , (2.30)

so that

H1 = − 1

2⇡
(H 0

1 −H 00
1 ) , (2.31)

where

H 0
1 =

Z

|y0|R/2

dy0
x0 · y0?
|x0|


1

|x0 − y0|2 − 1

|x0|2]

�
!✏(y

0 +B✏(t)) , (2.32)

and

H 00
1 =

Z

|y0|>R/2

dy0
x0 · y0?
|x0|3 !✏(y

0 +B✏(t)) . (2.33)

We bound |H 0
1|.

H 0
1 =

Z

|y0|R/2

dy0
x0 · y0?
|x0|

y0 · (2x0 − y0)
|x0 − y0|2 |x0|2 !✏(y

0 +B✏(t)) . (2.34)

We note that |y0|  R/2 implies |2x0 − y0|  |x0 − y0|+ |x0|  3|x0 − y0|, so that

|H 0
1| 

6

R3

Z

|y0|R/2

dy0 |y0|2 !✏(y
0 +B✏(t))  6 I✏(t)

R3
 const ✏2

R3
. (2.35)

We study |H 00
1 |. We remember that in (2.33) |y0|  R because R is the maximal

distance of a fluid particle from B✏(t), so that:

|H 00
1 |  const

1

R
mt(R/2) , (2.36)

where we have denoted by mt(h) the mass of vorticity out of ⌃(B✏|h), h > 0:

mt(h) =

Z

|x0|>h

dx0 !✏(x
0 +B✏(t)) . (2.37)
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In conclusion we can bound the terms of velocity field that pushes the particle
farthest from B✏(t) due to the fluid in ⌃(B✏(t)|R/2) as

|H1| 
const ✏2

R3
+ const

1

R
mt(R/2) . (2.38)

Since by (2.17) we have

mt(h)  const
✏2

h2
, (2.39)

the eq. (2.38) becomes:

|H1| 
const ✏2

R3
. (2.40)

To complete the proof we must show that velocity field produced by the fluid in A2

is negligible for small ✏ and R ≥ b ✏↵ , b > 0 large enough. We introduce for any
h > 0 the following nonnegative function Wh(r) 2 C1(R2), r 2 R2 depending only
on |r|, defined as:

Wh(r) = 1 if |r| < h , = 0 if |r| > 2R , (2.41)

such that, for some C1 > 0:

|rWh(r)| <
C1

h
, (2.42)

|rWh(r)−rWh(r
0)| < C1

h2
|r − r0| . (2.43)

Define the quantity:

µt(h) = 1−
Z

dx Wh(x−B✏(t)) !✏(x, t) . (2.44)

We remark that, if supp !✏(x, t) ⇢ ⌃(B✏(t)|h), then µt(h) = 0. Hence we choose
µt(h) as a measure of the localization of !✏(x, t) around B✏(t).

We need to prove that is quantity is negligible for small ✏ when h = R/2.
The two quantities µt(h) and mt(h) are related by the obvious property, that

will be used later on:

mt(h)  µt

✓
h

2

◆
. (2.45)

We study the time derivative of µt(h):

d

dt
µt(h) = −

Z
dxrWh(x−B✏(t)) ·


u(x, t) + F (x, t)− d

dt
B✏(t)

�
!✏(x, t)

= −H3 −H4 ,

(2.46)
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where

H3 =

Z
dx !✏(x, t) rWh(x−B✏(t)) ·

Z
dy K(x− y) !✏(y, t) , (2.47)

H4 =

Z
dx !✏(x, t) rWh(x−B✏(t)) ·

Z
dy !✏(y, t)[F (x, t)− F (y, t)] . (2.48)

We estimate |H3|. By the antisymmetry of K it can be written as:

|H3| =
1

2

����
Z

dx

Z
dy !✏(x, t) !✏(y, t)[rWh(x−B✏(t))−rWh(y −B✏(t))]

·K(x− y)

����.
(2.49)

Obviously it is di↵erent from zero only if either |x− B✏(t)| > h or |y − B✏(t)| > h.
We divide the last integral into three parts: |y − B✏(t)|  h/2, |x − B✏(t)|  h/2
and otherwise.

In the first case, we repeat the proof which gives (2.40) and this term can be
bounded by

const ✏2

h4
mt(h) . (2.50)

The second integral, exchanging x by y, can be bounded in the same way.
Finally we study the integral in the last two cases: either |x − B✏(t)| > h ,

|y − B✏(t)| > h/2 or |x − B✏(t)| > h/2 , |y − B✏(t)| > h. Due to the bound
|K(x)|  const |x|−1 and the property (2.43) we have:

[rWh(x−B✏(t))−rWh(y −B✏(t))] · K(x− y)  const

h2
. (2.51)

Then these terms give a contribution smaller than

const
✏2

h4
mt(h) . (2.52)

Now we study the termH4 . We consider two cases: or |y−B✏(t)| > h or |y−B✏(t)| 
h. In the first case

����
Z

dx !✏(x, t) rWh(x−B✏(t)) ·
Z

dy !✏(y, t)[F (x, t)− F (y, t)]

����

 const ||F ||1
✏2

h3
mt(h) .

(2.53)

In the second case, by using the Lipschitz condition (2.1),
����
Z

dx !✏(x, t) rWh(x−B✏(t)) ·
Z

dy !✏(y, t)[F (x, t)− F (y, t)]

����
 const mt(h).

(2.54)
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In conclusion
d

dt
µt(h)  A(h) mt(h) , (2.55)

where

A(h) =


const

✏2

h4
+ const

✏2

h3
+ const

�
. (2.56)

Using (2.45), the previous di↵erential inequality gives the integral expression:

µt(h)  µ0(h) +A(h)

Z t

0

d⌧ µ⌧ (h/2) , (2.57)

where

A(h) =


const

✏2

h4
+ const

✏2

h3
+ const

�
. (2.58)

We start an iterative procedure

µt(h)  µ0(h) + µ0(h/2)A(h)

Z t

0

d⌧ +A(h)A(h/2)

Z t

0

dt1

Z t1

0

d⌧ µ⌧ (h/4) , (2.59)

and so on.
We start from h = b ✏↵,↵ < 1/2, b > 1 and we iterate eq. (2.57) n times. We

choose n such that n ! 1 as ✏ ! 0 and in the same time during this limit A(h2−k)
remains bounded for any integer k  n and µ0(h2

−n) = 0:

n = Integer part of


−1− 2↵

3
log2 ✏

�
, (✏ < 1) . (2.60)

Hence

h2−n ≥ b ✏(1+↵)/3 , (2.61)

and

A(h2−k)  const , (2.62)

for any positive integer k  n. After n iteration we obtain

µt(h) 
(const)n

n!
. (2.63)

Using eq. (2.45), the Stirling approximation for n!, explicit form (2.60) for n and
putting h = R, we have that

mt(R/2) ! 0 as ✏ ! 0 faster than any power in ✏ . (2.64)
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Now we show that a similar bound holds for the velocity field produced by this
small vorticity. This field holds

����
Z

A2

dy K(x− y) !✏(y, t)

���� 
1

2⇡

����
Z

A2

dy |x− y|−1 !✏(y, t)

���� , (2.65)

where A2 = ⌃(B✏, R)− ⌃(B✏, R/2).
The integrand is monotonically unbounded as x ! y, and so the maximum of

the integral is obtained when we rearrange the vorticity mass as close as possible
to the singularity:

1

2⇡

����
Z

A2

dy |x− y|−1 !✏(y, t)

����  const ✏−γ

Z

⌃(O,⌘)

dy |y−1| , (2.66)

where we have used the property (1.14), O denotes the origin and ⌘ is such that

M ✏−γ⇡⌘2 = mt(R/2) . (2.67)

Using eq. (2.64) we have proved that this velocity field vanishes as ✏ ! 0 faster
than any power in ✏.

We are now able to find a bound on the radial velocity of a fluid particle at
distance R from B✏(t). Using the result on (2.40) and the bound (2.26), we obtain:

����
d

dt
R(t)

����  C1 R(t) + C2
✏2

R(t)3
+ g , (2.68)

where C1, C2 denote two positive constant (depending on T ) but independent of ✏
and g denotes terms smaller than any power in ✏ when R > C3 ✏↵, ↵ < 1/2.

Hence for R > C3 ✏
↵ the last term of the right hand side of the previous equation

is negligible and the second one is bounded by C1 C−3
3 ✏2−3↵. The inequality (2.68)

by using Gronwall Lemma gives a control of going away. The result (2.9) can be
obtained by a proof ”ab absurdo”. Indeed we choose C4 >> C3 and an ↵0 such that
↵ < ↵0 < 1/2; assume ”ab assurdo” that at time t⇤, (0  t⇤  T ), R(t⇤) = C4✏

↵,
going back in time, because of continuity, there is a time t1, (0  t1 < t⇤) such that
for the first time R(t1) = C3✏

↵0
. By (2.68) (with ↵0 instead of ↵) shows that is

impossible and hence the support of the vorticity remains in ⌃(B✏(t)|C4 ✏↵). ⇤
We can easily give the proof of the main Theorem and we only sketch it. We

denote by Rm the minimal distance between point vortices evolving via (1.10) and
we choose ✏ ⌧ Rm. Initially the vortices are separated and we simulate the influ-
ence of other vortices as an external field. The result of this Section states that
the vorticities remain separated. We remark that the other vortices produce an
external field depending on ✏, but this dependence is very small and its e↵ects can
be controlled. This conclude the proof.
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3 – Comments

The main tool used in the present improvement is a good estimate of some can-
cellations in the vorticity field (see (2.32),(2.33)). In the case of a single vortex
these cancellations take into account the conservation of B✏(0). They have been
suggested by the study of the paper [10].

We remark that the growth of the support of the vorticity increases as the time
goes by. In the proof this increase is exponential because of the Gronwall Lemma
and it is smaller as the point vortices are close to a stationary state.

The present analysis can be extended without serious difficulties to a fluid moving
in a region with boundary.

A possible generalization is to study fluids moving in the whole plane, governed
by Navier-Stokes equation, when we consider large initial concentrations and the
vanishing viscosity limit as in [8, 13, 15].

Until now we have considered a two dimensional system, i.e. a fluid in three
dimensions with a planar symmetry. A point vorticity in two dimensions means
a straight-line in three dimensions. We can study also other symmetries. We
introduce cylindrical coordinates (r, ✓, z); the fluid has cylindrical symmetry without
swirl if the fluid moves in the plane (r, z) independent of ✓. A point in this plane
means a circle around the symmetry axis in the space. It is well-known that in
this plane there are some smooth configurations invariant in form that move in the
z direction with a constant speed (see for instance [7, 2]; on the vortex rings see
[22]). We can study a concentrated vorticity in the plane (r, z) supported in a small
region contained in a circle of radius ✏ (in the three dimensional space appears like a
torus or a sort of smoke ring) not far from the symmetry axis. Obviously in general
this fluid is not invariant in form for a fixed ✏, but we can prove that, when the
total vorticity vanishes as const./| log ✏|, all shapes converge as ✏ ! 0 to an annulus,
which moves in the z direction with a constant velocity. In this case a localization
holds in a weak form: the main part of the vorticity remains concentrated in a
circle of radius const ✏ | log ✏|. Unfortunately, we are not able to prove that there
is rigorously not vorticity out of it (as it happens in the present paper). The proof
given in [4] uses an estimate on the energy of the system that does not allow to
employ the technique of the present paper. (For vanishing viscosity see [5]).

We discuss now the case in which the vorticity is far from the symmetry axis.
We introduce the new variables z = x , r = r0 + y and we study the motion in the
plane (x, y). When r0 = const | log ✏|, we can show, by using a technique similar
to the smoke ring, that a fluid, initially concentrated in the plane (x, y) in a small
region “converges” at time t as ✏ ! 0 to a large annulus and the weak localiza-
tion holds [16]. In this case also the improvement of the present paper cannot be
applied.

On the contrary when r0 = const ✏−β ,β > 0, the fluid can be concentrated in
many disjoint regions and it “converges” to the point vortex model as ✏ ! 0 [14] in
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a way that the technique of the present paper can be applied. We could obtain a
small improvement.

Finally, when a helicoidal symmetry exists, we can show that there are structures
invariant in form which move along cylindrical helices [1], but in this case we do
not know not even if the limit ✏ ! 0 exists.

We remark that it exists a di↵erent connection between the Euler Equation
and the point vortex model, i.e. the so called “vortex method”. In this case we
approximate smooth initial data by a system of N point vortices of intensity ⇡ 1/N
and we evolve this system (which has a finite number of degrees of freedom) via
(1.10). We can prove that, if some conditions are fulfilled, as N ! 1 this system
converges to the solution of the Euler equation. There is a wide literature on this
topic important mainly for numerical purposes, that is out of the aim of the present
paper. Some details and references can be found in the books [20, 21].
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