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On the stability and integration
of Hamilton-Poisson systems on so(3)⇤−

R. M. ADAMS – R. BIGGS – W. HOLDERBAUM – C. C. REMSING

Abstract: We consider inhomogeneous quadratic Hamilton-Poisson systems on the
Lie-Poisson space so (3)⇤−. There are nine such systems up to ane equivalence. We
investigate the stability nature of the equilibria for each of these systems. For a subclass
of systems, we find explicit expressions for the integral curves in terms of Jacobi elliptic
functions.

1 – Introduction

Poisson structures appear in very di↵erent forms and mathematical contexts such
as symplectic manifolds, Lie algebras, singularity theory, and r-matrices. Together
with symplectic manifolds, Lie algebras provide the first examples of Poisson man-
ifolds. Namely, the dual of a finite dimensional Lie algebra admits a canonical
Poisson structure, called its Lie-Poisson structure (see, e.g., [27, 30]). Lie-Poisson
structures arise naturally in a variety of fields of mathematical physics and engi-
neering such as classical dynamical systems, robotics, fluid dynamics, and super-
conductivity, to name but a few.

On Lie-Poisson spaces, quadratic Hamilton-Poisson systems have been consid-
ered by several authors (e.g., [3, 11, 22, 24, 30, 33, 34]), most notably in the con-
text of invariant optimal control and geometric mechanics. Rigid body dynam-
ics appear in many areas of engineering such as underwater vehicles, unmanned
air vehicles, robotics, and spacecrafts (e.g., [16, 21, 36]). A systematic treatment
of stability and integration of homogeneous systems on so (3)⇤− was carried out
in [17].
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Lyapunov stability – Energy-Casimir method – Jacobi elliptic function
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In this paper we consider inhomogeneous quadratic Hamilton-Poisson systems
on the Lie-Poisson space so (3)⇤−. There are nine (families of) such systems, under
affine equivalence. A system will be referred to as a system of type I if its set of
equilibria is a union of lines and planes; otherwise, it will be referred to as a system
of type II. For the sake of completeness, a brief treatment of the homogeneous
systems is included.

For each system we investigate the (Lyapunov) stability nature of the equilibria.
A generalization of the energy-Casimir method and the continuous energy-Casimir
method (see [31]) are used to prove stability. Note that for any system on so(3)⇤− the
origin is a stable equilibrium state. (Indeed, the Casimir function C(p) = p21+p22+p23
is a weak Lyapunov function for any Hamiltonian vector field on so(3)⇤−.) On the
other hand, instability usually follows from spectral instability; however, a direct
approach is required in some cases.

We obtain explicit expressions for the integral curves of systems of type I (but
not of type II). In each case we partition the set of initial conditions so as to distin-
guish between integral curves with di↵erent qualitative behaviour. The equations
of motion are reduced (using the constants of motion) to a single separable di↵er-
ential equation, which is then transformed into a standard form. An appropriate
elliptic integral is used to obtain (after some manipulation) an explicit expression
for the integral curve in terms of Jacobi elliptic functions. Mathematica is used
to facilitate most of these calculations.

We distinguish between integral curves with di↵erent qualitative behaviour by
determining when the level surfaces of the Hamiltonian and Casimir are tangent
to one another. These surfaces are tangent exactly at equilibria. Hence we get
a set of critical values (corresponding to equilibria) for the energy states (h0, c0)
of the Hamiltonian and Casimir. This set partitions the space of energy states
into a number of regions. (Within each region, the corresponding nonconstant
integral curves can be continuously deformed into one another.) Each region usually
corresponds to di↵erent explicit expressions for the integral curves.

For each system we graph the critical energy states. We select some typical values
for (h0, c0) from each region (as well as some typical critical values) for which
we then graph the corresponding level surfaces of the Hamiltonian and Casimir.
For convenience, we shall refer to this as a typical configuration. The intersection
of these surfaces (i.e., the traces of the corresponding integral curves) and the
equilibria are also graphed.

The main motivation for our investigation of the quadratic Hamilton-Poisson
systems on so (3) comes from our ongoing interest in geometric (optimal) con-
trol, particularly on lower-dimensional Lie groups. Similar treatments of quadratic
Hamilton-Poisson systems on se(2)⇤− and se(1, 1)⇤− can be found in [3, 4] and [7],
respectively. After the completion of this work we learned of several substantial
contributions to the (generalized) rigid body dynamics literature from the geo-
metric mechanics perspective. It was Volterra [35] who first found expressions of
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integral curves (in terms of sigma-functions and exponents). More recently, an ex-
plicit integration of Zhukovsky-Volterra gyrostat was obtained by Basak [8] (based
on an algebraic parametrization of the invariant curves). The stability nature of
the equilibria, as well as bifurcations, have been investigated by several authors
([9, 14, 15, 18, 25]). Frauendiener [20] classified quadratic Hamiltonian systems on
the unit sphere under symplectic transformations; Elipe and Lanchares [19] showed
that each equivalence class obtained by Fraudiener corresponds to a di↵erent type
of gyrostat. Nonetheless, we are of the opinion that our alternative investigation,
from a Poisson geometry point of view, is more elementary and direct and as such
lends a fresh perspective to the topic.

We conclude the paper with some comments and remarks concerning the re-
lationship between invariant optimal control problems and quadratic Hamilton-
Poisson systems.

2 – Quadratic Hamilton-Poisson systems

Let g be a real Lie algebra. The (minus) Lie-Poisson structure on g⇤ is given
by {F,G} (p) = −p([dF (p),dG(p)]). Here p 2 g⇤, F,G 2 C1(g⇤), and dF (p),
dG(p) 2 g⇤⇤ are identified with elements of g. The Lie-Poisson space (g⇤, {·, ·})
is denoted by g⇤−. To each function H 2 C1(g⇤) we associate a Hamiltonian

vector field
−!
H on g⇤ specified by

−!
H [F ] = {F,H}. A function C 2 C1(g⇤) is a

Casimir function provided {C,F} = 0 for all F 2 C1(g⇤). A linear isomorphism
 : g⇤ ! g⇤ is called a linear Poisson automorphism if {F,G}◦ = {F ◦  , G ◦  }
for all F,G 2 C1(g⇤). Linear Poisson automorphisms are exactly the dual maps
of Lie algebra automorphisms.

A quadratic Hamilton-Poisson system (g⇤−, HA,Q) is specified by

HA,Q : g⇤ ! R, p 7! p(A) +Q(p).

Here A 2 g and Q is a quadratic form on g⇤. If A = 0, then the system is
called homogeneous; otherwise, it is called inhomogeneous. (When g⇤− is fixed,
a system (g⇤−, HA,Q) is identified with its Hamiltonian HA,Q.) We say that two
quadratic Hamilton-Poisson systems (g⇤−, G) and (h⇤−, H) are affinely equivalent if

the associated vector fields
−!
G and

−!
H are compatible with an affine isomorphism.

That is, two systems are equivalent if there exists an affine isomorphism  : g⇤ ! h⇤

such that T ·−!G =
−!
H ◦  . (Here T denotes that tangent map of  .)

Lemma 2.1. The following Hamilton-Poisson systems (on g⇤−) are equivalent to
HA,Q:

(E1) HA,Q ◦  , where  is a linear Poisson automorphism;
(E2) HA,rQ, where r 6= 0;
(E3) HA,Q + C, where C is a Casimir function.
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The three-dimensional orthogonal Lie algebra

so(3) =
�
A 2 R3⇥3 : A> +A = 0

 

has standard (ordered) basis

E1 =

2
4
0 0 0
0 0 −1
0 1 0

3
5 , E2 =

2
4

0 0 1
0 0 0
−1 0 0

3
5 , E3 =

2
4
0 −1 0
1 0 0
0 0 0

3
5 .

The commutator relations are given by [E2, E3] = E1, [E3, E1]=E2, and [E1, E2]=
E3. Let (E⇤

1 , E
⇤
2 , E

⇤
3 ) denote the dual of the standard basis. We shall write an

element p = p1E
⇤
1 + p2E

⇤
2 + p3E

⇤
3 2 so (3)⇤ as

⇥
p1 p2 p3

⇤
. The group of linear

Poisson automorphisms takes the form

{p 7! p :  2 R3⇥3,   > = 1, det = 1} ⇠= SO(3).

Note that C(p) = p21 + p22 + p23 is a Casimir function.

Remark 2.2. The Hamiltonian vector fields on so (3)⇤− are complete as their
integral curves evolve on the compact subsets C−1(c0), c0 ≥ 0 (cf. [1]).

Remark 2.3. The Hamiltonian vector field associated to a function
H 2 C1(so (3)⇤) can be expressed as

−!
H = 1

2rC ⇥ rH. Hence the (regular)
level sets of H and C are tangent exactly at equilibria.

A classification of the quadratic Hamilton-Poisson systems on so (3)⇤− was ob-
tained in [2]. We shall base our investigation of quadratic systems on this classifi-
cation. For the sake of completeness, we provide a sketch of the proof.

Theorem 2.4. Let H be a quadratic Hamilton-Poisson system on so (3)⇤−. If
H is homogeneous, then it is equivalent to exactly one of the systems:

H0(p) = 0 (type I)

H1(p) = 1
2p

2
1 (type I)

H2(p) = p21 +
1
2p

2
2. (type I)



[5] On the stability and integration of Hamilton-Poisson systems on so(3)⇤− 5

If H is inhomogeneous, then it is equivalent to exactly one of the systems:

H0
1,↵(p) = ↵p1 ↵ > 0 (type I)

H1
0 (p) =

1
2p

2
1 (type I)

H1
1 (p) = p2 +

1
2p

2
1 (type I)

H1
2,↵(p) = p1 + ↵p2 +

1
2p

2
1 ↵ > 0 (type II)

H2
1,↵(p) = ↵p1 + p21 +

1
2p

2
2 ↵ > 0 (type I)

H2
2,↵(p) = ↵p2 + p21 +

1
2p

2
2 ↵ > 0 (type I)

H2
3,↵(p) = ↵1p1 + ↵2p2 + p21 +

1
2p

2
2 ↵1,↵2 > 0 (type II)

H2
4,↵(p) = ↵1p1 + ↵3p3 + p21 +

1
2p

2
2 ↵1 ≥ ↵3 > 0 (type II)

H2
5,↵(p) = ↵1p1 + ↵2p2 + ↵3p3 + p21 +

1
2p

2
2

↵2 > 0, ↵1 > |↵3| > 0 or ↵2 > 0, ↵1 = ↵3 > 0. (type II)

Here ↵,↵1,↵2,↵3 parametrize families of class representatives, each di↵erent value
corresponding to a distinct (non-equivalent) representative.

Remark 2.5. A stronger form of equivalence, namely orthogonal equivalence,
has been considered in [33].

Proof (Sketch). We note that the equivalences (E1)-(E3) are not always
sufficient to reduce a system to its normal form. In such cases, we find an explicit
affine isomorphism with respect to which the vector fields are compatible.

Let H(p) = pA + pQp>, where Q is a symmetric 3 ⇥ 3 matrix. Here A =

a1E1 + a2E2 + a3E3 2 so(3) is identified with
⇥
a1 a2 a3

⇤>
. We may assume

that Q is positive definite. Given a linear Poisson automorphism  : p 7! p , we
have (H ◦ )(p) = p A+p Q >p>. As any symmetric matrix can be diagonalized
by an orthogonal matrix (see, e.g., [32]), it follows that there exists a linear Poisson
automorphism  such that (H ◦  )(p) = p A + p diag(λ1,λ2,λ3) p

> with λ1 ≥
λ2 ≥ λ3 > 0. Thus (H ◦ )(p)−λ3C(p) = p A+p diag(λ1−λ3,λ2−λ3, 0) p> with
λ1 − λ3 ≥ λ2 − λ3 ≥ 0. If λ1 − λ3 = 0, then (by (E1) and (E3)) H is equivalent
to an intermediate system G0

B(p) = pB, where B =  A. On the other hand, if

λ1 − λ3 > 0, then (H ◦  )(p)− λ3C(p) = p A+ (λ1 − λ3) p diag
⇣
1, λ2−λ3

λ1−λ3
, 0
⌘
p>.

Thus H is equivalent to H 0(p) = p A + p21 + ↵p22, ↵ = λ2−λ3

λ1−λ3
. If ↵ = 0, then

H 0(p) = p A + p21 and so H 0 is equivalent to (an intermediate system) G1
B(p) =

pB + 1
2p

2
1 with B =  A. (A similar argument holds when ↵ = 1.) On the other

hand, suppose 0 < ↵ < 1. Then the vector fields associated to

H 0(p) = a01p1 + a02p2 + a03p3 + p21 +↵p22 and G2
B(p) = b1p1 + b2p2 + b3p3 + p21 +

1
2p

2
2
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(here A0 =  A) are compatible with the affine isomorphism

p 7!p

2
4
−
p
2(1− ↵) 0 0

0 2
p
↵(1− ↵) 0

0 0 −
p
2↵

3
5

+


− 1− 2↵p

2(1− ↵)
a01

1− 2↵

2
p
↵(1− ↵)

a02 −1− 2↵p
2↵

a03

�

provided b1 = −↵
p

2(1−↵)

1−↵ a01, b2 = 1

2
p

↵(1−↵)
a02, and b3 = −

p
2(1−↵)p

↵
a03.

Suppose that H is homogeneous, i.e., A = 0. Then, by the above argument,
H is equivalent to G0

0 = H0, G1
0 = H1, or G2

0 = H2. The systems H1 and H2

are not equivalent as the set of equilibria for H1 is the union of a plane and a line
whereas the set of equilibria for H2 is the union of three lines.

The remainder of the proof involves considering each of the intermediate in-
homogeneous systems G0

B , G1
B , and G2

B and using a combination of linear Pois-
son automorphisms and affine isomorphisms to reduce these systems as much as
possible. One then verifies that each representative obtained is distinct and non-
equivalent. ⇤

It turns out that any homogeneous system on so (3)⇤− is equivalent to a system
on se (2)⇤−, see [12]. The Euclidean Lie algebra

se (2) =

8
<
:

2
4
0 0 0
x1 0 −x3

x2 x3 0

3
5 = x1Ẽ1 + x2Ẽ2 + x3Ẽ3 : x1, x2, x3 2 R

9
=
;

has nonzero commutators [Ẽ2, Ẽ3] = Ẽ1 and [Ẽ3, Ẽ1] = Ẽ2. The Lie-Poisson space

se (2)⇤− has Casimir function eC(p̃) = p̃21 + p̃22. The systems

�
so (3)⇤−,

1
2p

2
1

�
: ṗ1 = 0, ṗ2 = p1p3, ṗ3 = −p1p2,�

se (2)⇤−,
1
2 p̃

2
3

�
: ˙̃p1 = p̃2p̃3, ˙̃p2 = −p̃1p̃3, ˙̃p3 = 0

are compatible with the linear isomorphism

 : so (3)⇤ ! se (2)⇤,  =

2
4

0 0 1
0 1 0
−1 0 0

3
5 .

On the other hand, the systems

�
so (3)⇤−, p

2
1 +

1
2p

2
2

�
: ṗ1 = −p2p3, ṗ2 = 2p1p3, ṗ3 = −p1p2,�

se (2)⇤−, p̃22 + p̃23
�
: ˙̃p1 = 2p̃2p̃3, ˙̃p2 = −2p̃1p̃3, ˙̃p3 = 2p̃1p̃2



[7] On the stability and integration of Hamilton-Poisson systems on so(3)⇤− 7

are compatible with the linear isomorphism

 : so (3)⇤ ! se (2)⇤,  =

2
4

0 0 − 1p
2

0 − 1
2 0

− 1p
2

0 0

3
5 .

We shall make use of such an equivalence in the investigation of the system H2
1,↵

to relate to some results previously obtained.

For quadratic Hamilton-Poisson systems on so(3)⇤−, it turns out that the integral
curves are often expressible in terms of Jacobi elliptic functions. Given the modulus
k 2 [0, 1], the basic Jacobi elliptic functions sn(·, k), cn(·, k), and dn(·, k) can be
defined as (see, e.g., [6, 28])

sn(x, k) = sin am(x, k), cn(x, k) = cos am(x, k),

dn(x, k) =

q
1− k2 sin2 am(x, k)

where am(·, k) = F (·, k)−1 is the amplitude and F (', k) =
R '

0
dtp

1−k2 sin2 t
· The

number K is given by K = F (⇡2 , k). (The functions sn(·, k) and cn(·, k) are 4K
periodic, whereas dn(·, k) is 2K periodic.) Nine other elliptic functions are de-
fined by taking reciprocals and quotients; in particular, we have nd(·, k) = 1

dn(·,k) ,

sd(·, k) = sn(·,k)
dn(·,k) and cd(·, k) = cn(·,k)

dn(·,k) ·

3 – Homogeneous systems

We consider the two homogeneous systems H1 and H2 (see Theorem 2.4). The
integral curves of the system H1 can easily be found in terms of elementary func-
tions; it is then a simple matter to determine the stability nature of the equilibria.
On the other hand, the integral curves of the system H2 can be found in terms of
basic Jacobi elliptic functions. The stability nature of the equilibria can be deter-
mined via the energy-Casimir methods (and the investigation of spectral stability).
Proofs will be omitted; somewhat less refined versions of these results were obtained
elsewhere (cf. [17], see also [3]).

Throughout, we shall parametrize the equilibrium states by µ, ⌫, ⌘ 2 R, ⌫ 6= 0.

3.1 – System H1

The system H1(p) = 1
2p

2
1 has equations of motion

ṗ1 = 0, ṗ2 = p1p3, ṗ3 = −p1p2.
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Figure 1: Critical energy states for H1 and a corresponding typical configuration.

The equilibria are eµ,⌘1 = (0, µ, ⌘) and eµ2 = (µ, 0, 0). The states eµ,⌘1 6= 0 are
unstable whereas the states eµ2 are stable. In Figure 1 we graph the critical energy
states (c0, h0) and a corresponding typical configuration.

The integral curves of the system are given by

p1(t) = p1(0)

p2(t) = p2(0) cos(p1(0) t) + p3(0) sin(p1(0) t)

p3(t) = p3(0) cos(p1(0) t)− p2(0) sin(p1(0) t).

3.2 – System H2

The system H2(p) = p21 +
1
2p

2
2 has equations of motion

ṗ1 = −p2p3, ṗ2 = 2p1p3, ṗ3 = −p1p2.

The equilibria are eµ1 = (µ, 0, 0), e⌫2 = (0, ⌫, 0), and e⌫3 = (0, 0, ⌫).
There are three qualitatively di↵erent cases for the intersection of a elliptic

cylinder (H2)−1(h0) and a sphere C−1(c0), corresponding to (a) c0 < 2h0, (b)
c0 = 2h0, and (c) c0 > 2h0. In Figure 2 we graph the critical energy states (h0, c0);
in Figure 3 we graph the corresponding typical configurations.

Figure 2: Critical energy states for H2.



[9] On the stability and integration of Hamilton-Poisson systems on so(3)⇤− 9

(a) c0 < 2h0 (b) c0 = 2h0 (c) c0 > 2h0

Figure 3: Typical configurations for H2.

Theorem 3.1. The equilibrium states have the following behaviour:

(i) The states eµ1 are stable.
(ii) The states e⌫2 are (spectrally) unstable.
(iii) The states e⌫3 are stable.

Theorem 3.2. Let p(·) be an integral curve of the system H2 through p(0).
Let h0 = H2(p(0)) and c0 = C(p(0)).

(a) If 0 < c0 < 2h0, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) =
p̄(t+ t0), where

p̄1(t) = σ
p

h0 dn (⌦ t, k)

p̄2(t) =
p
2
p

c0 − h0 sn (⌦ t, k)

p̄3(t) = σ
p

c0 − h0 cn (⌦ t, k) .

Here ⌦ =
p
2h0 and k =

q
c0−h0

h0
.
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(b) If c0 = 2h0 > 0, then there exist t0 2 R and σ1,σ2 2 {−1, 1} such that
p(t) = p̄(t+ t0), where

p̄1(t) = σ1
p
h0 sech

⇣p
2h0 t

⌘

p̄2(t) = σ1σ2
p
2h0 tanh

⇣p
2h0 t

⌘

p̄3(t) = σ2
p
h0 sech

⇣p
2h0 t

⌘
.

(c) If c0 > 2h0 > 0, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) =
p̄(t+ t0), where

p̄1(t) =
p

h0 cn (⌦ t, k)

p̄2(t) = σ
p

2h0 sn (⌦ t, k)

p̄3(t) = σ ⌦p
2
dn (⌦ t, k) .

Here ⌦ =
p
2
p
c0 − h0 and k =

q
h0

c0−h0
.

4 – Inhomogeneous systems of type I

In this section we consider those inhomogeneous systems whose equilibria are unions
of lines and planes (type I). There are five such systems (in fact two systems and
three one-parameter families of systems, see Theorem 2.4). Note that the systems
which are equivalent to H1

0 are homogeneous systems in disguise. For each sys-
tem we obtain explicit expressions for the integral curves: for H0

1,↵ in terms of
elementary functions and for the remaining systems in terms of rational functions
of (possibly square roots of) Jacobi elliptic functions. We provide a detailed proof
for obtaining the integral curves for one sub-case of the system H2

2,↵. The integral
curves for the remaining systems are obtained in a similar fashion and hence the
proofs are omitted.

For each system the stability nature of all equilibria is determined. We provide
a detailed proof for the system H1

1 . Similar arguments hold for determining the
stability nature of the equilibria of the remaining systems and thus the proofs are
omitted, except where instability does not follow from spectral instability. We
note that the system H2

1,↵ is equivalent to a system on se (2)⇤− which has been
considered previously in [4]. Again, the equilibria are parametrized by µ, ⌫, ⌘ 2 R,
⌫ 6= 0.

4.1 – System H0
1,↵

The system H0
1,↵(p) = ↵p1, ↵ > 0 has equations of motion

ṗ1 = 0, ṗ2 = ↵p3, ṗ3 = −↵p2.
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The equilibria are eµ1 = (µ, 0, 0); all equilibria are stable. In Figure 4 we graph
the critical energy states (h0, c0) and a corresponding typical configuration. (The
value ↵ = 1 was used in Figure 4.)

Figure 4: Critical energy states for H0
1,↵ and a corresponding typical configuration.

The integral curves of this system are given by

p1(t) = p1(0)

p2(t) = p2(0) cos(↵ t) + p3(0) sin(↵ t)

p3(t) = p3(0) cos(↵ t)− p2(0) sin(↵ t).

4.2 – System H1
1

The system H1
1 (p) = p2 +

1
2p

2
1 has equations of motion

ṗ1 = −p3, ṗ2 = p1p3, ṗ3 = p1 − p1p2.

The equilibria are eµ1 = (0, µ, 0) and e⌫2 = (⌫, 1, 0).
There are three qualitatively di↵erent cases for the intersection of a parabolic

cylinder (H1
1 )

−1(h0) and a sphere C−1(c0), corresponding to (a) c0 < h2
0, (b)

c0 = h2
0, and (c) c0 > h2

0. In Figure 5 we graph the critical energy states (h0, c0) ;
in Figure 6 we graph the corresponding typical configurations.

Figure 5: Critical energy states for H1
1 .
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Theorem 4.1. The equilibrium states have the following behaviour:

(i) The states eµ1 , µ  1 are stable.
(ii) The states eµ1 , µ > 1 are (spectrally) unstable.
(iii) The states e⌫2 are stable.

(a) c0 < h2
0 (b) c0 = h2

0 (c) c0 > h2
0

Figure 6: Typical configurations for H1
1 .

Proof. Let Hλ(p) = λ1H
1
1 (p) + λ2C(p). (i) Suppose µ < 1, µ 6= 0, and

let λ1 = 1 and λ2 = − 1
2µ . We have dHλ(µ, 0, 0) = 0 and that the Hessian

d2 Hλ(µ, 0, 0) = diag(µ−1
µ ,− 1

µ ,− 1
µ ) is definite. Thus, by the generalized energy-

Casimir method, the states eµ1 , µ < 1, µ 6= 0 are stable. Suppose µ = 1. Then
H(e11) = C(e11) = 1. It is a simple matter to show that (H1

1 )
−1(1)\C−1(1) = {e11}.

Thus, by the continuous energy-Casimir method, the state e11 is stable. Likewise,
the origin is stable.

(ii) The linearization of the system at eµ1 has eigenvalues λ1 = 0, λ2,3 =
±p

µ− 1. Thus the states eµ1 , µ > 1 are spectrally unstable.

(iii) Let λ1 = 1 and λ2 = − 1
2 . We have dHλ(⌫, 1, 0) = 0 and d2 Hλ(⌫, 1, 0) =

diag(0,−1,−1) is definite when restricted to W =span {(1,−⌫, 0), (0, 0, 1)}. Hence,
by the generalized energy-Casimir method, the states e⌫2 are stable. ⇤
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Theorem 4.2 ([2]). Let p(·) be an integral curve of the system H1
1 through

p(0). Let h0 = H1
1 (p(0)) and c0 = C(p(0)).

(a) If c0 < h2
0, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t+t0),

where

p̄1(t) = σ
p
2δ

1 + k sn (⌦ t, k)

dn (⌦ t, k)

p̄2(t) = h0 + δ − 2δ

1− k sn (⌦ t, k)

p̄3(t) = −σk⌦
p
2δ

cn (⌦ t, k)

1− k sn (⌦ t, k)
.

Here ⌦ =
p
h0 − 1 + δ, k =

q
h0−1−δ
h0−1+δ , and δ =

p
h2
0 − c0.

(b) If c0 = h2
0, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t+t0),

where

p̄1(t) = 2σ
p

h0 − 1 sech
⇣p

h0 − 1 t
⌘

p̄2(t) = h0 − 2(h0 − 1) sech
⇣p

h0 − 1 t
⌘2

p̄3(t) = 2σ(h0 − 1) sech
⇣p

h0 − 1 t
⌘

tanh
⇣p

h0 − 1 t
⌘
.

(c) If c0 > h2
0, then there exists t0 2 R such that p(t) = p̄(t+ t0), where

p̄1(t) =
p

2(h0 + δ − 1) cn (⌦ t, k)

p̄2(t) = h0 − (h0 + δ − 1) cn (⌦ t, k)
2

p̄3(t) =
p

2δ(h0 + δ − 1) dn (⌦ t, k) sn (⌦ t, k) .

Here ⌦ =
p
δ, k =

q
h0+δ−1

2δ , and δ =
p
1 + c0 − 2h0.

4.3 – System H2
1,↵

The system H2
1,↵(p) = ↵p1 + p21 +

1
2p

2
2, ↵ > 0 has equations of motion

ṗ1 = −p2p3, ṗ2 = (↵+ 2p1)p3, ṗ3 = −(↵+ p1)p2.

The equilibria are eµ1 = (µ, 0, 0), e⌫2 = (−↵, ⌫, 0), and e⌫3 = (−↵
2 , 0, ⌫).

The system (so(3)⇤−, H
2
1,↵) is equivalent to the system (se(2)⇤−, eH↵), where

eH↵(p̃) = p̃1 + 1
↵2 p̃

2
2 + 1

2 p̃
2
3. Stability and integration of eH↵ were treated in [4].
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Explicitly, the systems (se(2)⇤−, eH↵) and (so(3)⇤−, H
2
1,↵) are compatible with the

affine isomorphism  : se(2)⇤ ! so(3)⇤ given by

p̃ 7! p̃

2
64
− 1

↵ 0 0

0 −
p
2

↵ 0
0 0 − 1p

2

3
75+

⇥
−↵

2 0 0
⇤
. (4.1)

Hence, any integral curve of (so (3)⇤−, H
2
1,↵) is just the image under  of an integral

curve of (se (2)⇤−, eH↵). The expressions for the integral curves split into a number
of cases. (Some divisions are based on qualitative grounds, whereas others where
retrospectively made to facilitate integration.) An index of the conditions defining
these cases appears in Table 1. In Figure 7 we graph the critical energy states
(h0, c0); in Figure 8 we graph the corresponding typical configurations. (The value
↵ = 3

2 was used in both these figures.)

Conditions (!± = 2h0 + ↵(↵±
p
↵2 + 4h0)) Index

h0  0

2c0 > !+

↵2 + h0 > c0 +
p

c20 + h2
0 − c0 (↵2 + 2h0) 1a(i)

↵2 + h0 = c0 +
p

c20 + h2
0 − c0 (↵2 + 2h0) 1a(ii)

↵2 + h0 < c0 +
p

c20 + h2
0 − c0 (↵2 + 2h0) 1a(iii)

2c0 = !+

c0 < ↵2 + h0 1b(i)

c0 = ↵2 + h0 1b(ii)

!− < 2c0 < !+ 1c

h0 > 0

c0 > ↵2 + 2h0 2a

c0 = ↵2 + 2h0 2b

c0 < ↵2 + 2h0

2c0 > !+ 2c(i)

2c0 = !+ 2c(ii)

!− < 2c0 < !+ 2c(iii)

Table 1: Index of cases for integral curves of H2
1,↵ .

We give a proof detailing how the expressions for the integral curves on so (3)⇤− are
obtained from those on se (2)⇤− only for case 1a(i). (The remaining cases follow a
similar argument and thus the proofs are omitted.)
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Figure 7: Critical energy states for H2
1,↵.

Theorem 4.3. The equilibrium states have the following behaviour:

(i) The states eµ1 , µ 2 (−1,−↵) [ [−↵
2 ,1) are stable.

(ii) The states eµ1 , −↵ < µ < −↵
2 are (spectrally) unstable.

(iii) The state e−↵
1 is unstable.

(iv) The states e⌫2 are (spectrally) unstable.
(v) The states e⌫3 are stable.

Proof. (iii) Consider the equilibrium state e−↵
1 . We have that

p(t) =

✓ −↵3t2

2 + t2↵2
,

−2↵2t

2 + t2↵2
,

−2↵

2 + t2↵2

◆

is an integral curve of the system H2
1,↵ such that limt!−1 p(t) = e−↵

1 . Let B" be

the open ball of radius " = ↵ centred at the point e−↵
1 . For any neighbourhood

V ⇢ B" of e−↵
1 there exists t0 < 0 such that p(t0) 2 V . Furthermore kp(0) −

e−↵
1 k =

p
2↵ > ", i.e., p(0) 62 B". Hence the state e−↵

1 is unstable. ⇤

Note 4.4. In Theorems 4.5–4.13 we shall find it convenient to use ⌘0=
p
↵2 + 4h0

instead of h0; also, we shall make use of the following notation

δ = 1
4

q
(↵2 − 4c0) 2 − 2 (↵2 + 4c0) ⌘20 + ⌘40 and ⇢± = 1p

2

q
4c0 − ↵2 − ⌘20 ± 4δ.
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Case 1a(iii) Case 1b(i) Case 1c Case 2a

Case 2b Case 2c(i)

Figure 8: Typical configurations for H2
1,↵.

Theorem 4.5 (case 1a(i)). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case 1a(i)

are satisfied, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t + t0),
where

p̄1(t) = −↵
2 − ⌘0

2

⇢− − ⇢+ sn (⌦ t, k)

⇢+ − ⇢− sn (⌦ t, k)

p̄2(t) = σ⌘0
p
2δ

cn (⌦ t, k)

⇢+ − ⇢− sn (⌦ t, k)

p̄3(t) = − 2σδ
k0

dn (⌦ t, k)

⇢+ − ⇢− sn (⌦ t, k)
.
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Here

⌦ =
1

2

q
4c0 − ↵2 − 3⌘20 + 4δ,

k =

s
↵2 + 4δ − 4c0 + 3⌘20
↵2 − 4δ − 4c0 + 3⌘20

, and k0 = 2

s
2δ

4c0 − ↵2 − 3⌘20 + 4δ
.

Proof. Any integral curve of H2
1,↵ is the image under  of an integral curve

of H̃↵. In [4], explicit expressions for all integral curves of H̃↵ are determined;
there are a number of cases (corresponding to di↵erent explicit expressions). The
expression for the integral curve p̃(·) of H̃↵ through a point p̃(0) 2 se (2)⇤ involves

the constants h̃0 = eH↵(p̃(0)) and c̃0 = eC(p̃(0)). The various cases are expressed
in terms of inequalities in h̃0 and c̃0. We wish to find the image  (p̃(·)) of each
such integral curve and to express c̃0 and h̃0 in terms of the constants h0 =
H2

1,↵( (p̃(0))) and c0 = C( (p̃(0))). Moreover, we wish to find the corresponding
conditions for the various cases on so(3)⇤ in terms of inequalities in h0 and c0.

Let p̃ 2 se(2)⇤ and let

h̃0 = eH↵(p̃) = p̃1 +
1
↵2 p̃

2
2 +

1
2 p̃

2
3 and c̃0 = eC(p̃) = p̃21 + p̃22.

Correspondingly, let h0 = H2
1,↵( (p̃)) and c0 = C( (p̃)); we have

h0 = 1
↵2 (p̃

2
1 + p̃22)− 1

4↵
2 and c0 = p̃1 +

1
↵2 p̃

2
2 +

1
2 p̃

2
3 +

1
↵2 (p̃

2
1 + p̃22) +

1
4↵

2.

Hence

h0 = 1
↵2 c̃0 − 1

4↵
2 and c0 = h̃0 +

1
4↵

2 + 1
↵2 c̃0. (4.2)

We can invert these relations to get

c̃0 = ↵2h0 +
1
4↵

4 and h̃0 = c0 − h0 − 1
2↵

2. (4.3)

Therefore, p̃ 2 ( eH↵)
−1(h̃0)\ eC−1(c̃0) if and only if  (p) 2 (H2

1,↵)
−1(h0)\C−1(c0)

whenever (4.2) or (4.3) holds.

We consider the first case for the integral curves of H̃↵ treated in [4]. Let p̃(·)
be an integral curve of H̃↵ and let h̃0 = H̃↵(p̃(0)) and c̃0 = C̃(p̃(0)). If the
conditions

c̃0 − 1
4↵

4  0, h̃0 >
p
c̃0,

1
2↵

2 − h̃0 >

q
h̃2
0 − c̃0 (4.4)
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hold, then there exist σ 2 {−1, 1} and t0 2 R such that p̃(t) = ¯̄p(t+ t0), where

8
>>>>>>>>><
>>>>>>>>>:

¯̄p1(t) =
p

c̃0

p
h̃0 − δ̃ −

p
h̃0 + δ̃ sn(⌦̃ t, k̃)p

h̃0 + δ̃ −
p

h̃0 − δ̃ sn(⌦̃ t, k̃)

¯̄p2(t) = −σ
q

2c̃0δ̃
cn(⌦̃ t, k̃)p

h̃0 + δ̃ −
p
h̃0 − δ̃ sn(⌦̃ t, k̃)

¯̄p3(t) =
2σδ̃

k̃0
dn(⌦̃ t, k̃)p

h̃0 + δ̃ −
p

h̃0 − δ̃ sn(⌦̃ t, k̃)
.

Here δ̃ =
q

h̃2
0 − c̃0, ⌦̃ =

q
2
↵2 (h̃0 + δ̃)( 12↵

2 − h̃0 + δ̃), k̃ =

s
(h̃0−δ̃)(

1
2↵

2−h̃0−δ̃)

(h̃0+δ̃)(
1
2↵

2−h̃0+δ̃)

and k̃0 =
q

2↵2δ̃
(↵2+2δ̃−2h̃0)(δ̃+h̃0)

. We now find the corresponding integral curves of

H2
1,↵. Let p(·) be an integral curve of H2

1,↵ and let h0 = H2
1,↵(p(0)) and c0 =

C(p(0)). We have that  −1(p(·)) is an integral curve of H̃↵. By (4.3) we have that
 −1(p(·)) satisfies the requisite conditions (4.4) of the above result if and only if
the conditions

h0  0, 2c0 > 2h0+↵(↵+
p
↵2 + 4h0), ↵2+h0 > c0+

q
c20 + h2

0 − c0 (↵2 + 2h0)

hold. Supposing these conditions hold, there exist σ 2 {−1, 1} and t0 2 R such
that  −1(p(t)) = ¯̄p(t+ t0), i.e., p(t) =  (¯̄p(t+ t0)). Finally, we let p̄(t) =  (¯̄p(t))

and replace eh0 and ec0 with expressions in h0 and c0 (using (4.3)) and simplify
to obtain the result. ⇤

Theorem 4.6 (case 1a(ii)). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case

1a(ii) are satisfied, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) =
p̄(t+ t0), where

p̄1(t) = −↵
2 − ⌘0

2

⇢− − ⇢+ sin(⌦t)

⇢+ − ⇢− sin(⌦t)

p̄2(t) = σ⌘0
p
2δ

cos(⌦t)

⇢+ − ⇢− sin(⌦t)

p̄3(t) = − 2σδ

⇢+ − ⇢− sin(⌦t)
.

Here ⌦ =

q
3↵2−4c0+⌘2

0

2 .
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Theorem 4.7 (cases 1a(iii) & 2a). Let p(·) be an integral curve of the system
H2

1,↵ through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of

case 1a(iii) or 2a are satisfied, then there exist t0 2 R and σ 2 {−1, 1} such that
p(t) = p̄(t+ t0), where

p̄1(t) = −↵
2 − ⌘0

2

⇢− − ⇢+ cn (⌦ t, k)

⇢+ − ⇢− cn (⌦ t, k)

p̄2(t) = −σ⌘0
p
2δ

sn (⌦ t, k)

⇢+ − ⇢− cn (⌦ t, k)

p̄3(t) = −2σδ
dn (⌦ t, k)

⇢+ − ⇢− cn (⌦ t, k)
.

Here ⌦ =
p
2δ and k =

q
(3↵2−4δ−4c0+⌘2

0)(↵2+4δ−4c0+⌘2
0)

2↵2δ .

Theorem 4.8 (case 1b(i)). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case 1b(i)

are satisfied, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t + t0),
where

p̄1(t) = −↵+⌘0

2 − (↵− ⌘0) ⌘0
⌘0 − ↵ cosh(⌦ t)2

p̄2(t) = σ⌘0
p

2↵ (↵− ⌘0)
sinh(⌦ t)

⌘0 − ↵ cosh(⌦ t)2

p̄3(t) = σ (↵− ⌘0)
p
↵⌘0

cosh(⌦ t)

⌘0 − ↵ cosh(⌦ t)2
.

Here ⌦ =
q

(↵−⌘0)⌘0

2 .

Theorem 4.9 (case 1b(ii)). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case

1b(ii) are satisfied, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) =
p̄(t+ t0), where

p̄1(t) = − ↵3t2

2 + ↵2t2
, p̄2(t) = − 2σ↵2t

2 + ↵2t2
, p̄3(t) = − 2σ↵

2 + ↵2t2
.

Theorem 4.10 (cases 1c & 2c(iii)). Let p(·) be an integral curve of the system
H2

1,↵ through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of

case 1c or 2c(iii) are satisfied, then there exists t0 2 R such that p(t) = p̄(t + t0),
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where

p̄1(t) = −↵
2 − "1

↵3⌘0−2⇣2
↵3⌘0+2⇣2

p
⇣1 + ⇣2 −

p
⇣1 − ⇣2 cd (⌦ t, k)

p
⇣1 + ⇣2 −

p
⇣1 − ⇣2 cd (⌦ t, k)

p̄2(t) = "2
sd
�
1
2⌦ t, k

�p
1 + k cd (⌦ t, k)

p
1 + nd (⌦ t, k)p

⇣1 + ⇣2 −
p
⇣1 − ⇣2 cd (⌦ t, k)

p̄3(t) = "3
cn
�
1
2⌦ t, k

�p
1− k cd (⌦ t, k)

p
1 + nd (⌦ t, k)p

⇣1 + ⇣2 −
p
⇣1 − ⇣2 cd (⌦ t, k)

.

Here

⌦ = 1
↵

q
⇣1 + ⇣2 − 1

8⌧
2 ⌧ = ↵

✓
↵+ ⌘0 −

p
2
q
↵2 + ⌘20 − 2c0

◆

k =

s
⇣1 − ⇣2 − 1

8⌧
2

⇣1 + ⇣2 − 1
8⌧

2
⇣1 = 1

4

�
4↵2 (↵+ ⌘0) ⌘0 − ↵ (↵+ 4⌘0) ⌧ + ⌧2

�

k0 =

s
2⇣2

⇣1 + ⇣2 − 1
8⌧

2
⇣2 = 1

2

p
↵⌘0 (↵ (↵+ ⌘0)− ⌧) (2↵ (↵+ ⌘0)− ⌧) (2↵⌘0 − ⌧)

and

"1 =
↵3⌘0 + 2⇣2

2↵2 (↵+ 2⌘0)− 2↵⌧

"2 = k0

2
p
2k↵

p
⌧⌘0 (4⇣2 − 4⇣1 + ↵2⌧)

"3 =

s
⇣2(⇣1 − ⇣2) (↵2 (⇣2 + ↵2⌘0(↵+ ⌘0))− (⇣2 + ↵3⌘0) ⌧)

k↵3⌘0 (↵2 + 2↵⌘0 − ⌧)
2 .

Theorem 4.11 (case 2b). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case 2b

are satisfied, then there exist t0 2 R and σ1,σ2 2 {−1, 1} such that p(t) = p̄(t+t0),
where

p̄1(t) = −↵− ⌦2

↵− σ1⌘0 cosh(⌦ t)

p̄2(t) = −σ1σ2⌘0⌦
sinh(⌦ t)

↵− σ1⌘0 cosh(⌦ t)

p̄3(t) = − σ2⌦
2

↵− σ1⌘0 cosh(⌦ t)
.

Here ⌦ =

q
⌘2
0−↵2

2 .
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Theorem 4.12 (case 2c(i)). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case 2c(i)

are satisfied, then there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t + t0),
where

p̄1(t) = −↵
2 − ⌘0

2

k0⇢+ − σ⇢− dn (⌦ t, k)

k0⇢− − σ⇢+ dn (⌦ t, k)

p̄2(t) =
2δ⌘0

⌦

cn (⌦ t, k)

k0⇢− − σ⇢+ dn (⌦ t, k)

p̄3(t) = −2σδk0
sn (⌦ t, k)

k0⇢− − σ⇢+ dn (⌦ t, k)
.

Here

⌦ =
1

2

q
↵2 − 4c0 + 3⌘20 + 4δ

k = 2

s
2δ

↵2 − 4c0 + 3⌘20 + 4δ
and k0 =

s
↵2 − 4c0 + 3⌘20 − 4δ

↵2 − 4c0 + 3⌘20 + 4δ
.

Theorem 4.13 (case 2c(ii)). Let p(·) be an integral curve of the system H2
1,↵

through p(0). Let h0 = H2
1,↵(p(0)) and c0 = C(p(0)). If the conditions of case

2c(ii) are satisfied, then there exists t0 2 R such that p(t) = p̄(t+ t0), where

p̄1(t) = −↵+⌘0

2 − (↵− ⌘0) ⌘0
⌘0 − ↵ cos(⌦ t)2

p̄2(t) = −⌘0
p

2↵ (⌘0 − ↵)
sin(⌦ t)

⌘0 − ↵ cos(⌦ t)2

p̄3(t) = (↵− ⌘0)
p
↵⌘0

cos(⌦ t)

⌘0 − ↵ cos(⌦ t)2
.

Here ⌦ =
q

⌘0(⌘0−↵)
2 .

4.4 – System H2
2,↵

The system H2
2,↵(p) = ↵p2 + p21 +

1
2p

2
2, ↵ > 0 has equations of motion

ṗ1 = −(↵+ p2)p3, ṗ2 = 2p1p3, ṗ3 = p1(↵− p2).

The equilibria are e⌫1 = (⌫,↵, 0), eµ2 = (0, µ, 0), and e⌫3 = (0,−↵, ⌫).
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Theorem 4.14. The equilibrium states have the following behaviour:

(i) The states e⌫1 are stable.
(ii) The states eµ2 , µ 2 (−1,−↵) [ (↵,1) are (spectrally) unstable.
(iii) The states eµ2 , −↵  µ  ↵ are stable.
(iv) The states e⌫3 are stable.

There are five cases for the intersection of a elliptic cylinder (H2
2,↵)

−1(h0) and a

sphere C−1(c0). (We note that if the intersection is nonempty, then h0  c0+
1
2↵

2.)
We further subdivide one of these cases into two subcases to facilitate integration.
An index of the conditions defining these cases appears in Table 2. In Figure 9 we
graph the critical energy states (h0, c0); in Figure 10 we graph the corresponding
typical configurations. (The value ↵ = 1 was used in both these figures.)

Conditions Index
c0
2 + ↵

p
c0 < h0 a

c0
2 + ↵

p
c0 = h0 b

c0
2 − ↵

p
c0 < h0 < c0

2 + ↵
p
c0

c0 = 2h0 c(i)

c0 6= 2h0 c(ii)
c0
2 − ↵

p
c0 = h0 d

c0
2 − ↵

p
c0 > h0 e

Table 2: Index of cases for integral curves of H2
2,↵ .

Figure 9: Critical energy states for H2
2,↵.

We will find the following lemma useful when verifying that a given curve is an
integral curve.
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(a) Case a (b) Case b (c) Case c(ii) (d) Case d (e) Case e

Figure 10: Typical configurations for H2
2,↵.

Lemma 4.15. If p(·) is a curve such that H2
2,↵(p(t)) = h0, C(p(t)) = c0, and

ṗ2(t) = 2p1(t)p3(t) for t 2 R, then p(·) is an integral curve of the system H2
2,↵.

Proof. As d
dtC(p(t)) = 2p1ṗ1 + 2p2ṗ2 + 2p3ṗ3 = 0, d

dtH
2
2,↵(p(t)) = ↵ṗ2 +

2p1ṗ1 + p2ṗ2 = 0, and ṗ2 = 2p1p3, we have p1ṗ1 = −(↵ + p2)p1p3 and p3ṗ3 =
(↵− p2)p1p3. It follows that p(·) is an integral curve of the system H2

2,↵. ⇤

We now present the expressions for the integral curves in the first case.

Theorem 4.16 (case a). Let p(·) be an integral curve of the system H2
2,↵

through p(0). Let h0 = H2
2,↵(p(0)) and c0 = C(p(0)). If c0

2 + ↵
p
c0 < h0, then

there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t+ t0), where

p̄1(t) = σ
p
δ
p

c0 + δ − ↵2
dn(⌦ t, k)p

⇢+ δ −p
⇢− δ sn(⌦ t, k)

p̄2(t) = − 1
2↵

(δ + c0 − 2h0)
p
⇢+ δ + (δ − c0 + 2h0)

p
⇢− δ sn(⌦ t, k)p

⇢+ δ −p
⇢− δ sn(⌦ t, k)

p̄3(t) = −σ
p
δ
p
↵2 + 2c0 − 2h0

cn(⌦ t, k)p
⇢+ δ −p

⇢− δ sn(⌦ t, k)
.

Here δ =
p
c20 + 4h2

0 − 4c0 (↵2 + h0), ⌦ =
p
c0 + δ − ↵2, k =

q
↵2+δ−c0
↵2−δ−c0

, and

⇢ = 2h0 − c0 − 2↵2.

Remark 4.17. If we take the limit of the expression for p̄(t), as ↵ tends to 0,
then we obtain integral curves for the first case of the system H2.
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One might consider limiting h0 to c0
2 + ↵

p
c0 in case (a) in order to produce

integral curves for case (b). However, this limit degenerates and so a more direct
approach is required.

Theorem 4.18 (case b). Let p(·) be an integral curve of the system H2
2,↵

through p(0). Let h0 = H2
2,↵(p(0)) and c0 = C(p(0)). If c0

2 + ↵
p
c0 = h0, then

there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t+ t0), where

p̄1(t) =
2σ(c0−↵2)

p
↵pp

c0−↵

cosh( 12⌦ t)
p
c0 + ↵ cosh(⌦ t)

p̄2(t) =
p
c0 −

2(c0 − ↵2)p
c0 + ↵ cosh(⌦ t)

p̄3(t) =
2σ(c0−↵2)

p
↵pp

c0+↵

sinh( 12⌦ t)
p
c0 + ↵ cosh(⌦ t)

.

Here ⌦ = 2
p
c0 − ↵2.

We provide a detailed proof for case c(i) to show how the integral curves may
be obtained. For this case, in the reduction to standard form, the roots of the two
quadratics need to be deinterlaced. Consequently, the expressions for the corre-
sponding integral curves are more involved.

Theorem 4.19 (case c(i)). Let p(·) be an integral curve of the system H2
2,↵

through p(0). Let h0 = H2
2,↵(p(0)) and c0 = C(p(0)). If c0 = 2h0, then there

exists t0 2 R such that p(t) = p̄(t+ t0), where

p̄1(t) = ↵k
p
↵ 4
p
c0

cn(⌦ t, k)p
↵2 + c0 −

p
c0 + ↵ dn(⌦ t, k)

s
1 + dn(⌦ t, k)

k0 + dn(⌦ t, k)

p̄2(t) =
p
c0

p
↵2 + c0 −

p
c0 − ↵ dn(⌦ t, k)p

↵2 + c0 −
p
c0 + ↵ dn(⌦ t, k)

p̄3(t) = ↵k
p
↵ 4
p
c0

sn(⌦ t, k)p
↵2 + c0 −

p
c0 + ↵ dn(⌦ t, k)

s
k0 + dn(⌦ t, k)

1 + dn(⌦ t, k)
.

Here ⌦ = ↵2
p
↵2+c0−

p
c0
, k =

2 4
p
c0

4p↵2+c0p
↵2+c0+

p
c0
, and k0 =

p
↵2+c0−

p
c0p

↵2+c0+
p
c0
.

Proof. We start by explaining how the expression for p̄(·) was found. Suppose
p̄(·) is an integral curve of H2

2,↵ such that c0 = 2h0, where h0 = H2
2,↵(p̄(0)) and

c0 = C(p̄(0)). Note that c0
2 − ↵

p
c0 < h0 < c0

2 + ↵
p
c0 is trivially satisfied when

c0 > 0. As p̄(·) satisfies (dp̄2

dt )
2 = 4p̄21p̄

2
3, H

2
2,↵(p̄(·)) = c0

2 , and C(p̄(·)) = c0, we have

dp̄2
dt

=
q
(c0 − 2↵p2 − p22)(c0 + 2↵p2 − p22).
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After deinterlacing the roots of the two quadratics we get

dp̄2
dt

=

q
(c0 + 2

p
↵2 + c0 p2 + p22)(c0 − 2

p
↵2 + c0 p2 + p22).

We transform this equation into standard form. Making the change of variables
s = − p̄2−r1

p̄2−r2
yields

t =
1

(r1 − r2)
p−A1A2

Z
r

−B1

A1

r1−p̄2

p̄2−r2

dsr⇣
−B1

A1
− s2

⌘⇣
s2 −

⇣
−B2

A2

⌘⌘ .

Here

A1 = 1
2 − 1

2

q
1 + ↵2

c0
< 0 A2 = 1

2 + 1
2

q
1 + ↵2

c0
> 0

B1 = 1
2 + 1

2

q
1 + ↵2

c0
> 0 B2 = 1

2 − 1
2

q
1 + ↵2

c0
< 0

r1 =
p
c0 r2 = −p

c0.

By applying the elliptic integral formula (see [6, 28])

Z a

x

dtp
(a2 − t2)(t2 − b2)

= 1
a dn−1

⇣
1
a x,

p
a2−b2

a

⌘
, b  x  a

we obtain

p̄2(t) =
p
c0

p
↵2 + c0 −

p
c0 − ↵ dn (⌦ t, k)p

↵2 + c0 −
p
c0 + ↵ dn (⌦ t, k)

where ⌦ = ↵2
p
↵2+c0−

p
c0

and k =
2 4
p
c0

4p↵2+c0p
↵2+c0+

p
c0
. As p̄1(t)

2 = c0
2 − ↵p̄2(t)− 1

2 p̄2(t)
2,

we have

p̄1(t)
2 =

↵
p
c0 (1 + dn (⌦ t, k))

⇣
2
p

c0 (↵2 + c0)− 2c0 − ↵2 + ↵2 dn (⌦ t, k)
⌘

�p
↵2 + c0 −

p
c0 + ↵ dn (⌦ t, k)

�2

=
↵3pc0 (1 + dn (⌦ t, k)) ( dn (⌦ t, k)− k0)
�p
↵2 + c0 −

p
c0 + ↵ dn (⌦ t, k)

�2

where k0 =
p
↵2+c0−

p
c0p

↵2+c0+
p
c0
. We now multiply this equation by

cn (⌦ t, k)
2

cn (⌦ t, k)
2 =

k2 cn (⌦ t, k)
2

dn (⌦ t, k)
2 − (k0)2

=
k2 cn (⌦ t, k)

2

(dn (⌦ t, k)− k0)(dn (⌦ t, k) + k0)
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and take the square root to obtain

p̄1(t) = σ1
↵k
p
↵
p
c0 cn(⌦ t, k)p

↵2 + c0 −
p
c0 + ↵ dn(⌦ t, k)

s
1 + dn(⌦ t, k)

k0 + dn(⌦ t, k)

for some σ1 2 {−1, 1}. Similarly, using c0 = p̄1(t)
2+p̄2(t)

2+p̄3(t)
2 and multiplying

by
sn (⌦ t, k)

2

sn (⌦ t, k)
2 =

k2 sn (⌦ t, k)
2

(1− dn (⌦ t, k))(1 + dn (⌦ t, k))

yields

p̄3(t) = σ2
↵k
p
↵
p
c0 sn(⌦ t, k)p

↵2 + c0 −
p
c0 + ↵ dn(⌦ t, k)

s
k0 + dn(⌦ t, k)

1 + dn(⌦ t, k)

for some σ2 2 {−1, 1}.
We show that p̄(·) is an integral curve for certain values of σ1 and σ2. We have

d

dt
p̄2(t)− 2p̄1(t)p̄3(t) =

2k2↵3pc0(1− σ1σ2) cn(⌦ t, k) sn(⌦ t, k)
�p
↵2 + c0 −

p
c0 + ↵ dn(⌦ t, k)

�2 .

Therefore d
dt p̄2(t) = 2p̄1(t)p̄3(t) whenever σ1 = σ2 = 1. We have by construction

that, H2
2,↵(p̄(t)) = h0 and C(p̄(t)) = c0. Consequently, by Lemma 4.15, it follows

that p̄(·) (as stated in the theorem) is an integral curve; it is not difficult to show
that 0 < k < 1 and that p̄(t) is defined for all t 2 R.

Let p(·) be an integral curve through p(0), let h0 = H2
2,↵(p(0)), c0 = C(p(0)),

and suppose that c0 = 2h0. We claim that p(t) = p̄(t + t0) for some t0 2 R. We
have ↵ p2(0) + p1(0)

2 + 1
2p2(0)

2 = c0
2 and p1(0)

2 + p2(0)
2 + p3(0)

2 = c0. Therefore

↵p2(0) +
1
2p2(0)

2  c0
2 and so −↵−

p
↵2 + c0  p2(0)  −↵+

p
↵2 + c0. We also

have p1(0)
2+p2(0)

2  c0, which implies that ↵−
p
↵2 + c0  p2(0)  ↵+

p
↵2 + c0.

Thus
↵−

p
↵2 + c0  p2(0)  −↵+

p
↵2 + c0.

Now p̄2(0) = ↵ −
p
↵2 + c0 and p̄2(

K
⌦ ) = −↵ +

p
↵2 + c0. Thus there exists

t2 2 [0, K
⌦ ] such that p2(0) = p̄2(t2). As

p1(0)
2 = c0

2 − 2↵p2(0)− 1
2p2(0)

2 = c0
2 − 2↵p̄2(t2)− 1

2 p̄2(t2)
2 = p̄1(t2)

2

it follows that p1(0) = ±p̄1(t2). Furthermore p̄1(t+
2K
⌦ ) = −p̄1(t) and p̄2(t+

2K
⌦ ) =

p̄2(t). Thus there exists t1 2 R ( t1 = t2 or t1 = t2+
2K
⌦ ) such that p1(0) = p̄1(t1)

and p2(0) = p̄2(t1). On the other hand

p3(0)
2 = c0 − p1(0)

2 − p2(0)
2 = c0 − p̄1(t1)

2 − p̄2(t1)
2 = p̄3(t1)

2
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and so p3(0) = ±p̄3(t1). Furthermore p̄1(−t) = p̄1(t), p̄2(−t) = p̄2(t), and
p̄3(−t) = −p̄3(t). Thus there exists t0 2 R ( t0 = t1 or t0 = −t1) such that
p(0) = p̄(t0). Consequently, the integral curves t 7! p(t) and t 7! p̄(t + t0) solve
the same Cauchy problem, and therefore are identical. ⇤

Case c(ii) is very similar to case c(i), although the computations are more in-

volved. The identity cn
�
1
2⌦ t+ 1

2K, k
�2

= k0(1−sn(⌦ t,k))
k0+dn(⌦ t,k) proved to be useful in

deriving the below expression for p̄1(t).

Theorem 4.20 (case c(ii)). Let p(·) be an integral curve of the system H2
2,↵

through p(0). Let h0 = H2
2,↵(p(0)) and c0 = C(p(0)). If c0

2 − ↵
p
c0 < h0 <

c0
2 +↵

p
c0 and c0 6= 2h0, then there exists t0 2 R such that p(t) = p̄(t+ t0), where

p̄1(t) = & "1
cn( 12⌦ t+ 1

2K, k)
p
1 + k sn(⌦ t, k)

p
k0 + dn(⌦ t, k)p

! + ⇢− &
p
! − ⇢ sn(⌦ t, k)

p̄2(t) = "2

⇢−2↵(δ+⌘0)
⇢+2↵(δ+⌘0)

p
! + ⇢+ &

p
! − ⇢ sn(⌦ t, k)

p
! + ⇢− &

p
! − ⇢ sn(⌦ t, k)

p̄3(t) = & "3
cn( 12⌦ t− 1

2K, k)
p
1− k sn(⌦ t, k)

p
k0 + dn(⌦ t, k)p

! + ⇢− &
p
! − ⇢ sn(⌦ t, k)

.

Here

⌦ = 1
2

p
2⇢− ⌧ ⌘0 =

p
↵2 + 2h0

k =

r
⌧ + 2⇢

⌧ − 2⇢
⌧ = δ2 − 4↵2 − 6δ⌘0 + ⌘20

k0 =

r
4⇢

2⇢− ⌧
⇢ = 2

p
δ⌘0 (2↵+ δ − ⌘0) (2↵− δ + ⌘0)

δ =
q

2 (↵2 + c0)− ⌘20 ! = 2↵(δ + ⌘0)− (δ − ⌘0)
2

& = sgn(δ − ⌘0)

and

"1 = 1
(δ−⌘0)

p
2k0

q
(! + ⇢)

�
⌘20 + (2↵− δ)⌘0 − 1

2⇢
� �
⌘20 − (2↵+ δ)⌘0 +

1
2⇢
�

"2 =
⇢+ 2↵(δ + ⌘0)

2(δ − ⌘0)

"3 = 1
(δ−⌘0)

p
2k0

q
(! + ⇢)

�
δ2 + (2↵− ⌘0) δ − 1

2⇢
� �
δ2 − (2↵+ ⌘0) δ +

1
2⇢
�
.

One might consider limiting h0 to c0
2 −↵pc0 in case (e) in order to produce integral

curves for case (d). However, like for case (b), this limit degenerates and again a
more direct approach is required.
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Theorem 4.21 (case d). Let p(·) be an integral curve of the system H2
2,↵

through p(0). Let h0 = H2
2,↵(p(0)) and c0 = C(p(0)). If c0

2 − ↵
p
c0 = h0, then

there exist t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t+ t0), where

p̄1(t) = − 2σ(c0−↵2)
p
↵pp

c0+↵

sinh( 12⌦ t)
p
c0 + ↵ cosh(⌦ t)

p̄2(t) = −p
c0 +

2(c0 − ↵2)p
c0 + ↵ cosh(⌦ t)

p̄3(t) =
2σ(c0−↵2)

p
↵pp

c0−↵

cosh( 12⌦ t)
p
c0 + ↵ cosh(⌦ t)

.

Here ⌦ = 2
p
c0 − ↵2.

We present the expressions for the integral curves of case (e).

Theorem 4.22 (case e). Let p(·) be an integral curve of the system H2
2,↵ through

p(0). Let h0 = H2
2,↵(p(0)) and c0 = C(p(0)). If c0

2 − ↵
p
c0 > h0, then there exist

t0 2 R and σ 2 {−1, 1} such that p(t) = p̄(t+ t0), where

p̄1(t) = σ
p
δ
p
↵2 + 2h0

cn(⌦ t, k)p
⇢+ δ −p

⇢− δ sn(⌦ t, k)

p̄2(t) =
1
2↵

(δ − c0 + 2h0)
p
⇢+ δ + (δ + c0 − 2h0)

p
⇢− δ sn(⌦ t, k)p

⇢+ δ −p
⇢− δ sn(⌦ t, k)

p̄3(t) = σ
p
δ
p
δ + c0 − ↵2

dn(⌦ t, k)p
⇢+ δ −p

⇢− δ sn(⌦ t, k)
.

Here δ =
p
c20 + 4h2

0 − 4c0 (↵2 + h0), ⌦ =
p
δ + c0 − ↵2, k =

q
↵2+δ−c0
↵2−δ−c0

, and

⇢ = c0 − 2↵2 − 2h0.

Remark 4.23. If we take the limit of the expression for p̄(t), as ↵ tends to 0,
then we obtain integral curves for the third case of the system H2.

5 – Inhomogeneous systems of type II

Among the inhomogeneous systems on so (3)⇤−, there are four kinds of systems
whose equilibria cannot be expressed as unions of lines and planes (type II). In fact,
there is one one-parameter family of systems, two two-parameter families of sys-
tems, and one three-parameter family of systems (see Theorem 2.4). The stability
nature of all equilibria is determined for the system H1

2,↵ . On the other hand, for
each of the remaining systems (i.e., those with homogeneous part H2) we deter-
mine the stability nature of all but one or two equilibrium points. Again, we omit
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proofs for stability results, except where instability does not follow from spectral
instability. However, a full proof is provided for the system H2

5,↵, as the argument
and computations are more involved. We found it unfeasible to compute expressions
for the integral curves, due to computational complexity. Some indication of this
complexity can be inferred from the graphs of the critical energy states.

5.1 – System H1
2,↵

The system H1
2,↵(p) = p1 + ↵p2 +

1
2p

2
1, ↵ > 0 has equations of motion

ṗ1 = −↵p3, ṗ2 = (1 + p1)p3, ṗ3 = ↵p1 − (1 + p1)p2.

The equilibria are eµ1 = (eµ −1, ↵(1− e−µ), 0) and eµ2 = (− eµ −1, ↵(1 + eµ), 0).

In Figure 11 we graph the critical energy states (h0, c0); in Figure 12 we graph
the corresponding typical configurations. (The value ↵ = 1

2 was used for both these
figures.)

Figure 11: Critical energy states for H1
2,↵.

Theorem 5.1. The equilibrium states have the following behaviour:

(i) The states eµ1 are stable.
(ii) The states eµ2 , µ < 2

3 ln↵ are (spectrally) unstable.
(iii) The state eµ2 , µ = 2

3 ln↵ is unstable.
(iv) The states eµ2 , µ > 2

3 ln↵ are stable.
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(a) (b) (c) (d) (e)

Figure 12: Typical configurations for H1
2,↵.

Proof. (iii) Let µ = 2
3 ln↵; we consider the equilibrium state eµ2 = (−1 −

↵
2
3 ,↵

1
3 + ↵, 0). We have that

p(t) =

 
4↵

2
3

1 + ↵
4
3 t2

− 1− ↵
2
3 , ↵

1
3 + ↵− 12↵

1
3 + 4↵

5
3 t2

(1 + ↵
4
3 t2)2

,
8↵t

(1 + ↵
4
3 t2)2

!

is an integral curve of the system H1
2,↵ such that limt!−1 p(t) = eµ2 . Let B" be

the open ball of radius " = ↵
1
3 centred at the point eµ2 . For any neighbourhood

V ⇢ B" of eµ2 there exists t0 < 0 such that p(t0) 2 V . Furthermore kp(0)− eµ2k =

4↵
1
3

p
1 + ↵

2
3 > ", i.e., p(0) 62 B". Thus the state eµ2 , µ = 2

3 ln↵ is unstable. ⇤

5.2 – System H2
3,↵

The system H2
3,↵(p) = ↵1p1 +↵2p2 + p21 +

1
2p

2
2, ↵1,↵2 > 0 has equations of motion

ṗ1 = −(↵2 + p2)p3, ṗ2 = (↵1 + 2p1)p3 ṗ3 = ↵2p1 − (↵1 + p1)p2.

The equilibria of this system are given by

eµ1 =
�
eµ −↵1, ↵2(1− ↵1 e

−µ), 0
�
, eµ2 =

�
− eµ −↵1, ↵2(1 + ↵1 e

−µ), 0
�

e⌫3 =
�
−↵1

2 , −↵2, ⌫
�
.

In Figure 13 we graph the critical energy states (h0, c0); in Figure 14 we graph the
corresponding typical configurations. (The values ↵1 = 1 and ↵2 = 1

2 were used
in both the figures.)
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Figure 13: Critical energy states for H2
3,↵.

Theorem 5.2. The equilibrium states have the following behaviour:

(i) The states eµ1 , µ < ln ↵1

2 are (spectrally) unstable.
(ii) The states eµ1 , ln ↵1

2  µ are stable.
(iii) The states eµ2 , µ < 1

3 ln↵1↵
2
2 are (spectrally) unstable.

(iv) The states eµ2 , µ > 1
3 ln↵1↵

2
2 are stable.

(v) The states e⌫3 are stable.

Remark 5.3. The equilibrium state eµ2 , µ = 1
3 ln↵1↵

2
2 is spectrally stable.

However, we were unable to determine its Lyapunov stability nature. We suspect
that this state is unstable (see Figure 14f).

5.3 – System H2
4,↵

The system H2
4,↵(p) = ↵1p1 + ↵3p3 + p21 + 1

2p
2
2, ↵1 ≥ ↵3 > 0 has equations of

motion

ṗ1 = (↵3 − p3)p2, ṗ2 = −↵3p1 + (↵1 + 2p1)p3, ṗ3 = −(↵1 + p1)p2.

The equilibria of this system are given by

eµ1 =
�
1
2 (e

µ −↵1), 0,
↵3

2 (1− ↵1 e
−µ)
�
, eµ2 =

�
− 1

2 (e
µ +↵1), 0,

↵3

2 (1 + ↵1 e
−µ)
�

e⌫3 = (−↵1, ⌫, ↵3) .
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(a) (b) (c) (d)

(e) (f)

Figure 14: Typical configurations for H2
3,↵.

When ↵1 = ↵3 the set of unstable equilibria degenerates (see Figure 15); we treat
this case separately. In Figures 15iii and 16 we graph the critical energy states
(h0, c0) and the corresponding typical configurations. (We used the values ↵1 = 1,
↵3 = 1

5 for Figures. 15i, 15iii, and 16 and the values ↵1 = ↵3 = 1 for Figure 15ii.)

Theorem 5.4. If ↵1 > ↵3 > 0, then the equilibrium states have the following
behaviour:

(i) The states eµ1 are stable.
(ii) The states eµ2 ,

1
3 ln↵1↵

2
3 < µ < ln↵1 are (spectrally) unstable.

(iii) The state eµ2 , µ = ln↵1 is unstable.
(iv) The states eµ2 , µ 2

�
−1, 1

3 ln↵1↵
2
3

�
[ (ln↵1,1) are stable.

(v) The states e⌫3 are (spectrally) unstable.
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(i) ↵1 > ↵3 (ii) ↵1 = ↵3 (iii)

Figure 15: Equilibria and critical energy states for H2
4,↵ .

If ↵1 = ↵3 > 0, then the equilibrium states have the following behaviour:

(vi) The states eµ1 are stable.

(vii) The state eµ2 , µ = ln↵1 is unstable.

(viii) The states eµ2 , µ 6= ln↵1 are stable.

(ix) The states e⌫3 are (spectrally) unstable.

Remark 5.5. The equilibrium state eµ2 , µ = 1
3 ln↵1↵

2
3, ↵1 6= ↵3 is spectrally

stable. However, we were unable to determine its Lyapunov stability nature. We
suspect it is unstable (see Figure 16e).

Proof. (iii) Consider the equilibrium state eln↵1
2 = (−↵1, 0,↵3). We have that

p(t) =

✓
4(↵1 + ↵3)

4 + 2(↵1 + ↵3)2t2
− ↵1,

−2(↵1 + ↵3)
2t

2 + (↵1 + ↵3)2t2
, ↵3 −

4(↵1 + ↵3)

4 + 2(↵1 + ↵3)2t2

◆

is an integral curve of the system H2
4,↵ such that limt!−1 p(t) = eln↵1

2 . Let B"

be the open ball of radius " = ↵1 + ↵3 centred at the point eln↵1
2 . For any neigh-

bourhood V ⇢ B" of eln↵1
2 there exists t0 < 0 such that p(t0) 2 V . Furthermore

kp(0) − eln↵1
2 k =

p
2(↵1 + ↵3) > ", i.e., p(0) 62 B". Hence the state eln↵1 is

unstable. ⇤
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(a) (b) (c) (d) (e)

(f) (g)

Figure 16: Typical configurations for H2
4,↵.

5.4 – System H2
5,↵

The system H2
5,↵(p) = ↵1p1 +↵2p2 +↵3p3 + p21 +

1
2p

2
2, with ↵2 > 0, ↵1 > |↵3| > 0

or ↵2 > 0, ↵1 = ↵3 > 0, has equations of motion

ṗ1 = ↵3 p2−(↵2 + p2) p3, ṗ2 = −↵3 p1+(↵1 + 2p1) p3, ṗ3 = ↵2 p1−(↵1 + p1) p2.

The equilibria are
⇣
x, ↵2x

↵1+x ,
↵3x

↵1+2x

⌘
, x 6= −↵1, x 6= − 1

2↵1. These points are the

union of three curves which have respective parametrizations

eµ1 =

✓
− eµ −↵1, ↵2 + ↵1↵2 e

−µ,
↵3(↵1 + eµ)

↵1 + 2 eµ

◆

eµ2 =

✓
1
4↵1 tanh(µ)− 3

4↵1, ↵2 −
4↵2

1 + tanh(µ)
, 1

2↵3(2 + e2µ)

◆

eµ3 =

✓
eµ − 1

2↵1, ↵2 −
2↵1↵2

↵1 + 2 eµ
, 1

4↵3(2− ↵1 e
−µ)

◆
.
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Figure 17: Critical energy states for H2
5,↵.

The first case corresponds to x < −↵1, the second to −↵1 < x < − 1
2↵1, and the

third to x > − 1
2↵1.

The paraboloid (H2
5,↵)

−1(h0) and sphere C−1(c0) are tangent at p 2 so (3)⇤ if

and only if h0=H2
5,↵(p), c0=C(p), and

⇥
↵1 + 2p1 ↵2 + p2 ↵3

⇤
= 

⇥
2p1 2p2 2p3

⇤

for some  2 R.
For p 6= 0, this yields p =

✓
↵1

2(−1) ,
↵2

2(− 1
2 )
, ↵3

2

◆
,  6= 0, 1

2 , 1. In other words,

apart from at the origin, the level surfaces of H2
5,↵ and C are tangent at the points

e =

✓
↵1

2(− 1)
,

↵2

2(− 1
2 )

,
↵3

2

◆
,  6= 0, 1

2 , 1.

We shall find it more convenient to use this parametrization of the equilibria (cov-
ering all equilibrium points except the origin) in determining the stability nature of
the equilibria. We note that

e = eµ1 for 1
2 <  =

2 eµ +↵1

2 (eµ +↵1)
< 1, µ 2 R

e = eµ2 for 0 <  =
1

2 + e2µ
< 1

2 , µ 2 R

e = eµ3 for  =
2 eµ

2 eµ −↵1
< 0, µ < ln

↵1

2
or  =

2 eµ

2 eµ −↵1
> 1, µ > ln

↵1

2
.

In Figure 17 we graph the critical energy states (h0, c0); in Figure 18 we graph
the corresponding typical configurations. (We used the values ↵1 = 1

2 , ↵2 = 2
5 ,

↵3 = 1
2 for these figures.)

The polynomial

P↵() = −↵2
3

�
1− 3+ 22

�3
+ 3

�
−8↵2

2(− 1)3 − ↵2
1(2− 1)3

�

will be central to our discussion of the stability nature of the equilibria.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 18: Typical configurations for H2
5,↵.

Lemma 5.6. The polynomial P↵() has exactly two real roots 1 2 (0, 1
2 ) and

2 2 ( 12 , 1).

Proof. We have that

P↵(−) = −↵2
3 − 9↵2

3− 33↵2
3

2 −
�
↵2
1 + 8↵2

2 + 63↵2
3

�
3

−
�
6↵2

1 + 24↵2
2 + 66↵2

3

�
4 −

�
12↵2

1 + 24↵2
2 + 36↵2

3

�
5

−
�
8↵2

1 + 8↵2
2 + 8↵2

3

�
6.

Thus P↵(−) < 0 for  ≥ 0 and so P↵ has no nonpositive real roots. Furthermore,

P↵(0) = −↵2
3 < 0, P↵(

1
2 ) =

↵2
2

8 > 0, and P↵(1) = −↵2
1 < 0. Therefore P↵ has at

least one root in (0, 1
2 ) and at least one root in ( 12 , 1). As

�
1− 3+ 22

�3
> 0,

( − 1)3 > 0, and (2 − 1)3 > 0 for  > 1, it follows that P↵() < 0 for  > 1.
Thus P↵ has no real roots in (1,1).
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It remains to be shown that P↵ has at most one real root in (0, 1
2 ) and at most

one real root in ( 12 , 1). Suppose  2 ( 12 , 1). Then we have that 1 − 6 + 82 ≥ 0
and so

d
dP↵()

− 1
2

= −48↵2
2(− 1)22 − 6↵2

1
2
�
1− 6+ 82

�
− 6↵2

3(− 1)2(3 + 2(4− 5))

< −6↵2
3

2
�
1− 6+ 82

�
− 6↵2

3(−1 + )2(3 + 2(−5 + 4))

= −6(↵3 − 2↵3)
2(3 + 4(− 1)) < 0.

Hence P↵ is strictly decreasing on ( 12 , 1). Therefore P↵ has at most one real root
in ( 12 , 1). Similar computations, although somewhat more involved, show that P↵

is strictly increasing on (0, 1
2 ); hence P↵ has at most one real root in (0, 1

2 ). ⇤

Theorem 5.7. The equilibrium states have the following behaviour:

(i) The states e,  2 ( 12 ,2), or correspondingly eµ1 , µ < ln ↵1(22−1)
2(1−2)

, are

(spectrally) unstable.

(ii) The states e,  2 (2, 1), or correspondingly eµ1 , µ > ln ↵1(22−1)
2(1−2)

, are stable.

(iii) The states e,  2 (0,1), or correspondingly eµ2 , µ > 1
2 ln

1−21

1
, are stable.

(iv) The states e,  2 (1,
1
2 ), or correspondingly eµ2 , µ < 1

2 ln
1−21

1
, are (spec-

trally) unstable.
(v) The states e,  2 (−1, 0) [ (1,1), or correspondingly eµ3 , µ 6= ln ↵1

2 , are
stable.

(vi) The origin eµ3 , µ = ln ↵1

2 is stable.

Remark 5.8. The states e1 and e2 are spectrally stable. However, we were
unable to determine their Lyapunov stability nature. We suspect that they are
unstable (see Figures. 18e and 18i).

Proof. The linearization of the system at e has eigenvalues
±
p

P↵()
p
2
p

2(1−3+22)2

and 0. Hence, as 2
�
1− 3+ 22

�2
> 0 for  6= 0,  6= 1

2 ,  6= 1, we have a
positive real eigenvalue if and only if P↵() > 0. We have that P↵(0) = −↵2

3 < 0,

P↵(
1
2 ) =

↵2
2

8 > 0, and P↵(1) = −↵2
1 < 0. Furthermore, by the foregoing lemma,

P↵ has exactly two real roots 1 2 (0, 1
2 ) and 2 2 ( 12 , 1). Therefore P↵() > 0

for  2 (1,2) and P↵()  0 for  2 (−1,1] [ [2,1). Consequently, the
equilibrium states e,  2 (1,

1
2 ) and e,  2 ( 12 ,2) are spectrally unstable; all

other states are spectrally stable.
Consider the energy function Hλ = λH2

5,↵ − λC. We have dHλ(e
) = 0 and

d2 Hλ(e
) = diag(2(1− )λ, λ(1− 2), −2λ). Suppose  2 (−1, 0)[ (1,1) and
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let λ = −. Then d2 Hλ = diag(2( − 1), (2 − 1), 22λ) is positive definite.
Therefore the states e,  2 (−1, 0) [ (1,1) are stable.

On the other hand, assume that  2 (0, 1). It is a simple matter to show that

p 2 kerdC(e) if and only if p1 = (1−)(2↵2p2+↵3(2−1)p3)
↵1(2−1) , i.e., kerdC(e) has

basis ✓✓
2↵2(1− )

↵1(2− 1)
, 1, 0

◆
,

✓
↵3(1− )

↵1
, 0, 1

◆◆
.

The restriction of d2 Hλ(e
) to kerdC(e) is

Q =

2
4−

(8↵2
2(−1)3+↵2

1(2−1)3)λ
↵2

1(1−2)2
− 4↵2↵3(−1)3λ

↵2
1(2−1)

− 4↵2↵3(−1)3λ
↵2

1(2−1)
− 2(↵2

3(−1)3+↵2
1

3)λ
↵2

1
2

3
5 .

Suppose  2 (0,1) and let λ = 1. Then the first minor − 8↵2
2(−1)3+↵2

1(2−1)3

↵2
1(1−2)2

> 0

and detQ = − 2P↵()
↵2

1(1−2)22 . Hence, as P↵ is negative on (0,1), we have detQ > 0

and so the states e,  2 (0,1) are stable. Suppose  2 (2, 1) and let λ = −1.

We have that
2(↵2

3(−1)3+↵2
1

3)
↵2

1
2 > 0 and detQ = − 2P↵()

↵2
1(1−2)22 . Hence, as P↵

is negative on (2, 1), we have detQ > 0 and so the states e,  2 (2, 1) are
stable. ⇤

6 – Comments and concluding remarks

Quadratic Hamilton-Poisson systems play a notable role in the context of invariant
optimal control. To each invariant optimal control affine problem on a Lie group
one can associate, via the Pontryagin Maximum Principle, a quadratic Hamilton-
Poisson system on the dual space of the corresponding Lie algebra. The extremal
controls are (linearly) related to the integral curves of this Hamiltonian system.
(For more details see, e.g., [5, 13, 26, 23].)

Accordingly, in order to obtain the extremal trajectories for an optimal control
problem on SO (3), one needs to find the integral curves of the associated quadratic
Hamilton-Poisson system on so (3)⇤−. Any such quadratic Hamilton-Poisson sys-
tem is equivalent to one of the normal forms enumerated in Theorem 2.4. Two
illustrative examples follow.

Example 6.1. Consider the optimal control problem on SO (3) specified by

8
>>><
>>>:

ġ = g(E1 + u1E2 + u2E3), g 2 SO (3), u = (u1, u2) 2 R2

g(0) = g0 and g(T ) = gT

J =

Z T

0

�
c1u1(t)

2 + c2u2(t)
2
�
dt ! min, c1 ≥ c2 > 0.
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The normal extremal trajectories are solutions to ġ = g(E1 + u1E2 + u2E3), where
u1(t) =

1
c1
p2(t), u2(t) =

1
c2
p3(t) and p(t) is an integral curve of the Hamiltonian

system on so(3)⇤− specified by

H(p) = p1 +
1

2c1
p22 +

1
2c2

p23.

If c1 > c2, then H is equivalent to H2
1,↵, ↵ =

p
2(c1−c2)p

c1c2
. Indeed,

 : p 7! p

2
64
−p

2c1c2 0 0

0 − c1
p
c2p

c1−c2
0

0 0 − c2
p
2c1p

c1−c2

3
75+

⇥
2c2 − c1 0 0

⇤

is an affine isomorphism such that T · −!H 2
1,↵ =

−!
H ◦  . Accordingly, the extremal

controls are ū1(t) = −
q

c2
c1−c2

p2(t) and ū2(t) = −
q

2c1
c1−c2

p3(t), where p(·) is an

integral curve of the system H2
1,↵ (see Theorems 4.5-4.13). On the other hand,

if c1 = c2 = c, then H is equivalent to H1
0 . Indeed,  : p 7! p + q,  =

diag(−c, 1, 1), q =
⇥
c 0 0

⇤
is an affine isomorphism such that  · −!H 1

0 =
−!
H ◦  .

Accordingly, the extremal controls are ū1(t) =
1
cp2(t) and ū2(t) =

1
cp3(t), where

p(·) is an integral curve of the system H1
0 (see Section 3.1).

Example 6.2. The attitude control of a spacecraft has been modelled as a
left-invariant control system on the Lie group SO (3), see [29]. Assuming that the
spacecraft can only be controlled about two axes, the di↵erential equation describing
the attitude of the spacecraft is given by

ġ = g(u1E1 + u2E2).

In the spacecraft attitude control problem one wishes to minimize some energy-type
cost function which is quadratic in the controls.

Typically, such a problem takes the form

8
>>><
>>>:

ġ = g(u1E1 + u2E2), g 2 SO (3), u = (u1, u2) 2 R2

g(0) = g0 and g(T ) = gT

J =

Z T

0

�
c1u1(t)

2 + c2u2(t)
2
�
dt ! min, c1, c2 > 0.

The associated Hamilton-Poisson system is again easily calculated and is equivalent
to one of the homogeneous systems listed in Theorem 2.4. The extremal controls
can be obtained as in Example 6.1; the optimal trajectories g(·) on SO (3) can
then be calculated (see, e.g., [10, 24]).
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