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Algebraic cycles on some special hyperkähler varieties

Robert Laterveer

Abstract. This note contains some examples of hyperkähler varieties X having a group G of

non–symplectic automorphisms, and such that the action of G on certain Chow groups of X is

as predicted by Bloch’s conjecture. The examples range in dimension from 6 to 132. For each

example, the quotient Y = X/G is a Calabi–Yau variety which has interesting Chow–theoretic

properties; in particular, the variety Y satisfies (part of) a strong version of the Beauville–Voisin

conjecture.

1 Introduction

Let X be a hyperkähler variety of dimension n = 2k (i.e., a projective irreducible
holomorphic symplectic manifold, cf. [3], [4]). Let G ⊂ Aut(X) be a finite cyclic
group of order k consisting of non–symplectic automorphisms. We will be inter-
ested in the action of G on the Chow groups A∗(X). (Here, Ai(X) := CHi(X)Q
denotes the Chow group of codimension i algebraic cycles modulo rational equiva-
lence with Q–coefficients. We will write Aihom(X) and AiAJ(X) ⊂ Ai(X) to denote
the subgroups of homologically trivial (resp. Abel–Jacobi trivial) cycles.)

We will suppose X has a multiplicative Chow–Künneth decomposition, in the
sense of [42]. This implies the Chow ring of X is a bigraded ring A∗(∗)(X), where
each Chow group splits as

Ai(X) = Ai(0)(X)⊕Ai(1)(X)⊕ · · · ⊕Ai(i)(X) ,

and the piece Ai(j)(X) is expected to be the graded GrjFA
i(X) for the conjectural

Bloch–Beilinson filtration F ∗ on Chow groups. (Conjecturally, all hyperkähler va-
rieties have a multiplicative Chow–Künneth decomposition. This has been checked
for Hilbert schemes of K3 surfaces [42], [48], and for generalized Kummer varieties
[18].)

Since Hn,0(X) = H2,0(X)⊗k, the group G acts as the identity on Hn,0(X).
For i < n, we have that

∑
g∈G g

∗ acts as 0 on Hi,0(X). The Bloch–Beilinson
conjectures [25] thus imply the following conjecture:
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Conjecture 1.1. Let X be a hyperkähler variety of dimension n = 2k, and let
G ⊂ Aut(X) be a finite cyclic group of order k of non–symplectic automorphisms.
Then

An(n)(X) ∩An(X)G = An(n)(X) ;

An(j)(X) ∩An(X)G = 0 for 0 < j < n ;

Ai(i)(X) ∩Ai(X)G = 0 for 0 < i < n .

(Here Ai(X)G ⊂ Ai(X) denotes the G–invariant part of the Chow group
Ai(X).)

The aim of this note is to find examples where conjecture 1.1 is verified. The
main result presents an example of dimension n = 6 (and so k = 3) where most
of conjecture 1.1 is true. The example is given by the Hilbert scheme of a certain
special K3 surface studied by Livné–Schütt–Yui [33]:

Theorem (=theorem 3.1). Let S3 be the K3 surface as in theorem 2.24, and
let X be the Hilbert scheme X := (S3)[3] of dimension 6. Let G ⊂ Aut(X) be
the order 3 group of non–symplectic natural automorphisms, corresponding to the
group GS3

⊂ Aut(S3) of definition 2.22. Then

Ai(j)(X) ∩Ai(X)G = 0 if (i, j) ∈
{

(2, 2), (4, 4), (3, 2), (5, 2), (6, 2), (6, 4)
}
.

The proof of theorem 3.1 is a fairly easy consequence of the fact that the surface
S3 (and hence the Hilbert scheme X) has finite–dimensional motive (in the sense
of [29]), and is ρ–maximal (in the sense of [6]). Yet, the implications of theorem 3.1
are quite striking. These implications are most conveniently presented in terms
of the Chow ring of the quotient Y = X/G (the variety Y is a 6–dimensional
“Calabi–Yau variety with quotient singularities”):

Corollary (=corollary 4.3). Let X and G be as in theorem 3.1, and let Y := X/G.
For any r ∈ N, let

E∗(Y r) ⊂ A∗(Y r)
denote the subalgebra generated by (pullbacks of) A1(Y ), A2(Y ), A3(Y ) and the
diagonal ∆Y ∈ A6(Y ×Y ) and the small diagonal ∆sm

Y ∈ A12(Y 3). Then the cycle
class map

Ei(Y r) → H2i(Y r)

is injective for i ≥ 6r − 1.

Corollary (=corollary 4.4). Let X and G be as in theorem 3.1, and let Y := X/G.
Let a ∈ Ai(Y ) be a cycle with i 6= 3. Assume a is a sum of intersections of 2 cycles
of strictly positive codimension, i.e.

a ∈ Im
(
Am(Y )⊗Ai−m(Y ) → Ai(Y )

)
, 0 < m < i .

Then a is rationally trivial if and only if a is homologically trivial.
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This behaviour is remarkable, because A6(Y ) is “huge” (it is not supported
on any proper subvariety). In a sense, corollary 4.4 is a mixture of the Beauville–
Voisin conjecture (concerning the Chow ring of Hilbert schemes of K3 surfaces
[49, Conjecture 1.3]) on the one hand, and results concerning 0–cycles on certain
Calabi–Yau varieties [50], [16], on the other hand (cf. remark 4.6). These corol-
laries are easily proven; one merely exploits the good properties of multiplicative
Chow–Künneth decompositions combined with finite–dimensionality of the motive
of X.

We also give a partial generalization of theorem 3.1 to Hilbert schemes of
higher dimension. This generalization concerns Hilbert schemes of the other special
K3 surfaces Sk (k > 3) studied by Livné–Schütt–Yui [33]. The surfaces Sk all have
finite–dimensional motive, however (apart from k = 3) they are not ρ–maximal;
for this reason, the conclusion is weaker in these cases:

Theorem (=theorem 5.1). Let Sk be one of the 16 K3 surfaces studied in [33].
Let X be the Hilbert scheme X = (Sk)[k] of dimension n = 2k. Let G ⊂ Aut(X) be
the order k group of natural automorphisms induced by the order k automorphisms
of Sk. Then

Ai(2)(X) ∩Ai(X)G = 0 for i ∈ {2, n} .

The K3 surfaces Sk of [33] have k ranging from 3 to 66; the dimension n in
theorem 5.1 thus ranges from 6 to 132. Theorem 5.1 as proven below is actually
more general than the above statement: theorem 5.1 also applies to certain of the
K3 surfaces studied in [41] (in particular, there exists a one–dimensional family
of Hilbert schemes X of dimension 8 for which theorem 5.1 is true).

Again, the quotient Y := X/G is a “Calabi–Yau variety with quotient singular-
ities” (of dimension n up to 132) which has interesting Chow–theoretic behaviour:

Corollary (=corollaries 5.2 and 5.3). Let X and G be as in theorem 5.1. Let
Y := X/G.

(i) Let a ∈ An−1(Y ) be a 1–cycle which is in the image of the intersection product
map

Ai1(Y )⊗Ai2(Y )⊗ · · · ⊗Air (Y ) → An−1(Y ) ,

where all ij are ≤ 2. Then a is rationally trivial if and only if a is homologically
trivial.

(ii) Let a ∈ An(Y ) be a 0–cycle which is in the image of the intersection product
map

A3(Y )⊗Ai1(Y )⊗ · · · ⊗Air (Y ) → An(Y ) ,

where all ij are ≤ 2. Then a is rationally trivial if and only if a is homologically
trivial.

Results similar in spirit have been obtained for certain other hyperkähler va-
rieties and their Calabi–Yau quotients in [31], [32].
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Conventions. In this article, the word variety will refer to a reduced irreducible
scheme of finite type over C. A subvariety is a (possibly reducible) reduced sub-
scheme which is equidimensional.

All Chow groups will be with rational coefficients: we will denote by
Aj(X) the Chow group of j–dimensional cycles on X with Q–coefficients; for X
smooth of dimension n the notations Aj(X) and An−j(X) are used interchange-
ably.

The notations Ajhom(X), AjAJ(X) will be used to indicate the subgroups of
homologically trivial, resp. Abel–Jacobi trivial cycles. For a morphism f : X → Y ,
we will write Γf ∈ A∗(X × Y ) for the graph of f . The contravariant category of
Chow motives (i.e., pure motives with respect to rational equivalence as in [40],
[35]) will be denoted Mrat.

We will write Hj(X) to indicate singular cohomology Hj(X,Q).
Given a group G ⊂ Aut(X) of automorphisms of X, we will write Aj(X)G

(and Hj(X)G) for the subgroup of Aj(X) (resp. Hj(X)) invariant under G.

2 Preliminaries

2.1 Quotient varieties

Definition 2.1. A projective quotient variety is a variety

Y = X/G ,

where X is a smooth projective variety and G ⊂ Aut(X) is a finite group.

Proposition 2.2 (Fulton [19]). Let Y be a projective quotient variety of dimension
n. Let A∗(Y ) denote the operational Chow cohomology ring. The natural map

Ai(Y ) → An−i(Y )

is an isomorphism for all i.

Proof. This is [19, Example 17.4.10].

Remark 2.3. It follows from proposition 2.2 that the formalism of correspon-
dences goes through unchanged for projective quotient varieties (this is also noted
in [19, Example 16.1.13]). We can thus consider motives (Y, p, 0) ∈Mrat, where Y
is a projective quotient variety and p ∈ An(Y ×Y ) is a projector. For a projective
quotient variety Y = X/G, one readily proves (using Manin’s identity principle)
that there is an isomorphism

h(Y ) ∼= h(X)G := (X,∆G
X , 0) in Mrat ,

where ∆G
X denotes the idempotent

∆G
X :=

1

|G|
∑
g∈G

Γg ∈ An(X ×X).

(NB: ∆G
X is a projector on the G–invariant part of the Chow groups A∗(X)G.)
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2.2 Finite–dimensional motives

We refer to [29], [2], [35], [22], [27] for basics on the notion of finite–dimensional
motive. An essential property of varieties with finite–dimensional motive is em-
bodied by the nilpotence theorem:

Theorem 2.4 (Kimura [29]). Let X be a smooth projective variety of dimension
n with finite–dimensional motive. Let Γ ∈ An(X ×X) be a correspondence which
is numerically trivial. Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X ×X) .

Actually, the nilpotence property (for all powers of X) could serve as an alter-
native definition of finite–dimensional motive, as shown by a result of Jannsen
[27, Corollary 3.9]. Conjecturally, all smooth projective varieties have finite–
dimensional motive [29]. We are still far from knowing this, but at least there
are quite a few non–trivial examples:

Remark 2.5. The following varieties have finite–dimensional motive: abelian va-
rieties, varieties dominated by products of curves [29], K3 surfaces with Picard
number 19 or 20 [36], surfaces not of general type with pg = 0 [20, Theorem 2.11],
certain surfaces of general type with pg = 0 [20], [37], [53], Hilbert schemes of sur-
faces known to have finite–dimensional motive [14], generalized Kummer varieties
[57, Remark 2.9(ii)] (an alternative proof is contained in [18]), threefolds with nef
tangent bundle [23] (an alternative proof is given in [45, Example 3.16]), fourfolds
with nef tangent bundle [24], certain threefolds of general type [47, Section 8], va-
rieties of dimension ≤ 3 rationally dominated by products of curves [45, Example
3.15], varieties X with AiAJ(X) = 0 for all i [44, Theorem 4], products of varieties
with finite–dimensional motive [29].

Remark 2.6. It is an embarassing fact that up till now, all examples of finite-
dimensional motives happen to lie in the tensor subcategory generated by Chow
motives of curves, i.e. they are “motives of abelian type” in the sense of [45]. On
the other hand, there exist many motives that lie outside this subcategory, e.g.
the motive of a very general quintic hypersurface in P3 [15, 7.6].

2.3 MCK decomposition

Definition 2.7 (Murre [34]). Let X be a projective quotient variety of dimension
n. We say that X has a CK decomposition if there exists a decomposition of the
diagonal

∆X = π0 + π1 + · · ·+ π2n in An(X ×X) ,

such that the πi are mutually orthogonal idempotents and (πi)∗H
∗(X) = Hi(X).

(NB: “CK decomposition” is shorthand for “Chow–Künneth decomposition”.)

Remark 2.8. The existence of a CK decomposition for any smooth projective
variety is part of Murre’s conjectures [34], [25].
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Definition 2.9 (Shen–Vial [42]). Let X be a projective quotient variety of di-
mension n. Let ∆sm

X ∈ A2n(X ×X ×X) be the class of the small diagonal

∆sm
X :=

{
(x, x, x) | x ∈ X

}
⊂ X ×X ×X .

An MCK decomposition is a CK decomposition {πi} of X that is multiplicative,
i.e. it satisfies

πk ◦∆sm
X ◦ (πi × πj) = 0 in A2n(X ×X ×X) for all i+ j 6= k .

(NB: “MCK decomposition” is shorthand for “multiplicative Chow–Künneth
decomposition”.)

Remark 2.10. The small diagonal (seen as a correspondence from X ×X to X)
induces the multiplication morphism

∆sm
X : h(X)⊗ h(X) → h(X) in Mrat .

Suppose X has a CK decomposition

h(X) =

2n⊕
i=0

hi(X) in Mrat .

By definition, this decomposition is multiplicative if for any i, j the composition

hi(X)⊗ hj(X) → h(X)⊗ h(X)
∆sm
X−−−→ h(X) in Mrat

factors through hi+j(X). It follows that if X has an MCK decomposition, then
setting

Ai(j)(X) := (πX2i−j)∗A
i(X) ,

one obtains a bigraded ring structure on the Chow ring: that is, the intersection

product sends Ai(j)(X)⊗Ai′(j′)(X) to Ai+i
′

(j+j′)(X).

The property of having an MCK decomposition is severely restrictive, and
is closely related to Beauville’s “weak splitting property” [5]. For more ample
discussion, and examples of varieties with an MCK decomposition, we refer to [42,
Section 8], as well as [48], [43], [18], [31].

Theorem 2.11 (Vial [48]). Let S be an algebraic K3 surface, and let X = S[k]

be the Hilbert scheme of length k subschemes of S. Then X has a self–dual MCK
decomposition.

Proof. This is [48, Theorem 1]. For later use, we briefly review the construc-
tion. First, one takes an MCK decomposition {πSi } for S (this exists, thanks to
[42]). Taking products, this induces an MCK decomposition {πSri } for Sr, r ∈ N.
This product MCK decomposition is invariant under the action of the symmetric
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group Sr, and hence it induces an MCK decomposition {πS(r)

i } for the symmetric
products S(r), r ∈ N. There is the isomorphism of de Cataldo–Migliorini [14]⊕

µ∈B(k)

(tΓ̂µ)∗ : Ai(X)
∼=−→

⊕
µ∈B(k)

Ai+l(µ)−k(S(µ)) ,

where B(k) is the set of partitions of k, l(µ) is the length of the partition µ, and
S(µ) = Sl(µ)/Sl(µ), and tΓ̂µ is a correspondence in Ak+l(µ)(S[k]×S(µ)). Using this
isomorphism, Vial defines [48, Equation (4)] a natural CK decomposition for X,
by setting

πXi :=
∑

µ∈B(k)

1

mµ
Γ̂µ ◦ πS

(µ)

i−2k+2l(µ) ◦
tΓ̂µ , (1)

where the mµ are rational numbers coming from the de Cataldo–Migliorini iso-
morphism. The {πXi } of definition (1) are proven to be an MCK decomposition.

The self–duality of the {πXi } is apparent from definition (1).

Remark 2.12. It follows from definition (1) that the de Cataldo–Migliorini iso-
morphism is compatible with the bigrading of the Chow ring, in the sense that
there are induced isomorphisms⊕

µ∈B(k)

(tΓ̂µ)∗ : Ai(j)(X)
∼=−→

⊕
µ∈B(k)

A
i+l(µ)−k
(j) (S(µ)) .

In particular, there are split injections⊕
µ∈B(k)

(tΓµ)∗ : Ai(j)(X)
∼=−→

⊕
µ∈B(k)

A
i+l(µ)−k
(j) (Sµ) .

Lemma 2.13 (Shen–Vial). Let X be a projective quotient variety of dimension
n, and suppose X has a self–dual MCK decomposition. Then

∆X ∈ An(0)(X ×X) ,

∆sm
X ∈ A2n

(0)(X ×X ×X) .

Proof. The first statement follows from [43, Lemma 1.4] when X is smooth. The
same argument works for projective quotient varieties; the point is just that

∆X =

2n∑
i=0

πXi =

2n∑
i=0

πXi ◦ πXi

=

2n∑
i=0

(tπXi × πXi )∗∆X

=

2n∑
i=0

(πX2n−i × πXi )∗∆X

= (πX×X2n )∗∆X ∈ An(0)(X ×X) .
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(Here, the second line follows from Lieberman’s lemma [45, Lemma 3.3], and the
last line is the fact that the product of 2 MCK decompositions is MCK.)

The second statement is proven for smooth X in [42, Proposition 8.4]; the
same argument works for projective quotient varieties.

2.4 Birational invariance

Proposition 2.14 (Rieß[38], Vial [48]). Let X and X ′ be birational hyperkähler
varieties. Assume X has an MCK decomposition. Then also X ′ has an MCK
decomposition, and there are natural isomorphisms

Ai(j)(X) ∼= Ai(j)(X
′) for all i, j .

Proof. As noted by Vial [48, Introduction], this is a consequence of Rieß’s result
that X and X ′ have isomorphic Chow motive (as algebras in the category of Chow
motives). For more details, cf. [42, Section 6] or [32, Lemma 2.8].

2.5 A commutativity lemma

Lemma 2.15. Let S be an algebraic K3 surface, and let {πSi } be the MCK de-
composition as above. Let h ∈ Aut(S). Then

Γh ◦ πSi = πSi ◦ Γh in A2(S × S) ∀i .

Proof. It suffices to prove this for i = 0. Indeed, by definition of {πSi } we have

πS4 := tπS0 in A2(S × S) ,

πS2 := ∆S − πS0 − πS4 .

Supposing the lemma holds for i = 0, by taking transpose correspondences we get
an equality

Γh−1 ◦ πS4 = πS4 ◦ Γh−1 in A2(S × S) .

Composing on both sides with Γh, we get

πS4 ◦ Γh = Γh ◦ πS4 in A2(S × S) .

Next, since obviously the diagonal ∆S commutes with Γh, we also get

Γh ◦ πS2 = Γh ◦ (∆S − πS0 − πS4 ) = (∆S − πS0 − πS4 ) ◦ Γh = πS2 ◦ Γh in A2(S × S) .

It remains to prove the lemma for i = 0. The projector πS0 is defined as

πS0 = oS × S ∈ A2(S × S) ,

where oS ∈ A2(S) is the “distinguished point” of [7] (any point lying on a rational
curve in S equals oS in A2(S)). It is known [7] that

Im
(
A1(S)⊗A1(S) → A2(S)

)
= Q[oS ] .
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It follows that there exist divisors D1, D2 ∈ A1(S) such that oS = D1 ·D2, and so

h∗(oS) = h∗(D1 ·D2) = h∗(D1) · h∗(D2) ∈ Q[oS ] .

Since h∗(oS) is the class of a point h−1(x) (where x ∈ S is any point lying on a
rational curve), it has degree 1 and thus

h∗(oS) = oS in A2(S) .

Using Lieberman’s lemma [48, Lemma 3.3], we find that

πS0 ◦ Γh = (tΓh ×∆S)∗(π
S
0 )

= (tΓh ×∆S)∗(oS × S)

= h∗(oS)× S
= oS × S = πS0 in A2(S × S) ,

whereas obviously

Γh ◦ πS0 = (∆S × Γh)∗(oS × S) = oS × S = πS0 in A2(S × S) .

This proves the i = 0 case of the lemma.

The following lemmas establish some corollaries of lemma 2.15:

Lemma 2.16. Let S be an algebraic K3 surface, and GS ⊂ Aut(S) a group of
finite order k. For any r ∈ N, let {πSri } denote the product MCK decomposition
of Sr induced by the MCK decomposition of S as above. Let

∆G
Sr :=

1

k

∑
g∈GS

Γg × · · · × Γg ∈ A2r(Sr × Sr) .

Then

∆G
Sr ◦ πS

r

i = πS
r

i ◦∆G
Sr ∈ A2r(Sr × Sr)

is an idempotent, for any i.

Proof. It suffices to prove the commutativity statement. (Indeed, since both ∆G
Sr

and πS
r

i are idempotent, the idempotence of their composition follows immediately
from the stated commutativity relation.) To prove the commutativity statement,
we will prove more precisely that for any h ∈ Aut(S) we have equality

Γh×r ◦ πS
r

i = πS
r

i ◦ Γh×r ∈ A2r(Sr × Sr) . (2)
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This can be seen as follows: we have

Γh×r ◦ πS
r

i = (Γh × · · · × Γh) ◦ (
∑

i1+···+ir=i

πSi1 × · · · × π
S
ir )

=
∑

i1+···+ir=i

(Γh ◦ πSi1)× · · · × (Γh ◦ πSir )

=
∑

i1+···+ir=i

(πSi1 ◦ Γh)× · · · × (πSir ◦ Γh)

=
∑

i1+···+ir=i

(πSi1 × · · · × π
S
ir ) ◦ (Γh × · · · × Γh)

= πS
r

i ◦ Γh×r in A2r(Sr × Sr) .

Here, the first and last lines are the definition of the product MCK decomposition
for Sr; the second and fourth line are just regrouping, and the third line is lemma
2.15.

Lemma 2.17. Let S be an algebraic K3 surface, and GS ⊂ Aut(S) a group of
finite order k. For any r ∈ N, let X = S[r] and let G ⊂ Aut(X) be the group of
natural automorphisms induced by GS. Let {πXi } be the MCK decomposition of
theorem 2.11. Let ∆G

X denote the correspondence

∆G
X :=

1

k

∑
g∈G

Γg ∈ A2r(X ×X) .

Then
∆G
X ◦ πXi = πXi ◦∆G

X ∈ A2r(X ×X)

is an idempotent, for any i.

Proof. Again, it suffices to prove the commutativity statement. This can be done
as follows: for any g ∈ G, we can write g = h[r] where h ∈ Aut(S). Then we have

Γg ◦ πXi = Γg ◦
∑

µ∈B(k)

1

mµ
Γµ ◦ πS

µ

i−2k+2l(µ) ◦
tΓµ

=
∑

µ∈B(k)

1

mµ
Γg ◦ Γµ ◦ πS

µ

i−2k+2l(µ) ◦
tΓµ

=
∑

µ∈B(k)

1

mµ
Γµ ◦ Γh×l(µ) ◦ πS

µ

i−2k+2l(µ) ◦
tΓµ

=
∑

µ∈B(k)

1

mµ
Γµ ◦ πS

µ

i−2k+2l(µ) ◦ Γh×l(µ) ◦ tΓµ

=
∑

µ∈B(k)

1

mµ
Γµ ◦ πS

µ

i−2k+2l(µ) ◦
tΓµ ◦ Γg

= πXi ◦ Γg in A2r(X ×X) .
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Here, the first line follows from the definition of πXi (definition (1)). The second
line is just regrouping, the third line is by construction of natural automorphisms
of X, the fourth line is equality (2) above, and the fifth line is again by construction
of natural automorphisms.

Lemma 2.18. Let S be an algebraic K3 surface, and let X = S[r] be the Hilbert
scheme of length r subschemes. Let G ⊂ Aut(X) a group of finite order k of natural
automorphisms. Then the quotient Y := X/G has a self–dual MCK decomposition.

Proof. Let p : X → Y denote the quotient morphism. One defines

πYj :=
1

k
Γp ◦ πXj ◦ tΓp ∈ A2r(Y × Y ) ,

where {πXj } is the self–dual MCK decomposition of theorem 2.11. This defines a

self–dual CK decomposition {πYj }, since

πYi ◦ πYj =
1

k2
Γp ◦ πXi ◦ tΓp ◦ Γp ◦ πXj ◦ tΓp

=
1

k
Γp ◦ πXi ◦∆G

X ◦ πXj ◦ tΓp

=
1

k
Γp ◦ πXi ◦ πXj ◦∆G

X ◦ tΓp

=

{
0 if i 6= j ;
1
kΓp ◦ πXi ◦ tΓp = πYi if i = j .

(Here, in the third line we have used lemma 2.15.)
It remains to check this CK decomposition is multiplicative. To this end, let

i, j, k be integers with k 6= i+ j. We note that

πYk ◦∆sm
Y ◦ (πYi × πYj ) =

1

k3
Γp ◦ πXk ◦ tΓp ◦∆Y

sm ◦ Γp×p ◦ (πXi × πXj ) ◦ tΓp×p

= Γp ◦ πXk ◦∆G
X ◦∆sm

X ◦ (∆G
X ×∆G

X) ◦ (πXi × πXj ) ◦ tΓp×p
= Γp ◦∆G

X ◦ πXk ◦∆sm
X ◦ (πXi × πXj ) ◦ (∆G

X ×∆G
X) ◦ tΓp×p

= 0 in A2n(Y × Y × Y ) .

Here, the first equality is by definition of the πYi , the second equality is lemma
2.19 below, the third equality follows from lemma 2.17, and the fourth equality is
the fact that the πXi are an MCK decomposition for X.

Lemma 2.19. There is equality

tΓp ◦∆sm
Y ◦ Γp×p = (

∑
g∈G

Γg) ◦∆sm
X ◦

(
(
∑
g∈G

Γg)× (
∑
g∈G

Γg)
)

= k3 ∆G
X ◦∆sm

X ◦ (∆G
X ×∆G

X) in A2n(X ×X ×X) .
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Proof. The second equality is just the definition of ∆G
X . As to the first equality,

we first note that

∆sm
Y = (p× p× p)∗(∆sm

X ) = Γp ◦∆sm
X ◦ tΓp×p in A3n(Y × Y × Y ) .

This implies that

tΓp ◦∆sm
Y ◦ Γp×p = tΓp ◦ Γp ◦∆sm

X ◦ tΓp×p ◦ Γp×p .

But tΓp ◦ Γp =
∑
g∈G Γg, and thus

tΓp ◦∆sm
Y ◦ Γp×p = (

∑
g∈G

Γg) ◦∆sm
X ◦

(
(
∑
g∈G

Γg)× (
∑
g∈G

Γg)
)

in A2n(X ×X ×X) ,

as claimed.

2.6 An injectivity result

Lemma 2.20 (Vial [48]). Let S be an algebraic K3 surface, and X = S[r] the
Hilbert scheme of length r subschemes of S. The cycle class map induces a map

Ai(0)(X) → H2i(X)

that is injective for i ≥ 2r − 1.

Proof. This is stated without proof in [48, Introduction]. The idea is as follows:
let i ≥ 2r − 1. Using remark 2.12, we obtain a commutative diagram

Ai(0)(X) → Ai(0)(S
r)

↓ ↓
H2i(X) → H2i(Sr) ,

where horizontal arrows are split injections, and vertical arrows are restrictions of
the cycle class map. It thus suffices to prove that restriction of the cycle class map

Ai(0)(S
r) → H2i(Sr)

is injective.
Let {πSrj } denote the product MCK decomposition constructed above. It

follows from the definition of Ai(0)(S
r) that

(πS
r

2i )∗ = id: Ai(0)(S
r) → Ai(Sr) .

Let x ∈ S be a point such that x = oS in A2(S). Then the projector πS
r

4r is
supported on Sr × (x× · · · × x), and πS

r

4r−2 is supported on

Sr×(S×x×· · ·×x)∪Sr×(x×S×x×· · ·×x)∪· · ·∪Sr×(x×· · ·×x×S) ⊂ Sr×Sr .



Algebraic cycles on some special hyperkähler varieties 255

It follows that for i = 2r there is a factorization

A2r
(0)(S

r) → H4r(Sr)

↓ ↓
A0(x× · · · × x) → H0(x× · · · × x)

↓ ↓
A2r

(0)(S
r) → H4r(Sr) ,

where composition of vertical arrows is (πS
r

4r )∗ = id. This implies A2r
(0)(S

r) ∼= Q
and the map to H4r(Sr) is an isomorphism.

Likewise, for i = 2r − 1 there is a factorization

A2r−1
(0) (Sr) → H4r−2(Sr)

↓ ↓⊕
A1(S) →

⊕
H2(S)

↓ ↓
A2r−1

(0) (Sr) → H4r−2(Sr) ,

where composition of vertical maps is (πS
r

4r−2)∗ = id. Since the middle horizontal
arrow is injective, this implies the other horizontal arrows are injective as well.

Remark 2.21. As explained in [42], conjecturally the restriction of the cycle class
map

Ai(0)(X) → H2i(X)

is injective for any variety X having an MCK decomposition. This is related to
Murre’s “conjecture D” [34], and the expectation that the bigrading A∗(∗) should
give a splitting of a Bloch–Beilinson filtration.

As we will see below (lemma 4.5), for Hilbert schemes of special K3 surfaces
one can prove more than lemma 2.20.

2.7 LSY surfaces

Definition 2.22. An LSY surface (short for “Livné–Schütt–Yui surface”) is a
projective K3 surface S, with the following properties:
(i) There is a group GS ⊂ Aut(S) acting trivially on NS(S);
(ii) Let k := ord(GS). There is equality

dim(TS) = φ(k) ,

where TS ⊂ H2(S) denotes the transcendental lattice, and φ(k) is Euler’s totient
function.

Remark 2.23. Assumption (i) of definition 2.22 implies that GS is a finite cyclic
group [33], so the definition of the integer k makes sense. Under assumption (i),
φ(k) divides dim(TS), so assumption (ii) is equivalent to asking that the Picard
number of S is maximal among all K3 surfaces satisfying (i) for a given value of
k = ord(GS).
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Theorem 2.24 (Livné–Schütt–Yui [33]). Let S be an LSY surface, and k :=
ord(GS). Then

k ∈
{

3, 5, 7, 9, 11, 12, 13, 17, 19, 25, 27, 28, 36, 42, 44, 66
}
.

Conversely, for each of these values of k, there exists a unique LSY surface Sk with
k := ord(GS) up to isomorphism. All these surfaces Sk have finite–dimensional
motive.

Proof. This is [33, Theorems 1 and 2], combined with the explicit descriptions
given in [33, Sections 3 and 4].

Remark 2.25. The study of LSY surfaces was initiated by Vorontsov [56] and
Kondo [30]. Livné–Schütt–Yui give explicit equations for all the surfaces Sk [33,
Sections 3 and 4]. To give one example, the surface S66 can be described as a
hypersurface of degree 12

x2
0 + x3

1 + x11
2 x3 + x12

3 = 0

in a weighted projective space P(6, 4, 1, 1). (As explained in [33, Remark 2], the
surface S66 can also be described as an elliptic surface.).

With the exception of S3 (which is of maximal Picard rank ρ(S3) = 20), all
the Sk are Delsarte surfaces; as such, they are dominated by Fermat surfaces. This
immediately implies finite–dimensionality of the Sk.

2.8 Schütt surfaces

Definition 2.26. A Schütt surface is a projective K3 surface S, with the following
properties:
(i) There is a group GS ⊂ Aut(S) acting trivially on NS(S);
(ii) The order k := ord(GS) is a 2–power;
(iii) There is equality

dim(TS) = k ,

where TS ⊂ H2(S) denotes the transcendental lattice.

Complementing results of [56], [30], [33], Schütt has classified Schütt surfaces:

Theorem 2.27 (Schütt [41]). Let S be a Schütt surface, and k = ordGS. Then

k ∈
{

2, 4, 8, 16
}
.

Conversely:

k = 2 there exists a unique Schütt surface S2 with k = 2 (up to isomorphism);

k = 4 any Schütt surface with k = 4 is an element of the one–dimensional family
Sunimod4,λ (λ ∈ C) or the one–dimensional family Snon4,λ (λ ∈ C);
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k = 8 any Schütt surface with k = 8 is an element of a one–dimensional family
S8,λ (λ ∈ C);

k = 16 any Schütt surface with k = 16 is an element of a one–dimensional family
S16,λ (λ ∈ C).

Proof. This is [41, Theorem 1].

Remark 2.28. The surfaces in theorem 2.27 are given by explicit equations. For
example, the family Sunimod4,λ is defined by the Weierstrass equation

y2 = x3 − 3λt4x+ t5 + t7

[41, Theorem 1]. For a generic λ, this surface will have rank(TS) = 4, and so the
surface is a Schütt surface.

Contrary to the LSY surfaces, not all Schütt surfaces have provably finite–
dimensional motive. Some of them do, however:

Proposition 2.29 (Schütt [41]). Let S be either a Sunimod4,λ with λ generic, or

S ∈
{
S2, S

non
4,0 , S8,0, S8,2, S8,

√
3, S16,0, S16,2, S16,

√
3

}
.

Then S is a Schütt surface with finite–dimensional motive.

Proof. A generic element of the pencil Sunimod4,λ is a Schütt surface [41]. It also has
a Shioda–Inose structure [41], which implies finite–dimensionality. The surface S2

has Picard number 20, hence is Kummer. The other surfaces in proposition 2.29
are dominated by Fermat surfaces [41, Lemma 18], hence have finite–dimensional
motive.

2.9 Transcendental part of the motive

Theorem 2.30 (Kahn–Murre–Pedrini [28]). Let S be a surface. There exists a
decomposition

h2(S) = t2(S)⊕ halg2 (S) ∈Mrat ,

such that
H∗(t2(S),Q) = H2

tr(S) , H∗(halg2 (S),Q) = NS(S)Q

(here H2
tr(S) is defined as the orthogonal complement of the Néron–severi group

NS(S)Q in H2(S,Q)), and

A∗(t2(S))Q = A2
AJ(S)Q .

(The motive t2(S) is called the transcendental part of the motive.)

Let halg2 (S) = (S, πalg2 , 0) ∈ Mrat. The projector πalg2 is supported on D ×D,
for D ⊂ S a divisor.
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2.10 Natural automorphisms of Hilbert schemes

Definition 2.31 (Boissière [11]). Let S be a surface, and let X = S[k] denote the
Hilbert scheme of length k subschemes. An automorphism ψ ∈ Aut(S) induces an
automorphism ψ[k] of X. This determines a homomorphism

Aut(S) → Aut(X) ,

ψ 7→ ψ[k] ,

which is injective [11]. The image of this homomorphism is called the group of
natural automorphisms of X.

Theorem 2.32 (Boissière–Sarti [13]). Let S be a K3 surface, and X = S[k].
Let E ⊂ X denote the exceptional divisor of the Hilbert–Chow morphism. An
automorphism g ∈ Aut(X) is natural if and only if g∗(E) = E in NS(X).

Proof. This is [13, Theorem 1].

Remark 2.33. To find examples of non–natural automorphisms of a Hilbert
scheme X, Boissière and Sarti introduce the notion of index of an automorphism
of X. For Hilbert schemes of a generic algebraic K3 surface, the index of an
automorphism is 1 if and only if the automorphism is natural [13, section 4].

2.11 A support lemma

For later use, we establish a lemma:

Lemma 2.34. Let S be an LSY surface or Schütt surface, and let GS be the order
k group as in definition 2.22, resp. definition 2.26. For any r ∈ N let

∆G
Sr :=

1

k

∑
g∈GS

Γg × · · · × Γg ∈ A2r(Sr × Sr) .

Let {πSrj } denote the product MCK decomposition for Sr as above. There is a
homological equivalence

∆G
Sr ◦ πS

r

2 = γ in H4r(Sr × Sr) ,

where γ is a cycle supported on C × D ⊂ Sr × Sr, and C ⊂ Sr is a curve and
D ⊂ Sr is a divisor.

Proof. Let us first do the r = 1 case. Since the group GS ⊂ Aut(S) consists of
non–symplectic automorphisms, we have

(∆G
S )∗ = 0: H2,0(S) → H2,0(S) .
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Let T ⊂ H2(S) denote the transcendental lattice. Since T defines an indecompos-
able Hodge structure (i.e., every Hodge sub–structure of T is either T or 0), we
must have

(∆G
S )∗ = 0: T → T .

Since ∆G
S acts as the identity on NS(S), this implies

∆G
S ◦ πS2 = πS,alg2 in H4(S × S) .

But πS,alg2 is supported on divisor times divisor (theorem 2.30); this proves the
case k = 1.

For arbitrary r, note that (by definition of the product MCK decomposition)

πS
r

2 = πS2 × πS0 × · · · × πS0 + · · ·+ πS0 × · · · × πS0 × πS2 ∈ A2r(Sr × Sr) .

Thus,

∆G
Sr ◦ πS

r

2 =

=
1

k

∑
h∈GS

(Γh × · · · × Γh) ◦ (πS2 × πS0 × · · · × πS0 + · · ·+ πS0 × · · · × πS0 × πS2 )

=
1

k

∑
h∈GS

(Γh ◦ πS2 )× (Γh ◦ πS0 )× · · · × (Γh ◦ πS0 )

+ · · ·+ (Γh ◦ πS0 )× · · · × (Γh ◦ πS0 )× (Γh ◦ πS2 )

=
1

k

∑
h∈GS

(Γh ◦ πS2 )× πS0 × · · · × πS0 + · · ·+ πS0 × · · · × πS0 × (Γh ◦ πS2 )

= (∆G
S ◦ πS2 )× πS0 × · · · × πS0 + · · ·+ πS0 × · · · × πS0 × (∆G

S ◦ πS2 )

= πS,alg2 × πS0 × · · · × πS0 + · · ·+ πS0 × · · · × πS0 × π
S,alg
2 in H4r(Sr × Sr) .

Here, the second line is because Γh ◦ πS0 = πS0 (proof of lemma 2.16), and the last
line is the r = 1 case treated above. The last line is clearly a cycle supported on
curve times divisor, and so the lemma is proven.

3 Main result

Theorem 3.1. Let S3 be as in theorem 2.24, and let X be the Hilbert scheme
X = (S3)[3]. Let G ⊂ Aut(X) be the group of natural automorphisms induced by
the order 3 cyclic group GS3

⊂ Aut(S3) of definition 2.22. Then

(∆G
X)∗ = 0: Ai(j)(X)→ Ai(X) for (i, j) ∈

{
(2, 2), (4, 4), (3, 2), (6, 2), (6, 4), (5, 2)

}
.

Proof. In the course of this proof, let us write S instead of S3. The idea is to
reduce to the action of automorphisms on Ai(S3) and Ai(S2) and Ai(S). This
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reduction is possible thanks to the commutative diagram

Ai(j)(X) ↪→ Ai(j)(S
3) ⊕ Ai−1

(j) (S2) ⊕ Ai−2
(j) (S)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗ ↓ (∆G
S2 )∗ ↓ (∆G

S )∗

Ai(j)(X) ↪→ Ai(j)(S
3) ⊕ Ai−1

(j) (S2) ⊕ Ai−2
(j) (S)

(3)

Here, ∆G
Sr is as in lemma 2.34. This diagram commutes because of the con-

struction of natural automorphisms. Horizontal arrows are injective because of
remark 2.12.

To handle the action of ∆G
Sr on Ai(j)(S

r) for r = 1, 2, 3, we establish two
lemmas:

Lemma 3.2. There are homological equivalences

∆G
S3 ◦ πS

3

2 = γS
3

2 in H12(S3 × S3) ,

∆G
S2 ◦ πS

2

2 = γS
2

2 in H8(S2 × S2) ,

∆G
S ◦ πS2 = γS2 in H4(S × S) ,

where γS
3

2 (resp. γS
2

2 resp. γS2 ) is a cycle in

Im
(
A6(V2,3 ×W2,3) → A6(S3 × S3)

)
(resp. Im

(
A4(V2,2 ×W2,2) → A4(S2 × S2)

)
,

(resp. Im
(
A2(V2,1 ×W2,1) → A2(S × S)

)
),

and V2,r ⊂ Sr is a closed subvariety of codimension 2r − 1, and W2,r ⊂ Sr is
closed of codimension 1.

Proof. This is a special case of lemma 2.34.

Lemma 3.3. There are homological equivalences

∆G
S3 ◦ πS

3

4 = γS
3

4 in H12(S3 × S3) ,

∆G
S2 ◦ πS

2

4 = γS
2

4 in H8(S2 × S2) ,

where γS
3

4 (resp. γS
2

4 ) is a cycle in

Im
(
A6(V4,3 ×W4,3) → A6(S3 × S3)

)
(resp. Im

(
A4(V4,2 ×W4,2) → A4(S2 × S2)

)
,

and V4,3,W4,3 ⊂ S3 are closed subvarieties of codimension 4 resp. 2, and V4,2,W4,2

⊂ S2 are closed subvarieties of codimension 2.
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Proof. Here we will use the fact that S = S3 is ρ–maximal (i.e. the Picard number
ρ(S3) is 20). This means that the transcendental lattice T ⊂ H2(S) has rank 2 and
injects (under the natural map H2(S) → H2(S,C)) into H2,0 ⊕ H0,2. It follows
that (under the natural map H2(S)→ H2(S,C))

T ⊗ T ⊂ H4,0(S2)⊕H2,2(S2)⊕H0,4(S2) .

Let h ∈ GS be a generator. Since h is non–symplectic, h∗ acts on H2,0 as multi-
plication by a primitive 3rd root of unity ν. It follows that

(h× h)∗ = ν2 · id : H4,0(S2) → H4,0(S2) ,

and hence (since ν2 6= 1)

(∆G
S2)∗ = 0: H4,0(S2) → H4,0(S2) .

For the same reason, we also have

(∆G
S2)∗ = 0: H0,4(S2) → H0,4(S2) .

It follows that

(∆G
S2)∗(T ⊗ T ) = (∆G

S2)∗
(
(T ⊗ T ) ∩ F 2

)
⊂ H4(S2)

(here F ∗ denotes the Hodge filtration on H∗(−,C)). But H4(S2) ∩ F 2 is gener-
ated by codimension 2 cycles (indeed, S is a Kummer surface, and so the Hodge
conjecture is true for Sr since it is true for self–products of abelian surfaces [1,
7.2.2]). This means that there exist a codimension 2 subvariety V ⊂ S2 and a
cycle γ supported on V × V such that

∆G
S2 ◦ (πS,tr2 × πS,tr2 )− γ = 0 in H8(S2 × S2) .

Next, let us write
H2(S) = T ⊕N ,

where N := NS(S). The action of ∆G
S2 on T ⊗N and on N ⊗ T is 0. Indeed,

(h× h)∗ = ν · id× id : T ⊗N → T ⊗N ,

and so
(∆G

S2)∗ = (∆G
S ×∆S)∗ = 0: T ⊗N → T ⊗N .

This means that

∆G
S2 ◦ (πS,tr2 × πS,alg2 ) = ∆G

S2 ◦ ((πS,alg2 × πS,tr2 ) = 0 in H8(S2 × S2) .

The correspondences πS0 × πS4 and πS4 × πS0 are obviously supported on V × V ⊂
S2 × S2 for some codimension 2 subvariety V ⊂ S2. It follows that

∆G
S2◦πS

2

4 = ∆G
S2◦(πS,tr2 ×πS,tr2 +πS,alg2 ×πS,alg2 +πS0×πS4 +πS4×πS0 ) = γ′ inH8(S2×S2),
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where γ′ is supported on V × V ⊂ S2 × S2, for V ⊂ S2 of codimension 2. This
proves the statement for S2.

The statement for S3 follows immediately. Indeed, we have

πS
3

4 = πS0 × πS
2

4 + πS
2

4 × πS0 + πS
2

4 × πS0 in A6(S3 × S3) ,

where πS0 in the first (resp. second, resp. third) factor lies in the first (resp.
second, resp. third) copy of S. But Γh ◦ πS0 = πS0 (proof of lemma 2.16), and so

∆G
S3 ◦ (πS0 × πS

2

4 ) = πS0 × (∆G
S2 ◦ πS

2

4 ) in A6(S3 × S3) ,

which (by the above) is homologically supported on V4,3 ×W4,3 ⊂ S3 × S3, where
codim. V4,3 = 4, codim. W4,3 = 2.

We are now in position to wrap up the proof of theorem 3.1. Let us first
consider 0–cycles, i.e. i = 6. The commutative diagram (3) simplifies to

A6
(j)(X) ↪→ A6

(j)(S
3)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗

A6
(j)(X) ↪→ A6

(j)(S
3)

(4)

In case 0 < j < 6 (i.e. j = 2 or 4), we need to prove that

(∆G
X)∗A

6
(j)(X) = 0 ,

which (in view of the above diagram) reduces to proving that

(∆G
S3)∗A

6
(j)(S

3) = (∆G
S3 ◦ πS

3

12−j)∗A
6(S3) = 0 for j = 2, 4 . (5)

In view of lemma 2.15, we have

∆G
S3 ◦ πS

3

12−j = πS
3

12−j ◦∆G
S3 = t(∆G

S3 ◦ πS
3

j ) for j = 2, 4 .

In view of lemmas 3.2 and 3.3, it follows that

∆G
S3 ◦ πS

3

12−j − γ ∈ A6
hom(S3 × S3) for j = 2, 4 , (6)

where γ is some cycle with support on D×S3 with D ⊂ S3 a divisor. (Indeed, for

j = 2 one may take γ = t(γS
3

2 ), and for j = 4 one may take γ = t(γS
3

4 ), which is
supported on (codim. 2)×(codim. 4).) Applying the nilpotence theorem (theorem
2.4), it follows that there exists N ∈ N such that(

∆G
S3 ◦ πS

3

12−j − γ
)◦N

= 0 in A6(S3 × S3) .
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Upon developing, this implies that(
∆G
S3 ◦ πS

3

12−j
)◦N

= Q1 +Q2 + · · ·+QN in A6(S3 × S3) ,

where the Qi are compositions of correspondences in which γ occurs at least once.
The left–hand side is just ∆G

S3 ◦ πS
3

12−j (since ∆G
S3 ◦ πS

3

12−j is idempotent, corollary

2.16). The right–hand side is supported on D × S3 (since γ is), and so does not
act on 0–cycles. This proves equality (5).

We now consider the line i = j, i.e. the “deepest part” Ai(i) of the Chow

groups. Diagram (3) simplifies to

Ai(i)(X) ↪→ Ai(i)(S
3)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗

Ai(i)(X) ↪→ Ai(i)(S
3)

(7)

In view of lemmas 3.2 and 3.3, it follows that

∆G
S3 ◦ πS

3

i − γ ∈ A6
hom(S3 × S3) ,

where γ is some cycle that acts trivially on Ai(S3). (Indeed, for i = 2 one may

take γ = γS
3

2 , and for i = 4 one may take γ = γS
3

4 .) Applying the nilpotence
theorem, it follows there exists N ∈ N such that(

∆G
S3 ◦ πS

3

i − γ
)◦N

= 0 in A6(S3 × S3) .

Upon developing, this implies that(
∆G
S3 ◦ πS

3

i

)◦N
= Q1 +Q2 + · · ·+QN in A6(S3 × S3) , (8)

where the Qi are correspondences composed with γ. It follows that the right–hand
side does not act on A6(S3). The left–hand side is ∆G

S3 ◦ πS
3

i (corollary 2.16), and
so

(∆G
S3)∗ = 0: Ai(i)(S

3) → Ai(S3) for i = 2, 4 .

In view of the commutative diagram (7)), it follows that also

(∆G
X)∗ = 0: Ai(i)(X) → Ai(X) for i = 2, 4 .

We now consider i = 5, i.e. 1–cycles A5. Diagram (3) simplifies to

A5
(j)(X) ↪→ A5

(j)(S
3) ⊕ A4

(j)(S
2)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗ ↓ (∆G
S2 )∗

A5
(j)(X) ↪→ A5

(j)(S
3) ⊕ A4

(j)(S
2)

(9)
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For the j = 2 case, we recall (equation (6)) that

∆G
S3 ◦ πS

3

8 − γ ∈ A6
hom(S3 × S3) ,

where γ is a cycle supported on (codim. 2)× (codim. 4). It follows that γ does not
act on A5 (for dimension reasons). As before, applying the nilpotence theorem
plus corollary 2.16, we find that

(∆G
S3 ◦ πS

3

8 )∗ = 0: A5(S3) → A5(S3) .

This is equivalent to

(∆G
S3)∗ = 0: A5

(2)(S
3) → A5(S3) . (10)

Taking the transpose correspondences of lemma 3.2 (and using lemma 2.15),
we also find

∆G
S2 ◦ πS

2

6 − γ ∈ A4
hom(S2 × S2) ,

where γ is a cycle supported on divisor times curve (indeed, one may take γ =
tγS

2

2 ). Once more applying nilpotence (plus idempotence), we find that

(∆G
S2 ◦ πS

2

6 )∗ = 0: A4(S2) → A4(S2) ,

which is equivalent to

(∆G
S2)∗ = 0: A4

(2)(S
2) → A4(S2) . (11)

Combining equalities (10) and (11) implies that

(∆G
X)∗ = 0: A5

(2)(X) → A5(X) ,

in view of commutative diagram (9).
Finally, the statement for A3

(2) follows from the commutative diagram

A3
(2)(X) ↪→ A3

(2)(S
3) ⊕ A2

(2)(S
2)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗ ↓ (∆G
S2 )∗

A3
(2)(X) ↪→ A3

(2)(S
3) ⊕ A2

(2)(S
2)

(12)

combined with the corresponding statement for S3 and for S2. The statement for
S3 is proven by recalling that (from the i = 4 case of equality (8) above)(

∆G
S3 ◦ πS

3

4

)
= Q1 +Q2 + · · ·+QN in A6(S3 × S3) ,
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where the Qj are (composed with γS
3

4 and hence) supported on (codim. 4) ×
(codim. 2). For dimension reasons, the Qj act trivially on A3(S3), and so(

∆G
S3 ◦ πS

3

4

)
∗ = 0: A3(S3) → A3(S3) .

This is equivalent to

(∆G
S3)∗ = 0: A3

(2)(S
3) → A3(S3) . (13)

The statement for S2 is proven by noting that

∆G
S2 ◦ πS

2

2 − γ ∈ A4
hom(S2 × S2) ,

where γ = γS
2

2 is supported on divisor times divisor (lemma 3.2). Using nilpotence
and idempotence, this implies

∆G
S2 ◦ πS

2

2 = Q1 + · · ·+QN in A4(S2 × S2) ,

where the Qj (are supported on divisor times divisor and hence) act trivially on
A2

(2)(S
2) ⊂ A2

hom(S2) = A2
AJ(S2). It follows that(

∆G
S2 ◦ πS

2

2

)
∗ = 0: A2

(2)(S
2) → A2(S2) ,

which is equivalent to

(∆G
S2)∗ = 0: A2

(2)(S
2) → A3(S2) . (14)

Taken together, equations (13) and (14) imply that

(∆G
X)∗ = 0: A3

(2)(X) → A3(X) ,

in view of diagram (12).

Remark 3.4. Let X and G be as in theorem 3.1. Presumably, it is also possible
to prove

A6
(6)(X) ∩A6(X)G = A6

(6)(X) ,

in accordance with conjecture 1.1. Indeed, one can prove that

Γ := (∆G
S3 −∆S3) ◦ πS

3

6 ∈ A6(S3 × S3)

maps to 0 under the restriction

H12(S3 × S3) → H12
(
(S3 × S3) \ (V × V )

)
,

where V ⊂ S3 is some subvariety of codimension 2. The problem is to find a cycle
γ supported on V × V and such that

Γ = γ in H12(S3 × S3) ;

that is, one needs to solve a special case of the “Voisin standard conjecture” [52,
Conjecture 1.6]. Perhaps, this can be done using the fact that ρ(S) = 20 ? (I have
tried a bit, then given up as things got messy...)
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4 Some corollaries

Theorem 3.1 can be extended to hyperkähler varieties birational to X:

Corollary 4.1. Let X and G be as in theorem 3.1. Let X ′ be a hyperkähler variety
birational to X, and let G′ denote the group of rational self–maps of X ′ induced
by G. Then

Ai(j)(X
′) ∩Ai(X ′)G

′
= 0 if (i, j) ∈

{
(2, 2), (4, 4), (3, 2), (5, 2), (6, 2), (6, 4)

}
.

Proof. This follows from theorem 3.1 combined with proposition 2.14.

Corollary 4.2. Let X and G ⊂ Aut(X) be as in theorem 3.1. Let Y be the
quotient variety Y := X/G.

(i) Y has a self–dual MCK decomposition.

(ii)

Ai(Y ) =
⊕
j≤0

Ai(j)(Y ) for i ≤ 3 ,

A5(Y ) = A5
(0)(Y )⊕A5

(4)(Y ) ,

A6(Y ) = A6
(0)(Y )⊕A6

(6)(Y ) .

Proof. Point (i) follows from lemma 2.18. Point (ii) is just a translation of theorem
3.1, combined with the fact that it is known that

Ai(j)(S
[r]) = 0 for i ≥ 2r − 1 and j < 0 .

Corollary 4.2 has consequences for the multiplicative structure of the Chow
ring of the quotient variety Y :

Corollary 4.3. Let X and G ⊂ Aut(X) be as in theorem 3.1. Let Y be the
quotient variety Y := X/G. For any r ∈ N, let

E∗(Y r) ⊂ A∗(Y r)

denote the subalgebra generated by (pullbacks of) A1(Y ), A2(Y ), A3(Y ) and the
diagonal ∆Y ∈ A6(Y ×Y ) and the small diagonal ∆sm

Y ∈ A12(Y 3). Then the cycle
class map

Ei(Y r) → H2i(Y r)

is injective for i ≥ 6r − 1.
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Proof. As we have seen (corollary 4.2(i)), Y has a self–dual MCK decomposition.
Since the property of having a self–dual MCK decomposition is stable under prod-
ucts, Y r has a self–dual MCK decomposition, and so there is a bigraded ring
structure A∗(∗)(Y

r). We know (lemma 2.13) that the diagonals ∆Y and ∆sm
Y are

“of pure grade 0”, i.e.

∆Y ∈ A6
(0)(Y × Y ) ,

∆sm
Y ∈ A12

(0)(Y × Y × Y ) .

We have also seen (corollary 4.2(ii)) that

Ai(Y ) =
⊕
j≤0

Ai(j)(Y ) for i ≤ 3 .

Consider now the projections pk : Y r → Y (on the k–th factor), and pkl : Y
r →

Y 2 (on the k–th and l–th factor), and pklm : Y r → Y 3 (on the k–th and l–th and
m–th factor). The projections pk, pkl, pklm respect the bigrading of the Chow ring.
(This follows from [43, Corollary 1.6], or can be readily checked directly.)

It follows there is an inclusion

E∗(Y r) ⊂
⊕
j≤0

A∗(j)(Y
r) ,

and so in particular

Ei(Y r) ⊂ Ai(0)(Y
r) for i ≥ 6r − 1 .

As we have seen (lemma 2.20), the conjectural equality

Ai(0)(Y
r) ∩Aihom(Y r)

??
= 0 (15)

can be proven for i ≥ 6r − 1. This proves the corollary.

The phenomenon displayed in corollary 4.3 becomes even more pronounced
when restricting to the Chow ring of Y (i.e., taking r = 1):

Corollary 4.4. Let X and G be as in theorem 3.1, and let Y := X/G. Let
a ∈ Ai(Y ) be a cycle with i 6= 3. Assume a is a sum of intersections of 2 cycles of
strictly positive codimension, i.e.

a ∈ Im
(
Am(Y )⊗Ai−m(Y ) → Ai(Y )

)
, 0 < m < i .

Then a is rationally trivial if and only if a is homologically trivial.
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Proof. Suppose i = 5 or i = 6. Since Ar(r)(Y ) = 0 for 0 < r < 6 (theorem 3.1), we
have

Im
(
Am(Y )⊗Ai−m(Y )→ Ai(Y )

)
=

= Im
(

(
⊕
j<m

Am(j)(Y ))⊗ (
⊕

j′<i−m
Ai−m(Y )) → Ai(Y )

)
⊂

⊕
j+j′<i−1

Ai(j+j′)(Y ) = Ai(0)(Y ) .

The conclusion now follows from lemma 2.20.

For i = 2, the corollary follows from a far more general result of Voisin con-
cerning intersections of divisors on Hilbert schemes of K3 surfaces [49, Theorem
1.4].

It only remains to treat i = 4. As both m and 4−m are at most 3, we have

Am(Y ) =
⊕
j≤0

Am(j)(Y ) , A4−m(Y ) =
⊕
j≤0

A4−m
(j) (Y )

(theorem 3.1). It follows that

Im
(
Am(Y )⊗A4−m(Y ) → A4(Y )

)
⊂
⊕
j≤0

A4
(j)(Y ) ;

the conclusion now follows from proposition 4.5.

Proposition 4.5. Let X = (S3)[3] and G ⊂ Aut(X) be as in theorem 3.1. Let
Y := X/G. Then

A4
(j)(Y ) = 0 for j < 0 ;

A4
(0)(Y ) ∩A4

hom(Y ) = 0 .

Proof. First, observe that A4
(j)(Y ) → A4

(j)(X) is split injective for any j (this

follows from the construction of the MCK decomposition for Y , lemma 2.18).
Consequently, it suffices to prove that we have(

A4
(j)(X)

)G
= 0 for j < 0 ;(

A4
(0)(X)

)G ∩A4
hom(X) = 0 .

Let us first do the first statement. Using remark 2.12 plus the fact that

A3
(j)(S

2) = A2
(j)(S) = 0 for j < 0 ,
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we obtain for j < 0 a commutative diagram

A4
(j)(X) ↪→ A4

(j)(S
3)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗

A4
(j)(X) ↪→ A4

(j)(S
3) ,

where horizontal arrows are split injections. We are thus reduced to proving that

(∆G
S3)∗A

4
(j)(S

3) = 0 for j < 0 .

Clearly A4
(−4)(S

3) = (πS
3

12 )∗A
4(S3) = 0. It is left to consider j = −2, i.e. we need

to prove that

(∆G
S3 ◦ πS

3

10 )∗A
4(S3) = 0 . (16)

But we have seen that

∆G
S3 ◦ πS

3

10 = t(∆G
S3 ◦ πS

3

2 ) in A6(X ×X)

(lemma 2.16), and so it follows from lemma 3.2 that

∆G
S3 ◦ πS

3

10 − γ ∈ A6
hom(X ×X) ,

where γ is some cycle supported on D × C, and D is a divisor and C ⊂ X is a
curve. Applying the nilpotence theorem (plus the idempotence of lemma 2.16),
we find

∆G
S3 ◦ πS

3

10 = Q1 + · · ·+QN in A6(X ×X) ,

where the Qj are supported on D×C. For dimension reasons, the Qj act trivially

on A4(S3) (indeed, the action of Qj on A4(S3) factors over A−1(C̃) = 0). It
follows that (16) is true, proving the first statement of the proposition.

Next, let us prove the second part of the proposition. Since

A3
(0)(S

2) ∩A3
hom(S2) = A2

(0)(S) ∩A2
hom(S) = 0

(lemma 2.20), we obtain a commutative diagram

A4
(0)(X) ∩A4

hom(X) ↪→ A4
(0)(S

3) ∩A4
hom(S3)

↓ (∆G
X)∗ ↓ (∆G

S3 )∗

A4
(0)(X) ∩A4

hom(X) ↪→ A4
(0)(S

3) ∩ A4
hom(S3) ,

where horizontal arrows are split injections. We are thus reduced to proving that

(∆G
S3)∗

(
A4

(0)(S
3) ∩A4

hom(S3)
)

= 0 ,
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which is equivalent to proving that

(∆G
S3 ◦ πS

3

8 )∗A
4
hom(S3) = 0 . (17)

But we have seen that

∆G
S3 ◦ πS

3

8 = t(∆G
S3 ◦ πS

3

4 ) in A6(X ×X)

(lemma 2.16), and so it follows from lemma 3.3 that

∆G
S3 ◦ πS

3

8 − γ ∈ A6
hom(X ×X) ,

where γ is some cycle supported on W × V ⊂ X × X, and W ⊂ X is codimen-
sion 2 and V ⊂ X is codimension 4. Applying the nilpotence theorem (plus the
idempotence of lemma 2.16), we find

∆G
S3 ◦ πS

3

8 = Q1 + · · ·+QN in A6(X ×X) ,

where the Qj are supported on W ×V . For dimension reasons, the Qj act trivially

on A4
hom(S3) (indeed, the action of Qj on A4

hom(S3) factors over A0
hom(Ṽ ) = 0).

It follows that (17) is true, proving the second statement of the proposition.

Remark 4.6. Corollaries 4.3 and 4.4 are similar to the Beauville–Voisin conjec-
ture, on the one hand, and to results of Voisin and L. Fu for Calabi–Yau varieties,
on the other hand.

The Beauville–Voisin conjecture [49, Conjecture 1.3] concerns the Chow ring
of a hyperkähler variety X. The conjecture is that the subring

D∗(X) ⊂ A∗(X)

generated by divisors and Chern classes injects (via the cycle class map) into
cohomology. Partial results towards this conjecture have been obtained in [49],
[39], [58].

On the other hand, if Y is a Calabi–Yau variety that is a generic complete in-
tersection, say of dimension n, it has been proven that the image of the intersection
product

Im
(
Ai(Y )⊗An−i(Y ) → An(Y )

)
, 0 < i < n ,

is of dimension 1 and hence injects into cohomology [50], [16].
Results like corollaries 4.3 and 4.4 are presumably not true for all Calabi–

Yau varieties (since not all Calabi–Yau varieties verify Beauville’s weak splitting
property [5]); for a general Calabi–Yau variety, one only expects statements about
0–cycles. Conjecturally, statements concerning other codimensions (such as corol-
laries 4.3 and 4.4) should be true for Calabi–Yau varieties that are finite quotients
of hyperkähler varieties.
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5 A partial generalization

This section contains a partial generalization of theorem 3.1. We consider Hilbert
schemes X = (Sk)[k], where Sk is any of the LSY surfaces. The same result
(theorem 5.1) also applies to some of the Schütt surfaces.

Theorem 5.1. Let Sk be an LSY surface, or a Schütt surface as in proposition
2.29, with GSk ⊂ Aut(Sk) the order k group of non–symplectic automorphisms of
definition 2.22, resp. definition 2.26. Let X be the Hilbert scheme X := (Sk)[k]

of dimension n = 2k. Let G ⊂ Aut(X) be the order k group of non–symplectic
natural automorphisms, corresponding to GSk ⊂ Aut(Sk). Then

Ai(2)(X) ∩Ai(X)G = 0 for i ∈ {2, n} .

Proof. Let us write S for the surface Sk. Let i ∈ {2, n}. Using remark 2.12, one
finds a commutative diagram

Ai(2)(X) → Ai(2)(S
k)

↓ (∆G
X)∗ ↓ (∆G

Sk)∗

Ai(2)(X) → Ai(2)(S
k) ,

where horizontal arrows are split injections. Here ∆G
Sk is as before defined as the

projector

∆G
Sk :=

1

k

∑
g∈GS

Γg × · · · × Γg ∈ A2k(Sk × Sk) .

We are thus reduced to proving that

(∆G
Sk)∗ = 0: Ai(2)(S

k) → Ai(2)(S
k) for i ∈ {2, n} . (18)

Let us assume i = 2. Lemma 2.34 (with k = r) implies that

∆G
Sk ◦ π

Sk

2 − γ ∈ A2k
hom(Sk × Sk) ,

where γ is a cycle supported on (curve)×(divisor). But Sk has finite–dimensional
motive, and so there exists N ∈ N such that(

∆G
Sk ◦ π

Sk

2 − γ
)◦N

= 0 in A2k(Sk × Sk) .

Developing, and using that ∆G
Sk ◦ π

Sk

2 is idempotent (lemma 2.16), this implies
that

∆G
Sk ◦ π

Sk

2 = Q1 + · · ·+QN in A2k(Sk × Sk) , (19)



272 R. Laterveer

where each Qj is supported on C × D and hence does not act on A2
hom(Sk) =

A2
AJ(Sk). It follows that

(∆G
Sk ◦ π

Sk

2 )∗ = 0: A2
hom(Sk) → A2(Sk) ,

and thus

(∆G
Sk)∗ = 0: A2

(2)(S
k) → A2(Sk) ,

proving (18) for i = 2.
It remains to consider the case i = n. Taking the transpose of equality (19)

and invoking lemma 2.16, one obtains an equality

∆G
Sk ◦ π

Sk

4k−2 = πS
k

4k−2 ◦∆G
Sk = tQ1 + · · ·+ tQN in A2k(Sk × Sk) ,

where the tQj are supported on D × C. The tQj do not act on An(Sk) (for
dimension reasons), and so

(∆G
Sk ◦ π

Sk

4k−2)∗ = 0: An(Sk) → An(Sk) ,

proving (18) for i = n.

Theorem 5.1 has implications for the quotient Y := X/G (the variety Y is a
“Calabi–Yau variety with quotient singularities”):

Corollary 5.2. Let X and G be as in theorem 5.1, and let Y := X/G be the
quotient. For any r ∈ N, let

E∗(Y r) ⊂ A∗(Y r)

be the subalgebra generated by (pullbacks of) A1(Y ) and A2(Y ) and ∆Y , ∆sm
Y .

Then the cycle class map induces maps

Ei(Y r) → H2i(Y r)

that are injective for i ≥ nr − 1.

Proof. This is similar to corollary 4.3. First, it follows from lemma 2.18 that Y ,
and hence Y r, has a self–dual MCK decomposition. Consequently, the Chow ring
A∗(Y r) is a bigraded ring. Theorem 5.1 (plus the fact that A1

hom(Y ) = 0) implies
that

Ai(Y ) =
⊕
j≤0

Ai(j)(Y ) for i ≤ 2 .

Lemma 2.13 ensures that

∆Y ∈ An(0)(Y ) , ∆sm
Y ∈ A2n(Y 3) .
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Since pullbacks for projections of type Y r → Y s, s < r, preserve the bigrading
(this follows from [43, Corollary 1.6], or can be readily checked directly), this
implies that

E∗(Y r) ⊂
⊕
j≤0

A∗(j)(Y
r) .

In particular, this implies

Ei(Y r) ⊂ Ai(0)(Y
r) for i ≥ nr − 1 .

The corollary now follows from the fact that

Ai(0)(Y
r) ∩Aihom(Y r) → Ai(0)(X

r) ∩Aihom(Xr)

is injective (this is true for any i), and

Ai(0)(X
r) ∩Aihom(Xr) = 0 for i ≥ nr − 1

(lemma 2.20).

Corollary 5.3. Let X and G be as in theorem 5.1, and let Y := X/G be the
quotient. Let a ∈ An(Y ) be a 0–cycle which is in the image of the intersection
product map

A3(Y )⊗Ai1(Y )⊗ · · · ⊗Ais(Y ) → An(Y ) ,

with all im ≤ 2 (and i1 + · · ·+ is = n− 3). Then a is rationally trivial if and only
if deg(a) = 0.

Proof. The point is that

A3(Y ) =
⊕
j≤0

A3
(j)(Y )⊕A3

(2)(Y ) ,

Aim(Y ) =
⊕
j≤0

Aim(j)(Y ) for im ≤ 2

(theorem 5.1), and so
a ∈ An(0)(Y )⊕An(2)(Y ) .

But we have seen that An(2)(Y ) = 0 (theorem 5.1), and so

a ∈ An(0)(Y ) ∼= Q .
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[20] V. Guletskĭı and C. Pedrini, The Chow motive of the Godeaux surface, in: Algebraic Ge-
ometry, a volume in memory of Paolo Francia (M.C. Beltrametti, F. Catanese, C. Ciliberto,
A. Lanteri and C. Pedrini, editors), Walter de Gruyter, Berlin New York, 2002,

[21] D. Huybrechts, Symplectic automorphisms of K3 surfaces of arbitrary order, Math. Res.
Letters 19 (2012), 947—951,

[22] F. Ivorra, Finite dimensional motives and applications (following S.-I. Kimura, P. O’Sullivan
and others), in: Autour des motifs, Asian-French summer school on algebraic geometry and
number theory, Volume III, Panoramas et synthèses, Société mathématique de France 2011,
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