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Abstract. Gapped periodic quantum systems exhibit an interesting Localization Dichotomy,

which emerges when one looks at the localization of the optimally localized Wannier functions

associated to the Bloch bands below the gap. As recently proved, either these Wannier functions

are exponentially localized, as it happens whenever the Hamiltonian operator is time-reversal

symmetric, or they are delocalized in the sense that the expectation value of |x|2 diverges. In-

termediate regimes are forbidden.

Following the lesson of our Maestro, to whom this contribution is gratefully dedicated,

we find useful to explain this subtle mathematical phenomenon in the simplest possible model,

namely the discrete model proposed by Haldane [10]. We include a pedagogical introduction to

the model and we explain its Localization Dichotomy by explicit analytical arguments. We then

introduce the reader to the more general, model-independent version of the dichotomy proved in

[19].

1 Introduction

Gianfausto Dell’Antonio has been always transmitting to younger collaborators the
attitude to understand – and explain – a mathematical phenomenon in the simplest
possible model which still captures its essential features. Remembering his rec-
ommendation, we devote this contribution to explain a recent, model-independent
result – namely the Localization Dicothomy for gapped periodic quantum systems,
proved in [19] – by illustrating its essential features in a simple, but yet physically
relevant, discrete model.

We consider the model proposed by Haldane in [10], which has become one of
the paradigmatic models to describe Chern insulators, a subclass of topological
insulators [1, 6, 12]. Haldane argued that the essential ingredient in the Quantum
Hall Effect (QHE) is the breaking of time-reversal symmetry, an effect that can be
obtained either by an external magnetic field (as in a QHE setup) or, alternatively,
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by some mechanism internal to the sample, as e. g. the presence of strong magnetic
dipole moments of the ionic cores. In Haldane’s words [10]:

“While the particular model presented here is unlikely to be directly
physically realizable, it indicates that, at least in principle, the QHE
can be placed in the wider context of phenomena associated with bro-
ken time-reversal invariance, and does not necessarily require external
magnetic fields, but could occur as a consequence of magnetic ordering
in a quasi-two-dimensional system.”

Remarkably, the first sentence turned out to be too pessimistic: after three decades,
Chern insulators predicted in [10] have been experimentally synthesized as crys-
talline solids [3, 4, 5] and the Haldane model can also be physically simulated by
Bose-Einstein condensates in suitably arranged optical lattices.

In this paper, we first provide a pedagogical introduction to the Haldane model,
which is here presented in the first-quantization formalism, as opposed to most
of the physics literature, which uses instead a second-quantization language. In
Section 3, we recall the definition of Bloch functions and of the Chern number as-
sociated to an isolated Bloch band, and we exhibit, in the Haldane model, a Bloch
function producing a non-zero Chern number and having a singular derivative:
more precisely, its H1-norm diverges. This situation exemplifies a recent model-
independent mathematical result [19], which shows that a non-zero Chern number
indeed forces a divergence of the H1-norm of the corresponding Bloch functions
in any Bloch gauge. We explain in Section 4 how the latter divergence reflects
into the delocalization of the corresponding Wannier functions, and we illustrate
to the reader the more general Localization Dichotomy mentioned above. A nat-
ural question is whether the previous result – whose formulation heavily relies on
periodicity – can be recast in the broader contest of non-periodic models. Some
preliminary results in this direction are in preparation [15].

We hope that the introductory style of this contribution will be useful to fill
the linguistic gap between mathematics and physics, as they represent a unity in
the scientific vision of the person to whom the paper is dedicated.

Dedication. The senior author of this paper moved his first steps into the sci-
entific world under the precious guidance of Gianfausto Dell’Antonio. From his
example, as a scientist and as a human being, he learned not only how to do math-
ematics, but how to be a Mathematical Physicist. We all – authors of different
generations – consider Gianfausto as our Maestro, and we gratefully acknowledge
the unvaluable contribution he gave to the development of Quantum Mathematics
in Italy over more than half a century.

2 The Haldane model and its symmetries

The tight-binding model proposed by Haldane [10] has become a paradigm in solid-
state physics, as it is presumably the simplest physically-reasonable model which
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is invariant by lattice-translations (a unitary Z2-symmetry) and simultaneously
breaks, for some values of the parameters (φ,M) labeling the model, time-reversal
symmetry (an antiunitary Z2-symmetry). In view of that, it has become one of
the most popular models to study materials in the Altland-Zirnbauer symmetry
class A, which includes Quantum Hall systems and Chern insulators [1, 6, 12].

The Haldane model is usually presented by using a second-quantization for-
malism [6, 8, 24], which makes it difficult to readers unfamiliar with the latter to
appreciate the simplicity and elegance of the essential ideas. Since second quanti-
zation is not needed at all to describe non-interacting electrons, we review in this
Section the essential features of the Haldane model, in a pedagogical style, by us-
ing the usual language of discrete Schrödinger operators (i. e. a first-quantization
formalism).

2.1 The honeycomb structure

The Haldane model describes independent electrons on a honeycomb structure1

C ⊂ R2, illustrated in Figure 1. The structure is characterized by the displacement
vectors

d1 = d
(

1
2 −

√
3

2

)
, d2 = d

(
1
2

√
3

2

)
, d3 = d

(
−1 0

)
= −d1 − d2,

where d is the smallest distance between two points of C. The periodicity of the
structure is expressed by the periodicity vectors

a1 = d2 − d3, a2 = d3 − d1, a3 = d1 − d2 = −a1 − a2. (2.1)

The vectors ai generate a Bravais lattice Γ := SpanZ{a1,a2,a3} ∼= Z2 where
one ai is redundant as it is an integer linear combination of the other two. Any
point x ∈ C can be written by using a Bravais lattice vector and one of the di
vectors. It is then sufficient to pick two ai-vectors and one di-vector to generate the
whole crystal. This choice, which is often called a dimerization of C, is not unique,
as illustrated in Figure 2. The above procedure is equivalent to the choice of a
periodicity cell that contains two non-equivalent sites A and B (black and white
dots in Figure 1, respectively), and is a fundamental cell w.r.t. the action of Γ.
Hence, each choice of a periodicity cell provides an identification C ∼= Γ × {0, ν},
where ν is one of the displacement vectors, yielding an isomorphism2,`2(C) ∼=
`2(Γ) ⊗ C2 ∼= `2(Γ,C2). We will often use this “dimerization isomorphism” and
the following typographic convention:

1The physics literature usually refers to the latter as a “honeycomb lattice”. We prefer to
avoid here this ambiguous use of the word “lattice”, since this word has a precise meaning in
mathematics: a lattice is a discrete subgroup of (Rd,+) with maximal rank. The ambiguity
does not arise when speaking about the Bravais lattice, which is a lattice for both physicists and
mathematicians.

2From an abstract viewpoint, we are just using the fact that the L2-functor, from measure
spaces to Hilbert spaces, preserves the product structure, mapping the cartesian product into
the tensor product.
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Figure 1: The honeycomb structure, with the displacement vectors {d1,d2,d3} and the peri-
odicity vectors {a1,a2,a3} (color online).
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Figure 2: Three possible dimerizations of the honeycomb structure, corresponding to three
different periodicity cells (color online).

• a small letter for a function ψ ∈ `2(C), with complex values ψx for x ∈ C;

• capital letter for a function Ψ ∈ `2(Γ,C2); we make use of a pseudo-spin
notation, namely

Ψγ =

(
ψγ,A
ψγ,B

)
for γ ∈ Γ,

where the labels A and B refer respectively to the sublattices ΓA and ΓB .

Finally, notice that the honeycomb structure has an interesting inversion
symmetry, namely a reflection w.r.t. a specific line, which exchanges the role of
the sublattices ΓA and ΓB . Thus, it yields a Z2-symmetry which can be easily
broken by adding an on-site Γ-periodic potential which distinguishes between ΓA
and ΓB . The latter procedure corresponds to a variation of the parameter M in
the Haldane Hamiltonian, to be introduced shortly, and to the transition from
graphene to boron-nitride sheets in physical reality.
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2.2 The Hamiltonian

The Haldane model is defined, in a first quantization formalism, through a Hamil-
tonian operator acting on `2(C) ∼= `2(Γ,C2), and depending on two real parameters
(φ,M), with φ ∈ (−π, π] representing a magnetic flux and M ∈ R corresponding
to an on-site energy which distinguishes among the two sublattices ΓA and ΓB .

The translation operator Tu, corresponding to a translation by u ∈ R2, is
defined by

(Tuψ)x =

{
ψx−u if x− u ∈ C
0 otherwise

for all ψ ∈ `2(C). (2.2)

Moreover, we denote by χA (resp. χB) the charachteristic function of the sublattice
ΓA (resp. ΓB). For example, in the three dimerizations appearing in Figure 2, one
has ΓA = Γ and ΓB = Γ + ν, where ν ∈ {d1,d2,d3} depends on the chosen
dimerization.

Equipped with this notation, one defines the Haldane operator H ≡ H(φ,M)

acting in `2(C) (i. e. without reference to a specific dimerization) as a sum of three
terms

H = HNN +HNNN + V. (2.3)

The nearest neighbor (NN) term is defined – by using the displacement vectors –
by

HNN = t1

3∑
j=1

(Tdj
+ T−dj

) with t1 ∈ R. (2.4)

The next nearest neighbor (NNN) term uses instead the periodicity vectors and
reads

HNNN = t2(cosφ)

3∑
j=1

(Taj
+ T−aj

) + t2(i sinφ)(χA − χB)

3∑
j=1

(Taj
− T−aj

) (2.5)

with t2 ∈ R. The last term is a potential that distinguishes sites in sublattices ΓA
and ΓB , namely

Vx = M(χA − χB)x =

{
+M if x ∈ ΓA

−M if x ∈ ΓB .
(2.6)

Remark 2.1 (Comparison with the honeycomb Hofstadter model). By analogy
with the Hofstadter model [13], one might be tempted to replace the NNN term
by the more symmetric expression

H̃NNN = t2

3∑
j=1

(eiφTaj
+ e−iφT−aj

) (2.7)

= t2(cosφ)

3∑
j=1

(Taj
+ T−aj

) + t2(i sinφ)

3∑
j=1

(Taj
− T−aj

).
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Notice, however, that the latter operator does not distinguish between the sublat-
tices ΓA and ΓB , yielding an operator which acts diagonally on the C2-factor in
`2(Γ)⊗ C2. The operator (2.5) acts instead in a non-diagonal way, and offers the
opportunity to model subtler physical effects.

One can easily check that the Haldane model enjoys some relevant symmetries:

(i) Γ-periodicity: indeed, one checks that [Tγ , H] = 0 for every γ ∈ Γ;

(ii) 2π
3 -rotation symmetry: indeed [UR, H] = 0 where UR is defined as usual by

(URψ)x = ψR−1x, with R ∈ SO(2) a rotation by a 2π
3 angle in the plane;

(iii) broken time-reversal symmetry (TRS): for φ ∈ {0, π} the Hamiltonian com-
mutes with the time-reversal operator, given by complex conjugation in
`2(C). As far as sinφ 6= 0, TRS is broken, as it clearly appears from (2.5).

2.3 The Fourier decomposition

The Γ-periodicity of the model allows to use Fourier transform or, more intrinsi-
cally, the Bloch-Floquet decomposition.

Since the Fourier transform unitarily maps `2(Zd) into L2(Td), after a choice
of dimerization one obtains an isomorphism `2(C) ∼= `2(Γ,C2) ∼= L2(T2

∗,C2) where
the torus T2

∗ = R2/Γ∗, called Brillouin torus by physicists, is defined as a quotient
by the reciprocal or dual lattice

Γ∗ =
{
k ∈ R2 : k · γ ∈ 2πZ for all γ ∈ Γ

}
. (2.8)

We choose any dimerization such that the sublattices are identified with Γ and
Γ + ν, respectively, for a suitable ν ∈ {d1,d2,d3} (compare Figure 2). With this
convention, an isomorphism is exhibited by

(Fνψ)(k) =
∑
γ∈Γ

e−ik·γΨ−γ =
∑
γ∈Γ

e−ik·γ
(

ψ−γ
ψ−γ+ν

)
. (2.9)

The operator Fν establishes a unitary transformation

Fν : `2(C)→ H := L2(T2
∗,C2), (2.10)

where H is equipped with the inner product (notice the normalization)

〈ϕ1, ϕ2〉H :=
1

|T2
∗|

∫
T2
∗

dk 〈ϕ1(k), ϕ2(k)〉C2 .

Every operator A acting in `2(C) which is Γ-periodic, in the sense that

[A, Tγ ] = 0 for every γ ∈ Γ, (2.11)
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is conjugated to an operator Fν AF−1
ν =: Aν acting in H. Notice that Aν is

decomposable3 in the sense that

(Aνϕ)(k) = A(k)ϕ(k) for all k ∈ T2
∗

where T2
∗ 3 k 7→ A(k) ∈ B(C2) due to (2.10). Moreover, the Γ-periodicity of A

reflects in the following property:

A(k + λ) = A(k) for all λ ∈ Γ∗,k ∈ T2
∗. (2.12)

The latter is understood as an equality of matrices. The matrix A(k) is called the
fiber of the operator A at the point k, and we use the notation A ←→ A(k) to
indicate the correspondence between the Γ-periodic operator A and the operator
Fν AF−1

ν , acting in L2(T2
∗,C2), given fiberwise by the multiplication operator

times the (matrix-valued) function A(k). Notice that everything above depends –
in general – on the choice of a dimerization, as the subscript in Fν suggests.

The Haldane Hamiltonian (2.3) is Γ-periodic, and its fibers H(k) over the Bril-
louin torus can be conveniently decomposed on the Pauli basis {σ0 = I, σ1, σ2, σ3}
as

H(k) =

3∑
j=0

Rj(k)σj .

It is easy to show that

R0(k) = 2t2(cosφ)

3∑
j=1

cos(k · aj), (2.13)

R3(k) = M − 2t2(sinφ)

3∑
j=1

sin(k · aj). (2.14)

Indeed, one exploits the fact that the Fourier transform intertwines the translation
operator Tγ , for γ ∈ Γ, with the multiplication times eik·γ I. Since Taj

←→ eik·aj I,
one concludes that

Taj + T−aj ←→ 2 cos(k · aj) I

which immediately gives (2.13). Analogously, since (χA − χB)Taj
←→ eik·aj σ3,

one concludes that

(χA − χB)
(
Taj − T−aj

)
←→ 2i sin(k · aj)σ3

which gives (2.14). Notice that the previous terms do not depend on a specific
choice of the dimerization, provided one of the sublattices agrees with Γ.

3For the sake of brevity we omit the dependence of the operator Aν on the dimerization
procedure, i. e. we remove the subscript ν.
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As for the off-diagonal terms, one has however to be more careful, since the
computation does depend on the choice of “the” periodicity cell, as pointed
out for example in [2, 7]. We make here the specific choice

Y =
{
x ∈ R2 : x = α1a1 + α2a2 with αj ∈ [− 1

2
,+ 1

2
]
}

(2.15)

so that Y ∩ C = {0,d3}, as illustrated in the first panel in Figure 2. One has that
C ∼= Γ×{0,d3} as a measure space, and the dimerization isomorphism is exhibited
by

Ψγ =

(
ψγ,A
ψγ,B

)
=

(
ψγ+0

ψγ+d3

)
. (2.16)

With this specific choice, the remaining terms are

R1(k) = t1 (1 + cos(k · a1) + cos(k · a2)) , (2.17)

R2(k) = t1 (sin(k · a1)− sin(k · a2)) . (2.18)

These expressions are easily derived. By using (2.2), one computes

(T+d3
ψ)γ =

(
ψγ−d3

ψ(γ+d3)−d3

)
=

(
0

ψγ,A

)
(T−d3Ψ)γ =

(
ψγ+d3

ψ(γ+d3)+d3

)
=

(
ψγ,B

0

)
.

Thus Td3
+ T−d3

= 1⊗ σ1, so that the Fourier transform Fd3
yields

Td3
+ T−d3

←→ 1⊗ σ1. (2.19)

The coordinate j = 3 is privileged in view of our choice of the periodicity cell.
As for the next term, one uses that a1 = d2 − d3 so that

(T+d2ψ)γ =

(
ψγ−d3−a1

ψ(γ+d3)−d3−a1

)
=

(
0

ψγ−a1,A

)
(T−d2

ψ)γ =

(
ψγ+d3+a1

ψ(γ+d3)+d3+a1

)
=

(
ψγ+a1,B

0

)
.

After Fourier transform one obtains

(Fd3(Td2 + T−d2)ψ) (k) =

(
0 e−ik·a1

e+ik·a1 0

)
(Fd3ψ) (k).

Analogously, in view of a2 = d3 − d1 one has

(T+d1ψ)γ =

(
ψγ−d3+a2

ψ(γ+d3)−d3+a2

)
=

(
0

ψγ+a2,A

)
(T−d1

ψ)γ =

(
ψγ+d3−a2

ψ(γ+d3)+d3−a2

)
=

(
ψγ−a2,B

0

)
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which gives

(Fd3
(Td1

+ T−d1
)ψ) (k) =

(
0 e+ik·a2

e−ik·a2 0

)
(Fd3

ψ) (k).

Summarizing the information above, one concludes that

3∑
j=1

(Tdj + T−dj ) ←→
(

0 1 + e−ik·a1 + e+ik·a2

1 + e+ik·a1 + e−ik·a2 0

)
(2.20)

which immediately gives (2.17) and (2.18).

3 Bloch functions and their singularities

In this Section, we will be interested in studying the spectral properties of the
Haldane Hamiltonian, which we rewrite as

H(k) =

3∑
j=0

Rj(k)σj =

(
R0(k) +R3(k) R(k)

R(k) R0(k)−R3(k)

)
,

where we have abbreviated

R(k) := R1(k) + iR2(k) = t1
(
1 + eik·a1 + e−ik·a2

)
(compare (2.20)). It is then immediate to see that the eigenvalues of H(k) are
given by

E±(k) := R0(k)±

√√√√ 3∑
j=1

Rj(k)2 = R0(k)±
√
R3(k)2 + |R(k)|2.

These two energy bands will not overlap (that is, E−(k) ≤ E+(k) for all k ∈ R2)
provided t2/t1 < 1/3, which we will assume hereafter. The bands can still touch
at the points in the Brillouin torus which are determined by the equation

3∑
j=1

Rj(k)2 = 0 ⇐⇒ R(k) = 0 and R3(k) = 0.

We see then that there are (at most) two such points in the Brillouin torus, usually
labeled K and K′, determined by the zeroes of R: these are obtained from the
conditions

eiK′·a1 = ei2π/3 and e−iK′·a2 = e−i2π/3, eiK·a1 = e−i2π/3 and e−iK·a2 = ei2π/3,

which in particular imply K′ = −K mod Γ∗. Since locally around these points the
dispersion of the energy bands is linear when they produce band intersections, i. e.
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E±(k) = E±(K]) ± vF|k −K]| + O
(
|k −K]|2

)
for K] ∈ {K,K′}, the points K

and K′ are usually called Dirac points. The equation R3(k) = 0 then determines
the locus in the space of parameters (φ,M) where either K or K′ (or both) are
points of degeneracy for the eigenvalues of the Haldane Hamiltonian, namely

R3(K) = M + 3
√

3 t2 sinφ, R3(K′) = M − 3
√

3 t2 sinφ.

-π -
π

2
0 π

2
π

-3 3

0

3 3

ϕ

M
/t
2

Figure 3: The topological phase diagram of the Haldane model. In cyan, the region
{R3(K) > 0, R3(K′) < 0}, characterized by a Chern number c1 = −1; in orange, the region
{R3(K) < 0, R3(K′) > 0}, characterized by a Chern number c1 = +1 (color online). In the rest
of the phase diagram, c1 = 0.

We see that the parameter space (φ,M) gets divided into four regions where
the Hamiltonian is gapped (see Figure 3), characterized by the signs of R3(K)
and R3(K′). We will show now how it is possible to assign a topological label to
each of the four gapped phases, determining also the “quantum anomalous Hall
conductivity” of the Haldane model for all parameters in the region. To this end,
it is convenient to introduce the eigenvector u−(k), that is, the Bloch function,
associated to the lower band E−(k) of the Haldane Hamiltonian. This reads

u−(k) = N(k)−1

(√
R3(k)2 + |R(k)|2 −R3(k)

−R(k)

)
,

where N(k) :=
[
2
√
R3(k)2 + |R(k)|2

(√
R3(k)2 + |R(k)|2 −R3(k)

)]1/2
is a nor-

malizing factor ensuring ‖u−(k)‖C2 = 1 for all k ∈ R2 (compare [8, Appendix B]).
The Bloch gauge (that is, the phase within the complex one-dimensional eigenspace
associated to the lower energy band) is chosen so that the first component u−,1(k)
is real.

If K] denotes either of the Dirac points, then R(K]) vanishes, as K and K′

are precisely the zeroes of R, while R3(K]) 6= 0 due to the gap condition. Conse-
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quently, √
R3(k)2 + |R(k)|2 −R3(k)

∣∣∣
k=K]

=
∣∣R3(K])

∣∣−R3(K]),

and similarly

N(K]) =
[
2
∣∣R3(K])

∣∣ (∣∣R3(K])
∣∣−R3(K])

)]1/2
.

We see that u−(k) may have singularities at the Dirac points, depending on the
signs of R3(K) and R3(K′). In particular, it holds that u−(k) is singular at K in
the region {R3(K) > 0, R3(K′) < 0} of the parameter space (φ,M) (depicted in
cyan in Figure 3), while it is analytic on the whole Brillouin torus in the region
{R3(K) < 0, R3(K′) < 0} (the lower white region in Figure 3). The qualitative
features of this singularity (or lack thereof) are illustrated in Figures 4 and 5.

To investigate further the singularity of u−(k), we restrict our attention to
parameters (φ,M) so that R3(K) > 0 and R3(K′) < 0. As discussed, in this
region K is the only singular point of u−(k). By rewriting, after a few simple
algebraic manipulations,

u−(k) =
1√
2


|R(k)|

(R3(k)2 + |R(k)|2)
1/4
(√

R3(k)2 + |R(k)|2 +R3(k)
)1/2

− R(k)

|R(k)|

(
1 +

R3(k)√
R3(k)2 + |R(k)|2

)1/2

 ,

we see that in this region the first component of u−(k) is smooth, while it is the
second component that has a singularity, due to the explicit dependence on the
phase of R(k). This implies in particular that, locally around k = K, u−,2(k)
is homogeneous of degree zero in the radial coordinate r = |k −K|, so that the
derivatives of u−,2(k) have a (1/r)-singularity, making the H1-norm of u−

‖u−‖H1 :=
(
‖u−‖2L2 + ‖∂k1u−‖

2
L2 + ‖∂k2u−‖

2
L2

)1/2

=

[∫
T2
∗

(
‖u−(k)‖2C2 + ‖∂k1u−(k)‖2C2 + ‖∂k2u−(k)‖2C2

)
dk

]1/2

divergent. From the same type of homogeneity argument, one can also deduce
that all the fractional Sobolev norms ‖u−‖Hs for s ∈ [0, 1) are instead finite.

The singularity of u−(k) at k = K carries also a topological information. This
can be accessed by means of the Berry connection, defined as the differential 1-form

A := Im 〈u−(k),du−(k)〉C2 =

2∑
j=1

Im
〈
u−(k), ∂kju−(k)

〉
C2 dkj .
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Figure 4: Density plots for the components of
u−(k) (color online). The parameters chosen to
produce these plots are as follows: d = 1 for
the lattice constant, t1 = 1, t2 = 1/4, M = 0,
φ = π/2. The rhomboidal region is the Brillouin
zone {k1 b1 + k2 b2 : k1, k2 ∈ [0, 1]}, where the
vectors b1,b2 spanning the dual lattice Γ∗ are
determined by the conditions ai · bj = 2πδij .
The circle points to the position of the Dirac
point K. The rapid change of both Reu−,2(k)
and Imu−,2(k) around k = K are evident from
(4b) and (4c), respectively, signalling a discon-
tinuity. Instead, u−,1(k) is seen to be regular
(and actually vanishing) at k = K from (4a).
In the last plot (4d), contour lines for the abso-
lute value |u−,2(k)| are plotted, while the color
code indicates the value of the argument of the
phase of u−,2(k) as in the legend. In agree-
ment with the previous comments, it is possi-
ble to see a phase singularity of u−,2(k) around
k = K, while the absolute value |u−,2(k)| =√

1− u−,1(k)2 remains smooth.
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Figure 5: Similar plots to those of Figure 4
(color online), this time corresponding to the
parameters M = −3

√
3 and φ = 0. All other

parameters where left as specified in Figure 4.
In this case, u−(k) is analytic over the whole
Brillouin zone.

We argue as above: the (1/r)-singularity of the derivatives of u−,2(k) around
k = K is integrable (even though not square-integrable), so that the integral of A
around a small loop `ε (say, of diameter ε� 1) encircling the singularity of u−(k)
stays bounded even in the limit ε → 0. Denoting by Dε the region bounded by
the loop `ε (which then bounds also T2

∗ \Dε, as the Brillouin torus is closed), in
the limit of a very small loop one obtains from Stokes’ theorem

lim
ε→0

∮
`ε

A = − lim
ε→0

∮
∂(T2
∗\Dε)

A = − lim
ε→0

∫
T2
∗\Dε

dA = −
∫
T2
∗

F . (3.1)

In the last step, we introduced the Berry curvature 2-form

F := dA = 2 Im 〈∂k1u−(k), ∂k2u−(k)〉dk1 ∧ dk2

= −i TrC2

(
P−(k) [∂k1P−(k), ∂k2P−(k)]

)
dk.

(3.2)

The last equality (see e. g. [19, Lemma 7.2]) shows that F can be expressed directly
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in terms of the family of projections

P−(k) := |u−(k)〉 〈u−(k)| =

1

2
√
R3(k)2 + |R(k)|2

(√
R3(k)2 + |R(k)|2 −R3(k) −R(k)

−R(k)
√
R3(k)2 + |R(k)|2 +R3(k)

)

on the eigenspace corresponding to the lower energy band. Contrary to the Bloch
function, these projections depend analytically on k over the whole Brillouin torus,
making it possible to compute the last limit in (3.1).

The Berry curvature is a geometric object. In fact, its integral over the Bril-
louin torus is an integer multiple of 2π:

c1 :=
1

2π

∫
T2
∗

F ∈ Z. (3.3)

This integer, called the Chern number, is the topological invariant which underlies
the quantization of the (anomalous) Hall conductivity in Chern insulators [10, 4,
3, 5] and quantum Hall insulators [25, 9]. In the specific case under investigation
of the Haldane Hamiltonian, the four regions of parameters (φ,M) in which H(k)
is gapped can be labelled by the Chern number [10]: with reference to the colors of
Figure 3, the Chern number can be computed, e. g. starting from (3.1), to be c1 =
−1 for the cyan region, c1 = +1 for the orange region, and c1 = 0 for the two white
regions. In analogy with the thermodynamical phases of statistical mechanics, one
then speaks of topological phases of matter distinguished by different topological
invariants, and refers to Figure 3 as the topological phase diagram for the Haldane
Hamiltonian.

Remark 3.1. It is interesting to notice that the topological content associated to
singularities of the Bloch function at the Dirac points persists, in an appropriate
sense, also in the gapless regime. If for example the parameters (φ,M) are threaded
from the cyan region to the lower white region of Figure 3, passing through a point
in parameter space (φ∗,M∗) where R3(K) = 0, then at (φ∗,M∗) not only the Bloch
function u− but also the projection P− becomes singular at K. Nonetheless, the
topological charge exchanged through the gapless phase can be quantified by means
of a local topological invariant, the eigenspace vorticity, associated to family of
projections P− around the singular point K [17]. In the situation described above,
this eigenspace vorticity equals ∆c1 = 0− (−1) = 1.

4 The localization dichotomy for periodic insulators

It is astounding to discover the predictive power of the Haldane model. In fact,
it turns out that the features discussed in the previous Section are completely
generic in two and three dimensions: indeed, the close connection between the
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structure of the singularities of the Bloch functions and the topology of the asso-
ciated eigenspaces persists in a much wider context and for more general models.

This was recently proved and quantified in a precise way in [19]. To formulate
the main result, we need to set up the more general framework. Let d ≤ 3. The
configuration space of a crystalline system is modeled by the space X, which can
be either Rd or a d-dimensional crystalline structure (e. g. the honeycomb structure
presented in Section 2): X carries an action of the lattice Γ ' Zd by translations,
which is assumed to lift to translation operators Tγ ∈ U(L2(X)), γ ∈ Γ.

Associated to these translation operators, there is a Bloch–Floquet–Zak trans-
form

U : L2(X)→ L2
τ (B;L2

per(Y )) '
∫ ⊕
B
L2

per(Y )dk ,

defined by

(Uψ) (k,y) :=
∑
γ∈Γ

e−ik·(y−γ) (Tγψ)(y), k ∈ B, y ∈ Y, (4.1)

on suitable ψ ∈ L2(X). Here B stands for the fundamental cell of the dual lattice
Γ∗ (the Brillouin zone in the physics literature), Y stands for the fundamental cell
of the lattice Γ (compare (2.15)), and L2

τ (B;L2
per(Y )) is the Hilbert space

L2
τ (B;L2

per(Y )) :=


u ∈ L2

loc(Rd;L2
loc(Rd)) :

u(k + λ,y) = (τλu)(k,y) := e−iλ·y u(k,y)

and Tγu(k, ·) = u(k, ·)
∀k ∈ Rd, y ∈ Rd, λ ∈ Γ∗, γ ∈ Γ


of functions of the Bloch momentum k and of the degrees of freedom in the unit cell
y which are quasi-periodic (τ -covariant) in k and periodic in y (see [18] for details).
For crystalline structures of the type described in Section 2, U coincides with the
Fourier transform (2.9) up to the extra phase factor e−ik·y in (4.1), which turns
periodic functions of k into quasi-periodic, but makes the boundary conditions
on the unit cell Y in direct space k-independent (namely, exactly periodic). A
Bloch–Floquet–Zak transform is defined by (4.1) also in the continuous case X =
Rd, where Tγ can be the standard translation (Tγψ)(y) := ψ(y − γ) or, more
interestingly, a magnetic translation generated by a uniform magnetic field with
flux per unit cell which is commensurate to the flux quantum (equal to 2π in
Hartree units), see [26] and the discussion in [19, Sec. 3]. Also in this case we
will denote by A←→ A(k) the correspondence between a periodic operator A on
L2(X) such that [A, Tγ ] = 0 for all γ ∈ Γ and its decomposition into fibers in the

Bloch–Floquet–Zak representation: U AU−1 =
∫ ⊕
B A(k) dk.

Now that the framework of crystalline systems is clear, we can formulate the
main hypothesis of the central result from [19], which abstracts the predominant
features of the Haldane Hamiltonian described in the previous Sections.
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Assumption. Let H be a periodic self-adjoint operator on L2(X) with H ←→
H(k) where H(k) defines a family of operators on L2

per(Y ) such that

(i) {H(κ)}κ∈Cd defines an entire analytic family in the sense of Kato with com-
pact resolvent [23];

(ii) the family is τ -covariant, that is, H(k+λ) = τλH(k) τ−1
λ for all k ∈ Rd and

λ ∈ Γ∗;

(iii) the family is gapped, namely there exists a set I ⊂ N with |I| = m < ∞
such that

inf
k∈Rd

inf
n∈I

m∈N\I

∣∣En(k)− Em(k)
∣∣ ≥ g > 0

where σ(H(k)) = {En(k)}n∈N denotes the spectrum of H(k) (consisting of
discrete eigenvalues, the Bloch bands, by the compact resolvent assumption).

In the discrete case (e. g. for the Haldane Hamiltonian), the regularity assump-
tion is easy to verify, as it is equivalent in position space to having sufficiently fast
decaying hoppings between different sites of the crystal (say, exponential in the dis-
tance between the sites), and thus is in particular satisfied whenever the hopping
Hamiltonian has finite range, as often happens in applications. For (magnetic,
periodic) Schrödinger operators, there are standard Lp-regularity assumptions on
the electro-magnetic potentials that guarantee analyticity of the corresponding
fiber Hamiltonians [23].

Notice moreover that the gap assumption allows to define the family of spectral
projections P (k) onto the spectral island σ0(k) := {En(k) : n ∈ I}, for example
through the Riesz formula

P (k) =
i

2π

∮
C(k)

(H(k)− z)−1dz,

where C(k) is a positively oriented contour in the complex energy plane, locally
constant in k, which lies in the resolvent set of H(k) and encircles only the eigen-
values in σ0(k). This family of projections is then τ -covariant and depends ana-
lytically on κ ∈ Ωα, where Ωα ⊂ Cd is a complex strip of half-width α > 0 around
the “real axis” Rd ⊂ Cd [22, Prop. 2.1].

As in (3.3), we can define the Chern numbers associated to {P (k)}k∈Rd as

c1(P )ij :=
1

2π

∫
Bij

TrL2
per(Y )

(
P (k)

[
∂kiP (k), ∂kjP (k)

])
dki ∧ dkj , 1 ≤ i < j ≤ d,

(4.2)
where Bij ⊂ B is the 2-dimensional sub-torus of B where the coordinate different
from the i-th and j-th is fixed (e. g. to zero).

We are finally able to state the main result from [19], generalizing the analysis
on the Haldane Hamiltonian from the previous Section.
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Theorem 4.1 ([19]). Let H ←→ H(k) be as in the above Assumption, and P (k) be
the spectral projection on the gapped spectral island of H(k). Then for all s ∈ [0, 1)
there exists a Bloch frame {u1, . . . , um} ⊂ Hs

τ (B;L2
per(Y )) for {P (k)}k∈Rd , namely

a set of functions ua ∈ Hs
loc(Rd;L2

per(Y )) such that

ua(k + λ) = τλua(k), 〈ua, ub〉L2 = δab, and P (k) =

m∑
a=1

|ua(k)〉 〈ua(k)| .

Moreover, the following statements are equivalent:

(i) there exists a Bloch frame in H1
τ (B;L2

per(Y ));

(ii) there exists a Bloch frame in Cωτ (Ωα;L2
per(Y )), the space of τ -covariant an-

alytic functions on Ωα with values in L2
per(Y );

(iii) the Chern numbers c1(P )ij, 1 ≤ i < j ≤ d, defined in (4.2), vanish.

The above result can be interpreted as a Localization–Topology Correspon-
dence, having implications also for the transport properties of the model under
scrutiny for a crystalline insulator. To better clarify this point, we need to in-
troduce one further notion. Given a periodic Hamiltonian H ←→ H(k) as in

the Assumption above, denote by P = U−1
(∫ ⊕

B P (k)dk
)
U the periodic projec-

tion on L2(X) onto the subspace corresponding to the isolated spectral island in
momentum space. The Hamiltonian H has generically absolutely continuous spec-
trum (given by σ(H) =

{
λ ∈ R : λ = En(k) for some n ∈ N, k ∈ Rd

}
), so it is not

possible in general to find a basis of the range of P given by eigenstates of the
Hamiltonian. Nonetheless, if {ua(k)}1≤a≤m is an orthonormal basis for RanP (k)
— a Bloch frame, in the terminology introduced above — then it is possible to
define (composite) Wannier functions [16] by

wa(y − γ) := (U−1ua)(y − γ) =
1

|B|

∫
B

eik·(y−γ)ua(k,y) dk,
1 ≤ a ≤ m,
y ∈ Y, γ ∈ Γ.

The functions wa will automatically be in RanP ⊂ L2(X), and so will the trans-
lates Tγwa by periodicity of P . One can then check [14] that {Tγwa}γ∈Γ, 1≤a≤m
constitutes an orthonormal basis for RanP if the Bloch frame is τ -covariant. Lo-
calized Wannier functions are found to describe accurately the orbitals of the
crystalline insulator [16], and it is hence important to understand their decay
properties at infinity. Since the Bloch–Floquet–Zak transform shares with the
standard Fourier transform the property of intertwining the multiplication oper-
ator by x on L2(X) and the gradient ∇k with respect to the crystal momentum,
one can read off these decay properties of Wannier functions by looking at the
smoothness with respect to k of the corresponding Bloch frame. More precisely,
it holds that

〈x〉swa ∈ L2(X) ⇐⇒ ua ∈ Hs(B;L2
per(Y )), s ≥ 0,

eβ|x|wa ∈ L2(X) ,∀β ∈ [0, α) ⇐⇒ ua ∈ Cω(Ωα;L2
per(Y )),
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where we have denoted 〈x〉 := (1 + |x|2)1/2.
The existence of a basis of well-localized (say, exponentially) Wannier func-

tions signals the absence of charge transport in the crystal; on the contrary, a
power-law decay of the Wannier functions is an indication of topological trans-
port. If the Hall conductivity is non-zero, one then expects Wannier functions
to be poorly localized. This is exactly the content of the above Theorem, which
can be recast in terms of Wannier functions as a Localization Dichotomy : either
Wannier functions are exponentially localized (and this happens exactly when the
Hall conductivity vanishes), or they are delocalized in the sense that they yield an
infinite expectation of the squared position operator |x|2; no intermediate regimes
of decay are allowed. The precise result is as follows.

Theorem 4.2 (Localization Dichotomy [19]). Let H be as in the above Assump-
tion, and P be the spectral projection on the gapped spectral island. Then for all
s ∈ [0, 1) there exists a Wannier basis for RanP , that is, an orthonormal basis
{Tγwa}γ∈Γ,1≤a≤m of RanP , such that

sup
γ∈Γ

∫
X

〈x− γ〉2s |(Tγwa)(x)|2 dx ≤ Cs <∞ for all s ∈ [0, 1).

Moreover, the following statements are equivalent:

(i) there exists a Wannier basis such that

sup
γ∈Γ

∫
X

〈x− γ〉2 |(Tγwa)(x)|2 dx ≤ C1 <∞;

(ii) there exists a Wannier basis such that

sup
γ∈Γ

∫
X

e2β|x−γ| |(Tγwa)(x)|2 dx ≤ Cω <∞ for all β ∈ [0, α);

(iii) the Chern numbers c1(P )ij, 1 ≤ i < j ≤ d, defined in (4.2), vanish.

We sketch here the main ideas from the proof of Theorem 4.1: for the detailed
argument, the reader is referred to [19].

The first part consists in exhibiting a Bloch frame which is in Hs
τ for all s ∈

[0, 1). In 2d, this is obtained via parallel transport, a procedure which allows
to construct a smooth (C∞) and τ -covariant Bloch frame on the 1-dimensional
boundary of the Brillouin zone B, and to extend this to the interior. The end
result is a Bloch frame which is τ -covariant and smooth except at one point in
the Brillouin zone. The technique of parallel transport gives a precise control also
on the type of singularity of the constructed Bloch frame, which is seen to be
consistent with the claimed Hs-regularity (the derivatives of the Bloch functions
have a (1/r)-divergence at the singular point). This situation should be compared
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with the Bloch function for the Haldane Hamiltonian exhibited in the previous
Section. In 3d, one needs to further extend an already singular datum at the 2-
dimensional boundary of the Brillouin zone to the 3-dimensional “bulk”: this can
be done again by parallel transport, and produces this time lines of singularities,
which dictate in turn the Hs-regularity in the statement of the Theorem.

The next part of the proof requires to show that if a Bloch frame in H1
τ exists,

then the Chern numbers of the family of projections vanish. The proof relies on
a very subtle approximation of H1

τ frames by C∞τ frames. The subtlety lies in
the fact that the space of frames in an Hilbert space is a non-linear manifold;
the approximation of Sobolev maps with values in a manifold by regular maps
becomes more involved, and requires in general certain topological conditions to
be satisfied (see [11] and [19, App. B]). Nonetheless, in our setting H1 maps can
indeed be approximated by C∞ ones; when calculating an “approximate” Berry
curvature (3.2) with the regular frames, its integrals over the tori Bij are zero, so
that in the limit the Chern numbers for the family of projections P (k) must also
vanish. It is then well-known [21, 22] how to modify the H1-regular Bloch frame
to an analytic one, provided the Chern numbers vanish.

As a side remark, note how in 2d the “threshold” Sobolev regularity H1 coin-
cides also with the “threshold” of the Sobolev embedding Hs ↪→ C0, which holds
for s > 1. Geometric arguments, based on the theory of vector bundles, yield that
a non-zero Chern number forbids the existence of τ -covariant continuous Bloch
frames [21]: Theorem 4.1 improves this result, claiming that also Bloch frames
in H1

τ cannot exist when the Chern numbers are non-vanishing. In 3d, the result
is even more stringent, as the threshold for the Sobolev embedding of Hs into
continuous functions is at s = 3/2.

Acknowledgements. We are grateful to Clément Tauber for many useful dis-
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figures.
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