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Recent advances on the theory of Scorza quartics

Francesco Zucconi

Abstract. We review the proof of the existence of the Scorza quartic for the general element

of the moduli space of spin curves.

1 Introduction

In this work we present the content of two lectures which were held at the Di-
partimento di Matematica dell’ Università di Catania. They were part of the
workshop Quartiche piane, mappa di Scorza e argomenti correlati, DMI-UNICT,
Catania 19-21/1/2016, marvellously organised by Francesco Russo, and devoted to
study geometrical and computational aspects of plane quartics and of the Scorza’s
construction.

1.1 Historical overview

In the papers [19] and [20], using deep geometrical ideas based on his study of
polar polyhedra; see: [18], Gaetano Scorza was able to associate a plane quartic
C = {F4 = 0} to a couple (C ′, θ) where C ′ is a plane quartic, in general different
from C, and θ is a divisor of degree 2 such that 2θ is cut by a line but OC′(θ)
has no section. Moreover he gave an idea to associate a quartic {F4 = 0} ⊂ Pg−1,
nowadays called Scorza quartic, to each general couple (Γ, θ) where Γ is a canonical
curve of genus g and θ is a divisor of degree g−1 such that 2θ is linearly equivalent
to the canonical divisor KΓ and OΓ(θ) has no section; a couple (Γ, θ) as above is
nowadays called spin curve and θ is called an ineffective theta characteristic, we
learnt this name by Miles Reid. For a modern approach to the theory of theta
characteristic see: [13].

In [2] Maurizio Cornalba constructed a compactification of the moduli space
S+
g of such couples (Γ, θ) and he proved that it is irreducible. The Scorza’s con-

struction has been strongly revised by Igor Dolgachev and Vassil Kanev in their
paper [3] which is the basis of our first lecture. In particular they strongly clarify
Scorza’s construction to obtain {F4 = 0} ⊂ Pg−1. Their study led them to find
some conditions to prove the existence of the Scorza quartic associated to (Γ, θ);
see Subsection 2.3 below. Recently, in his book [4, 5.5 Scorza correspondence,
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pages 212-225] Dolgachev reviews the construction of the Scorza quartics where
the conditions to construct them fits with the theory exposed in [21, 22].

Let us briefly recall here the case of plane quartics which is not treated in
these notes but it should suggest motivations to read them.

1.2 Plane quartics

We follow the explanation in [3, §6, 7] (see also [17, §3] and [4, Subsection 6.3.4,
pages 251-255]).

Assume that V is a 3-dimensional vector space and V̌ its dual. Let F ∈ S4V̌
be a general ternary quartic form on V . Then the closure of the loci in P(V ) = P2

at a point of which the first polar of F is a Fermat cubic is again a smooth quartic
curve, which is denoted by S(F ) and is called the covariant quartic of F : see [3,
p. 259]. In symbols:

S(F ) := {a ∈ P2 | PaF is Fermat cubic}.

By taking the second polars of S(F ), we have the following correspondence:

T (F ) := {(a, b) ∈ S(F )× S(F ) | rankPa,b(S(F )) ≤ 1}. (1.1)

Actually, this is also equal to {(a, b) ∈ P2 × P2 | rankPa,b(S(F )) ≤ 1} see [3,
Corollary 6.6.3 (iv)], [3, Proposition 6.8.1] and [3, Theorem 7.6]. The important
point for these notes is that the theory exposed in [3] clarifies that there exists an
ineffective theta characteristics θ such that (a, b) ∈ T (F ) if and only if a belongs to
the unique effective divisor linearly equivalent to θ+ b. By this Scorza was able to
construct a map, nowadays called the Scorza map: Sc : [F = 0] 7→ [S(F ), θ], which
is defined over the open subset M0

3 of the coarse moduli space M3 of genus-3
smooth curves given by those {F = 0} such that S(F ) is nonsingular.

It is well-known that the forgetful morphism S+
3 → M3, [C, θ] 7→ [C] is

generically of degree 36, but Scorza was able to see that the map Sc: M0
3 → S+

3

is an injective birational map (cf. [3, Theorem 7.8]).
We also remind the reader that by this construction we can conclude that S+

3

is rational since M3 is rational [12] (see also [1]).
By this birational correspondence the curve F corresponding to a couple

(S(F ), θ) is called the Scorza quartic of (S(F ), θ).

1.3 Primitive Fanos of genus 12

Another motivation to study the geometry of the Scorza quartics comes from
Mukai’s description of prime Fano threefolds of genus 12. By definition a prime
Fano threefold X is a smooth projective variety such that dimCX = 3, −KX is

ample, the class of −KX generates PicX, and the number g(X) := (−KX)3

2 + 1,
called the genus of X, is equal to 12. These Fano threefolds were quite mysterious
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objects and the attempt to find a geometrical description of them led Mukai to
find their relationship with the concept of varieties of power sums.

First we recall the following object inside the Hilbert scheme HilbnP(V̌ ) given
by n-ples of points of P(V̌ ) where V is a (v + 1)-dimensional vector space and V̌
is its dual space:

Definition 1.1. Let F ∈ SmV̌ be a homogeneous forms of degree m on V . Set

VSP (F, n)o := {([H1], . . . , [Hn]) | Hm
1 + · · ·+Hm

n = F} ⊂ HilbnP(V̌ ).

The closed subset VSP (F, n) := VSP (F, n)o is called the varieties of power sums
of F .

Mukai discovered the following beautiful description of prime Fano threefolds
of genus 12; see: [15, 16].

Theorem 1.2. Let {F4 = 0} ⊂ P(V ) be a general plane quartic curve. Then

(1) VSP(F4, 6) ⊂ Hilb6P(V̌ ) is a general prime Fano threefold of genus 12; and
conversely,

(2) every general prime Fano threefold of genus 12 is of this form.

The above result can be seen as a part of the theory of the ineffective theta
characteristics because the Hilbert scheme of lines on X is isomorphic to a smooth
curve Γ of genus 3 and Mukai proved that the correspondence on Γ × Γ defined
by the intersection of lines on X gives an ineffective theta characteristic θ on Γ.
More precisely, θ is described via the correspondence

I := {([l], [m]) ∈ Γ× Γ | l ∩m 6= ∅, l 6= m}

obtained by the geometry of X. Actually in subsection 3.4.1 below we give a
more precise description of I in the Fano 3-folds context. Now, by the result of
Scorza recalled above, there exists the Scorza quartic {F4 = 0} of the pair (Γ, θ)
in the same ambient plane as the canonically embedded Γ. Mukai proved that X
is recovered as VSP (F4, 6). This is the result (2) of Theorem 1.2. The result (1)
follows from (2). See also [17]). An evidence for this last result is given by the
known fact that the number of the moduli of prime Fano threefolds of genus 12 is
equal to dimM3 = 6.

1.4 A generalisation of the Mukai’s construction

In the papers [21] and [22] Hiromichi Takagi and Francesco Zucconi generalised the
Mukai’s construction, see [14], to the case of other 3-folds. We explain a relation
of their result with Theorem 1.2. We will recall in Subsection 3.1 many properties
of the Fano 3-fold of degree 5 and index 2, which we denote by B. In particular
its Hilbert schemes of lines and respectively of conics are nicely interplayed to the
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description of B as a complete intersection of the Grassmannian Gr(2, 5) ⊂ P9

and of a general P6 inside P9.
LetR be a smooth rational curve of degree 5 contained insideB. Let f : A→ B

be the blow-up of B along R. It is easy to prove that R has three bisecant lines β1,
β2, β3 contained inside B and a 1 dimensional family of unisecant lines contained
in B. Let β′1, β

′
2, β
′
3 be the strict transforms of β1, β2, β3 and ER := f−1(R) the

f -exceptional divisor.
Then it remains defined the following diagram:

Ã
ρ

~~

ρ′

!!

Φ

��

A
f

��

99K A′

f ′

  
B X,

where

• X is a smooth prime Fano threefold of genus twelve,

• ρ′ is the blow-down of the three ρ-exceptional divisors Ei (i = 1, 2, 3) over
the strict transforms β′i in the other direction. In other words, A 99K A′ is
the flops of β′1, β′2 and β′3, and

• the morphism f ′ contracts the strict transform of the unique hyperplane
section S containing R to a general line m on X.

The rational map X 99K B is the famous double projection of X from a general
line m first discovered by Iskovskih (see [11]).

Now, if we define line on A a rational connected curve l contained inside A
such that ER · l = −KA · l = 1, it can be shown that there exists an isomorphism
between the Hilbert scheme of lines of X and the Hilbert scheme of lines of A.
Almost the same occurs if we suitably define a notion of conic on A. This is recalled
in Subsection 3.3. By this correspondence we can translate the geometry over X
into the geometry of A and since the Hilbert scheme of lines of X is a genus 3
curve Γ and the incidence correspondence is readable by a theta ineffective divisor,
we see a way to associate to a rational curve R ⊂ B a couple (Γ, θ) such that the
geometry of the 3-fold A reads the algebraic relations given by θ. A moment of
thought could convince the reader that the restriction on R to be of degree 5 is
not so important. In particular this idea leads to associate to a sufficiently general
rational curve R ⊂ B of degree g+ 2 a couple (Γ, θ) where Γ is the Hilbert scheme
of lines of A and θ is obtained by line to line intersection on A, where A is the blow-
up of B at R. This is the path built in [22], which leads to show the rationality
of S+

4 , see [23], the rationality of the moduli space of one-pointed ineffective spin
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hyperelliptic curves, see [24], and the rationality of the moduli space of ineffective
spin hyperelliptic curves, see [25]. Finally our method is applied in [21] to finish the
research program started by Scorza and continued by Dolgachev and Kanev, that
is to give a complete proof of the existence of the Scorza quartic {F4 = 0} ⊂ Pg−1

associated to a general couple [(Γ, θ)] ∈ S+
g .

2 Scorza’s construction

2.1 Scorza’s correspondence

Let Γ be a smooth curve of genus g and ωΓ := OΓ(KΓ) its canonical sheaf. We
denote by V the vector space H0(Γ, ωΓ)∨ of linear functionals on H0(Γ, ωΓ) and
we set Pg−1 := P(V ). An ineffective theta characteristic θ is a divisor of degree
g−1 such that h0(Γ,OΓ(θ)) = 0 and 2θ is linearly equivalent to KΓ. In the sequel
we will assume that Γ is a canonical curve inside Pg−1.

By Riemann-Roch theorem it follows that h0(Γ,OΓ(θ+a)) = 1 for every a ∈ Γ.
The unique effective divisor of |θ+ a| is called θ-polyhedron attached to a and it is
commonly denoted by Iθ(a). The points a1, . . . , ag ∈ Γ of the support supp(Iθ(a))
are called vertices of the θ-polyhedron attached to a.

Definition 2.1. The first Scorza correspondence is the following scheme:

Iθ := {(a, b) ∈ Γ× Γ | a ∈ supp(Iθ(b))}

Note that Iθ is symmetric. Indeed let Iθ(a) = a1 + · · · + ag ≡ θ + a and
Iθ(b) = b1 + · · · + bg ≡ θ + b. Assume that there exists i = 1, . . . , g such that
b = ai. By Serre duality it holds that h0(Γ,OΓ(θ + b− a)) = 1.

Consider now the Abel-Jacobi morphism

α : Γ× Γ→ Jac(Γ)

which assigns to each couple (x, y) the divisor class cl(y−x). It is known that the
locus Wg−1 ⊂ Picg−1(Γ) given by effective divisor is an hypersurface and we set
Θ := Wg−1 − θ ⊂ Jac(Γ).

Let σ : Γ× Γ→ Γ× Γ be the exchange map and ∆ the diagonal of Γ× Γ.

Proposition 2.2. It holds:

(1) Iθ = α?Θ.

(2) σ?Iθ = Iθ.

(3) Iθ ∩∆ = ∅.

(4) Iθ is algebraically equivalent to ∆ + p?1(θ).

(5) If (x, y) ∈ Iθ then h0(Γ,OΓ(Iθ(x)− y)) = 1.
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Proof. (1): α∗Θ| {x} × Γ = Iθ(x). (2): σ?Iθ = α?(−IdJac(Γ)Θ = α?Θ = Iθ. (3)
follows since h0(Γ,OΓ(θ)) = 0. To show (4) we note that since Iθ(x) − x = θ
is independent of x ∈ Γ. This means that Iθ − ∆ is algebraically equivalent to
divisors obtained by pull-back by the two projections.

We recall that a correspondence I ⊂ Γ × Γ is of valence n, where n ∈ N if
the divisor class I(p) + np is independent of p ∈ Γ. By same arguments used in
Proposition 2.2 Dolgachev and Kanev show:

Proposition 2.3. Let Γ be a smooth curve of genus g and let I ∈ Div(Γ×Γ) be a
symmetric effective correspondence without united points, of valence ν and degree
(g, g). Assume that if x ∈ Γ is a general point then h0(Γ,OΓ(I|{x}×Γ)) = 1. Then
there exists a unique ineffective theta characteristic such that I = Iθ.

Proof. See: [3, Lemma 7.2.1] and also [4, Proposition 5.5.1].

2.2 The discriminant locus

By Proposition 2.2 (5) and by Riemann’s theorem on theta divisor, c.f. see: [7,
p. 348], we have that the image by α of Iθ is contained inside the open subset
Θns ⊂ Θ given by the non singular points of Θ; that is α(Iθ) ⊂ Θns. Now recall
that Θ := Wg−1 − θ and on Θns it is defined the Gauss map γ : ε 7→ Dε where
Dε ∈ |KΓ| is the unique divisor containing the unique effective divisor of ε+ θ cf.
see [7, p. 360]. Consider the composition

πθ : Iθ
α−→ Θns γ−→ |KΓ| = P̌g−1 = P(V ∨)

The following is an important invariant of (Γ, θ):

Definition 2.4. The image Γ(θ) of the above morphism πθ : Iθ → P̌g−1 (with
reduced structure) is called the discriminant locus of the pair (Γ, θ).

Note that if (a, b) ∈ Iθ then πθ((a, b)) = [〈Iθ(a) − b〉] = [〈Iθ(b) − a〉] ∈ P̌g−1.
Let Θ := Θ/〈−IdJac(Γ)〉, j : Θ → Θ the quotient morphism and γ : Θ → P̌g−1 the

induced one. Set Γ(θ) := j(α(Iθ)) ⊂ Θ.
In the sequel we will need the following lemmas.

Lemma 2.5. The degree of πθ : Iθ → Γ(θ) is 2d(θ) ≤
(

2g−2
g−1

)
.

Proof. Since Iθ is symmetric, the morphism πθ : Iθ → Γ(θ) factorizes through j ◦α.
Since the degree of γ is

(
2g−2
g−1

)
the claim follows.

Lemma 2.6. The number 2d(θ) is the number of θ-polyhedra of Γ having a com-
mon face.

Proof. If [H] ∈ Γ(θ) is a general element then

π−1
θ ([H]) = {(x, y) ∈ Iθ | H = 〈Iθ(x)− y〉} .
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2.3 Conditional existence of Scorza’s quartics

Dolgachev and Kanev showed that three conditions, overlooked by Scorza, are
needed to construct the Scorza quartic: (see [3, (9.1) (A1)–(A3)]). They are
modified in [4, Definition 5.5.15]:

(A1) the degree of the map Iθ → Γ(θ) is two, namely, 〈Iθ(x′) − y′〉 = 〈Iθ(x) − y〉
implies (x′, y′) = (x, y) or (y, x),

(A2) Γ(θ) is not contained in a quadric, and

(A3) Iθ is smooth and connected.

From now on we assume that these conditions hold for (Γ, θ).

By Definition 2.4, we have the following diagram:

Iθ ⊂ Γ× Γ

πθ

ww

p

&&
Γ(θ) ⊂ P̌g−1 Γ ⊂ Pg−1.

(2.1)

Let |KΓ| 3 [H] ∈ P̌g−1 or in other words H is an hyperplane of Pg−1.

Definition 2.7. We call the Scorza-trasform of [H] the following divisor on Γ(θ)

DH := πθ∗p
∗(H ∩H).

Proposition 2.8. Assume that (Γ, θ) is a spin curve which satisfies (A1), (A2)
and (A3). Then the following hold:

(1) deg Γ(θ) = g(g − 1);

(2) ρa(Iθ/〈τ〉) = 3
2g(g − 1) + 1;

(3) The Scorza transform DH is cut by a (unique) quadric in P̌g−1.

Proof. Let S2Γ be the symmetric product and σ : Γ × Γ → S2Γ the natural mor-
phism. Since Iθ ∩ ∆ = ∅ then σ|Iθ : Iθ → Iθ/〈τ〉 in an unramified double cover.
Since d(θ) = 1 then the induced morphism h : Iθ/〈τ〉 → Γ(θ) is a birational mor-
phism. Consider an hyperplane Ȟ ⊂ P̌g−1. Then there exists a ∈ Pg−1 such that
Ȟ = Ȟa is the set of the hyperplanes containing a. Fix a point a ∈ Γ ⊂ Pg−1.
Then [H] ∈ Ȟa ∩Γ(θ) means that there exists (b, c) ∈ Iθ such that H = 〈Iθ(b)− c〉
and a ∈ H. Set Iθ(b) = b1 + · · ·+ bg and Iθ(c) = c1 + · · ·+ cg; see also the remark
below this proof. Assume a 6= b and a 6= c. We can write b = c1 and c = b1.
This implies that there exists j = 2, . . . , g − 1 such that a = bj or a = cj since
a ∈ 〈b2, . . . , bg, c2, . . . , cg〉 = H ∩ Γ. Hence a ∈ Iθ(b) or a ∈ Iθ(c). In both cases
this means that there exists b ∈ Iθ(a) such that H is a face of Iθ(b) and a ∈ H.
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Hence set Iθ(a) = b1 + · · ·+ bg. Then [H] ∈ Ȟa ∩ Γ(θ) iff there exists i = 1, . . . , g
such that H = 〈Iθ(bi) − c〉 = πθ(bi, c) and c 6= a. Consider the two projections
pi : Γ× Γ→ Γ, i = 1, 2. Then

π?θ(Ȟa ∩ Γ(θ)) = p?1(Iθ(a))− p?2(a) + p?2(Iθ(a))− p?1(a)

= p?1(Iθ(a)− a) + p?2(Iθ(a)− a) = p?1(θ) + p?2(θ).
(2.2)

Finally notice that Iθ ∼ ∆ + p?1(θ) + p?2(θ) = α?(Θ) and since Iθ · ∆ = 0 it
follows that:

π?θ(OΓ(θ)(1) = OIθ (p?1(θ) + p?2(θ)) ∼ OIθ (α?(Θ)).

In particular deg Γ(θ) = 1
2 degOIθ (p?1(θ) + p?2(θ)) = g(g− 1). To show (1) and

(2) we have used (A1) and (A3). Now we use (A2) to show (3). Claim (3) follows
if we show that there exists an hyperplane H such that DH is cut by a quadric in
P̌g−1. Now choose two points a, b ∈ Γ such that a ∈ Iθ(b). Let H be a common face
to Iθ(a) and Iθ(b). We set Iθ(b) = a+b1 + · · ·+bg−1 and Iθ(a) = b+a1 + · · ·+ag−1.
Then H = 〈b1, . . . , bg−1〉 = 〈a1, . . . , ag−1〉. Now by the same argument used to
obtain above the equation (2.2) we can write that [Z] is in DH if Z is a face of
Iθ(bj), j = 1, . . . , g − 1 or Z is a face of Iθ(aj), j = 1, . . . , g − 1. Since the claim
(1) is true then the quadric Φ = ȞaȞb does the job. Note that by the condition
(A2) it follows that Φ is unique.

Remark 1. It is not clear if there are two such non-degenerate polyhedra Iθ(a)
and Iθ(b) whose existence is claimed in the above proof from the conditions (A1)–
(A3) only. For general spin curves this is true since we will show that it is true
for a general (Γ, θ) where Γ is trigonal. This can be seen as an application of our
geometrical construction.

2.3.1 The second Scorza’s correspondence

To define the Scorza quartic of (Γ, θ) we need to consider the correspondence:

D := {(q1, q2) | q1 ∈ DHq2
} ⊂ Γ(θ)× Γ(θ), (2.3)

where Hq is the hyperplane of Pg−1 corresponding to q ∈ P̌g−1. It is easy to
see that D is symmetric. The correspondence D is called the second Scorza’s
correspondence. Proposition 2.8 suggests that D is the restriction of a symmetric
(2, 2) divisor {D′ = 0} of P̌g−1 × P̌g−1; this too will be proved in Theorem 3.25.
For the moment assume that D′ exists. By [3] we may take the equation D′ so
that it is the bi-homogeneization of an equation F̌4 such that {F̌4 = 0} ⊂ P̌g−1 is a
quartic hypersurface. Actually this quartic hypersurface is obtained by restricting
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D′ to the diagonal of P̌g−1× P̌g−1. Moreover by definition of the fiber of {D′ = 0}
over a point q ∈ P̌g−1 we obtain the homomorphism:

λ : H0(Pg−1,OPg−1(2))→ H0(P̌g−1,OP̌g−1(2)) (2.4)

such that for all q ∈ Γ(θ)

λ : [H2
q ] 7→ [ȞaȞb]

where the hyperplane {Hq = 0} = H̃q ⊂ Pg−1 is the one corresponding to the
point πθ(a, b) = q ⊂ Γ(θ) ⊂ P̌g−1 and (a, b) ∈ Iθ.

2.3.2 The definition of the Scorza quartic

Proposition 2.9. The homomorphism

λ : S2V̌ → S2V

Q 7→ λ(Q).

is an isomorphism.

Proof. We have that for a point q ∈ Γ(θ) it holds that λ([H2
q ]) = ȞaȞb where

(a, b) ∈ Iθ. The claim is equivalent to show that the quadrics ȞaȞb where (a, b) ∈
Iθ generates the space of the quadrics of P̌g−1. By contradiction assume that
this is not the case. This means that by the pairing (Q1, Q2) 7→ 〈Q1, λ(Q2)〉 =
Pλ(Q2)(Q1) there exists a quadric Q of Pg−1 such that 〈Q,λ(H2

q 〉 = 〈Q, ȞaȞb〉 = 0
for every (a, b) ∈ Iθ. Now fix a ∈ Γ. Consider Iθ(a) = a1 + · · · + ag. Then if H
is the polar hyperplane of a with respect to Q then ai ∈ H for every i = 1, . . . , g.
This means that the span of Iθ(a) is a hyperplane, hence |KΓ − θ − a| 6= ∅: a
contradiction.

Remark 2. The inverse λ−1 : S2V → S2V̌ defines an element Ď2 ∈ S2V̌ ⊗ S2V̌ .
We consider the polarization map pl2 : S2V̌ → Sym2V . Set Ũ := pl2 ⊗ pl2(Ď2) ∈
Sym2V ⊗ Sym2V ⊂ V̌ ⊗4. In the next Proposition 2.10 we will show that Ũ is
contained in Sym4V .

We need to clarify a subtle point. The isomorphism λ : S2V̌ → S2V sends the
square of a point Γ(θ) 3 [Hq] to the quadric ȞaȞb where (a, b) ∈ Iθ and πθ((a, b)) =
q = [Hq]. In the proof of proposition 2.10 we will see that if x ∈ Γ is a general
point and Iθ(x) = x1 + · · · + xg then letting q1 = πθ(x, x1), q2 = πθ(x, x2),. . . ,
qg = πθ(x, xg) it holds that P̌g−1 coincides with the span 〈q1, q2, . . . , qg〉. By
our geometric description of the Scorza quartic associated to (Γ, θ) where Γ is a
trigonal curve we will see that the above fact is geometrically evident in the case
of trigonal curves.

Proposition 2.10. The tensor Ũ := pl2 ⊗ pl2(Ď2) ∈ Sym2V ⊗ Sym2V ⊂ V̌ ⊗4 is

contained in Sym4V . In particular Ũ is the image of a quartic form ∈ S4V̌ by pl4.
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Proof. Our argument is almost identical with the one by Dolgachev and Kanev;
see: [3, Theorem 9.3.1].

Let (Γ, θ) be a canonical curve and x ∈ Γ a general point in it. Set Γ(θ) 3 qi :=
πθ(x, xi), i = 1, . . . , g where Iθ(x) = x1 + · · · + xg. We point out the reader that
only for this proof we denote by Hq ∈ V̌ an equation associated to the hyperplane
inside Pg−1 which correspond to the point q ∈ P̌g−1 and we denote by Ȟx ∈ V an
equation associated to the hyperplane inside P̌g−1 which correspond to the point
x ∈ Pg−1; that is, the notation Ȟx(q) 6= 0 means that the point q is not in the
hyperplane with equation Ȟx and Ȟx(q) = 0 means that the point q belongs to
the hyperplane with equation Ȟx. The same holds for the dual notation. By of
Proposition 2.9 it holds that

λ(H2
qi) = ci · ȞxȞxi , ci ∈ C?, i = 1, . . . , g .

Note that Ȟxi(qi) 6= 0, i = 1, . . . , g since xi 6∈ 〈Iθ(x) − xi〉. Moreover by the
same argument used in the proof of Proposition 2.8 (1) and (3) it also holds that
Ȟxi(qj) = 0 where i 6= j, i, j = 1, . . . , g. In other words, it holds 〈Ȟxi , Hqi〉 6= 0
and 〈Ȟxi , Hqj 〉 = 0 for i 6= j, where 〈, 〉 is now the natural dual pairing. Since it

is easy to show that Pg−1 = 〈x1, . . . , xg〉 we easily see that the linear forms Ȟxi ,
i = 1, . . . , g give a basis and then {Hqi}

g
i=1 gives a basis for the vector space of

linear forms of V , that is 〈q1, q2, . . . , qg〉 coincides with P̌g−1. More precisely, not
only Ȟx1

, . . . , Ȟxg and Hq1 , . . . ,Hqg span V̌ and V , respectively but {Hqi}
g
i=1 and

{Ȟxi}
g
i=1 can be taken dual to each other. Choose coordinates of V and V̌ such

that Hqi and Ȟxi are coordinate hyperplanes {xi = 0} and {ui = 0} respectively.
Set L =

∑g
i=1 aiui for the point Ȟx. For any y = (y1, . . . , yg) ∈ V , we have

λ(
∑
yix

2
i ) = (

∑
aiui)(

∑
yiui) since λ(x2

i ) = uiL. We consider now λ−1 : S2V →
S2V̌ . We have seen that it defines an element Ď2 ∈ S2V̌ ⊗ S2V̌ and by the
polarization map pl2 : S2V̌ → Sym2V we construct Ũ := pl2⊗pl2(Ď2) ∈ Sym2V ⊗
Sym2V ⊂ V̌ ⊗4. By considering Ũ ∈ V̌ ⊗4, we can write: Ũ(L, y, x, x) =

∑
yix

2
i =

Py( 1
3

∑
x3
i ), where x = (x1, x2, . . . , xg) and Py is the polar with respect to y.

Thus we have Ũ(L, y, x, z) =
∑
yixizi for z = (z1, z2, . . . , zg), hence Ũ(L, y, x, z)

is symmetric for y, x and z. Since Ũ ∈ Sym2V̌ ⊗ Sym2V̌ and D̃2 is symmetric, we

have shown that Ũ ∈ Sym4V̌ .

By Proposition 2.10 there exists a quartic {F4 = 0} in Pg−1 associated to Ũ ,

namely, F4 := Ũ(x, x, x, x).
By the construction, we obtain that the double polarity with respect to F4

gives back the inverse λ−1 : S2V → S2V̌ . In other words F4 satisfies a rather
important property to study ineffective theta characteristics:

Proposition 2.11. Let (Γ, θ) ∈ S+
g satisfying the assumptions (A1), (A2) and

(A3). Let {F4 = 0} ⊂ Pg−1 be the quartic constructed in Proposition 2.10. Let

ap
(2)
F4

: S2V → S2V̌ ,
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ap
(2)
F4

: Φ 7→ PΦ(F4),

be the second polarisation homomorphism associated to F4. Then for any (x, y) ∈
Iθ it holds that

PȞxȞy (F4) = H2
q (2.5)

where q = πθ(x, y). Moreover F4 is a non degenerate quartic in the sense of [3,
Definition 2.8].

Proof. By the theory of polarity we can interpret what we have done as follows:
λ−1 = ap2

F4
. Since λ−1 is an isomorphism, F4 is non-degenerate.

The quartics obtained from elements (Γ, θ) ∈ S+
g deserve a name because it

is trivial to show that if g > 3 then they are very special in the space of all the
quartics and because in the case where g = 3 a rich geometry is attached to their
construction.

Definition 2.12. The Scorza quartic of the pair (Γ, θ) is the quartic {F4 = 0} in
Pg−1 = P(V ) such that ap2

F4
: S2V → S2V̌ satisfies the Equation (2.5).

Note that by construction we have a quartic {F̌4 = 0} ⊂ P̌g−1 which is induced
by the restriction to the diagonal of a symmetric (2, 2) form of P̌g−1×P̌g−1. Clearly
once we have the Scorza quartic {F4 = 0} ⊂ Pg−1 = P(V ) by the inverse of
ap2
F4

: S2V → S2V̌ we reconstruct the isomorphism λ : S2V̌ → S2V of Proposition
2.9 and from it we obtain the (2, 2) form D′ whose restriction to the diagonal is
{F̌4 = 0} ⊂ P̌g−1. Even if, in other contexts, this can cause a misunderstanding
we choose to call {F̌4 = 0} ⊂ P̌g−1 the dual of the Scorza quartic.

We can summarises the above discussion in the following theorem.

Theorem 2.13. Let (Γ, θ) be a pair satisfying the assumptions (A1), (A2) and
(A3). If the correspondence D is the restriction of a symmetric (2, 2) divisor
{D′ = 0} of P̌g−1 × P̌g−1, the Scorza quartic of (Γ, θ) exists.

2.4 On Dolgachev and Kanev construction of Scorza quartics

In their proof (see [3, pag 296-298]) about the conditional existence of the Scorza
quartic, Dolgachev and Kanev require Iθ to be only reduced. Actually we will
see below that Iθ is smooth for a general pair (Γ, θ) since, by our geometrical
reconstruction of trigonal spin curves, Iθ is smooth for a general pair (H, θ) where
H is trigonal. Moreover we have presented a slight different definition of Scorza
quartic.

Indeed for their definition of Scorza quartic they need the following proposition
whose proof is on [3, page 296].

Proposition 2.14. Let S be the set of hyperplanes H in Pg−1 such that H ∩ Γ is
reduced. The divisors DH (H ∈ S) span a linear system L such that

L = Im (|OP̌g−1(2)| → |OΓ(θ)(2)|) .



12 F. Zucconi

Proof. First Step. By Proposition 2.8 if H is a common face of two non-degenerate
polyhedra Iθ(a) and Iθ(b) then DH = (Ȟa ∪ Ȟb) ∩ Γ(θ).

Second Step. Let U be the Zariski open subset of P̌g−1 consisting of hyper-
planes such that p∗(H ∩ Γ) contains neither singular points of Iθ nor ramification
points of the map p. Clearly U is not empty.

Let Z ⊂ Div 2g(g−1)
(
Γ(θ)

)
be the variety of divisors of degree 2g(g − 1) on

Γ(θ) with support outside of Sing Γ(θ). If H ∈ U , then [DH ] ∈ Z since π is étale
outside Sing Iθ. The subvariety W ⊂ Z of the class of divisors DH with H ∈ U
is unirational since it is dominated by P̌g−1. We have denoted by L the linear
system spanned by W . The linear system L has no base point since divisors DH

have no point in common.
Third Step. Set L̂ := Im (|OP̌g−1(2)| → |OΓ(θ)(2)|). Now we show L = L̂.

By the first step, the linear system L ∩ |OΓ(θ)(2)| contains the divisors DH

([H] ∈ Γ(θ)) since they are the restrictions of ȞaȞb for (a, b) ∈ Iθ.
By the proof of Proposition 2.9 the quadrics ȞaȞb spans the space of quadrics

in P̌g−1. Thus by the assumption (A2), we have

dimL ∩ |OΓ(θ)(2)| ≥ dim |OP̌g−1(2)| = dim L̂ .

We show the inequality in the other direction. Consider the following map

f : P̌g−1 → L. (2.6)

[H] 7→ DH

Fix a point [H0] ∈ Γ(θ) and let L0 < L be the hyperplane of L which consists
of the members containing a point [H0] ∈ Γ(θ). We can write H0 = 〈Iθ(a) − b〉
as a hyperplane of Pg−1. We show that f−1L0 = ȞaȞb. Indeed, if [H] ∈ ȞaȞb,
equivalently, a ∈ H or b ∈ H, then clearly [H0] ∈ DH . Conversely, if [H] 6∈ ȞaȞb,
then [H0] 6∈ DH by Proposition 2.8 deg Γ(θ) = g(g−1). Thus the inverse image of
any hyperplane of L by f is a quadric of P̌g−1. The induced map Ľ → |P̌g−1(2)|
is clearly injective. This implies that dimL ≤ dim |OP̌g−1(2)|. Consequently, we

have L = L̂.

Remark 3. In the argument of the above Proposition 2.14 is not clear why we can
restrict onto U since we need that the map P̌g−1 → L, [H] 7→ DH is a morphism
rather than a rational map. For this, we have to assume that Iθ is smooth rather
than reduced. If so, we can pull back Γ ∩ H to Iθ as a divisor for any H. Since
Iθ → Γ(θ) is étale (here we need to assume that Iθ/〈τ〉 ' Γ(θ); a condition which
holds true for a general spin since it is so for general (H1, θ)), Γ(θ) is also smooth,
thus we can push forward p∗(H ∩ H) to Γ(θ) as a divisor. Since π∗p

∗(H ∩ H)
is a quadric section for a special H as above, so is for any H without using the
unirationality argument. Theorem 2.13 is shown in a slightly different manner in
[4, Theorem 5.5.17]. In any case which are the most general conditions to have
Scorza quartics is still an open problem; this is why we have presented here some
comments on the Dolgachev and Kanev construction.
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3 Scorza’s quartics and rational curves on the del Pezzo
3-fold.

To show the existence of the Scorza quartic for a general pair (Γ, θ) we show first its
existence in the particular case of a pair (Γ, θ) where Γ is a general trigonal curve.
Then the existence for the general couple (Γ, θ) follows by a general argument on
the moduli space of genus g curves; see Theorem 3.23 below.

In [21, 22] it is showed that there is a rich geometry associated to (Γ, θ) if
Γ is trigonal, and it is exactly because of this geometry that we can explicitly
describe the discriminant locus Γ(θ) and then show the theorem. We stress that
the foundational paper is [22], but here we can review only some results of [21].

3.1 Lines on the quintic del Pezzo’s threefold

Let B be the smooth quintic del Pezzo threefold, that is B is a smooth projective
threefold such that −KB = 2H, where H is the ample generator of PicB and
H3 = 5. It is well known that the linear system |H| embeds B into P6 and this
image of B can be seen as B = G(2, 5) ∩ P6, where P6 ⊂ P9 is transversal to the
embedded Grassmannian of the 2-dimensional vector subspaces of a 5-dimensional
vector space; see: [6] and [10, Thm 4.2 (iii), the proof p.511-p.514].

Let π : P → HB1 be the universal family of lines on B and let ϕ : P → B be
the natural projection. By [5, Lemma 2.3 and Theorem I], HB1 is isomorphic to
P2 and ϕ is a finite morphism of degree three. In particular the number of lines
passing through a point is three counted with multiplicities.

Denote by M(C) the locus ⊂ P2 of lines intersecting an irreducible curve C on
B, namely, M(C) := π(ϕ−1(C)) with reduced structure. Since ϕ is flat, ϕ−1(C)
is purely one-dimensional. If degC ≥ 2, then ϕ−1(C) does not contain a fiber of
π, thus M(C) is a curve.

A line l on B is called a special line if Nl/B ' OP1(−1) ⊕ OP1(1). Note that
Nl/B = Ol ⊕Ol if l is not a special line on B.

Proposition 3.1. It holds:

(1) Special lines are parameterised by a conic Ω on HB1 ,

(2) if l is a special line, then M(l) is the tangent line to Ω at [l]. If l is not a
special line, then ϕ−1(l) is the disjoint union of the fiber of π corresponding
to l and the smooth rational curve dominating a line on P2. In particular,
M(l) is the disjoint union of a line and the point [l]. By abuse of notation, we
denote by M(l) the one-dimensional part of M(l) for any line l. Vice-versa,
any line in HB1 is of the form M(l) for some line l, and

(3) the locus swept by lines intersecting l is a hyperplane section Tl of B whose
singular locus is l. For every point b of Tl \ l, there exists exactly one line
which belongs to M(l) and passes through b. Moreover, if l is not special, then
the normalisation of Tl is F1 and the inverse image of the singular locus is the
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negative section of F1, or, if l is special, then the normalisation of Tl is F3

and the inverse image of the singular locus is the union of the negative section
and a fiber.

Proof. See [5, §2] and [9, §1].

3.2 Smooth rational curves on the del Pezzo’s threefold

In [22, 2.2 and 2.3], we constructed a smooth rational curve Cd on B of degree
d by smoothing the union of a smooth rational curve Cd−1 of degree d− 1 and a
general uni-secant line of Cd−1 which lives on B.

Let HBd be the Hilbert scheme of general smooth rational curves of degree d on
B obtained inductively as smoothing of unions of general smooth rational curves
of degree d − 1 on B and their general uni-secant lines according the smoothing
process described in [8]. In fact by [23, Proposition 3.7], HBd is irreducible.

A general Cd belonging to HBd has the following several nice properties:

Proposition 3.2. (1) NCd/B ' OP1(d−1)⊕OP1(d−1). In particular h1(NCd/B) =
0 and h0(NCd/B) = 2d,

(2) there exist no k-secant lines of Cd on B with k ≥ 3,

(3) there exist at most finitely many bi-secant lines of Cd on B, any of them
intersects Cd simply, and they are mutually disjoint,

(4) neither a bi-secant line nor a line through the intersection point between a
bi-secant line and Cd is a special line,

(5) M(Cd) intersects Ω simply,

(6) M(Cd) is an irreducible curve of degree d with only simple nodes (recall that
we abuse the notation by denoting the one-dimensional part of π(ϕ−1(C1)) by
M(C1)), and

(7) by letting l be a general line intersecting Cd or any bi-secant line of Cd,
M(Cd) ∪M(l) has only simple nodes as its singularities.

Proof. See [22, Propositions 2.2.2, 2.3.1, 2.3.3 and 2.4.4].

We have similar results for the conics which are multisecants to Cd where
[Cd] ∈ HBd . Its proof is similar to the proof of Proposition 3.2.

Proposition 3.3. A general Cd as in Proposition 3.2 satisfies the following conditions:

(1) there exist no k-secant conics of Cd with k ≥ 5,
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(2) there exist at most finitely many quadri-secant conics of Cd on B, and no
quadri-secant conic is tangent to Cd, and

(3) q|Cd has no point of multiplicity greater than two for any multi-secant conic q.

Proof. See [22, Propositions 2.3.4.].

Finally we want to stress that we have a clear picture of degenerates conics:
see [22, Proposition 4.2.6].

3.3 Lines and conics on certain blow-ups of the del Pezzo’s threefold

Let C be a smooth rational curve of degree d on B, where d is an arbitrary integer
greater than or equal to 6, as in Proposition 3.2. Let f : A → B be the blow-up
along C and EC the f -exceptional divisor. We define:

Definition 3.4. A connected curve l ⊂ A is called a line on A if −KA · l = 1 and
EC · l = 1.

We point out that since −KA = f∗(−KB)−EC and EC · l = 1 then f(l) is a
line on B intersecting C. The classification of lines on A is simple:

Proposition 3.5. A line l on A is one of the following curves on A :

(i) the strict transform of a uni-secant line of C on B, or

(ii) the union lij = β′i ∪ ζij (i = 1, . . . , s, j = 1, 2), where β′i is a bi-secant line
βi of C and ζij is the fiber of EC over a point in C ∩ βi.

In particular l is reduced and pa(l) = 0.

Proposition 3.6. The Hilbert scheme of lines on A is a smooth trigonal curve
H1 of genus d− 2.

Proof. See [22, Corollary 4.18].

Definition 3.7. We say that a connected and reduced curve q ⊂ A is a conic on
A if −KA · q = 2 and EC · q = 2.

In [22, Corollary 4.2.10] it is showed that the Hilbert scheme of conics on A
is an irreducible surface and the normalisation morphism is injective, namely, the
normalisation H2 parameterises conics on A in one to one way.

Moreover we have the full description of H2 as follows ([22, Theorem 4.2.11]).
For this, let Dl ⊂ H2 be the locus parameterising conics on A which intersect a
fixed line l on A.
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Theorem 3.8. The normalization H2 of the Hilbert scheme of conics of A is
smooth and is a so-called White surface obtained by blowing up S2C ' P2 at
s :=

(
d−2

2

)
points. The locus Dl is a divisor linearly equivalent to (d−3)h−

∑s
i=1 ei

on H2, where h is the pull-back of a line, ei are the exceptional curves of H2 → P2,
and |Dl| embeds H2 into P̌d−3. The scheme H2 ⊂ P̌d−3 is projectively Cohen-
Macaulay, equivalently, hi(P̌d−3, IH2

(j)) = 0 for i = 1, 2 and j ∈ Z, where IH2
is

the ideal sheaf of H2 in P̌d−3. Moreover, H2 is given by intersection of cubics.

Here we use the notation P̌d−3 since the ambient projective space of H2 and
that of the canonical embedding of H1 can be considered as reciprocally dual (see
the line-conic duality described in the following subsection 3.5); hence we write
the ambient of H1 by Pd−3 and that of H2 by P̌d−3.

3.4 Scorza correspondence for trigonal curves

We are going to attach a pair (H1, θ) to the blow-up f : A → B along the
rational curve C. In particular H1 is a trigonal curve but we are able to give a
scheme theoretic definition of the correspondence Iθ which is easily geometrical
reflected into the geometry of lines and conics of the 3-fold A. This will make
possible to show that for (H1, θ) the discriminant locus Γ(θ) is smooth and the
θ-correspondence Iθ is smooth too.

There is a natural morphism H1 → HB1 ' P2 mapping the class of a line l
on A to that of the image l of l on B. The image of H1 on HB1 is nothing but
M := M(C) defined in 3.1, and H1 →M is the normalisation. By Proposition 3.2
(6), M has only nodes as its singularities. By Proposition 3.5, singularities of M

correspond to bi-secant lines of C. Since pa(M) = (d−1)(d−2)
2 and we have seen in

Proposition 3.6 that g(H1) = d− 2, the number of nodes of M , is s := (d−2)(d−3)
2 .

Hence (d−2)(d−3)
2 is also equal to the number of bi-secant lines of C.

We have shown:

Proposition 3.9. The number s of nodes of M is equal to the number of the

bisecants of C, that is s = (d−2)(d−3)
2 .

Lemma 3.10. For a general [C] ∈ HdB it holds that h0(H1, (π|H1
)∗OM (1)) = 3.

Proof. Let h : S → HB1 ' P2 be the blow-up of HB1 at the s =
(
d−2

2

)
nodes of M .

Then H1 ∼ dλ − 2
∑s
i=1 εi, where λ is the pull-back of a general line and εi are

exceptional curves. By the exact sequence

0→ OS(λ−H1)→ OS(λ)→ (π|H1
)∗OM (1)→ 0

together with h0(OS(λ)) = 3 and h0(OS(λ−H1)) = h1(OS(λ)) = 0, we see that to
have h0(H1, (π|H1

)∗OM (1)) = 3 is equivalent to have h1(OS(λ−H1)) = 0. By the
Riemann-Roch theorem, we have χ(OS(λ−H1)) = 0. Thus by h0(OS(λ−H1)) = 0,
h1(OS(λ − H1)) = 0 is equivalent to h2(OS(λ − H1)) = 0. By the Serre duality,
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h2(OS(λ −H1)) = h0(OS((d − 4)λ −
∑s
i=1 εi). Thus we have only to prove that

there exists no plane curve of degree d − 4 through s nodes of M . We prove this
fact by using the inductive construction of C = Cd. By subsection 3.2 we know
that Cd+1 is obtained as the smoothing of the union of Cd and a general uni-secant
line l of Cd. From now on in the proof, we put the suffix d to the object depending
on d. For example, sd :=

(
d−2

2

)
. If d = 1, the assertion is obvious. Assuming

h0(OSd((d−4)λd−
∑sd
i=1 εi,d) = 0, we prove h0(OSd+1

((d−3)λd+1−
∑sd+1

i=1 εi,d+1) =
0. By a standard degeneration argument, we have only to prove that there exists
no plane curve of degree d− 3 through sd+1 nodes of Md ∪M(l), where sd of sd+1

nodes are those of Md and the remaining sd+1 − sd = d− 2 nodes are Md ∩M(l)

except the two points corresponding to the two other lines l
′
, l
′′

through Cd ∩ l.
Assume that there exists a plane curve G of degree d − 3 through sd+1 nodes of
Md ∪M(l). Then G ∩M(l) contains at least d − 2 points. Since degG = d − 3,
this implies M(l) ⊂ G. Thus there exists a plane curve of degree d− 4 through sd
nodes of Md, a contradiction.

3.4.1 Schematic definition of Iθ for trigonal curves

We denote by δ the g1
3 on H1 which defines the trigonal morphism ϕ|H1

: H1 → C.

Let l, l′ and l′′ be three lines on A such that [l] + [l′] + [l′′] ∼ δ. Then l, l
′

and

l
′′

are lines through one point of C. Set λH1 to be an effective divisor associated
to the line bundle (π|H1

)∗OM (1). We define the following divisor:

θ := λH1
− δ.

Note that for the moment we only know that deg θ = d− 3. By definition of θ it
holds that θ+[l] = π∗|H1

OM (1)−[l′]−[l′′]. By Lemma 3.10 we have h0(H1,OH1
(θ+

[l])) = 1.
Consider now the two natural projections pi : H1 × H1 → H1 (i = 1, 2)

and denote by ∆ the diagonal of H1 × H1. Set L := OH1×H1
(p2
∗θ + ∆). By

h0(H1,OH1(θ + [l])) = 1 for any [l] ∈ H1, we see that p1∗L is an invertible sheaf.
Define an ideal sheaf I by p1

∗p1∗L = L ⊗ I. I is an invertible sheaf and let I
be the divisor defined by I. We will denote by I([l]) the fiber of I → H1 over
[l]. By definition, I([l]) consists of the points in the support of |θ + [l]|. Since
π∗|H1
OM (1) − [l′] − [l′′], they correspond to lines on B intersecting both C and l

except l′ and l′′. The number of them is at most d−3. By Proposition 3.2 (7), the
number is actually d − 2. Thus the fiber of I → H1 over a general [l] is reduced.
Hence I is reduced.

In our setting we show the following generalization of Mukai’s result [16, §4]:

Proposition 3.11. The class of θ is an ineffective theta characteristic and I = Iθ.

Proof. By Proposition 2.3 and the definition of I, it suffices to prove the following:

(a) h0(H1,OH1
(θ + [l])) = 1 for any [l] ∈ H1,
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(b) I is reduced,

(c) I is disjoint from the diagonal, equivalently, ([l], [m]) ∈ I implies l 6= m,

(d) I is symmetric, and

(e) I is a (g(H1), g(H1))-correspondence.

I have proved (a) and (b) already in the above discussion. (c) is equivalent to show
that the support of I([l]) does not contain [l]. By definition θ+ [l] = π∗|H1

OM (1)−
[l′] − [l′′]. Two cases occur: [l] ∈ Ω or [l] 6∈ Ω where Ω is the conic of special
lines introduced in Proposition 3.1. If l is special, then by Proposition 3.2 (4) it
is uni-secant to C and by Proposition 3.2 (5) M is not tangent at [l] to the conic
Ω. Hence we are done. If l is not special, then M(l) does not contain [l], thus we
are done.

We prove (d). Let m be a line on A such that [m] is contained in the support
of I([l]). It suffices to prove that for a general l, [l] is contained in the support of
I([m]). For a general l, we may assume that m 6= l′ or l′′. Then it is easy to verify
this fact.

Finally we prove (e). Since I is symmetric and deg(θ + [l]) = d− 2 = g(H1),
the divisor is a (g(H1), g(H1))-correspondence. By Proposition 2.3 there exists
an ineffective theta characteristic θ′ such that I = Iθ′ . On the general point
[l] ∈ H1 it holds that Iθ + [l] = θ′ + [l]. Then θ = θ′ and θ is an ineffective theta
characteristic.

From now on the general couple of trigonal curve and ineffective theta charac-
teristic to which Proposition 3.11 applies is denoted by (H1, θ), while (Γ, θ) denote
a general spin curve where Γ is not necessarily a trigonal curve.

3.5 Line-conic duality

We consider the embedding of H1 by the canonical linear system and the
embedding of H2 by the linear system |Dl|, see Theorem 3.8. We show the ambient
projective spaces of respectively H1 and H2 are reciprocally dual.

Convention 3.12. We denote by l the image in B of a line l on A.

Here we give a more precise definition of the divisor Dl which appear above
in Theorem 3.8. Inside H2 ×H1, we can define the incidence loci:

D̂1 := {([q], [l]) ∈ H2 ×H1 | q ∩ l 6= ∅}.

Definition 3.13. The divisorial part of D̂1 is denoted by D1, and the divisor
D1 ⊂ H2 ×H1 is called the line-conic correspondence.
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Since H1 is a smooth curve the morphism D1 → H1 induced by the canonical
projection is flat. Let Dl be the fiber of D1 → H1 over [l] ∈ H1. Clearly we can
write Dl ↪→ H2.

The following result contains the nontrivial result that for a general [l] ∈ H1,
Dl parameterises conics which properly intersect l.

Proposition 3.14. Let [l] ∈ H1 be general. Then Dl does not contain any point
corresponding to the line pairs l ∪m with [m] ∈ H1, and hence Dl parameterises
all conics which properly interesect l.

Proof. See [22, Corollary 4.2.17].

Lemma 3.15. The projection D1 → H2 is finite and flat.

Proof. Since D1 is a Cartier divisor in a smooth threefold H1 ×H2, D1 is Cohen-
Macaulay. Since M = M(C) is irreducible, no conic on A intersects infinitely
many lines on A. Therfore D1 → H2 is finite, hence D1 → H2 is flat since H2 is
smooth.

Denote by H̃q the fiber of the projection D1 → H2 over [q]. For a general q,

lines intersecting q are general. Thus, by Proposition 3.14, H̃q parameterises all
the lines intersecting a general q.

We remind the reader that general conics of A are parameterised by a general
point q ∈ H2.

Lemma 3.16. Let q ∈ H2 be a general point. Then H̃q ∈ |π∗OM (2)−2δ|, namely,

H̃q ∼ 2θ ∼ KH1
.

Proof. Since q is general, the image q of q is a bi-secant conic of C. Let li and mj

(i = 1, 2, 3, j = 1, 2, 3) be the lines on B through each point of C ∩ q respectively.
Denote by li and mj the lines on A corresponding to li and mj . Since q is general,
lines li and mj are also general. By definition of δ, we have [l1]+[l2]+[l3] ∼ [m1]+
[m2]+[m3] ∼ δ. The lines on A intersecting q come from lines on B intersecting C

and q except li and mj (i = 1, 2, 3, j = 1, 2, 3). Therefore H̃q ∈ |π∗OM (2)−2δ|.

By the flatness of D1 → H2 showed in Lemma 3.15 it holds H̃q ∼ KH1
for any

q.
By Theorem 3.8 Dl is a hyperplane section of H2 ⊂ P̌d−3. Thus, using the

universal property of the Hilbert scheme H1, the family

D1
//

��

H2 ×H1

zz
H1
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induces the morphism

H1 → Pd−3

[l] 7→ [Dl]

where we stress that Pd−3 is the dual projective space of P̌d−3. Since Dl 6= Dl′ for
general l 6= l′, H1 → Pd−3 is birational. We denote by {Hq = 0} the hyperplane
in Pd−3 corresponding to the point [q] ∈ P̌d−3. Note that by the definition of Hq

it holds that for [l] ∈ H1 and [q] ∈ H2, [Dl] ∈ {Hq = 0} if and only if Dl([q]) = 0.

Thus H̃q = {Hq = 0} for a general q. Consequently, by Lemma 3.16 and by

the linear equivalence H̃q ∼ KH1
the morphism H1 → Pd−3 coincides with the

canonical embedding Φ|KH1
| : H1 → Pd−3.

3.6 Discriminant locus of trigonal spin curves.

We consider H1 ⊂ Pd−3 and H2 ⊂ P̌d−3. For the pair (H1, θ), we can interpret
Γ(θ) via the geometry of lines and conics on A:

Proposition 3.17. For the pair (H1, θ), the discriminant locus Γ(θ) is contained
in H2, and the generic point of the curve Γ(θ) parameterises line pairs on A.

Proof. Take a general point ([l1], [l2]) ∈ I, equivalently, take two general intersect-
ing lines l1 and l2. The union l1 ∪ l2 is a conic and the lines corresponding to the
points of I([l1])− [l2] are lines intersecting l1 except l2. Thus by discussions in 3.5,
the point in P̌d−3 corresponding to the hyperplane 〈I([l1]) − [l2]〉 is nothing but
[l1 ∪ l2] ∈ H2. This implies the assertion.

Proposition 3.18. We use the notation of Theorem 3.8. For the discriminant
Γ(θ) of the pair (H1, θ) it holds that:

Γ(θ) ∈

∣∣∣∣∣3(d− 2)h− 4

s∑
i=1

ei

∣∣∣∣∣ .
In particular Γ(θ) is not contained in a cubic section of H2.

Proof. We consider a point b contained in the smooth rational curve C ⊂ B such
that [C] ∈ HBd . Set

Lb := {q ∈ H2 | ∃b′ 6= b, f(q) ∩ C = {b, b′}} .

By Theorem 3.8 we know that H2 is obtained by the blow-up η : H2 → S2C = P2

at the s =
(
d−2

2

)
points which corresponds to the couple ei ∩C where i = 1, . . . , s

are the bisecants of C counted in Proposition 3.9. We first show that the image
η(Lb) ⊂ S2C is a line. Choose b′ ∈ C such that no line on B exists through b and
b′. By [22, Corollary 3.2.1] there exists a unique conic on B5 through b and b′.
This implies that η(Lb) is a line.
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We can write inside Pic(H2):

Γ(θ) ∼ ah−
∑

miei,

where a ∈ Z and mi ∈ Z.
For a general b ∈ C, Lb intersects Γ(θ) simply. Thus a is the number of line

pairs whose images on B pass through b. By noting there exists three lines l1, l2
and l3 through b, it suffices to count the number of reducible conics on B having
one of li’s as a component except l1 ∪ l2, l2 ∪ l3 and l3 ∪ l1. Thus a = 3(d− 2).

Now we count the number of line pairs belonging to ei. Each of such line
pairs is of the form lij;k ∪ lij , where lij;k (k = 1, 2) is the strict transform of the
line through one of the two points in βi ∩ C distinct from βi, and lij is defined in
Proposition 3.5. Thus the number of such pairs is four, whence mi ≥ 4.

Finally we count the number of line pairs intersecting a general line l. By
Proposition 3.14, Dl does not contain any line pair having l as a component.
Since the number of lines on A intersecting a fixed line on A is d− 2, we see that
Dl · Γ(θ) ≥ (d− 2)(d− 3). Then

(d− 2)(d− 3) ≤ Γ(θ) ·Dl = (d− 3)a−
s∑
i=1

mi.

where s = (d−2)(d−3)
2 . Since we have shown mi ≥ 4, this implies mi = 4.

We obtain that:

Corollary 3.19. For (H1, θ), it holds that deg Γ(θ) = g(g − 1) and pa(Γ(θ)) =
3
2g(g − 1) + 1. Moreover, KΓ(θ) = OΓ(θ)(3).

Proof. The invariants of Γ(θ) are easily calculated by Proposition 3.18.

Corollary 3.20. The restriction map H0(OP̌d−3(2)) → H0(OΓ(θ)(2)) is an iso-
morphism.

Proof. By Theorem 3.8, H0(OP̌d−3(2)) → H0(OH2
(2)) is an isomorphism. To

see H0(OH2
(2)) → H0(OΓ(θ)(2)) is an isomorphism, we have only to show that

H1(H2,OH2(2)⊗OH2(−Γ(θ))) = {0}. By the Serre duality, the last cohomology
group is isomorphic to H1(H2,OH2(−2) ⊗ OH2(KH2 + Γ(θ)), and moreover, by
KH2

+ Γ(θ) = OH2
(3), it is isomorphic to H1(H2,OH2

(1)), which vanishes by
Theorem 3.8.

3.7 Conditions (A1), (A2), (A3) are satisfied for a general spin curve

In this section we will use the geometries of the trigonal curve H1 (see Propo-
sition 3.6) and of the White surface H2 (see Theorem 3.8), respectively to give an
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affirmative answer to the conjecture of Dolgachev and Kanev [3, Introduction p.
218] (see Theorem 3.23).

First we show that for our trigonal curve H1 and the ineffective theta charac-
teristic θ defined by intersecting lines on A the above conditions hold.

Proposition 3.21. (H1, θ) satisfies (A1), (A2) and (A3).

Proof. (A1) The condition d(θ) = 1 means that for general lines l and l′ on A such
that ([l], [l′]) ∈ I the face 〈I([l])− [l′]〉 belongs only to I([l]) and to I([l′]).

By contradiction assume that there exists a line m on A such that m 6= l,
m 6= l′ and 〈I([l]) − [l′]〉 is a face of I([m]). Then some d − 3 points of I([m])
lie on the hyperplane 〈I([l]) − [l′]〉, equivalently, m intersects d − 3 lines on A
corresponding to d−3 points of I([l])∪ I([l′]) except l and l′. Since d ≥ 6, it holds
that, for l or l′, say, l, there exist two lines intersecting both l and m.

Consider the projection B 99K Q from the line f(l) = l. By [6] the target of
the projection is the smooth quadric threefold Q and the projection is decomposed
as follows:

Bl
π1

��

π2

  
B Q,

where π1 is the blow-up along l. Moreover, the image E′
l

of the π1-exceptional
divisor El on Q is a hyperplane section.

Now notice that, by generality of l, l 6= m := f(m) is equivalent to have l 6= m.
Assume by contradiction that l∩m 6= ∅. Then they span a plane P , which contains
two lines intersecting both l and m. This implies that P ⊂ B, but it is well known
that B is the intersection of quadrics passing through it: a contradiction. Thus
l ∩m = ∅, whence the strict transform m′ of m on Q is a line. Since there exist
two lines intersecting both l and m, m′ intersects the image E′

l
of El at two points.

Since E′
l

is a hyperplane section on Q, this implies that m′ ⊂ E′
l
, a contradiction.

(A2) This condition is satisfied by Theorem 3.8 and Proposition 3.18.
(A3) By [3, Lemma 7.1.3], ([m1], [m2]) ∈ I is a singular point of I if and only if
|I([m1])− 2[m2]| 6= ∅ and |I([m2])− 2[m1]| 6= ∅.

Let m be a line on A, and l1 and l2 two lines on A such that δ ∼ [m]+[l1]+[l2].
By definition of θ, I([m]) ∼ θ + [m] ∼ (π|H1

)∗OM (1) − [l1] − [l2]. Therefore
|I([m])− 2[n]| 6= ∅ if and only if one of the following holds:

(1) [n] is a smooth point of M . In this case, n is a uni-secant line of C. If n 6= l1
nor l2, then M(m) is tangent to M at [n]. If n = l1 or l2, then M(m) is
tangent to M at [n] with multiplicities three, or

(2) [n] is a singular point of M , which is a node. In this case, n is a bi-secant
line of C. Correspondingly, there is another line n′ on A, see proposition 3.5
(ii). The two branches of M at [n] correspond to n and n′ respectively since
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H1 → M is the normalisation. If n 6= l1 nor l2, then M(m) is tangent at [n]
to the branch of M corresponding to n. If n = l1 or l2, then M(m) is tangent
at [n] to the branch of M corresponding to n with multiplicity three.

Recall that, for a line l on B, we denote by Tl the hyperplane section swept out

by lines intersecting l (Proposition 3.1 (3)). We can restate the above conditions
as follows:

(1) If n 6= l1 nor l2, then C is tangent to Tm at C ∩ n. Assume that n = l1 or l2.
If n is not a special line, then C is tangent at C ∩ n with multiplicity three to
the branch of Tm corresponding to n. If n is a special line, then C intersects
Tm at C ∩ n with multiplicity three.

(2) Note that, by Proposition 3.5, n corresponds to one of a point pn of C ∩n. By
Proposition 3.2 (4), n is not a special line. If n 6= l1 nor l2, then C is tangent
to Tm at pn. If n = l1 or l2, then C is tangent at pn with multiplicity three
to the branch of Tm corresponding to n.

Bearing this in mind, we prove that I is smooth for a general C by simple
dimension count. We only prove I is smooth at ([m1], [m2]) with both m1 and
m2 non-special. The remaining cases can be treated similarly. Let m1 and m2 be
two intersecting non-special lines on B. We estimate the codimension in HBd of
the locus H′ of C such that C intersects both m1 and m2 and is tangent to both
Tm1

and Tm2
. By Proposition 3.2 (1), passing through one point is a codimension

two condition. Moreover, being tangent to a surface along its smooth locus is a
codimension one condition. The choice of two points one on m1 and the other on
m2 has two parameters. Thus codimH′ = 4. Since the choice of m1 and m2 has
three parameters, we have the claim for a general C.

For any spin curve (H, θ) with ineffective θ, let

Γ′(θ) := Iθ/(τ),

where τ is the involution on Iθ induced by that of H ×H permuting the factors.
Note that Iθ → Γ(θ) factor through Γ′(θ).

Corollary 3.22. For a general pair (H1, θ) obtained by a general [C] ∈ HBd it
holds that Γ′(θ) ' Γ(θ). In particular, Γ(θ) is a smooth curve.

Proof. By Proposition 3.21, (A1) and (A3) hold for (H1, θ). Thus we have pa(Γ′(θ))
= 3

2g(g − 1) + 1 by [3, Corollary 7.1.7]. Thus pa(Γ′(θ)) = pa(Γ(θ)) by Corollary
3.19. By (A1) again, the natural morphism Γ′(θ)→ Γ(θ) is birational. Therefore
it holds Γ′(θ) ' Γ(θ).

Since I is smooth, and I is disjoint from the diagonal, the map I → Γ′(θ) is
étale. Thus Γ(θ) ' Γ′(θ) is a smooth curve.
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By a moduli theoretic argument we can obtain that a general pair (Γ, θ) sat-
isfies the conditions (A1)–(A3) since they hold for a general pair (H1, θ) obtained
by HBd .

Theorem 3.23. A general spin curve satisfies the conditions (A1)–(A3).

Proof. It is known that the moduli space S+
g of even spin curves of genus g is

irreducible (see: [2]). Let U be a suitable finite cover of an open neighborhood
of a general [(H1, θ)] ∈ S+

g such that there exists the family C → U of pairs of
canonical curves and ineffective theta characteristics. Denote by (Γu, θu) the fiber
of C → U over u ∈ U . By Proposition 3.21, (H1, θ) satisfies (A1)–(A3). Since the
conditions (A1) and (A3) are open conditions, these are true on U . Thus we have
only to prove that the condition (A2) is still true on U . Let J → U be the family
of Jacobians and Θ→ U the corresponding family of theta divisors. By [3, p.279-
282], the family I of the Scorza correspondences embeds into Θ, and by the family
of Gauss maps Θ → P̌g−1 × U , we can construct the family G → U whose fiber
Gu ⊂ P̌g−1 is the discriminant Γu(θu). Set Γ(θu) := Γu(θu), and Γ′(θu) := Γ′u(θu).
By Corollary 3.22, it holds Γ′(θ) ' Γ(θ) for (H1, θ). Thus up to shrink U we have
also Γ′(θu) ' Γ(θu) for u ∈ U . By [3, Corollary 7.1.7] we see that pa(Γ(θu)) and
deg Γ(θu) are constant for u ∈ U . Thus G → U is a flat family since the Hilbert
polynomials of fibers are constant. Since no quadrics contain Γ(θ) for (H1, θ),
neither does Γ(θu) for u ∈ U by the upper semi-continuity theorem.

We have the following corollary of the proof of Theorem 3.23:

Corollary 3.24. Let (Γ, θ) be a general pair of a canonical curve Γ and an inef-
fective theta characteristic θ.

(1) Γ(θ) is smooth.

(2) Γ′(θ) ' Γ(θ).

(3) KΓ(θ) = OΓ(θ)(3).

(4) The restriction morphism H0(OP̌d−3(2))→ H0(OΓ(θ)(2)) is an isomorphism.

Proof. (1) follows from (A3) for (Γ, θ). For the other, by the deformation theoretic
argument in the proof of Theorem 3.23, we have only to show the assertion for a
general (H1, θ) constructed from the incidence correspondence of lines on A. This
is true by Corollaries 3.19, 3.20, and 3.22.

3.8 Existence of the Scorza quartic

Now we see that the conditions to apply Theorem 2.13 holds for a general pair
(Γ, θ)

Theorem 3.25. The Scorza quartic exists for a general spin curve.
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Proof. Let (Γ, θ) be a general spin curve. By Theorem 3.23 it satisfies the condi-
tions (A1)–(A3). Now consider the associated discriminant locus Γ(θ) ⊂ P̌g−1 and
the second Scorza correspondence

D := {(q1, q2) | q1 ∈ DHq2
} ⊂ Γ(θ)× Γ(θ) . (3.1)

As in the proof of Theorem 3.23 and using the notation of its proof, by flatness
we obtain that the map H0(OP̌d−3(2)) → H0(OΓ(θ)(2)) is an isomorphism if Γ

is general. Then the space H0(P̌d−3 × P̌d−3,OP̌d−3×P̌d−3(2, 2)) is isomorphic to
H0( Γ(θ)× Γ(θ),OΓ(θ)×Γ(θ)(2, 2)). Then by Theorem 2.13 the claim follows.

3.8.1 Conic-conic duality

A problem posed by Igor Dolgachev is about a more explicit construction of
Scorza’s quartics. Indeed even if we have shown that the Scorza quartic exists
for a general spin curve (Γ, θ) its construction is not explicit. For a general trigo-
nal pair (H1, θ) obtained by HBd we have at least a very geometrical description of
the dual (in our sense) of the Scorza quartic. More precisely consider the following
correspondence:

D2 := {([q1], [q2]) ∈ H2 ×H2 | q1 ∩ q2 6= ∅} (3.2)

and denote by Dq the fiber of D2 → H2 over a point [q]. Then Dq ∼ 2Dl and it
holds that D2 ∼ p∗1Dq+p∗2Dq. In particular since H2 is not contained in a quadric,
it holds:

H0(H2 ×H2,D2) ' H0(P̌d−3 × P̌d−3,O(2, 2)) . (3.3)

Thus D2 is the restriction of a unique (2, 2)-divisor D′2 on P̌d−3 × P̌d−3. Since D′2
is symmetric, we may assume its equation D̃2 is also symmetric. The restriction
of D̃2 to the diagonal is a quartic hypersurface {F̌ ′4 = 0} in P̌d−3. We showed that
F̌ ′4 is non-degenerate. Then the desired quartic is the unique quartic hypersurface
{F ′4 = 0} in Pd−3 dual to F̌ ′4.

3.8.2 On the geometric construction of the Scorza quartics in the trig-
onal case.

The construction of F̌ ′4 is quite similar to that of the Scorza quartic. Indeed they
coincides.

Theorem 3.26. The special quartic F ′4 obtained by the conic-conic correspondence
defined via the Equation (3.2) is the Scorza quartic for (H1, θ).

Proof. We recall that by Theorem 3.8, H0(OP̌d−3(2)) → H0(OH2
(2)) is an iso-

morphism and that by Corollary 3.24 the restriction morphism H0(OP̌d−3(2)) →
H0(OΓ(θ)(2)) is an isomorphism. Moreover we recall that the dual F̌4 of the Scorza
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quartic is obtained by restricting Ď to the diagonal, where {Ď = 0} is the unique
divisor on P̌d−3 × P̌d−3 which restricts to the correspondence

D := {([q1], [q2]) | [q1] ∈ DHq2
} ⊂ Γ(θ)× Γ(θ).

On the other hand, the special quartic F̌ ′4 is obtained by restricting D̃2 to the

diagonal where {D̃2 = 0} is the divisor of P̌d−3 × P̌d−3, which restricts to the
conic-conic correspondence (3.2)

D2 := {([q1], [q2]) | q1 ∩ q2 6= ∅} ⊂ H2 ×H2 .

Therefore the assertion is equivalent to show DHq = {D̃q = 0} ∩ Γ(θ) for a

general q. The set {D̃q = 0} ∩ Γ(θ) consists of points corresponding to the line
pairs on A intersecting q. By definition of DHq , it is rather straightforward to

see the set DHq also consists of points corresponding to the line pairs intersecting
q.
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(1971), pp. 181–192.

[14] S. Mukai and H. Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto,
1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 490–518.

[15] S. Mukai, Fano 3-folds, London Math. Soc. Lecture Notes, vol. 179, Cambridge Univ. Press,
1992, pp. 255–263.

[16] S. Mukai, Plane quartics and Fano threefolds of genus twelve, The Fano Conference, Univ.
Torino, Turin, 2004, pp. 563–572.

[17] F-O. Schreyer, Geometry and algebra of prime Fano 3-folds of genus 12, Compositio Math.
127 (2001), no. 3, pp. 297–319.

[18] G. Scorza, Sopra la teoria delle figure polari delle curve piane del 4o ordine, Annali di
Matematica Pura e Applicata. (2) 1 (1899), 155–202; “Opere Scelte”, pp. 24–72, vol. 1,
Edizione Cremonese, 1960.

[19] G. Scorza, Un nuovo theorema sopra le quartiche piane generali, Math. Ann. 52 (1899),
pp. 457–461; “Opere Scelte”, pp. 73–77, vol. 1, Edizione Cremonese, 1960.

[20] G. Scorza, Sopra le curve canoniche di uno spazio lineare qualunque e sopra certi loro
covarianti quartici, Atti Accad. Reale Sci. Torino 35 (1900), pp. 765–773; “Opere Scelte”,
pp. 93–100, vol. 1, Edizione Cremonese, 1960.

[21] H. Takagi and F. Zucconi, Spin curves and Scorza quartics, Math. Annalen, 349 N. 3,
(2011), pp. 623–645.

[22] H. Takagi and F. Zucconi, On blow-ups of the quintic del Pezzo 3-fold and varieties of power
sums of quartic hypersurfaces, Mich. Math. Jour., vol. 61, (2012), pp. 19–62.

[23] H. Takagi and F. Zucconi, The moduli space of genus four even spin curves is rational,
Adv. Math., 231 (2012), pp. 2413–2449.

[24] H. Takagi and F. Zucconi, The rationality of the moduli space of one-pointed inef-
fective spin hyperelliptic curves via an almost del Pezzo threefold, Nagoya Math. J.,
doi:10.1017/nmj.2017.23, Published online: 06 June 2017.

[25] H. Takagi and F. Zucconi, The rationality of the moduli space of ineffective spin hyperelliptic
curves, In preparation.

Received: 10 October 2017.
Accepted: 22 September 2018.
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