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Long time evolution of fluids with concentrated vorticity
and convergence to the point-vortex model

Daniele Cetrone∗ and Gabriele Serafini

Abstract. In this paper we study the evolution of vorticity in Navier-Stokes planar equations

(with a small viscosity) and in Euler’s axisymmetric tridimensional equations (with a large

distance from the axis), when the initial vorticity is sharply concentrated around N points. We

show that, in both cases, this evolution is close to the point-vortex dynamics for long times.

1 Introduction

The point-vortex model is the dynamical system defined by the following differen-
tial equations:

żi(t) =

N∑
j=1
j 6=i

ajK(zi(t)− zj(t)), zi(0) = zi (1.1)

for i = 1, . . . , N , with ai ∈ R, zi(t) ∈ R2 and

K(x) = ∇⊥G(x), ∇⊥ = (∂2,−∂1), (1.2)

where G(x) = −1/2π log |x| is the fundamental solution of the Laplace operator
in R2.

This model was first introduced by Helmholtz in order to study the motion
of vortices in an incompressible, nonviscous, planar fluid, governed by the Euler’s
equations. Denote by u(x, t) ∈ R2 the velocity field of the fluid. The presence of
a vortex corresponds to a high value of the vorticity ω := ∂x1

u2 − ∂x2
u1; in fact

the vorticity is an index of the rotation movement of the fluid. Euler’s equations
for vorticity in R2 read: ∂tω(x, t) + (u · ∇)ω(x, t) = 0

∇ · u = 0
|u(x, t)| → 0 for |x| → ∞

(1.3)

2010 Mathematics Subject Classification: 76B47, 76D17, 37N10.
Keywords: Incompressible Euler flow with axisymmetry, incompressible viscous fluid, point

vortex model, long time behaviour.
c© The Author(s) 2018. This article is an open access publication.
∗Corresponding author.



30 D. Cetrone and G. Serafini

Moreover, it is possible to reconstruct the velocity field u from ω by means of the
formula

u(x, t) =

∫
K(x− y)ω(y, t) dy . (1.4)

It is quite interesting to study the evolution of the vorticity according to (1.3),
when the initial datum is close (in the sense of weak convergence) to:

ω0 =

N∑
i=1

aiδzi (1.5)

If we try to apply (1.4) directly to this vorticity, we get a velocity field that
diverges in each point zi, i = 1, . . . , N . However our physical intuition suggests
that, if N = 1, the only vortex should not move, i.e. we should have u(z1) = 0.
We conclude that the velocity field u in this particular case should not take into
account the self-interaction, i.e. the presence of a vortex in the point zi should not
influence u(zi). Therefore, for a vorticity as in (1.5), we think to define:

u(zi) =

∫
K(zi − y)

N∑
j=1
j 6=i

ajδzj (dy) =

N∑
j=1
j 6=i

ajK(zi − zj).

Using this convention, the evolution of vorticity is

ωt =

N∑
i=1

aiδzi(t) (1.6)

where the points zi(t) evolve according to (1.1).
The previous paragraph gives an idea of the motivation that took to the intro-

duction of (1.1) and obviously it is not a proof of its validity. However a precise
statement is proved for example in [14] (here one can find also a more detailed
introduction to the model and its principal properties): if we have a sequence of

regular functions ωn0 converging (in weak sense for measures) to
∑N
i=1 aiδzi for

n→∞, and if we call ωnt the evolution of vorticity for Euler’s equation in R2 with

initial data ωn0 , then, for each fixed t, ωnt converges to
∑N
i=1 aiδzi(t).

Moreover an analogous result was proved for the evolution of vorticity in
Navier-Stokes planar equations (in [11]) and in Euler’s equations in R3 with axial
symmetry (in [10]), with suitable assumptions. This means that the point-vortex
model approximates the motion of vortices also in these cases and not only for an
Eulerian planar fluid.

We now want to state more quantitative results: taking an initial datum that
approximates (1.5) and with support contained in N disjoint disks of radius ε,
for ε small, we wonder how long the support of the vorticity is still contained in
disjoint disks with small radius, whose centres move according to the point-vortex



Long time evolution of fluids with concentrated vorticity 31

model. In fact, in the applications, the parameter ε is small, but not really zero:
in this case it is interesting to quantify the time scale in which the approximation
with the point-vortex dynamics is valid. It was recently proved (in [3]), under
suitable assumptions, that the approximation holds for times of order | log ε| for
Euler’s equation in R2. The goal of this paper is to show analogous results for
Navier-Stokes planar equations with vanishing viscosity and for Euler’s equations
in R3 with axial symmetry, extending in this way the results contained in [11] and
in [10].

In the next section we first introduce weak formulations for the two equa-
tions, then we state the main results, whose proofs are object of Section 3 and 4
respectively.

2 Notation and statements

2.1 Euler’s axisymmetric equations

Euler’s equations for an incompressible and nonviscous fluid in R3 read: ∂tu(x, t) + (u · ∇)u(x, t) = −∇p(x, t)
∇ · u = 0
|u(x, t)| → 0 for |x| → ∞

(2.1)

where u(x, t) ∈ R3 is the velocity field and p(x, t) ∈ R is the pressure. We introduce
the vorticity ω := rotu, which is related to the rotation movement of the fluid.
Equations (2.1) are equivalent to{

∂tω(x, t) + (u · ∇)ω(x, t) = (ω · ∇)u(x, t)

u(x, t) = − 1
4π

∫
x−y
|x−y|3 ∧ ω(y, t) dy

. (2.2)

Given an initial datum u0 ∈ Cs ∩ Lp, s > 1, p ∈ (1,∞) (Cs denotes the Hölder
space), this problem has a unique solution, which is only local in time (see for
example [6, Thm. 2.9]).

The vector u is said to be axisymmetric without swirl if in cylindrical coordi-
nates (r, z, θ) it has the form:

u = ur(r, z)er + uz(r, z)ez

i.e. it is independent from θ and u ·eθ = 0. It is known that, if the initial datum of
Euler’s equation is axisymmetric without swirl, then the solution is axisymmetric
without swirl at each time (see [16, Prop. 2.2]) and that ω = ωθeθ at each time
(this follows from a straightforward computation). Using these facts, we get the
following equation for ω in this case:

∂t

(ωθ
r

)
+ u · ∇

(ωθ
r

)
= 0
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which is a transport equation. Therefore we can reformulate Euler’s equations in
a weak sense, when the initial data is axisymmetric without swirl, as follows:

ut(x) =
∫
H(x− y) ∧ ωt(y) dy

φt(x) = x+
∫ t

0
us(φs(x))ds

αt(x) = α0(φ−t(x))

(2.3)

where H(x − y) is the integral kernel − x−y
4π|x−y|3 , α := ω

δ and δ(x) denotes the

distance of x from the symmetry axis1. This problem admits a unique solution
which is also global in time, provided u0 ∈ L2 and ω0, α0 ∈ Lq ∩ L∞ for some
q < 3 (see for example [16, Thm. 3.3]). Observe that φt is defined via an integral
equation, because the continuity with respect to the time of u is not guaranteed,
and therefore we cannot write the differential equation. However in the appendix
we show that, under some extra assumptions, u is also continuous with respect to
the time, and then φt is differentiable.

In this paper we treat the problem (2.3) when the initial vorticity has support
contained in N small disks in the half-plane rz. These disks are rings in R3,
therefore we talk about ”smoke rings“. We will also refer to this problem as (EA),
i.e. Euler’s Axisymmetric equations (without swirl).

2.2 Navier-Stokes planar equations

It is well known that the dynamics of an incompressible two-dimensional viscous
fluid is described by the Navier-Stokes equations ∂tu(x, t) + (u · ∇)u(x, t) = ν∆u(x, t)−∇p(x, t)

∇ · u = 0
|u(x, t)| → 0 for |x| → ∞

(2.4)

where x = (x1, x2) ∈ R2, ν > 0 is the viscosity, u is the velocity field of the fluid
and p is the pressure. By introducing the vorticity ω = ∂1u2 − ∂2u1, the Navier-
Stokes equations can be reformulated in terms of the vorticity, similarly to (1.3),
i.e., {

∂tω(x, t) +
(
u · ∇

)
ω(x, t) = ν∆ω(x, t)

u(x, t) =
∫
dyK(x− y)ω(y, t)

(2.5)

with K already defined in (1.2). In order to consider non-smooth initial data,
we introduce a weak formulation of the Navier-Stokes equations, which can be
obtained from (2.5) by integrating by parts; let t → ωt(dx) be a measure-valued
function, then the weak formulation reads:

d
dtωt(f) = ωt(u · ∇f) + νωt(∆f) + ωt(∂tf)

u(x, t) =
∫
K(x− y)ωt(dy)

ωt=0(dx) = ω0(dx)

(2.6)

1 See [13] for this result; the equivalence of the problem (2.3) to Euler’s equation for regular
solutions can be proved as in the 2D case
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where f = f(x, t) is a C2,1(R2 × [0,+∞)) function such that |f |, |∇f |, |∆f | and
|∂tf | are bounded, and ωt(f) :=

∫
ωt(dx) f(x, t). If the initial datum is absolutely

continuous with respect to the Lebesgue measure with density ω0(x) ∈ L1(R2) ∩
L∞(R2), it is shown in [12] that (2.6) admits a unique global solution which is
absolutely continuous with respect to the Lebesgue measure at any time, with
density ω(x, t) such that

‖ω(·, t)‖L1 ≤ ‖ω0‖L1 , ‖ω(·, t)‖L∞ ≤ ‖ω0‖L∞ .

Moreover, for each bounded and measurable function f = f(x, t), the solution
ω(x, t) satisfies the equality∫

dxω(x, t) f(x, t) =

∫
dxω0(x)E(f(Xx

t , t))

i.e. it is the density function of the stochastic process {Xx
t }, which is the unique

solution to the stochastic differential equation{
dXx

t = u(Xx
t , t) dt+

√
2νdWt

Xx
0 = x

(2.7)

where {Wt} is the canonical realization of a two dimensional Brownian motion.2

Observe that the process {Xx
t } is the analogue for the viscous case of the

characteristic flow φt(x) defined in (2.3).

2.3 Statement of main results

We now introduce some tools in order to state the main results. Concerning the
axisymmetric case, we have to define a suitable change of variables to get the
convergence to this dynamics: the smoke rings should increase their radius while
their support becomes smaller. In fact, the interaction of the N vortices with the
axis should be negligible in the limit if we want a convergence to point-vortex
dynamics (which is valid for a fluid in R2, with no boundary). Let (r, z, θ) be the
cylindrical coordinates in R3 and define:

x = z; y = r − r0 . (2.8)

The parameter r0 will diverge for ε→ 0. These are the coordinates we will use in
the sequel for the study of (EA), while for (NS) we use the canonical coordinates
of R2.

Consider for both (NS) and (EA) an initial vorticity of the form:

ωε(x, 0) =

N∑
i=1

ωi,ε(x, 0), suppωi,ε ⊆ Σ(zi|ε). (2.9)

2Let (C,B(C), P ) be the Wiener space in two dimensions, where C denotes the set of continuous
functions [0,+∞) 3 t 7→ w(t) ∈ R2, B(C) denotes the Borel sets in C, and P the product of two
one dimensional Wiener measures. Then, the coordinate mapping process Wt(w) := w(t), w ∈ C,
is the desired object.
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The points zi ∈ R2 are chosen in such way, that the N disks are disjoint; the
functions ωi,ε ∈ L1(R2) ∩ L∞(R2) have definite sign and their integral, which we
call ai, does not depend on ε. In both cases we state that the evolution of the
vorticity is close to the solution to the point vortex model.

Observe that the decomposition in N vortices, which holds at time t = 0, can
be extended in a natural way for all time, i.e.,

ωε(x, t) =
N∑
i=1

ωi,ε(x, t),

for both (EA) and (NS): more precisely, for (EA) we define

ωi,ε(x, t) :=
r0 + x2

r0 + (φ−t(x))2
ωi,ε(φ−t(x), 0); (2.10)

as far as concerned (NS), we define the measure ωi,εt (dx) by setting

ωi,εt (f) :=

∫
dxωi,ε(x, 0)E(f(Xx

t , t)), ∀f ∈ C
2,1
b , (2.11)

where φt(x) and Xx
t are defined in (2.3) and (2.7). Following [12], it can be shown

that the measure ωi,εt (dx) is absolutely continuous with respect to the Lebesgue
measure, with density ωi,ε(x, t) such that

||ωi,ε(·, t)||∞ ≤ ||ωi,ε(·, 0)||∞, ||ωi,ε(·, t)||1 ≤ ||ωi,ε(·, 0)||1

for all t ≥ 0. Moreover, for both (EA) and (NS), ωi,ε(x, t) preserves the initial
sign and the total mass ai, as immediately follows from the definitions.

Furthermore, for each index i, we can decompose the velocity field u as follows:

u(x, t) = ui(x, t) + F iε(x, t),

where

ui(x, t) =

∫
dy J(x, y)ωi,ε(y, t)

is the velocity field generated by the vortex ωi,ε, and

F iε(x, t) =
∑
j 6=i

∫
dy J(x, y)ωj,ε(y, t)

is the one generated by the remaining N − 1 vortices; here J(x, y) denotes the
integral kernel G(x, y) (which is H written in the new coordinates (2.8), as we will
see in the next section) for (EA) and K(x− y) for (NS).

Let’s call {zi(t)}i=1,...,N the solution to point vortex dynamics (1.1) with in-
tensities ai and initial data zi. Define:

Tε,β := sup{t > 0 : suppωi,ε(s) ⊆ Σ(zi(s)|εβ) ∀i = 1, . . . , N , ∀s ∈ [0, t]}

The result for (EA) is the following.
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Theorem 2.1. Consider the solution of problem (2.3) with initial vorticity as in
(2.9) and r0 = ε−α, for some α > 0, and assume that:

Rm := min
i 6=j

inf
t∈[0,+∞)

|zi(t)− zj(t)| > 0

|ωi,ε(x, 0)| ≤Mε−γ for some M,γ > 0

Then if β < 1
2 min(1, α), there are ζ0 > 0 and ε0 > 0 such that

Tε,β > ζ0| log ε| ∀ε ∈ (0, ε0)

We cannot hope that an analogous result holds also in the (NS) case, because
of the presence of the diffusion term ν∆ω that immediately makes the support
of the vorticity the whole plane, even if we start with a compactly supported
datum. However, since the motion of the i-th vortex zi(t) is influenced only by
the interactions with the otherN−1 vortices and since the initial vorticity ωi,ε(x, 0)
is sharply concentrated around the point zi, we can expect that, in the regime of
vanishing viscosity, the ”centre” of the i-th term ωi,ε(x, t) of the vorticity behaves
in a similar way to zi(t); in other words, we can expect that the i-th centre is
influenced only by the velocity field produced by the other N − 1 terms, and
not by itself. Hence, a natural candidate as ”centre” of ωi,ε(x, t) is the solution
t 7→ Biε(t) to the ordinary differential equation

d

dt
Biε(t) = F iε(B

i
ε(t), t), Biε(0) = zi. (2.12)

We observe that the above ordinary differential equation has a unique global so-
lution since F iε(x, t) is a uniformly bounded and quasi-Lipschitz vector field3 and
it is continuous w.r.t. (x, t)4.
We shall see that the motion of Biε(t) is very close to zi(t) and that the main part
of the i-th term ωi,ε(x, t) of the vorticity remains concentrated around Biε(t), for
long times. To this purpose we define, for any R > 0, the function t 7→ mi

ε(R, t)
by setting

mi
ε(R, t) :=

∫
|x−Biε(t)|>R

dx |ωi,ε(x, t)|, (2.13)

i.e., the mass at time t of the i-th term of the vorticity outside the disk of centre
Biε(t) and radius R, and the variables

Tε,α,β := sup{t > 0 : mi
ε(ε

β , s) < εα ∀ s ∈ [0, t], ∀ i = 1, . . . , N}

3A vector field v(x) ∈ Rd is said to be quasi-Lipschitz if there exists a constant C > 0 such that
for any x, x′ ∈ Rd, |v(x)− v(x′)| ≤ Cϕ(|x−x′|), where ϕ = ϕ(r) is defined as ϕ(r) = r(1− log r)
if 0 < r < 1 and ϕ(r) = 1 if r ≥ 1.

4The quasi-Lipschitz bound in the case d = 2 can be found in [13]; the case d = 3 is discussed
in the Appendix together with the continuity property w.r.t. (x, t). The proof of the existence
of a unique global flow under these hypothesis can also be found in [13].
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and

T ε,δ := sup{t > 0 : |zi(s)−Biε(s)| < εδ ∀ s ∈ [0, t], ∀ i = 1, . . . , N}.

The result for (NS) is the following.

Theorem 2.2. Consider the solution of problem (2.6) with initial vorticity as in
(2.9) and ν ≤ ν0 ε

α, for some ν0 > 0 and 0 < α ≤ 2, and assume that:

Rm := min
i 6=j

inf
t∈[0,+∞)

|zi(t)− zj(t)| > 0,

|ωi,ε(x, 0)| ≤Mε−γ for some M,γ > 0.

Then if ᾱ > 4α + γ, δ ∈ (0, α/3) and β ∈ (0, α/14), there exist ζ > 0 and ε0 > 0
such that

Tε,α,β > ζ| log ε| ∀ ε ∈ (0, ε0)

and

T ε,δ > ζ| log ε| ∀ ε ∈ (0, ε0).

In particular, for any β′ ∈ (0, β ∧ δ) and ε ∈ (0, ε0),

sup
t∈[0,ζ| log ε|]

∫
|x−zi(t)|>εβ′

dx |ωiε(x, t)| < εα.

Remark 2.3. Obviously the upper bound for α and the lower bound for α′ are
pleonastic. Indeed for any ε ∈ (0, 1), εα < εα

′
if α > α′, and hence Theorem 2.2

holds for any choice of α and α′.

Note that the two theorems are extensions of the results stated, respectively, in
[10] and [11], which treat the limit ε→ 0 when t ∈ [0, T ], for some fixed T .

The proofs of the theorems are obtained by adapting the strategies given in [3], [11]
and [10], and they are based on a bootstrap argument. Indeed, if ε is small, then
Tε,β , Tε,α,β and T ε,δ are positive by continuity. We then analyse the evolution up

to times smaller than T̂1 := Tε,β ∧ ζ| log ε| or T̂2 := Tε,α,β ∧ T ε,δ ∧ ζ| log ε|, getting

better estimates which imply T̂i = ζ| log ε|, i = 1, 2, for ζ and ε small enough.

3 Smoke rings

In this section we discuss the axisymmetric case: first we estimate the convolution
kernel in the new cooridnates (2.8) and show that, under suitable assumptions,
this is near to K; then we give the proof of Theorem 2.1.
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3.1 Estimate of the axisymmetric convolution kernel

We know that, in the R3 coordinates5:

u(x, t) = − 1

4π

∫
R3

(x− y) ∧ ω(y, t)

|x− y|3
dy .

Writing this with respect to the new coordinate system (2.8), we get

u(x, t) =

∫
R2

G(x, y)ω(y, t) dy

where the convolution kernel G(x, y) is defined by:

G1(x, y) =
1

2π

∫ π

0

dθ
(r0 + y2)

[
(r0 + y2)− (r0 + x2) cos θ

]
{|x− y|2 + 2(r0 + x2)(r0 + y2)(1− cos θ)}3/2

(3.1)

G2(x, y) =
1

2π

∫ π

0

dθ
(r0 + y2)(x1 − y1) cos θ

{|x− y|2 + 2(r0 + x2)(r0 + y2)(1− cos θ)}3/2
. (3.2)

We now want to give an estimate for this convolution kernel, in particular we
want to show that, for small enough ε, the vector field u is near to the vector field
ũ corresponding to the planar case, namely

ũ(x, t) =

∫
R2

K(x− y)ω(y, t) dy .

We need the following lemma.
A warning on the notation. In this paper we denote by C, Ci, with i ∈ N, L,

L̃ any constant which is independent on the parameters R, α, ε, ν, t, α, α, δ, δ,
β. These constants may differ from line to line.

Lemma 3.1. Let, for a > 0:

I1(a) :=

∫ π

0

dθ
cos θ

[a2 + 2(1− cos θ)]3/2
,

I2(a) :=

∫ π

0

dθ
1− cos θ

[a2 + 2(1− cos θ)]3/2
.

Denoting by χ(0,1) the indicator function of the interval (0, 1), the following equal-
ities hold:

I1(a) = a−2 +R1(a), I2(a) = −1

2
log a · χ(0,1)(a) +R2(a),

where a ·R1(a) is bounded and |R2(a)| ≤ C min(1, 1
a ) .

5 Here we denote by x the canonical coordinates of R3, while x stands for the coordinates
introduced in (2.8).
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Proof. We start from I2. We recall that 1− cos θ = 2[sin(θ/2)]2 and we write the
integral as:

I2 =

∫ π

0

dθ
2[sin(θ/2)]2 cos(θ/2)

{a2 + 4[sin(θ/2)]2 }3/2
+

∫ π

0

dθ
2[sin(θ/2)]2(1− cos(θ/2))

{a2 + 4[sin(θ/2)]2 }3/2
. (3.3)

The first addend can be evaluated with the substitution z = 2 sin(θ/2):∫ 2

0

dz
z2

2[a2 + z2]3/2
=

1

2

[
log(

√
a2 + z2 + z)− z√

a2 + z2

]z=2

z=0

= −(a2 + 4)−1/2 +
1

2
log(2 +

√
a2 + 4)− 1

2
log a.

We observe that for a→ 0 this is equal to − 1
2 log a plus a bounded rest, while for

a→∞ this goes to zero like 1
a .

Concerning the second addend in (3.3), we observe that∫ π

0

dθ
2[sin(θ/2)]2(1− cos(θ/2))

{a2 + 4[sin(θ/2)]2 }3/2
≤ 1

4

∫ π

0

dθ
1− cos(θ/2)

sin(θ/2)

which is a bounded integral; on the other hand∫ π

0

dθ
2[sin(θ/2)]2(1− cos(θ/2))

{a2 + 4[sin(θ/2)]2 }3/2
≤ 2

a3

∫ π

0

dθ sin2(θ/2)(1− cos(θ/2)) ≤ Ca−3.

So R2(a) is bounded by a constant for small a, by C
a for large a: we got the desired

estimate for I2.
To evaluate I1, when a < 1, we decompose the integral in the following way:

I1 =

∫ π

0

dθ
cos(θ/2)

{a2 + 2[sin(θ/2)]2 }3/2
+

∫ π

0

dθ
cos θ − cos(θ/2)

{a2 + 2[sin(θ/2)]2 }3/2
. (3.4)

The first addend can be computed again with the substitution z = 2 sin(θ/2):∫ 2

0

dz
1

[a2 + z2]3/2
=

[
z

a2
√
a2 + z2

]z=2

z=0

=
2

a2
√
a2 + 4

which, for a→ 0, is equal to a−2 plus a bounded rest. The second addend in (3.4)
can be bounded by observing that

0 ≤ cos(θ/2)− cos θ ≤ 1− cos θ per 0 ≤ θ ≤ π

obtaining in this way I2.
Instead, if a > 1, we observe that:

|I1(a)| ≤ a−3

∫ π

0

dθ | cos θ|

and so |R1(a)| ≤ |I1(a)| + a−2 ≤ Ca−2. In both cases we have that a · R1(a) is
bounded (it goes to zero like a log a when a→ 0, and like a−1 when a→∞)
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Proposition 3.2. Let x, y such that:

|x2| ≤
r0

2
|y2| ≤

r0

2

and let r0 = ε−α. Then, for small enough ε:

|G(x, y)−K(x− y)| ≤ C
(
εα + εα| log ε|+ εα

∣∣ log |x− y|
∣∣ · χ(0,1)(|x− y|)

)
.

Proof. Let a := |x− y| (r0 + x2)−1/2(r0 + y2)−1/2.

2πG1(x, y) =

∫ π

0

dθ
(r0 + y2)(y2 − x2 cos θ + r0(1− cos θ))

(r0 + x2)3/2 (r0 + y2)3/2 {a2 + 2(1− cos θ)}3/2

=
y2 ·

(
I1(a) + I2(a)

)
− x2 · I1(a) + r0 · I2(a)

(r0 + x2)3/2(r0 + y2)1/2

=
y2 − x2

(r0 + x2)3/2(r0 + y2)1/2
· I1(a) +

(r0 + y2)1/2

(r0 + x2)3/2
· I2(a)

=

√
r0 + y2

r0 + x2
· y2 − x2

|x− y|2
+

y2 − x2

(r0 + x2)3/2(r0 + y2)1/2
·R1(a)

+

√
r0 + y2

(r0 + x2)3
· I2(a).

We point out that y2−x2

|x−y|2 is the first component of 2πK(x−y), so we subtract this

quantity and estimate the remaining terms.

Defined A =
√

r0+y2
r0+x2

, we observe that:

|A− 1| = |A
2 − 1|
|A+ 1|

=

(
|y2 − x2|
r0 + x2

)
(1 +A)−1 ≤ 2|x− y|

r0

where the last inequality is due to the assumption x ≥ − r02 . Moreover√
r0 + y2

(r0 + x2)3
=

1

(r0 + x2)1/2 (r0 + y2)1/2
· r0 + y2

r0 + x2

≤ 1

(r0 + x2)1/2 (r0 + y2)1/2
· (r0 + x2) + |x− y|

r0 + x2

≤ 1

(r0 + x2)1/2 (r0 + y2)1/2
+

a

r0 + x2
≤ 2

r0
(1 + a).

Putting this into the above equation, and calling D := G−K, we get:

2π|D1(x, y)| ≤ 2|x− y| |y2 − x2|
r0 |x− y|2

+
a ·R1(a)

r0 + x2
+

2

r0
(1 + a) · I2(a)

≤ 2

r0
+

2C

r0
+

2

r0

(
C − 1

2
log a · χ(0,1)(a)

)
.
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Now if a ∈ (0, 1)

0 ≤ − log a = log(r0 + x2)1/2 + log(r0 + y2)1/2 − log |x− y|
≤ log r0 + log(3/2) +

∣∣ log |x− y|
∣∣ · χ(0,1)(|x− y|)

using that, by the hypothesis, 1
2r0 ≤ r0 + x2 ≤ 3

2r0. Recalling that r0 = ε−α we
obtain:

2π|D1(x, y)| ≤ Cεα
[
1 + α| log ε|+

∣∣ log |x− y|
∣∣ · χ(0,1)(|x− y|)

]
.

Let’s now write the second component:

2πG2(x, y) =

∫ π

0

(r0 + y2)(x1 − y1) cos θ

(r0 + x2)3/2 (r0 + y2)3/2 {a2 + 2(1− cos θ)}3/2

=
x1 − y1

(r0 + x2)3/2 (r0 + y2)1/2
· I1(a)

=

√
r0 + y2

r0 + x2
· x1 − y1

|x− y|2
+

x1 − y1

(r0 + x2)3/2 (r0 + y2)1/2
R1(a).

Arguing in the same way:

2π|D2(x, y)| ≤ 2|x− y| |x1 − y1|
r0 |x− y|2

+
a ·R1(a)

r0 + x2
≤ 2

r0
(1 + C).

Since |D| ≤ |D1|+ |D2|, we get

|D(x, y)| ≤ Cεα
(
1 + | log ε|+

∣∣ log |x− y|
∣∣ · χ(0,1)(|x− y|)

)
,

which is the thesis.

3.2 Proof of main result for (EA)

Now we state some preliminary lemmas in order to prove the result for (EA).

Lemma 3.3. Let ωi,ε(x, 0) as defined in Section 2. Then∫
R2

dxωi,ε(x, t) =

∫
R2

dxωi,ε(x, 0) = ai

and for each time ωi,ε(x, t) has the same sign of ωi,ε(x, 0). Moreover, given ζ > 0,
for t ≤ Tε,β ∧ ζ| log ε| and for small enough ε,

|ωi,ε(x, t)| ≤ 3M ε−γ .
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Proof. The conservation of the integral is a direct consequence of Corollary 5.6 in
Appendix, with f = 1. The conservation of sign is evident by the definition of
ωi,ε(x, t). To give a bound on the L∞ norm, we observe that, if x ∈ Λi,ε(0) :=
suppωi,ε(0), then |x− zi| ≤ ε and

|r0 + x2| = |ε−α + x2| ≥ ε−α − |zi| − ε ≥
1

2
ε−α.

In the same way, since φt(x) ∈ Λi,ε(t), |φt(x)− zi(t)| ≤ εα and then

|r0 + φt2(x)| ≤ ε−α + |zi(t)|+ εβ .

Moreover

|zi(t)| ≤ |zi|+
∫ t

0

ds
∑
j 6=i

|aj |
|zi(s)− zj(s)|

≤ |zi|+ t

Rm

∑
j 6=i

|aj |,

and then, since t ≤ ζ| log ε|, for small enough ε,

|r0 + φt2(x)| ≤ 3

2
ε−α.

Therefore the claim follows from the equality

ωi,ε(φt(x), t) =
r0 + φt2(x)

r0 + x2
ωi,ε(x, 0).

We can now prove that the difference u− ũ is small

Proposition 3.4. Let ωε as in (2.9), and let t ≤ Tε,β ∧ ζ| log ε|, x ∈ Λε(t). Then,
if ε is small enough,

|u(x, t)− ũ(x, t)| ≤ C εα| log ε|.

Proof. We start observing that, if x ∈ Λε(t), then |x2| ≤ r0/2, as seen in the proof
of Lemma 3.3. In view of this lemma and of Proposition 3.2, we only need to
bound the following: ∫

|x−y|<1

dy
∣∣ log |x− y|

∣∣ωε(y, t).
To this purpose, we use a rearrangement: we bound this integral with the one
obtained by concentrating as much as possible the vorticity around the singularity
of log |x − y|, namely y = x (since we integrate only in the domain |x − y| < 1,
the function is bounded for y outside a disk centred in x). Since the integral of
ωε is constant in time, and its L∞ norm is less or equal to 3Mε−γ , we get the
rearrangement replacing ωε with the function equal to the constant 3Mε−γ in the
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disk of centre x and radius r, and equal to zero outside this disk. The radius r
is chosen such that the total mass of vorticity is 1, so πr2 · 3Mε−γ = 1. We have
then: ∫

|x−y|<1

dy
∣∣ log |x− y|

∣∣ωε(y, t) ≤ 3Mε−γ
∫
{|x−y|≤r}

dy
∣∣ log |x− y|

∣∣
=− 6πMε−γ

∫ r

0

ρ log(ρ)dρ

=− 6πMε−γ
[
ρ2

2
log ρ− ρ2

4

]ρ=r
ρ=0

=− 3πMε−γr2 log r +
3

2
πMε−γr2.

Since r =
√

εγ

3πM , we get finally:∫
|x−y|<1

dy
∣∣ log |x− y|

∣∣ωε(y, t) ≤ C + C | log ε|,

which concludes the proof

Lemma 3.5. Recalling the definition of F iε given in Section 2, we can write, for
t ≤ Tε,β ∧ ζ| log ε|

F iε = F iε,1 + F iε,2

where F iε,1 is Lipschitz and bounded uniformly in ε, and F iε,2 is small, i.e.

‖F iε,2‖L∞ ≤ Cεα| log ε|.

Proof. Define

F iε,1(x, t) =
∑
j 6=i

∫
dyK(x− y)ωj,ε(y, t),

F iε,2(x, t) =
∑
j 6=i

∫
dy [G(x, y)−K(x− y)]ωj,ε(y, t).

Then F iε,1 is Lipschitz and bounded uniformly in ε because K is Lipschitz and
bounded outside the disk Σ(0|Rm/2): in fact, if x ∈ Λi,ε(t) and y ∈ Λj,ε(t), for
i 6= j, we have

|x− y| ≥ |zi(t)− zj(t)| − |x− zi(t)| − |y − zj(t)| ≥ Rm − 2εβ ≥ Rm
2

for ε small enough. F iε,2 is small because of Proposition 3.4.
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Let’s define

Biε(t) := a−1
i

∫
R2 dxxωi,ε(x, t) center of vorticity

Iiε(t) :=
∫
R2 dx |x−Biε(t)|2|ωi,ε(x, t)| moment of inertia

In the following lemmas, for simplicity, we omit the index i from the notation and
we assume, without lost of generality, ai = 1. This is equivalent to consider a
”reduced system” with only one vortex and an external field acting on it, which
has the properties stated in Lemma 3.5. It is easy to verify that in this case, the
following equation holds (instead of (5.3), see the Appendix):

d

dt
ωt(f) = ωt

(
((u+ Fε) · ∇)f + ∂tf

)
. (3.5)

The results we will prove hold obviously for each i.

Lemma 3.6. There exist ζ > 0 and δ > 4β such that, for t ≤ Tε,β ∧ ζ| log ε| and
for small enough ε,

Iε(t) ≤ C1ε
δ (3.6)

Proof. We estimate the derivative of Iε(t), using (3.5):

d

dt
Iε(t) =

∫
dxωε(x, t)

[
(u+ Fε) · 2(x−Bε(t))− Ḃε(t) · 2(x−Bε(t))

]
.

Moreover
d

dt
Bε(t) =

∫
dxωε(x, t) (u(x, t) + Fε(x, t)),

then

d

dt
Iε(t) = 2

∫
dxωε(x, t)

[
u(x, t)−

∫
dy ωε(y, t)u(y, t)

]
· (x−Bε(t))

+ 2

∫
dxωε(x, t)

[
Fε(x, t)−

∫
dy ωε(y, t)Fε(y, t)

]
· (x−Bε(t)).

Consider, first of all, the term containing Fε: we observe that, by the definition of
Bε(t), ∫

dxωε(x, t)(x−Bε(t)) ·
∫
dy ωε(y, t)Fε(y, t) = 0

∫
dxωε(x, t)(x−Bε(t)) · Fε,1(Bε(t), t) = 0.
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Then we have:

2

∣∣∣∣ ∫ dxωε(x, t)

[
Fε(x, t)−

∫
R2

dy ωε(y, t)Fε(y, t)

]
· (x−Bε(t))

∣∣∣∣
= 2

∣∣∣∣ ∫ dxωε(x, t) [Fε,1(x, t)− Fε,1(Bε(t), t)] · (x−Bε(t))
∣∣∣∣

+ 2

∣∣∣∣∫ dxωε(x, t)Fε,2(x, t) · (x−Bε(t))
∣∣∣∣

≤ 2

∫
dxωε(x, t)L|x−Bε(t)|2 + Cεα| log ε|

∫
dx |x−Bε(t)|ωε(x, t)

≤ 2LIε(t) + 2Cεα| log ε|[Iε(t)]1/2

where, in the last line, we used Cauchy-Schwarz inequality. Concerning the term
which contains u, we have analogously:∫

dxωε(x, t)(x−Bε(t)) ·
∫
dy ωε(y, t)u(y, t) = 0.

Moreover, thanks to the antisymmetry of K:∫
dxωε(x, t) ũ(x, t) =

∫
dx

∫
dy ωε(x, t)ωε(y, t)K(x− y) = 0

and recalling that, by definition, (x− y) ·K(x− y) = 0, we get∫
dxωε(x, t)x · ũ(x, t) =

∫
dx

∫
dy ωε(x, t)ωε(y, t)x ·K(x− y)

=

∫
dx

∫
dy ωε(x, t)ωε(y, t) y ·K(x− y)

so this integral is also 0 for antisymmetry of K. Using Proposition 3.4 we get then:

2

∣∣∣∣ ∫ dxωε(x, t)

[
u(x, t)−

∫
dy ωε(y, t)u(y, t)

]
· (x−Bε(t))

∣∣∣∣
≤ 2

∫
dxωε(x, t)

∣∣u(x, t)− ũ(x, t)
∣∣ · |x−Bε(t)|

≤ 2C εα| log ε|
∫
dxωε(x, t) · |x−Bε(t)| ≤ 2C εα| log ε| [Iε(t)]1/2

where we used again Cauchy-Schwarz inequality in the last line.
Therefore we obtain:

|İε(t)| ≤ 2LIε(t) + C εα| log ε| [Iε(t)]1/2 .

We apply Gronwall’s inequality to Hε(t) := [Iε(t)]
1/2, and use that Iε(0) ≤ 4ε2.

We get:

Hε(t) ≤
(

2ε+
C

2L
εα| log ε|

)
eLt ≤ C1ε

α′eLt (3.7)
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for each α′ < min(α, 1). Taking the square, and recalling that t is less or equal to
ζ| log ε|, for ζ to be fixed:

Iε(t) ≤ C2
1 ε

2α′−2Lζ

then, in order to get the thesis, it’s enough to choose ζ such that δ := 2α′ −
2Lζ > 4β; this is possible because β < 1

2 min(α, 1), choosing a suitable α′ (i.e.
α′ > 2β).

Remark 3.7. By the definition of Tε,β , it follows immediately:

Iε(t) ≤ 4ε2β ∀t ∈ [0, Tε,β ].

The estimate just shown, which holds for logarithmic times, is much better, since
δ > 4β.

Lemma 3.8. Define

Rt := max{|x−Bε(t)| : x ∈ Λε(t)}

and let x0 ∈ Λε(0) be such that, at the time t ≤ Tε,β ∧ ζ| log ε|,

|φt(x0)−Bε(t)| = Rt.

Then at this time t the following inequality holds:

d

dt
|φt(x0)−Bε(t)| ≤ 2LRt +

5Iε(t)

πR3
t

+

√
3Mε−γmε(Rt/2, t)

π
+ Cεα| log ε| (3.8)

where the function mε is defined by:

mε(R, t) :=

∫
|y−Bε(t)|>R

dy ωε(y, t) for R ∈ (0,+∞).

Remark 3.9. The definition of mε is analogous to the one given in the first section
for (NS). However note that here Bε is the center of vorticity, while in (NS) Bε is
defined as the flow generated by Fε.

Proof. Call x = φt(x0). We have:

d

dt
|φt(x0)−Bε(t)| = [u(x, t) + Fε(x, t)− Ḃε(t)] ·

x−Bε(t)
|x−Bε(t)|

=

[∫
dy (Fε(x, t)− Fε(y, t))ωε(y, t)

]
· x−Bε(t)
|x−Bε(t)|

+

[∫
dy (u(x, t)− u(y, t))ωε(y, t)

]
· x−Bε(t)
|x−Bε(t)|

.
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The first addend is easily bounded, taking absolute values, since Fε,1 is Lipschitz:∫
dy |F (x, t)− F (y, t)|ωε(y, t) ≤L

∫
dy |x− y|ωε(y, t) + 2Cεα| log ε|

≤2LRt + 2Cεα| log ε|.

Concerning the second addend, we split it into three terms, recalling that∫
dy ũ(y)ωε(y) = 0:

|u(x, t)− ũ(x, t)| ≤ C εα| log ε|,∣∣∣∣∫ dy (u(y, t)− ũ(y, t))ωε(y, t)

∣∣∣∣ ≤ C εα| log ε|.

It remains only the term

ũ(x, t) · x−Bε(t)
|x−Bε(t)|

=
x−Bε(t)
|x−Bε(t)|

·
∫
dyK(x− y)ωε(y, t)

We divide the integration domain in two regions: A1 := Σ
(
Bε(t)

∣∣Rt/2) and A2 :=
R2 \ A1 . We call H1 and H2 the resultant addends; following the proof of [3,
Lemma 2.5] we have:

|H1| ≤
5

πR3
t

Iε(t)

Then we study H2. First observe that:

|H2| ≤
1

2π

∫
|y−Bε(t)|>Rt/2

dy
1

|x− y|
ωε(y, t)

so we can estimate H2 with a rearrangement as in the proof of Proposition 3.4; we
bound the integral taking a vorticity concentrated, as much as possible, around the
singularity of 1

|x−y| . Therefore, the rearrangement is achieved defining ωε equal

to 3Mε−γ for |x − y| < r, and equal to 0 for |x − y| ≥ r, where r is chosen such
that 3Mε−γ ·πr2 = mε(Rt/2, t) (which is the “total mass” of ω in the integration
domain A2). Hence:

|H2| ≤
3Mε−γ

2π

∫
|z|<r

dz

z
= 3Mε−γ

∫ r

0

ρ

ρ
dρ = 3Mε−γ r =

√
3Mmt(Rt/2)

π εγ
.

Putting together all the terms, we get the thesis.

We introduced the function mε(·, t) : R+ → R+; now we investigate its be-
haviour near to 0.

Lemma 3.10. For each 0 < β < 1
2 min(1, α), and for each ` > 0, there exists

ζ > 0 such that:
lim
ε→0

sup
t∈[0,Tε,β∧ζ| log ε|]

ε−`mε(ε
β , t) = 0.
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Proof. Given R > 0, let WR : R2 → [0, 1] be a radial function such that

WR(x) =

{
1 if |x| ≤ R
0 if |x| ≥ 2R

,

that 0 ≤WR1(x) ≤WR2(x) for any 0 < R1 ≤ R2, and that, for some constant C1,
the following conditions hold:

|∇WR(x)| ≤ C1

R
, |∆WR(x)| < C1

R2
, |∇WR(x)−∇WR(x′)| < C1

R2
|x−x′|.

We define a mollified version of mε:

µε(R, t) := 1−
∫
dxWR(x−Bε(t))ωε(x, t)

It follows immediately by definition that:

µε(R, t) ≤ mε(R, t) ≤ µε(R/2, t), (3.9)

then it’s enough to prove the claim with µε instead of mε. The convenience is
that the function µε is differentiable (with respect to t); therefore we compute its
derivative:

d

dt
µε(R, t) =−

∫
dx∇WR(x−Bε(t)) · [u(x, t) + F (x, t)− Ḃε(t)]ωε(x, t)

=−H3 −H4 −H5

with

H3 =

∫
dx∇WR(x−Bε(t)) · ũ(x, t)ωε(x, t)

H4 =

∫
dx∇WR(x−Bε(t)) ·

[
Fε,1(x, t)−

∫
dy Fε,1(y, t)ωε(y, t)

]
ωε(x, t)

H5 =

∫
dx∇WR(x−Bε(t))

·
[
u(x, t)− ũ(x, t)−

∫
dy [u(y, t)− ũ(y, t)]ωε(y, t)

]
ωε(x, t)

+

∫
dx∇WR(x−Bε(t)) ·

[
Fε,2(x, t)−

∫
dy Fε,2(y, t)ωε(y, t)

]
ωε(x, t)

since Ḃε(t) =
∫
dy ωε(y, t)[Fε(y, t) + u(y, t) − ũ(y, t)]. We immediately observe

that, thanks to Proposition 3.4, to Lemma 3.5 and to the fact that ∇WR(z) is
zero if |z| ≤ R,

|H5| ≤
C1

R
· Cεα| log ε| ·mε(R, t). (3.10)
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Following the proof of [3, Lemma 2.6] we find:

|H3| ≤
11C1

πR4
Iε(t)mε(R, t); (3.11)

|H4| ≤ 3LC1 ·mε(R, t) + 2C1 ‖Fε,1‖L∞ ·
Iε(t)

R3
mε(R, t). (3.12)

Now, given β < 1
2 min(1, α), we fix β∗ such that β < β∗ <

1
2 min(1, α) and

we choose ζ > 0 small enough, such that (3.6) holds with δ > 4β∗ (it is possible
choosing, in the proof, α′ > 2β∗). It follows then from estimates (3.10), (3.11),
(3.12):

d

dt
µε(R, t) ≤ C2

(
εδ

R4
+
εδ

R3
+
εα| log ε|

R
+ 1

)
mε(R, t)

for each t ∈ [0, Tε,β ∧ ζ| log ε|]. Define A(R) the expression in the parenthesis in
last inequality; since δ > 4β∗, there exists A∗ such that C2A(R) ≤ A∗ for each
R ≥ εβ∗ . Therefore recalling (3.9):

µε(R, t) ≤ µε(R, 0) +A∗

∫ t

0

ds µε(R/2, s) ∀R ≥ εβ∗ .

The proof can be now achieved iterating this estimates n times and choosing a
suitable n, as in [3, Lemma 2.6].

We are now ready to prove Theorem 2.1

Proof of Theorem 2.1. In view of (3.6) and (3.8), there exist ζ > 0 and δ > 4β
such that, if x0 ∈ Λi,ε(0) and |φt(x0)−Biε(t)| = Rit

d

dt
|φt(x0)−Biε(t)| ≤ 2LRit + Cεδ(Rit)

−3 + C
√
ε−γmi

ε(R
i
t/2, t) + Cεα| log ε|

for each t ≤ Tε,β ∧ ζ| log ε| and for each index i. Therefore, in this time interval:

Λi,ε(t) ⊆ Σ(Biε(t)|R(t)) (3.13)

where R(t) solves:

Ṙ(t) = 2LR(t) + CεδR(t)−3 + C
√
ε−γmt(R(t)/2) + Cεα| log ε| (3.14)

with initial data R(0) = ε. In fact, this is obviously true at time 0; moreover, if it
happens, at time t, that |φt(x0)− Biε| = R(t), for some x0 ∈ Λi,ε(0), then at this
time R(t) = Rit and hence, thanks to (3.8), the radial velocity of |φt(x0) − Biε| is
less or equal to Ṙ(t).

We fix β′ such that β < β′ < 1
2 min(1, α) and we show that, for a suitable

ζ1 > 0 and for ε small enough:

R(t) < εβ
′
∀ t ≤ Tε,β ∧ ζ1| log ε|. (3.15)
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Then we show that, for a suitable ζ2 > 0 and ε small enough:

|Biε(t)− zi(t)| ≤ Cεδ1 ∀ t ≤ Tε,β ∧ ζ2| log ε| (3.16)

for some δ1 > β′ and for each index i. With these two bounds, together with
(3.13), we can conclude that, for ε small enough and ζ0 := min(ζ1, ζ2):

sup
x∈Λi,ε(t)

|x− zi(t)| = sup
x0∈Λi,ε(0)

|φt(x0)− zi(t)| < εβ ∀t ≤ Tε,β ∧ ζ0| log ε|.

By continuity of φt and zi(t) and by definition of Tε,β , we deduce:

Tε,β ∧ ζ| log ε| < Tε,β

and hence Tε,β > ζ0| log ε|, which is the thesis.
We now prove (3.15) by contradiction. Assume that (3.15) is false for every

ζ > 0. Then, given a ξ > 0 to be chosen later, there exists t1 ∈ [0, Tε,β ∧ ξ| log ε|]
such that R(t1) = εβ

′
; fixed β∗ such that β′ < β∗ <

1
2 min(1, α), we define:

t0 := inf{t ∈ [0, t1] : R(s) > εβ∗ ∀s ∈ [t, t1]} .

Then, for t ∈ [t0, t1], R(t) ≥ εβ∗ ; therefore mε(R(t)/2, t) ≤ mε(ε
β∗/2, t). We

choose ξ such that δ > 4β∗ and that Lemma 3.10 holds with ` = γ+ 2β∗; then the
following estimates hold:√

ε−γmt(R(t)/2) ≤ εβ∗ ; εδR(t)−3 ≤ εδ−3β∗ ≤ εβ∗ ; εα| log ε| ≤ εβ∗ .

Putting these into (3.14), we get, for a suitable C3:

Ṙ(t) ≤ 2LR(t) + C3 ε
β∗ ∀t ∈ [t0, t1].

Integrating we obtain:

R(t1) ≤ e2L(t1−t0)[R(t0) + (t1 − t0)C3 ε
β∗ ] ≤ ε−2Lξ[εβ∗ + C3ξ| log ε|εβ∗ ].

Then, if we fix ξ small enough, such that β∗ − 2Lξ > β′, we find R(t1) < εβ
′
,

which contradicts the assumption R(t1) = εβ
′
. We point out that such a choice of

ξ > 0 is possible, because it depends only on β, β′ and β∗, which are fixed a priori
providing β < β′ < β∗ <

1
2 min(1, α).

We shall now prove (3.16); we compute the time derivatives:

Ḃiε(t)− żi(t) = a−1
i

∫
dx
(
ui(x, t) + F iε(x, t)

)
ωi,ε(x, t)

−
∑
j 6=i

ajK(zi(t)− zj(t)).
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By adding and subtracting suitable terms, and recalling the definition of F iε , we
get:

Ḃi,ε(t)− żi(t) = a−1
i

∫
dxui(x, t)ωi,ε(x, t) + a−1

i

∫
dxF iε,2(x, t)ωi,ε(x, t)

+ a−1
i

∫
dx[F iε,1(x, t)− F iε,1(Biε(t), t)]ωi,ε(x, t)

+
∑
j 6=i

∫
dy [K(Biε(t)− y)−K(Biε(t)−Bjε(t))]ωj,ε(y, t)

+
∑
j 6=i

aj [K(Biε(t)−Bjε(t))−K(Biε(t)− zj(t))]

+
∑
j 6=i

aj [K(Biε(t)− zj(t))−K(zi(t)− zj(t))].

Now we take absolute values, we use the triangle inequality, the Lipschitz property
of K outside the disk Σ

(
0
∣∣Rmin/2

)
(we call L1 the Lipschitz constant of K in this

region), and Lemma 3.5; then we obtain:

|Ḃiε(t)− żi(t)| ≤ |ai|−1Cεα| log ε|+ |ai|−1LIiε(t)
1/2 |ai|1/2

+
∑
j 6=i

L1Ij,ε(t)
1/2 |aj |1/2 +

∑
j 6=i

|aj |L1|Bjε(t)− zj(t)|

+
∑
j 6=i

|aj |L1|Biε(t)− zi(t)|.

Define ∆(t) := maxi=1,...,N |Bi,ε(t)− zi(t)|: then

∆̇(t) ≤ max
i=1,...,N

|Ḃiε(t)− żi(t)|

≤Cεα| log ε|+ C

N∑
j=1

√
Ijε (t) + 2L1

N∑
j=1

|aj |∆(t).

We find easily that, by definition of F iε,1, L ≥ L1

∑
j |aj |. Integrating the previous

inequality we find:

∆(t) ≤ ∆(0)e2Lt + C

∫ t

0

N∑
j=1

√
Ijε (s)eL(t−s) ds+ Cεα| log ε| · (e2Lt − 1).

We use the bound (3.7) and choose α′ < min(α, 1). If t ≤ Tε,β ∧ ζ| log ε| we get:

∆(t) ≤ C εα
′−2Lζ = Cεδ1 ∀t ∈ [0, Tε,β ∧ ζ| log ε|]. (3.17)

We choose ζ2 such that δ1 := α′ − 2Lζ2 > β′, so the proof is achieved.
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3.3 Better estimate for Tε,β

An example, for which a better estimate for Tε,β can be proved, is presented in
[3] for the planar case. It consists on three vortices with intensities ai and initial
points zi(0) chosen in such a way, that at each time t the following relation holds:

|zi(t)− zj(t)| = |zi(0)− zj(0)| ·
√

1 + gt for some g > 0 (3.18)

i.e. the three vortices moves away one from another, and the triangle formed by
them remains similar to itself at each time. Under this extra assumption, in the
planar case, there exist ζ0, ε0 > 0 such that Tε,β > ε−ζ0 for each ε ∈ (0, ε0).

This result is still valid for (EA), and the proof is completely analogous to the
one given in [3]: we give here only a sketch. The crucial remark is that in this
case, the Lipschitz constant of F iε,1 decreases with t, i.e.:

|F iε,1(x, t)− F iε,1(z, t)| ≤ L

1 + t
|x− z| (3.19)

for each x, z ∈ Λi,ε(t) and for each t ≤ Tε,β . This can be easily proved observing
that the Lipschitz constant of K outside the disk Σ(0|r) goes like 1/r2 and taking
account of (3.18).

We now work in the time interval (0, Tε,β ∧ ε−ζ), for some ζ > 0. Thanks to
(3.19) we can prove that Lemmas 3.6, 3.8 (replacing, in (3.8), L with L

1+t ) and
3.10 holds true in this new time interval, provided ζ small enough. We can now
proceed as in the proof of Theorem 2.1, proving that (3.15) and (3.16) hold in the
time interval (0, Tε,β ∧ ε−ζ).

4 Vortices in viscous fluids

In this section we discuss the viscous case; in subsection 4.1 we study the motion
of the i-th term of the vorticity ωi,ε(x, t) in (2.11). In particular, we prove some
a priori estimates which allow to conclude the proof of Theorem 2.2 in subsection
4.2 via a bootstrap argument.

4.1 The reduced system

Recalling the definition of Rm in the statement of Theorem 2.2 and the function
WR(x) in the proof of Lemma 3.10 and defining R∗ := Rm/10, we decompose the
vector field F iε(x, t) into a sum of two terms, namely

F iε(x, t) = F iε,1(x, t) + F iε,2(x, t)

where

F iε,1(x, t) :=
∑
j 6=i

∫
dyK(x− y) (1−WR∗(x− y))ωj,ε(y, t) (4.1)
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is a smooth, divergence free, uniformly bounded, time dependent vector field which
satisfies the Lipschitz condition

|F iε,1(x, t)− F iε,1(x′, t)| ≤ L|x− x′|, ∀x, x′ ∈ R2 (4.2)

for some constant L depending only on R∗, and

F iε,2(x, t) :=
∑
j 6=i

∫
dyK(x− y)WR∗(x− y)ωj,ε(y, t). (4.3)

Recalling the definition of Biε(t) in (2.12), for any α > 0 we define

T ∗ = T ∗(ε, α) := min
i=1,...,N

sup

{
t > 0 : sup

|x−Biε(s)|≤3R∗

|F iε,2(x, s)| ≤ εα ∀ s ∈ [0, t]

}
;

Since F iε,2(x, 0) = 0 for any |x − Biε(0)| ≤ 3R∗, then, by continuity6 T ∗ > 0, and

hence F iε,2(x, t) satisfies, for t ∈ [0, T ∗] and |x−Biε(t)| ≤ 3R∗, the estimate

|F iε,2(x, t)| ≤ εα. (4.4)

Therefore, for t ∈ [0, T ∗] the i-th term of vorticity moves according to the evolution
equation 

d

dt
ωi,εt (f) = ωi,εt ((uiε + F iε) · ∇f) + νωi,εt (∆f) + ωi,εt (∂tf)

ωi,ε0 (dx) = ωi,ε(x, 0) dx.

(4.5)

The latter can be thought as the evolution equation of a single compactly-suppor-
ted blob of initial vorticity ωi,ε(x, 0) under the action of an external field F iε(x, t)
satisfying the conditions (4.2) and (4.4) till time T ∗. For the sake of brevity, in
this section, we suppress the index i, so that (4.5) reads

d

dt
ωεt (f) = ωεt ((uε + Fε) · ∇f) + νωεt (∆f) + ωεt (∂tf)

ωε0 = ω0
ε(x) dx

(4.6)

for all C2,1 bounded functions f = f(x, t) with bounded first and second deriva-
tives.
Since each term ωi,ε(x, t) preserves at any time the initial sign and the total mass
(as immediately follows from the definition), we can suppose ωε(x, t) ≥ 0 ∀ t ≥ 0,∫
dxωε(x, t) = 1 and that suppωε(x, 0) ⊂ Σ(z∗|ε).

The field uε(x, t) is the velocity field generated by ωi,ε(x, t), which here reads

uε(x, t) =

∫
dyK(x− y)ωε(y, t).

6The continuity property of F i
ε,2 w.r.t. (x, t) is shown in the Appendix.
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The field Fε(x, t) is the sum of the two terms Fε,1(x, t) + Fε,2(x, t) in (4.1) and
(4.3), and they respectively satisfy the conditions

|Fε,1(x, t)− Fε,1(x′, t)| ≤ L|x− x′|, ∀x, x′ ∈ R2

and, for t ∈ [0, T ∗],

|Fε,2(x, t)| ≤ εα, if |x−Bε(t)| ≤ 3R∗

where Bε(t) is the solution to the ordinary differential equation generated by Fε
with initial condition Bε(0) = z∗ (here z∗ plays the role of zi).

So, in our convention of suppressing the index i, (2.13) here reads

mε(R, t) =

∫
|x−Bε(t)|>R

dxωε(x, t).

Finally, we introduce a truncated moment of inertia with respect to Bε(t), by
setting

Iε(R, t) :=

∫
dxωε(x, t) |x−Bε(t)|2WR(x−Bε(t)).

We start by studying the growth in time of the moment of inertia. Note that we
can perform the time derivative of the moment of inertia by following the weak
formulation (4.6), thanks to the identity

Iε(R, t) = ωεt (fR),

with fR = fR(x, t) = |x−Bε(t)|2WR(x−Bε(t)). Without introducing the function
WR, the ”total” moment of inertia∫

dxωε(x, t) |x−Bε(t)|2,

used in the previous section, could be a priori divergent because ωε(x, t) has not
a compact support like in the inviscid case, and hence the application of the weak
formulation is not guaranteed.

Lemma 4.1. There exists a constant C1 such that, for every R ≤ min{R∗/2, 1},
0 ≤ t ≤ T ∗, and ε > 0,

d

dt
Iε(R, t) ≤ C1

[
Iε(R, t) +

1

R
mε(R, t) + εα

]
. (4.7)
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Proof. As claimed before, we use (4.6) with f(x, t) = |x−Bε(t)|2WR(x−Bε(t)):

d

dt
Iε(R, t) =

d

dt
ωεt

(
|x−Bε(t)|2WR(x−Bε(t))

)
= ωεt

((
uε(x, t) + Fε(x, t)

)
· ∇
(
|x−Bε(t)|2WR(x−Bε(t))

))
+ νωεt

(
∆
(
|x−Bε(t)|2WR(x−Bε(t))

))
+ ωεt

(
∂t
(
|x−Bε(t)|2WR(x−Bε(t))

))
= A+D + E,

where

A = ωεt

(
2
(
x−Bε(t)

)
·
[
uε(x, t) + Fε(x, t)−

d

dt
Bε(t)

]
WR(x−Bε(t))

)

D = ωεt

(
|x−Bε(t)|2

[
uε(x, t) + Fε(x, t)−

d

dt
Bε(t)

]
· ∇WR(x−Bε(t))

)

E = νωεt

(
|x−Bε(t)|2 ∆WR(x−Bε(t)) + 4(x−Bε(t)) · ∇WR(x−Bε(t))

+ 4WR(x−Bε(t))
)
.

We estimate separately the terms A,D and E, starting with A. We decompose,

A = 2

∫
dxωε(x, t)WR(x−Bε(t))

(
x−Bε(t)

)
·
∫
dy ωε(y, t)

{
K(x− y) + Fε(x, t)− Fε(Bε(t), t)

}
= A1 +A2 +A3

where

A1 =

∫
dx

∫
dy ωε(x, t)ωε(y, t)K(x− y)

·
{
WR(x−Bε(t))(x−Bε(t))−WR(y −Bε(t))(y −Bε(t))

}
A2 = 2

∫
dxωε(x, t)WR(x−Bε(t)) (x−Bε(t)) ·

[
Fε,1(x, t)− Fε,1(Bε(t), t)

]

A3 = 2

∫
dxωε(x, t)WR(x−Bε(t)) (x−Bε(t)) ·

[
Fε,2(x, t)− Fε,2(Bε(t), t)

]
.
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Above, we used the antisymmetry of K(x − y), and the decomposition of the
external field Fε.

Let’s start from A1; we first observe that the integrand vanishes when both
|x−Bε(t)| and |y−Bε(t)| are less than R (becauseWR ≡ 1 andK(x−y)·(x−y) = 0)
or larger than 2R (because WR ≡ 0). Moreover, the integrand is bounded where
x is near y; this is not trivial because of the singularity of K(x − y), but this
singularity is compensated by a zero of the same order. More precisely, we notice
that∣∣WR(x−Bε(t)) (x−Bε(t))−WR(y −Bε(t)) (y −Bε(t))|

=
1

2
|(WR(x−Bε(t)) +WR(y −Bε(t)))

[
(x−Bε(t))− (y −Bε(t))

]
+ (WR(x−Bε(t))−WR(y −Bε(t)))

[
(x−Bε(t)) + (y −Bε(t))

]∣∣
≤ |x− y|+ C

2R
|x− y|

[
|x−Bε(t)|+ |y −Bε(t)|

]
(4.8)

and decompose

A1 =

(∫
|x−Bε(t)|<R

dx

∫
2R>|y−Bε(t)|>R

dy +

∫
|x−Bε(t)|<R

dx

∫
|y−Bε(t)|>2R

dy

+

∫
2R>|x−Bε(t)|>R

dx

∫
|y−Bε(t)|<R

dy +

∫
2R>|x−Bε(t)|>R

dx

∫
2R>|y−Bε(t)|>R

dy

+

∫
2R>|x−Bε(t)|>R

dx

∫
|y−Bε(t)|>2R

dy +

∫
|x−Bε(t)|>2R

dx

∫
|y−Bε(t)|<2R

dy

)
(
ωε(x, t)ωε(y, t)K(x− y) ·

{
WR(x−Bε(t)) (x−Bε(t))

−WR(y −Bε(t)) (y −Bε(t))
})

.

In the first, third and fourth term we apply (4.8) and obtain that each one, in
absolute value, is bounded by (1 + 2C)mε(R, t).
In the second term WR(y −Bε(t)) = 0, so it is equal to∫

|x−Bε(t)|<R
dx

∫
|y−Bε(t)|>2R

dy ωε(x, t)ωε(y, t)K(x− y)·

·
{
WR(x−Bε(t)) (x−Bε(t))−WR(y −Bε(t)) (x−Bε(t))

}
and then, taking the absolute value and using the Lipschitz condition, we get that
it’s bounded by∫

|x−Bε(t)|<R
dx

∫
|y−Bε(t)|>2R

dy ωε(x, t)ωε(y, t)
C

2πR
|x−Bε(t)|

≤ C

2π
mε(2R, t) ≤

C

2π
mε(R, t).
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For the fifth term, we apply the same arguments used for the second one. In
the sixth term WR(x − Bε(t)) = 0 and so we can repeat also here the arguments
used for the second one. So we found that there exist a constant C such that
|A1| ≤ Cmε(R, t).
Concerning the term A2, we use the Lipschitz condition getting

|A2| ≤ 2L

∫
dxωε(x, t) |x−Bε(t)|2WR(x−Bε(t)) = 2LIε(R, t)

while |A3| is bounded by 4RCεα ≤ 4Cεα. So

|A| ≤ Cmε(R, t) + 2LIε(R, t) + 4Cεα. (4.9)

We now study the term D that we decompose as D = D1 +D2 +D3, where

D1 =

∫
dx

∫
dy ωε(x, t)ωε(y, t) |x−Bε(t)|2K(x− y) · ∇WR(x−Bε(t))

D2 =

∫
dxωε(x, t) |x−Bε(t)|2

[
Fε,1(x, t)− Fε,1(Bε(t), t)

]
· ∇WR(x−Bε(t))

D3 =

∫
dxωε(x, t) |x−Bε(t)|2

[
Fε,2(x, t)− Fε,2(Bε(t), t)

]
· ∇WR(x−Bε(t)).

Using the Lipschitz condition and that |∇WR| ≤
C

R
we have,

|D2| =
∫

2R>|x−Bε(t)|>R
dxωε(x, t) |x−Bε(t)|2

{[
Fε,1(x, t)− Fε,1(Bε(t), t)

]
·

· ∇WR(x−Bε(t))
}
≤ LC

R

∫
2R>|x−Bε(t)|>R

dxωε(x, t) |x−Bε(t)|3

≤ 8LCR2mε(R, t).

The term |D3| can be easily bounded by 8CRεαmε(R, t) ≤ 8Cεα.
To bound the term |D1| we use the same trick used for A1: using the antisymmetry
of K(x− y) we write

D1 =
1

2

∫
dx

∫
dy ωε(x, t)ωε(y, t)K(x− y)

·
{
|x−Bε(t)|2∇WR(x−Bε(t))− |y −Bε(t)|2∇WR(y −Bε(t))

}
.

We first observe that the integrand vanishes when both |x−Bε(t)| and |y−Bε(t)|
are less than R or greater than 2R. Moreover, the integrand is bounded where x
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is near y; more precisely,[
|x−Bε(t)|2∇WR(x−Bε(t))− |y −Bε(t)|2∇WR(y −Bε(t))

]
=

1

2

{[
∇WR(x−Bε(t)) +∇WR(y −Bε(t))

][
|x−Bε(t)|2 − |y −Bε(t)|2

]
+
[
∇WR(x−Bε(t))−∇WR(y −Bε(t))

][
|x−Bε(t)|2 + |y −Bε(t)|2

]}
≤ C

R2
|x− y|

[
|x−Bε(t)|+ |y −Bε(t)|+ |x−Bε(t)|2 + |y −Bε(t)|2

]
.

We thus obtain that |D1| ≤
C

R
mε(R, t) and so

|D| ≤
(
C

R
+ 8LC

)
mε(R, t) + 8C2εα. (4.10)

Finally, recalling that ν ≤ ν0ε
α, the term |E| is easily bounded,

|E| ≤ (4 + 12C)ν0ε
α. (4.11)

The lemma follows by (4.9), (4.10) and (4.11).

We now need a bound for mε(R, t). To do this, we use the mollified version of
mε(R, t) introduced in Lemma (3.10), namely

µε(R, t) := 1−
∫
dxωε(x, t)WR(x−Bε(t));

as we shall see, a control on t 7→ µε(R, t) gives us a control on t 7→ mε(R, t). In
the next lemma we perform the derivative in time of µε to obtain a bound for mε.

Lemma 4.2. There exists a constant C2 such that, for every R ≤ min{R∗/2, 1},

0 ≤ t ≤ T ∗, and 0 < ε <
R

2
,

mε(R, t) ≤ C2

(
1

R4
+
εα

R4

)∫ t

0

ds Iε(R, s). (4.12)

Proof. We investigate the growth in time of µε(R, t): using the weak formulation
we have
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d

dt
µε(R, t) = − d

dt
ωεt

(
WR(x−Bε(t))

)
= −ωεt

((
uε(x, t) + Fε(x, t)

)
· ∇WR(x−Bε(t))

)
− νωεt

(
∆WR(x−Bε(t))

)
+ ωεt

(
∇WR(x−Bε(t)) · Fε(Bε(t), t)

)
= ωεt

([
Fε(Bε(t), t)− uε(x, t)− Fε(x, t)

]
· ∇WR(x−Bε(t))

)
− νωεt

(
∆WR(x−Bε(t))

)
= H1 +H2 +H3 +H4

where

H1 =

∫
dxωε(x, t)

[
Fε,1(Bε(t), t)− Fε,1(x, t)

]
· ∇WR(x−Bε(t))

H2 =

∫
dxωε(x, t)

[
Fε,2(Bε(t), t)− Fε,2(x, t)

]
· ∇WR(x−Bε(t))

H3 = −
∫
dxωε(x, t)uε(x, t) · ∇WR(x−Bε(t))

H4 = −ν
∫
dxωε(x, t) ∆WR(x−Bε(t)).

Using the Lipschitz condition and the bound on |∇WR| we have

|H1| =
∣∣∣∣∫

2R>|x−Bε(t)|>R
dxωε(x, t)

[
Fε,1(Bε(t), t)− Fε,1(x, t)

]
· ∇WR(x−Bε(t))

∣∣∣∣
≤ LC

R

∫
2R>|x−Bε(t)|>R

dxωε(x, t) |x−Bε(t)|

≤ 2LC
(
mε(R, t)−mε(2R, t)

)
.

(4.13)

Similarly

|H2| ≤
2C

R
εα
(
mε(R, t)−mε(2R, t)

)
(4.14)

and

|H4| ≤
Cν0

R2
εα
(
mε(R, t)−mε(2R, t)

)
. (4.15)
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We now study the term H3. Using the antisymmetry of K(x− y) we obtain

H3 =
1

2

∫
dx

∫
dy ωε(x, t)ωε(y, t)

[
∇WR(x−Bε(t))−∇WR(y −Bε(t))

]
·

·K(x− y) =
1

2

(∫
|x−Bε(t)|<R

dx

∫
2R>|y−Bε(t)|>R

dy

+

∫
2R>|x−Bε(t)|>R

dx

∫
dy +

∫
|x−Bε(t)|>2R

dx

∫
2R>|y−Bε(t)|>R

dy

)
(
ωε(x, t)ωε(y, t)

[
∇WR(x−Bε(t))−∇WR(y −Bε(t))

]
·K(x− y)

)
;

the Lipschitz condition and the bound on |∆WR| imply

|H3| ≤
3C

4πR2

(
mε(R, t)−mε(2R, t)

)
. (4.16)

Putting together the bounds (4.13), (4.14), (4.15), (4.16) we get

d

dt
µε(R, t) ≤ C

(
1 +

1

R2
+
εα

R2

)(
mε(R, t)−mε(2R, t)

)
. (4.17)

Since ε < R/2, µε(R, 0) = 0, and so integrating the above inequality, we obtain

µε(R, t) ≤ C
(

1 +
1

R2
+
εα

R2

)∫ t

0

ds
(
mε(R, s)−mε(2R, s)

)
. (4.18)

We now observe two simple facts:

Iε(R, t) =

∫
dxωε(x, t) |x−Bε(t)|2WR(x−Bε(t))

≥
∫
R>|x−Bε(t)|>R

2

dxωε(x, t) |x−Bε(t)|2

≥ R2

4

(
mε(R/2, t)−mε(R, t)

)
and

µε(R/2, t) = 1−
∫

dxωε(x, t)WR
2

(x−Bε(t))

= 1−
∫
|x−Bε(t)|≤R

dxωε(x, t)WR
2

(x−Bε(t))

≥ 1−
∫
|x−Bε(t)|≤R

dxωε(x, t) = mε(R, t).

(4.19)
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So, evaluating (4.18) in
R

2
and using the above two facts, we obtain that there

exists a constant C2 such that

mε(R, t) ≤ C2

(
1

R4
+
εα

R4

)∫ t

0

ds Iε(R, s)

for all ε <
R

2
and 0 ≤ t ≤ T ∗ and this completes the proof.

In the sequel, we will also need to control the time derivative of µε(R, t) by means
of the function mε(R, t). As a matter of fact, the estimate (4.17) is not useful for
our purposes because of the term 1

R2 . To get the right bound, we have to improve
the estimate of the term H3 in Lemma 4.2. This is the content of the next lemma.

Lemma 4.3. There exists a constant C3 such that, for every ε > 0, 2ε
α
10 < R ≤

min{R∗/2, 1}, and 0 ≤ t ≤ T ∗,

d

dt
µε(R, t) ≤ C3

(
1 +

εα

R2
+
ε−

α
10 Iε(R, t)

R3
+
Iε(R, t)

R4
+
mε(R, t)

R2

)
mε(R, t). (4.20)

Proof. As already mentioned, we have to improve the estimate of the term H3.
Using the antisymmetry of K(x− y) we have,

H3 =
1

2

∫
dx

∫
dy QRε (x, y, t), (4.21)

where

QRε (x, y, t) := ωε(x, t)ωε(y, t)
[
∇WR(x−Bε(t))−∇WR(y −Bε(t))

]
·K(x− y).

We now split the integration domain in several sets defined as follows. Let h ∈ N
and set

Th =

{(
x, y
)

: x /∈ ΣR(Bε(t)), y ∈ Σah(Bε(t)) \ Σah−1
(Bε(t))

}
if h < n

Tn =

{(
x, y
)

: x /∈ ΣR(Bε(t)), y /∈ Σan−1
(Bε(t))

}
if h = n

Sh =

{(
x, y
)

: y /∈ ΣR(Bε(t)), x ∈ Σah(Bε(t)) \ Σah−1
(Bε(t))

}
if h < n

Sn =

{(
x, y
)

: y /∈ ΣR(Bε(t)), x /∈ Σan−1
(Bε(t))

}
if h = n

where ah is defined as

a0 = 0, a1 = ε
α
10 , ah+1 = 2ah
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and n = n(ε,R) ∈ N is chosen in such a way that an+1 ≤ R and an+2 > R (recall
the assumptions on R). We notice that the integrand in (4.21) vanishes in the

complement of
n⋃
h=1

(
Th ∪ Sh

)
, so we only have to consider the integration on Th

and Sh ∀h = 1, . . . , n.
By using that K(x−Bε(t)) · ∇WR(x−Bε(t)) = 0 and that ∇WR(y −Bε(t)) = 0
if y ∈ Σah(Bε(t)) \ Σah−1

(Bε(t)) and h < n, we have, for any h < n,∫
Th

dx dy QRε (x, y, t) =

∫
|x−Bε(t)|>R

dx

∫
Σah (Bε(t))\Σah−1

(Bε(t))

dy ωε(x, t)ωε(y, t)[
K(x− y)−K(x−Bε(t))

]
· ∇WR(x−Bε(t)).

(4.22)

We now observe that, by the explicit form of K(x),∣∣K(x′ − y′)−K(x′)
∣∣ ≤ 3

2π

γ

|x′|(|x′| − γ)
if |y′| < γ < |x′| (4.23)

(the proof of this fact is postponed to the end of this lemma), so∣∣K(x− y)−K(x−Bε(t))
∣∣ =

∣∣K(x−Bε(t) +Bε(t)− y)−K(x−Bε(t))
∣∣

≤ ah
R(R− ah)

(4.24)

where we used (4.23) with x′ = (x−Bε(t)), y′ = (y−Bε(t)) and γ = ah and that
|x′| > R. From (4.22), (4.24), and using that |∇WR| ≤ C

R , we obtain∣∣∣∣∫
Th

dx dy QRε (x, y, t)

∣∣∣∣ ≤ Cah
R2(R− ah)

[
mε(ah−1, t)−mε(ah, t)

]
mε(R, t)

≤ Cah
R2(R− ah)

1

a2
h−1

Iε(R, t)mε(R, t).

where we also used in the last inequality that for h < n

mε(ah−1, t)−mε(ah, t) =

∫
ah>|x−Bε(t)|>ah−1

dxωε(x, t)WR(x−Bε(t))

≤ 1

a2
h−1

Iε(R, t).

Summing on h = 1, . . . , n− 1 we get∣∣∣∣∫n−1⋃
h=1

Th

dx dy QRε (x, y, t)

∣∣∣∣ ≤ {n−1∑
h=1

Cah
R2(R− ah)a2

h−1

}
Iε(R, t)mε(R, t)

≤ 16ε−
α
10

R3
Iε(R, t)mε(R, t)
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because

n−1∑
h=1

Cah
R2(R− ah)a2

h−1

=
4

R2

n−1∑
h=1

ah
(R− ah)a2

h

=
4ε−

α
10

R2

n−1∑
h=1

1

2h−1

1

R− ah

≤ 4ε−
α
10

R2(R− an)

n−1∑
h=1

1

2h−1
≤ 16ε−

α
10

R3
,

where we used that R− an = R− an+1/2 ≥ R−R/2 = R/2.
Concerning the integration on Tn, we decompose∫

Tn

dx dy QRε (x, y, t) = J1 + J2

where

J1 =

∫
|x−Bε(t)|>R

dx

∫
R≥|y−Bε(t)|>an−1

dy QRε (x, y, t)

and

J2 =

∫
|x−Bε(t)|>R

dx

∫
|y−Bε(t)|>R

dy QRε (x, y, t).

Using the Lipschitz condition, we have

|J1| ≤
∫
|x−Bε(t)|>R

dx

∫
R≥|y−Bε(t)|>an−1

dy ωε(x, t)ωε(y, t)
C

2πR2

≤ C

2πR2a2
n−1

Iε(R, t)mε(R, t) ≤
32C

πR4
Iε(R, t)mε(R, t)

where in the last inequality we used that an−1 = an/2 = an+1/4 = an+2/8 > R/8.
Again, by the Lipschitz condition,

|J2| ≤
C

2πR2
mε(R, t)mε(R, t).

The contribution to H3 coming from the integration on the sets Sh, h ≤ n, can be
treated in the same way and we omit the details. In conclusion,

|H3| ≤
16ε−

α
10

R3
Iε(R, t)mε(R, t) +

32C

πR4
Iε(R, t)mε(R, t)

+
C

2πR2
mε(R, t)mε(R, t).

(4.25)

The estimate (4.20) now follows from (4.13), (4.14), (4.15) (in which we remove
the term mε(2R, t)) and (4.25), for a suitable costant C3.
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We are left with the proof of (4.23). To simplify the notation we use x and y
instead of x′ and y′, and we observe that

∣∣K(x− y)−K(x)
∣∣ =

1

2π

∣∣∣∣ (x− y)⊥

|x− y|2
− x⊥

|x|2

∣∣∣∣ =
1

2π

∣∣∣∣ |x|2(x− y)⊥ − |x− y|2x⊥

|x|2|x− y|2

∣∣∣∣.
(4.26)

We have,

|x|2(x− y)⊥ − |x− y|2x⊥ = −|x|2y⊥ − |y|2x⊥ + 2(x · y)x⊥

= −|x|2y⊥ + x⊥(y · (2x− y))

= −|x|2y⊥ + x⊥(y · x) + x⊥(y · (x− y))

= (x− y)⊥(y · x) + y⊥(y · x− |x|2) + x⊥(y · (x− y))

= (x− y)⊥(y · x) + y⊥((y − x) · x) + x⊥(y · (x− y)).

(4.27)

Inserting (4.27) in (4.26) and using the Cauchy-Schwarz inequality we get

∣∣K(x− y)−K(x)
∣∣ ≤ 3

2π

|x||y||x− y|
|x|2|x− y|2

≤ 3

2π

γ

|x|(|x| − γ)

since |y| < γ < |x| and |x− y| > |x|− |y| > |x|−γ, which completes the proof.

4.2 Proof of main result for (NS)

In this section we come back to the notation of Section 3.1, which means that we
reintroduce the index i to distinguish the N terms of the vorticity, and we use the
estimates found in the previous section, which are valid for each i = 1, . . . , N , to
prove Theorem 2.2. In other words, the lemmas of Subsection 3.1 have to be read
replacing Iε(R, t) by

Iiε(R, t) :=

∫
dx |ωi,ε(x, t)| |x−Biε(t)|2WR(x−Biε(t)),

mε(R, t) by

mi
ε(R, t) =

∫
|x−Biε(t)|>R

dx |ωi,ε(x, t)|,

and µε(R, t) by

µiε(R, t) := |ai| −
∫
dx |ωi,ε(x, t)|WR(x−Biε(t))

for any i = 1, . . . , N .
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Proof of Theorem 2.2. We fix once for all α ≤ 2, α > 4α + γ, β ∈ (0, α/14),
β∗ ∈ (β, α/14) and δ ∈ (0, α/3) and we work with R ∈ [εβ∗ , εβ ].

We preliminary observe that, since the function t 7→ mi
ε(R, t) is continuous

(see Appendix) and mε(R, 0) = 0 for ε < R, then Tε,α,β > 0. Obviously, since
Biε(0) = zi, T ε,δ > 0 by continuity.

We split the proof into three steps: in the first one, we show that the estimates
found in Subsection 3.1 are valid till time Tε,α,β ∧ T ε,δ by proving that T ∗ ≥
Tε,α,β ∧ T ε,δ for ε sufficiently small. In the second step, we study the distances

between the centre Biε(t) and the solution zi(t) to the point vortex-model, showing
that T ε,δ > Tε,α,β ∧ ξ1| log ε| for some ξ1 > 0 and ε small enough. Finally, in the

third step, we study the vorticity mass outside the disk of centre Biε(t) and radius
εβ proving that Tε,α,β > ζ| log ε| for some ζ > 0 and ε small enough.

Step 1. We take ε ∈ (0, 1) sufficiently small such that εδ < 2R∗ and εβ < R∗ for
ε < ε, and we prove that there exists 0 < ε1 < ε such that T ∗ ≥ Tε,α,β ∧ T ε,δ for
any 0 < ε < ε1.
Take t ≤ Tε,α,β ∧ T ε,δ and |x−Biε(t)| ≤ 3R∗, then

|F iε,2(x, t)| ≤
∑
j 6=i

∫
|y−x|≤2R∗

dy |K(x− y)| |ωj,ε(y, t)|

≤
∑
j 6=i

∫
|y−Biε(t)|≤5R∗

dy |K(x− y)| |ωj,ε(y, t)|

≤
∑
j 6=i

∫
|y−Bjε(t)|>εβ

dy |K(x− y)| |ωj,ε(y, t)|

where in the last inequality we used that for any j 6= i and t ≤ T ε,δ

|y −Bjε(t)| ≥ |y − zj(t)| − |zj(t)−Bjε(t)|
≥ |zj(t)− zi(t)| − |zi(t)− y| − |zj(t)−Bjε(t)|
≥ |zj(t)− zi(t)| − |zj(t)−Bjε(t)| − |zi(t)−Biε(t)|
− |Biε(t)− y| > Rm − 2R∗ − 2R∗ − 5R∗ = R∗

> εβ .

For any j 6= i, we have,∫
|y−Bjε(t)|>εβ

dy |K(x− y)| |ωj,ε(y, t)| ≤
1

2π

∫
|y−Bjε(t)|>εβ

dy
|ωj,ε(y, t)|
|x− y|

≤
√
Mε−γmj

ε(ε
β , t)

π

where in the last inequality we applied the same argument used in the bound of
the term H2 in Lemma 3.8, consisting in the rearrangement of the vorticity as
close as possible to the singularity of 1/|x− y|.
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Since for t ≤ Tε,α,β ∧ T ε,δ
mj
ε(ε

β , t) ≤ εα ∀j

and since α > 4α+ γ, we obtain

|F iε,2(x, t)| ≤ (N − 1)

√
M

π
ε2α.

Choosing now ε1 sufficiently small to make (N − 1)
√
M/πεα < 1/2 for any 0 <

ε < ε1, by definition of T ∗ we get

T ∗ ≥ Tε,α,β ∧ T ε,δ for any 0 < ε < ε1. (4.28)

At this point we observe that there exists ε2 < ε1 such that the hypothesis of
the three lemmas in Section 3.3 are satisfied for each 0 < ε < ε2 and R ∈ [εβ∗ , εβ ].
Step 2. Let ξ1 > 0 (to be chosen later), and work with 0 ≤ t ≤ T ε,δ ∧ Tε,α,β ∧
ξ1| log ε|, 0 < ε < ε2, and R ∈ [εβ∗ , εβ ]; in view of (4.28), for t, ε and R in
these intervals we can use all the estimates of Subsection 3.1. Define also, for
i = 1, . . . , N ,

∆i(t) = |Biε(t)− zi(t)|.

We have,

d

dt
Biε(t)−

d

dt
zi(t) = F iε(B

i
ε(t), t)−

∑
j 6=i

ajK(zi(t)− zj(t))

=
∑
j 6=i

∫
dyK(Biε(t)− y)ωj,ε(y, t)−

∑
j 6=i

ajK(zi(t)− zj(t))

= Y1 + Y2 + Y3 + Y4

where

Y1 =
∑
j 6=i

∫
dyK(Biε(t)− y) (1−WR∗(B

i
ε(t)− y))ωj,ε(y, t)

−
∑
j 6=i

∫
dyK(zi(t)− y) (1−WR∗(zi(t)− y))ωj,ε(y, t),

Y2 =
∑
j 6=i

∫
dyK(Biε(t)− y)WR∗(B

i
ε(t)− y)ωj,ε(y, t),

Y3 =
∑
j 6=i

∫
dyK(zi(t)− y) (1−WR∗(zi(t)− y))ωj,ε(y, t)

−
∑
j 6=i

∫
dyK(zi(t)− zj(t)) (1−WR∗(zi(t)− y))ωj,ε(y, t),
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Y4 = −
∑
j 6=i

∫
dyK(zi(t)− zj(t))WR∗(zi(t)− y)ωj,ε(y, t).

We have

|Y1| =
∣∣F iε,1(Biε(t), t)− F iε,1(zi(t), t)

∣∣ ≤ L|Biε(t)− zi(t)|
≤ L max

j=1,...,N
∆j(t).

The term |Y2| =
∣∣F iε,2(Biε(t), t)

∣∣ is bounded by εα since t ≤ T ∗.
The term Y3 can be written as

Y3 = Y
′

3 + Y
′′

3

where

Y
′

3 =
∑
j 6=i

∫
|y−Bjε(t)|>εβ

dy
[
K(zi(t)− y)−K(zi(t)− zj(t))

]
× (1−WR∗(zi(t)− y))ωj,ε(y, t)

and

Y
′′

3 =
∑
j 6=i

∫
|y−Bjε(t)|≤εβ

dy
[
K(zi(t)− y)−K(zi(t)− zj(t))

]
× (1−WR∗(zi(t)− y))ωj,ε(y, t);

the j-th integrand in Y
′

3 is bounded by 11/2πRm|ωj,ε(y, t)| so that,

|Y
′

3 | ≤ C̃
∑
j 6=i

mj
ε(ε

β , t) ≤ NC̃εα

since t ≤ Tε,α,β . To bound the term Y
′′

3 we use the Lipschitz condition: indeed, if

x̃ is a point on the segment yzj(t) where |y−Bjε(t)| ≤ εβ , then |∇Kh(zi(t)− x̃)| ≤
C/|zi(t)− x̃|2 ≤ C/36R2

∗ (Kh, h = 1, 2 denotes the first and second component of
the vector field K), because

|zi(t)− x̃| ≥ |zi(t)− zj(t)| − |zj(t)− x̃| ≥ |zi(t)− zj(t)| − |zj(t)− y|
≥ |zi(t)− zj(t)| − |zj(t)−Bjε(t)| − |Bjε(t)− y| > 6R∗,

where we used that for t ≤ T ε,δ ∧ Tε,α,β ∧ ξ1| log ε|, |zj(t)−Bjε(t)| < 2R∗ for any
j = 1, . . . , N .



Long time evolution of fluids with concentrated vorticity 67

Therefore, for some constant L̃ and a := max{|a1|, . . . , |aN |},

|Y
′′

3 | ≤ L̃
∑
j 6=i

∫
|y−Bjε(t)|≤εβ

dy |y − zj(t)| |ωj,ε(y, t)|

≤ L̃
∑
j 6=i

∫
|y−Bjε(t)|≤εβ

dy |y −Bjε(t)| |ωj,ε(y, t)|+ L̃
∑
j 6=i

|aj ||Bjε(t)− zj(t)|

≤ L̃
∑
j 6=i

∫
|y−Bjε(t)|≤εβ

dy |y −Bjε(t)| |ωj,ε(y, t)|+ aL̃(N − 1) max
j=1,...,N

∆j(t).

Consider the first term in the r.h.s. of the above inequality: since Wεβ (y−Bjε(t)) ≡
1 for |y −Bjε(t)| ≤ εβ , it is equal to∑

j 6=i

∫
|y−Bjε(t)|≤εβ

dy |y −Bjε(t)| |ωj,ε(y, t)|Wεβ (y −Bjε(t))

and by applying the Cauchy-Schwarz inequality we obtain that each term of the
sum is bounded by(∫

|y−Bjε(t)|≤εβ
dy |y −Bjε(t)|2 |ωj,ε(y, t)|Wεβ (y −Bjε(t))

) 1
2

×
(∫
|y−Bjε(t)|≤εβ

dy |ωj,ε(y, t)|
) 1

2

so that

|Y
′′

3 | ≤ L̃
∑
j 6=i

√
|aj |
√
Ijε (εβ , t) + aL̃(N − 1) max

j=1,...,N
∆j(t).

Finally, since |K(zi(t)− zj(t))| ≤ 1/2πRm, we have,

|Y4| ≤ C∗
∑
j 6=i

∫
|y−zi(t)|≤2R∗

dy |ωj,ε(y, t)|.

Now, if |y − zi(t)| ≤ 2R∗ then

|y −Bjε(t)| > |y − zj(t)| − |zj(t)−Bjε(t)| > |zj(t)− zi(t)| − |zi(t)− y|
− |zj(t)−Bjε(t)| > 10R∗ − 2R∗ − 2R∗ = 6R∗ > εβ ,

where we used that for t ≤ T ε,δ ∧ Tε,α,β ∧ ξ1| log ε|, |zj(t)−Bjε(t)| < 2R∗ for any
j = 1, . . . , N . Hence,

|Y4| ≤ C∗
∑
j 6=i

mj
ε(ε

β , t).
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Putting together the estimates on the terms Y1, Y2, Y3, Y4 we obtain that for 0 <
ε < ε2 and t ≤ T ε,δ ∧ Tε,α,εβ ∧ ξ1| log ε|∣∣∣∣ ddtBiε(t)− d

dt
zi(t)

∣∣∣∣ ≤ C4

[∑
j 6=i

mj
ε(ε

β , t) +
∑
j 6=i

√
Ijε (εβ , t) + max

j=1,...,N
∆j(t)

]
.

(4.29)

Now, from (4.7) with R = εβ , since t ≤ Tε,α,β and α− β > α we obtain

d

dt
Ijε (εβ , t) ≤ C1

[
Ijε (εβ , t) + 2εα

]
.

Applying Gronwall’s inequality and using that Ijε (εβ , 0) ≤ aε2 we get

Ijε (εβ , t) ≤ (aε2 + εα)eCt ≤ (1 + a)εαeCt (4.30)

and inserting (4.30) in (4.29) we have∣∣∣∣ ddtBiε(t)− d

dt
zi(t)

∣∣∣∣ ≤ C5

[
εα + ε

α
2 e

Ct
2 + max

j=1,...,N
∆j(t)

]
.

Integrating the above inequality for t ≤ T ε,δ ∧ Tε,α,β ∧ ξ1| log ε| and taking the
max over j in the l.h.s. we get

max
j=1,...,N

∆j(t) ≤ εαt+
2

C
ε
α
2 e

Ct
2 +

∫ t

0

ds max
j=1,...,N

∆j(s),

where we used that ∆j(0) = 0 for any j = 1, . . . , N . Applying again Gronwall’s
inequality we get, for t ≤ T ε,δ ∧ Tε,α,β ∧ ξ1| log ε|,

max
j=1,...,N

∆j(t) ≤ C6(εαt+ ε
α
2 e

Ct
2 )et

≤ C6

(
ξ1ε

α−ξ1 | log ε|+ 2ε
α−ξ1(C+2)

2

)
.

By choosing ξ1 sufficiently small, there exists 0 < ε3 < ε2 such that for any

0 < ε < ε3 this quantity can be made smaller than εδ/2; hence, according to the
definition of T ε,δ we conclude that

T ε,δ > Tε,α,β ∧ ξ1| log ε| for any 0 < ε < ε3. (4.31)

Thus, in view of (4.31), we have only to show that there exist 0 < ε0 < ε3 and
0 < ζ < ξ1 such that

Tε,α,β > ζ| log ε| for any 0 < ε < ε0. (4.32)

and the proof will be complete. This is the content of the next step.
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Step 3. We first observe that (4.28) and (4.31) imply that for any 0 < ε < ε3

T ∗ ≥ Tε,α,β ∧ ξ1| log ε|; (4.33)

so if we take 0 < ξ2 < ξ1 and work with t ≤ Tε,α,β ∧ ξ2| log ε| and 0 < ε < ε3, then,
thanks to (4.33), all the estimates found in the lemmas of Subsection 3.1 hold in
this time interval for any choice of R ∈ [εβ∗ , εβ ].
Since εα ≤ εα < εα−β∗ , from (4.7) for R = εβ we get

d

dt
Iiε(ε

β , t) ≤ CIiε(εβ , t) + Cεα−β∗

where we have defined here C := 2C1. By Gronwall’s inequality and Iiε(ε
β , 0) ≤

aε2, we get, for t ≤ Tε,α,β ∧ ξ2| log ε|,

Iiε(ε
β , t) ≤ (Iiε(ε

β , 0) + εα−β∗)eCt ≤ 2εα−β∗eCt

≤ 2εα−β∗e−Cξ2 log ε = 2εα−β∗−Cξ2

and we choose ξ2 sufficiently small such that δ := α− β∗ − Cξ2 > 0. Thus,

Iiε(ε
β , t) ≤ 2εδ ∀ t ≤ Tε,α,β ∧ ξ2| log ε|. (4.34)

Using now that Iiε(R, s) ≤ Iiε(ε
β , s) (because R ≤ εβ and hence WR(x− Biε(t)) ≤

Wεβ (x−Biε(t))), and (4.34), from (4.12) we get

mε(R, t) ≤ C2

(
1

R4
+
εα

R4

)∫ Tε,α,β∧ξ2| log ε|

0

ds Iε(R, s)

≤ 4C2
εδ

R4
ξ2| log ε| ≤ ε

δ
2

R4

(4.35)

where we used that for ε sufficiently small 4C2ξ2ε
δ
2 | log ε| < 1.

We now insert (4.34) and (4.35) in (4.20) and we obtain for t ≤ Tε,α,β ∧ ξ2| log ε|
and R ∈ [εβ∗ , εβ ],

d

dt
µiε(R, t) ≤ C̃

(
1 +

εα

R2
+
ε−

α
10 +δ

R3
+
εδ

R4
+
ε
δ
2

R6

)
mi
ε(R, t)

≤ C̃
(

1 + εα−2β∗ + ε−
α
10 +δ−3β∗ + εδ−4β∗ + ε

δ
2−6β∗

)
mi
ε(R, t).

Thanks to the choice of β, β∗ and ξ2 there exists a constant A∗ > 0 such that

A∗ ≥ C̃
(

1 + εα−2β∗ + ε−
α
10 +δ−3β∗ + εδ−4β∗ + ε

δ
2−6β∗

)
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for any ε < ε3 and R ∈ [εβ∗ , εβ ], so we finally obtain

d

dt
µiε(R, t) ≤ A∗mi

ε(R, t) (4.36)

for any ε < ε3, R ∈ [εβ∗ , εβ ] and t ≤ Tε,α,β ∧ ξ2| log ε|. Integrating (4.36),

µiε(R, t) ≤ A∗
∫ t

0

ds µiε(R/2, s),

where we used (4.19) and that µiε(R, 0) = 0. We can now proceed as in the proof
of [3, Lemma 2.6] to prove that for each β ∈ (0, α/14) and ` > 0 there exists ξ̃ > 0
such that

lim
ε→0

sup
t∈[0,Tε,α,β∧ξ̃| log ε|]

ε−`mi
ε(ε

β , t) = 0;

taking ` = 2α, we conclude that there exist 0 < ζ < ξ2 and 0 < ε0 < ε3 such that

mi
ε(ε

β , t) < ε2α < εα

for any t ≤ Tε,α,β ∧ ζ| log ε|, 0 < ε < ε0, and i = 1, . . . , N . By the definition of
Tε,α,β this clearly implies Tε,α,β > ζ| log ε| for 0 < ε < ε0 and this completes the
proof.

We conclude giving the probabilistic interpretation of Theorem 2.2.

Corollary 4.4. Suppose that ω0
ε,i(x) ≥ 0,

∫
dxω0

ε,i(x) = 1 for any i = 1, . . . , N

and denote by {Xi
t} the solution of the stochastic differential equation

dXi
t = uε(X

i
t , t)dt+ σdWt

with Xx,i
0 distributed according to ω0

ε,i(x) dx, where uε(x, t) =
∫
dyK(x−y)ωε(y, t).

Then, for any β′ ∈ (0, β ∧ δ) there exists ε∗ > 0 such that, for any i = 1, . . . , N
and 0 < ε < ε∗,

Pω0
ε,i

{∣∣Xi
t − zi(t)

∣∣ > εβ
′}
< εα ∀ t ∈ [0, ζ| log ε|] (4.37)

where Pω0
ε,i

denotes the law of the process {Xi
t}.

Proof. We know that

Pω0
i,ε

{∣∣Xi
t − zi(t)

∣∣ > εβ
′}

=

∫
|x−zi(t)|>εβ′

dxωi,ε(x, t).

On the other hand, there exists ε∗ > 0 such that εβ
′
> εβ + εδ for any 0 < ε < ε∗;

thus, for any 0 < ε < ε∗ and t ∈ [0, ζ| log ε|], if |x− zi(t)| > εβ
′

then |x−Biε(t)| >
|x− zi(t)| − |zi(t)−Biε(t)| > εβ , so that∫

|x−zi(t)|>εβ′
dxωi,ε(x, t) ≤

∫
|x−Biε(t)|>εβ

dxωi,ε(x, t) < εα,

hence (4.37).
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5 Appendix

As said in Subsection 2.1, we now show that, if the support of the initial vorticity
has positive distance from the symmetry axis, a regular solution to problem (2.3)
exists. In this appendix we come back to the original notation and write simply x
meaning the canonical coordinates of R3.

We first state the following important lemmas.

Lemma 5.1. Let u ∈ L2 be such that ω ∈ Lq ∩ L∞ for some q < 3, then u is
quasi-Lipschitz, i.e.:

|u(x)− u(x′)| ≤ C ϕ(|x− x′|)
and the constant C depends only on the Lq and L∞ norms of ω.

Lemma 5.2. Let φ, ψ homeomorphisms in R3 which preserve the Lebesgue mea-
sure, namely such that, for each function f∫

f(φ(x))dx =

∫
f(x)dx =

∫
f(ψ(x))dx

and let ω ∈ Lq ∩ L∞. Then∫ [
H(x− φ(y))−H(x− ψ(y))

]
∧ ω(y)dy ≤ C ϕ

(
sup
z∈R3

|φ(z)− ψ(z)|
)
.

Lemma 5.3. Let b ∈ L∞
(
[0, T ∗];C(R3)

)
be a quasi-Lipschitz vector field, uni-

formly in t. Then, for each x0 ∈ R3, there exists a unique x(t) which solves:

x(t) = x0 +

∫ t

0

b(x(s), s)ds .

The proof of Lemma 5.1 is completely analogous to the one for the planar
case contained in [13, App. 2.3]; concerning Lemma 5.2 we only have to define
r := supz |φ(z)− ψ(z)| and argue again as in [13, App. 2.3]; finally Lemma 5.3 is
a simple adjustment of [13, Lemma 3.2, p.67].

The proof of the following theorem is an adjustment of the one for the analo-
gous planar result [13, Thm. 3.1, p.72].

Theorem 5.4. Let u0 ∈ L2 be an axisymmetric, divergence-free vector field such
that ω0 ∈ Lq ∩ L∞ for some q < 3, and assume that rmin := infx∈suppω0

δ(x) > 0
(then α0 ∈ Lq ∩ L∞).7 Then the unique solution of (2.3) satisfies u ∈ C([0, T ]×
R3), and then φt(x) is C1 with respect to t.

Proof. We define ω0
t (x) := ω0(x) for every time, and for n ≥ 1:

unt (x) =
∫
H(x− y) ∧ ωn−1

t (y) dy

φnt (x) = x+
∫ t

0
uns (φns (x))ds

ωnt (x) = δ(x)
δ(φn−t(x)) ω0(φn−t(x))

. (5.1)

7We recall that δ(x) denotes the distance of x from the axis and that α := ω/δ.
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We should prove, first of all, that these objects are well defined (in fact, φnt is
defined by an integral equation).

Step 1: Well-posedness of (5.1) and a priori estimates.
We observe that u1

t is a quasi-Lipschitz vector field, uniformly in t thanks to Lemma
5.1, so φ1

t is well defined in view of Lemma 5.3. Let’s assume that (unt , φ
n
t , ω

n
t ) are

well defined. For each j ≤ n let:

Rj(t) := 1 +
1

rmin

∫ t

0

‖ujs‖L∞ds.

Moreover we denote Dj
t (y) :=

δ(φjt(y))
δ(y) . We have:

sup
y∈suppω0

Dj
t (y) ≤

δ(y) +
∫ t

0
‖ujs‖L∞ds

δ(y)
≤ Rj(t). (5.2)

Arguing as in [16, Prop. 1.1 and 2.3], we get the following estimates for each j ≤ n:

‖uj+1
t ‖L∞ ≤ C‖ωjt ‖

3/q
Lq ‖ω

j
t ‖

1−3/q
L∞ ,

‖ωjt ‖Lq ≤ (‖α0‖qLq + ‖ω0‖qLq )
1/qRj(t),

‖ωjt ‖L∞ ≤ max(‖α0‖L∞ , ‖ω0‖L∞)Rj(t).

Then:

Rj+1(t) ≤ 1 + C0

∫ t

0

Rj(s)ds

where C0 depends on rmin and on the Lq and L∞ norms of ω0 and α0, but not on
the index j. Since R1(t) = 1 + t

rmin
‖u0‖L∞ , by iteration we have:

Rj+1(t) ≤
j∑

k=0

Ck0
tk

k!
+ ‖u0‖L∞

Cj0 t
j+1

rmin(j + 1)!
≤ max

(
1,
‖u0‖L∞
C0 rmin

)
eC0t

independently from j ≤ n. Then ‖ωjt ‖Lq ≤ C1e
C0t and ‖ωjt ‖L∞ ≤ C2e

C0t inde-
pendently from j. So, thanks to Lemma 5.1, un+1

t is a quasi-Lipschitz vector field
(uniformly in t ∈ [0, T ]) and then the flow φn+1

t is well defined.
By induction (unt , φ

n
t , ω

n
t ) are well defined for each n, and the following esti-

mates hold:

Rn(t) ≤ C3e
C0t, ‖ωnt ‖Lq ≤ C1e

C0t, ‖ωnt ‖L∞ ≤ C2e
C0t.

Step 2: Continuity in time of un.
Observe that

unt (x) =

∫
H(x− y) ∧ ωn−1

t (y)dy =

∫
H(x− φn−1

t (y)) ∧
[
Dn−1
t (y)ω0(y)

]
dy.
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Let t2, t1 ∈ [0, T ], t2 > t1; then:

|unt2(x)− unt1(x)| =

=

∣∣∣∣∫ [H(x− φn−1
t2 (y))Dn−1

t2 (y)−H(x− φn−1
t1 (y))Dn−1

t1 (y)
]
∧ ω0(y) dy

∣∣∣∣
≤
∣∣∣∣∫ Dn−1

t2 (y)
[
H(x− φn−1

t2 (y))−H(x− φn−1
t1 (y))

]
∧ ω0(y) dy

∣∣∣∣
+

∣∣∣∣∫ [Dn−1
t2 (y)−Dn−1

t1 (y)
]
H(x− φn−1

t1 (y)) ∧ ω0(y) dy

∣∣∣∣ .
Using the triangle inequality, we have |δ(x)− δ(y)| ≤ |x− y|. In view of this fact,
of Lemmas 5.1 and 5.2 (which holds because the homeomorphisms φnt preserve
the Lebesgue measure: in fact the vector fields unt , which generate them, are
divergence-free) and of the estimate (5.2), we get:

|unt2(x)− unt1(x)| ≤Rn−1(t2) · C ϕ
(

sup
z∈R3

|φn−1
t2 (z)− φn−1

t1 (z)|
)

+
1

rmin
sup
z∈R3

|φn−1
t2 (z)− φn−1

t1 (z)| · C ‖ω0‖3/qLq ‖ω0‖1−3/q
L∞ .

Since supz |φn−1
t2 (z) − φn−1

t1 (z)| ≤
∫ t2
t1
‖un−1

s ‖L∞ , which goes to 0 if t2 → t1, we
proved the continuity of un with respect to t.

Step 3: Uniform convergence of φnt (x) for n→∞
We now show that φn is a Cauchy sequence in C([0, T ]× R3).

φnt (x) =x+

∫ t

0

ds uns (φns (x))

=x+

∫ t

0

ds

∫
R3

dy H(φns (x)− φn−1
s (y)) ∧

[
Dn−1
s (y)ω0(y)

]

|φn+1
t (x)− φnt (x)|

≤
∫ t

0

ds

∣∣∣∣ ∫
R3

dy Dn
s (y)

[
H(φn+1

s (x)− φns (y))−H(φns (x)− φns (y))
]
∧ ω0(y)

∣∣∣∣
+

∫ t

0

ds

∣∣∣∣ ∫
R3

dy Dn
s (y)

[
H(φns (x)− φns (y))−H(φns (x)− φn−1

s (y))
]
∧ ω0(y)

∣∣∣∣
+

∫ t

0

ds

∣∣∣∣ ∫
R3

dy
[
Dn
s (y)−Dn−1

s (y)H(φns (x)− φn−1
s (y)) ∧ ω0(y)

∣∣∣∣



74 D. Cetrone and G. Serafini

Using again Lemmas 5.1 and 5.2, we have:

|φn+1
t (x)− φnt (x)| ≤

∫ t

0

dsRn(s) · Cϕ
(
|φn+1
s (x)− φns (x)|

)
+

∫ t

0

dsRn(s) · Cϕ
(

sup
z
|φns (z)− φn−1

s (z)|
)

+

∫ t

0

ds
C

rmin
sup
z
|φns (z)− φn−1

s (z)|.

Then, defining δnT := supt∈[0,T ] supz |φn+1
t (z)− φnt (z)|, we get

δnT ≤ C
∫ T

0

ϕ(δns ) + ϕ(δn−1
s )ds.

We call ρnT := supm≥n δ
m
T ; since ρnT ≤ ρ

n−1
T , we obtain:

ρnT ≤ 2C

∫ T

0

ϕ(ρn−1
s )ds.

which is the same estimate obtained in the proof of [13, Lemma 3.2, p.67]. Arguing
in the same way we deduce that φn is a Cauchy sequence in C([0, T ] × R3), and
then it has limit φ. Moreover, φt preserves the Lebesgue measure t, because the
homeomorphisms φnt do, for each n.

Step 4: The limit is a solution to the equations.
We define, according to (2.3):

ωt(x) :=
δ(x)

δ(φ−t(x))
ω0(φ−t(x)), ut(x) :=

∫
H(x, y) ∧ ωt(y)dy

With a change of variable in the integral that defines u, we get:

ut(x) =

∫
H(x− φt(y) ∧ [Dt(y)ω0(y)] dy.

Then:

|ut(x)− unt (x)|

=

∣∣∣∣ ∫ [H(x− φt(y))Dt(y)−H(x− φn−1
t (y))Dn−1

t (y)
]
∧ ω0(y) dy

∣∣∣∣
≤
∣∣∣∣ ∫ Dn−1

t (y)
[
H(x− φt(y))−H(x− φn−1

t (y))
]
∧ ω0(y) dy

∣∣∣∣
+

∣∣∣∣ ∫ [Dt(y)−Dn−1
t (y)

]
H(x− φt(y)) ∧ ω0(y) dy

∣∣∣∣
≤ Rn−1(t) · Cϕ

(
sup
z
|φt(z)− φn−1

t (z)|
)

+
C

rmin
· sup
z
|φt(z)− φn−1

t (z)|.
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Since φn converges to φ uniformly in [0, T ] × R3, and since Rn−1(t) is uniformly
bounded in n, for t in [0, T ], we find that un converges to u uniformly in [0, T ]×R3

and then u ∈ C([0, T ]× R3).

Finally, taking the limit in the integral equation

φnt (x) = x+

∫ t

0

uns (φns (x), s)ds

thanks to the uniform convergence of un to u and since it is uniformly bounded
(in view of this facts, we are able to apply the dominated convergence theorem),
we get:

φt(x) = x+

∫ t

0

us(φs(s), s)ds,

and since u is continuous, φt(x) is C1 with respect to the time and satisfies the
differential equation φ̇t(x) = u(φt(x), t).

Remark 5.5. We point out that, on the z axis, the vector field u has only the
component uz (this is due to the axisymmetry of u and to its continuity with
respect to x). Therefore the flow φt maps the z axis in itself, and so does its
inverse (this is due to the two-parameters group property of φ); calling S the set
R3 without the z axis, φt maps S in itself. Then the support of ω cannot reach
the axis in finite time; however we don’t have a control on its distance from the
axis for positive times.

We now state an important consequence of Theorem 5.4.

Corollary 5.6. Under the same assumptions of the previous theorem, let ωt be
the solution to the equations, and let f ∈ C1([0, T ]× S). Then:

d

dt

∫
R3

α(x, t)f(x, t) dx =

∫
R3

α(x, t) [u · ∇f + ∂tf ] (x, t) dx

Moreover if, in cylindrical coordinates, f does not depend on θ, define

ωt(f) :=

∫ +∞

−∞
dz

∫ +∞

0

dr ω(r, z, t)f(r, z, t)

Then:
d

dt
ωt(f) = ωt

(
ur∂rf + uz∂zf + ∂tf

)
(5.3)

Proof. With a change of variable,∫
R3

α(x, t)f(x, t) dx =

∫
R3

α0(x)f(φt(x), t)dx
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Then the expression is differentiable, thanks to the regularity of f . Furthermore

d

dt

∫
R3

α0(x)f(φt(x), t)dx =

∫
R3

α0(x) [u · ∇f + ∂tf ] (φt(x), t)dx

=

∫
R3

α(x, t) [u · ∇f + ∂tf ] (x, t)dx

Now, if f does not depend on θ, writing the integral in cylindrical coordinates we
have: ∫

R3

α(x, t)f(x, t) dx = 2π

∫ +∞

−∞
dz

∫ +∞

0

dr ω(r, z, t)f(r, z, t) = 2πωt(f)

Then, recalling the expression of gradient in cylindrical coordinates:

d

dt
ωt(f) = ωt

(
u · ∇f + ∂tf

)
= ωt

(
ur∂rf + uz∂zf + ∂tf

)

We move to the NS equations and we prove the continuity property of the
functions t 7→ mi

ε(R, t) and (x, t) 7→ F iε,h(x, t), h = 1, 2.

Lemma 5.7. Let mi
ε(R, t) be defined in (2.13). For any R > 0 and ε > 0 the

function t 7→ mi
ε(R, t) is continuous.

Proof. Let t ≥ 0, tn → t as n → +∞, and denote by χ(A) the indicator function
of the set A. We recall that ωi,ε(x, t) preserves the initial sign, and, without loss
of generality we can suppose ωi,ε(x, t) ≥ 0. Then,

|mi
ε(R, tn)−mi

ε(R, t)| =
∣∣∣∣∫ dxωi,ε(x, tn)χ(|x−Biε(tn)| > R)

−
∫
dxωi,ε(x, t)χ(|x−Biε(t)| > R)

∣∣∣∣
≤
∣∣∣∣∫ dxωi,ε(x, tn)

[
χ(|x−Biε(tn)| > R)− χ(|x−Biε(t)| > R)

]∣∣∣∣
+

∣∣∣∣∫ dx
[
ωi,ε(x, tn)− ωi,ε(x, t)

]
χ(|x−Biε(t)| > R)

∣∣∣∣.
The first term in the r.h.s. of the above inequality is bounded by

||ωi,ε(·, 0)||∞|Σ(Biε(tn)|R)4 Σ(Biε(t)|R)|

where |Σ(Biε(tn)|R)4Σ(Biε(t)|R)| denotes the Lebesgue measure of the symmetric
difference between the two disks, which tends to 0 as n → +∞ by continuity of
Biε(t).
The second term goes to 0 as n→ +∞ because R2 \Σ(Biε(t)|R) is a ωi,ε(x, t) dx−
continuity set and t 7→ ωi,ε(x, t) dx is continuous w.r.t. the topology induced by
the weak convergence.
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Lemma 5.8. For any ε > 0, the vector fields (x, t) 7→ F iε,2(x, t) and (x, t) 7→
F iε,1(x, t) are uniformly bounded and continuous.

Proof. We only prove the statement concerning F iε,2(x, t) which is more delicate
to handle, the other can be treated analogously. The uniform boundedness is a
consequence of the statement 1) of [12, Lemma 3.1]. To show the continuity w.r.t.
(x, t), let us consider a sequence (xn, tn)→ (x, t) as n→ +∞. Then,

|F iε,2(xn, tn)− F iε,2(x, t)| ≤ |F iε,2(xn, tn)− F iε,2(x, tn)|
+ |F iε,2(x, tn)− F iε,2(x, t)|.

(5.4)

Arguing as in the proof of the statement 2) in [12, Lemma 3.1], we obtain that the
first term in the r.h.s. is bounded by

|F iε,2(xn, tn)− F iε,2(x, tn)| ≤ Cϕ(|xn − x|)

where C is a constant independent on n, and hence it goes to 0 as n→ +∞.
We now consider the second term; fix η > 0 and using that∫

|x−y|<η
dy
∣∣K(x− y)

∣∣∣∣[ωj,ε(y, tn)− ωj,ε(y, t)]
∣∣ ≤ 2||ωj,ε(·, 0)||∞η,

we get,

|F iε,2(x, tn)− F iε,2(x, t)| =
∑
j 6=i

∫
dyK(x− y)WR∗(x− y)[ωj,ε(y, tn)− ωj,ε(y, t)]

≤ 2||ωj,ε(·, 0)||∞η +
∑
j 6=i

∫
|x−y|>η

dyK(x− y)WR∗(x− y)

× [ωj,ε(y, tn)− ωj,ε(y, t)];

hence, if n → +∞ the second term in the r.h.s. of the above inequality goes to 0
by weak convergence, and by arbitrariness of η, the thesis follows.
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