Some remarks on Dupont contraction

Luigi Lunardon

Abstract

We present an alternative equivalent description of Dupont's simplicial contraction: it is an explicit example of a simplicial contraction between the simplicial differential graded algebra of polynomial differential forms on standard simplices and the space of Whitney elementary forms.

1 Introduction

In [6] Dupont gave an explicit description of simplicial contraction from the simplicial differential graded algebra $\Omega_{\text {。 }}$ of polynomial differential forms on the affine standard simplices to the subspace of Whitney elementary forms, a simplicial finite dimensional differential graded vector subspace of the former.

More precisely, the Dupont contraction is a morphism of simplicial abelian groups $h: \Omega_{\bullet} \rightarrow \Omega_{\bullet}$ such that $d h+h d=r-\mathrm{Id}$, where r is the classical Whitney's retraction of Ω_{\bullet} onto the subspace of elementary forms: in this paper we recall the general notion of contraction in Section 2 and we describe the simplicial map h in Section 3.

Although Dupont contraction can be used to give alternative proofs of some classical results, such as the polynomial De Rham's theorem ([3, Theorem 2.2], [5] and [8, Theorem 10.15]), their most relevant use is given in combination with homological perturbation theory [13] and homotopy transfer of ∞-structures (see e.g. $[2,11,14]$). For instance, Dupont's contraction was used in [4] to construct a canonical C_{∞} structure on the normalized cochain complex of a cosimplicial commutative algebra over a field of characteristic 0 . Similarly, in [10] the authors used it to induce a canonical L_{∞} structure on the normalized cochain complex of a cosimplicial differential graded Lie algebra: in the same paper some explicit computation is done in the particular case of cosimplicial Lie algebra, while the particular case of a single morphism of differential graded Lie algebras (considered as a cosimplicial object via Kan extension) was previously considered and deeply investigated in [9]. It is also worth to mention the application of Dupont's contraction to Hodge theory of complex algebraic varieties [16].

[^0]Dupont's Theorem and the homotopy transfer theorem are also key tools in [12] and [1]. In these two papers the authors study the Deligne ∞-groupoid associated to an L_{∞}-algebra, its relation with the Maurer-Cartan elements of that algebra and the behaviour of the Deligne ∞-groupoid under totalization and homotopy limits. In particular Dupont's contraction is used to construct a Kan complex that is quasi-isomorphic to the simplicial set of Maurer-Cartan elements.

The original construction by Dupont provides a family of maps which is really hard to compute. An apparently different simplicial contraction $k: \Omega_{\bullet} \rightarrow \Omega_{\bullet}$ with the same key properties of Dupont's contraction, but somewhat easier to handle, was proposed by M. Manetti during a cycle of seminars on deformation theory given at Roma in 2011, leaving unsettled the question whether $k=h$.

The main result of this paper is to give a positive answer to the above question, and then to give an alternative equivalent definition of Dupont's contraction. In Section 4 we describe the map k and we reproduce Manetti's (unpublished) proof that it is indeed a simplicial object in the category of contractions. Finally, in Section 5 we prove the equality $k=h$.

2 Simplicial contraction

In this section we describe the category of contractions of DG-vector spaces and we recall the definition of simplicial and cosimplicial objects in any given category.

Let \mathbb{K} be a field of characteristic 0 , a DG-vector space over \mathbb{K} is a graded vector space endowed with a linear map d of degree 1 such that $d^{2}=0$.

Definition 2.1. A contraction of $D G$-vector spaces is a diagram

with M and N two $D G$-vector spaces over $\mathbb{K}, h \in \operatorname{Hom}_{\mathbb{K}}^{-1}(N, N)$ and i, π two morphisms of $D G$-vector spaces. Moreover, we require the following relations:

$$
\pi i=I d_{M}, \quad i \pi-I d_{N}=d_{N} h+h d_{N}
$$

Remark 2.2. The maps π and i are respectively injective and surjective, since $\pi i=\operatorname{Id}_{M}$. Moreover, it follows from the relation $i \pi-\mathrm{Id}_{N}=d_{N} h+h d_{N}$ that they are both quasi-isomorphisms.
Remark 2.3. Suppose also that the additional conditions $h^{2}=\pi h=0$ hold. From the identity $i \pi-\operatorname{Id}_{N}=d_{N} h+h d_{N}$ we obtain the identities:

$$
-h=h d_{N} h ; \quad h i \pi-h=h d_{N} h
$$

It follows that $h i \pi=0$ and since π is surjective, then $h i=0$. Similarly the conditions $h i=h^{2}=0$ imply $\pi h=0$. The conditions $h^{2}=\pi h=h i=0$ are called side conditions.

Definition 2.4. A morphism of contractions is a commutative diagram

where $f: N \rightarrow B$ is a morphism of $D G$-vector spaces such that $f h=k f$. We denote by $\widehat{f}: M \rightarrow A$ the map $\widehat{f}=p f i$.

Remark 2.5. This definition of morphism doesn't seem natural. However we get the following identities:

$$
\begin{aligned}
j \widehat{f} & =j p f i=\left(\operatorname{Id}_{B}+d_{B} k+k d_{B}\right) f i=f i+f\left(d_{N} h+h d_{N}\right) i \\
& =f i+f\left(i \pi-\operatorname{Id}_{N}\right) i=f i \\
\widehat{f} \pi & =p f i \pi=p f+p f\left(d_{N} h+h d_{N}\right)=p f+p\left(d_{B} k+k d_{B}\right) f \\
& =p f+p\left(j p-\operatorname{Id}_{B}\right) f=p f
\end{aligned}
$$

Using these these two identities it follows that the following diagrams commute:

As a consequence our notion of morphism of contractions is compatible with a couple of morphism $f: N \rightarrow B$ and $g: M \rightarrow A$ commuting with every square.

The category of contractions of DG-vector spaces over \mathbb{K} is denoted by Contr.
Definition 2.6. We denote with Δ the category of finite ordinals. The objects of this category are the finite ordered sets $[n]=\{0<\cdots<n\}$ and its morphisms are the non decreasing maps. A special role in this category is played by face maps, which are defined as:

$$
\delta_{k}:[n-1] \rightarrow[n] ; \quad \delta_{k}(x)=\left\{\begin{array}{ll}
x & \text { if } p<k \\
x+1 & \text { if } p \geq k
\end{array}, \quad k=0, \ldots, n\right.
$$

Notation 2.7. We denote with $I(n, m) \subset \operatorname{Mor}_{\Delta}([n],[m])$ the subset of injective, and hence strictly monotone, maps.

Definition 2.8. A cosimplicial object in a category \boldsymbol{C} is a functor $F: \Delta \rightarrow \boldsymbol{C}$; a simplicial object in \boldsymbol{C} is a functor $F: \Delta^{o p} \rightarrow \boldsymbol{C}$.

Dupont ([6], Chapter 2) proposed an explicit construction of a simplicial object in Contr.

Remark 2.9. The notion of contraction has a few slight variants in literature. In this paper we follow [4] and [12]. The original definition given by Eilenberg and Mac Lane in [7] requires also the side conditions $h i=\pi h=0$. In [15] the object described in Definition 2.1 is called a strong deformation data, and to be a contraction the condition $h^{2}=0$ is required.

The conditions $h i=\pi h=h^{2}=0$ are almost granted: given i, π and h as in Definition 2.1, then we can replace h with $h_{1}=(d h+h d) h(d h+h d)$; we still have a contraction, but now this contraction satisfies $h_{1} i=\pi h_{1}=0$. Replacing h_{1} with $h_{2}=-h_{1} d h_{1}$ it is again a contraction and now it satisfies $\pi h_{2}=h_{2} i=h_{2}^{2}=0$

3 Dupont's simplicial contraction

In this section we describe the simplicial contraction which Dupont suggested in [6]. The proof that it is actually a contraction is in Section 4 and Section 5.

Definition 3.1. The affine standard n-simplex on \mathbb{K} is the set:

$$
\Delta_{\mathbb{K}}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{K}^{n+1} \text { such that } x_{0}+\cdots+x_{n}=1\right\} .
$$

The vertices of $\Delta_{\mathbb{K}}^{n}$ are the points $e_{i} \in \Delta_{\mathbb{K}}^{n}$:

$$
e_{0}=(1,0, \ldots, 0), \quad e_{1}=(0,1,0, \ldots, 0), \quad \ldots \quad, \quad e_{n}=(0, \ldots, 0,1)
$$

The cosimplicial affine space $\Delta_{\mathbb{K}}^{\bullet}$ is the functor which associate to each set $[n]$ the affine standard n-simplex $\Delta_{\mathbb{K}}^{n}$ and to each non decreasing map $f:[n] \rightarrow[m]$ the affine map

$$
f: \Delta_{\mathbb{K}}^{n} \rightarrow \Delta_{\mathbb{K}}^{m}, \quad f\left(e_{i}\right)=e_{f(i)}
$$

Definition 3.2. The $D G$-vector space of polynomial differential forms on the affine standard n-simplex is:

$$
\Omega_{n}=\bigoplus_{p=0}^{n} \Omega_{n}^{p}=\frac{\mathbb{K}\left[x_{0}, \ldots, x_{n}, d x_{0}, \ldots, d x_{n}\right]}{\left(\sum_{k=0}^{n} x_{i}-1, \sum_{k=0}^{n} d x_{i}\right)}
$$

Here Ω_{n}^{p} denotes the subspace of p-forms, which are the elements of degree p.
The simplicial DG-vector space Ω_{\bullet} associates to each $[n]$ the DG-vector space Ω_{n} and to each map $f:[n] \rightarrow[m]$ in Δ the pull-back $f^{*}: \Omega_{m} \rightarrow \Omega_{n}$, induced by the affine map $f: \Delta_{\mathbb{K}}^{n} \rightarrow \Delta_{\mathbb{K}}^{m}$.

Next we define a finite dimensional vector subspace $\mathcal{C}_{n} \subset \Omega_{n}$, called the space of Whitney elementary forms. As a consequence of Proposition 3.4 it follows that \mathcal{C}_{n} is closed under derivation and thus it is a DG-vector subspace of Ω_{n}.

Definition 3.3 (Whitney, [17]). Fix $f:[m] \rightarrow[n]$ a morphism in Δ. The Whitney elementary form associated to f is the m-form:

$$
\omega_{f}=m!\sum_{i=0}^{m}(-1)^{i} x_{f(i)} d x_{f(0)} \wedge \cdots \wedge \widehat{d x_{f(i)}} \wedge \cdots \wedge d x_{f(m)} \in \Omega_{n}^{m}
$$

We denote with \mathcal{C}_{n} the vector space spanned by Whitney elementary forms.
Proposition 3.4. Let $f:[n] \rightarrow[m]$ a morphism in Δ. The followings hold:

1. If f is injective $f^{*} \omega_{f}=n!d x_{1} \wedge \cdots \wedge d x_{n}$; otherwise $\omega_{f}=0$;
2. If f is injective for every $g:[p] \rightarrow[m]$ we have $g^{*} \omega_{f}=\sum_{\{h:[n] \rightarrow[p], g h=f\}} \omega_{h}$;
3. $d \omega_{f}=\sum_{k}(-1)^{k} \sum_{\left\{g:[n+1] \rightarrow[m], g \delta_{k}=f\right\}} \omega_{g}$.

In particular \mathcal{C}_{n} is a $D G$-vector subspace of Ω_{n} and $\mathcal{C} \bullet$ is a simplicial $D G$-vector subspace of Ω_{\bullet}.

Proof. Denote by $\omega_{i_{0}, \ldots, i_{n}}$ the differential form:

$$
\omega_{i_{0}, \ldots, i_{n}}=n!\sum_{k=0}^{n}(-1)^{k} x_{i_{k}} d x_{i_{0}} \wedge \cdots \wedge \widehat{d x_{i k}} \wedge \cdots \wedge d x_{i_{n}} \in \Omega_{m}^{n}
$$

1. Since $\omega_{i_{0}, \ldots, i_{n}}$ is alternating on indices, then if f is not injective it follows $\omega_{f}=0$.
Suppose f injective; since we are working on the affine standard simplex we have:

$$
\begin{aligned}
f^{*} \omega_{f} & =n!\sum_{k=0}^{n}(-1)^{k} x_{k} d x_{0} \wedge \cdots \wedge \widehat{d x_{k}} \wedge \cdots \wedge d x_{n} \\
& =n!\left(x_{0} d x_{1} \wedge \cdots \wedge d x_{n}-\sum_{k=1}^{n}(-1)^{2 k-1} x_{k} d x_{1} \wedge \cdots \wedge d x_{n}\right) \\
& =n!\left(x_{0}+\cdots+x_{n}\right) d x_{1} \wedge \cdots \wedge d x_{n}=n!d x_{1} \wedge \cdots \wedge d x_{n}
\end{aligned}
$$

2. Consider the family of sets $P_{i}=\{j \in[p] \mid g(j)=f(i)\}$ and note that:
(a) since f is injective $P_{i} \cap P_{j}=\emptyset$ if $i \neq j$;
(b) $g^{*}\left(x_{f(i)}\right)=\sum_{j \in P_{i}} x_{j}$, and $g^{*}\left(d x_{f(i)}\right)=\sum_{j \in P_{i}} d x_{j}$;
(c) the functions $h:[n] \rightarrow[p]$ such that $g h=f$ are in bijection with $P_{0} \times$ $\cdots \times P_{n}$.
3. To prove the last point first we show that

$$
d \omega_{i_{0}, \ldots, i_{n}}=(n+1)!d x_{i_{0}} \wedge \cdots \wedge d x_{i_{n}}=\sum_{i=0}^{m} \omega_{i, i_{0}, \ldots, i_{n}}
$$

Indeed we have:

$$
d \omega_{i_{0}, \ldots, i_{n}}=n!\sum_{k=0}^{n} d x_{i_{0}} \wedge \cdots \wedge d x_{i_{k}} \wedge \cdots \wedge d x_{i_{n}}=(n+1)!d x_{i_{0}} \wedge \cdots \wedge d x_{i_{n}}
$$

and for the second equality:

$$
\begin{aligned}
\sum_{i=0}^{m} \omega_{i, i_{0}, \ldots, i_{n}} & =(n+1)!\sum_{i=0}^{m} x_{i} d x_{i_{0}} \wedge \cdots \wedge d x_{i_{n}}-(n+1) \sum_{i=0}^{m} d x_{i} \wedge \omega_{i_{0}, \ldots, i_{n}} \\
& =(n+1)!d x_{i_{0}} \wedge \cdots \wedge d x_{i_{n}}
\end{aligned}
$$

Taking $f:[n] \rightarrow[m]$ we can finally see that:

$$
\begin{aligned}
d \omega_{f}=\sum_{i=0}^{m} \omega_{i, f(0), \ldots, f(n)} & =\sum_{k=0}^{n}(-1)^{k} \sum_{f(k-1)<i<f(k)} \omega_{f(0), \ldots, f(k-1), i, f(k), \ldots, f(n)} \\
& =\sum_{k=0}^{n}(-1)^{k} \sum_{\left\{g \mid g \delta_{k}=f\right\}} \omega_{g} .
\end{aligned}
$$

In particular it follows from (1) that \mathcal{C}_{n} is a finite dimensional DG -vector space for all n, while (2) and (3) imply that \mathcal{C}_{\bullet} is a simplicial DG-vector space.

From Proposition 3.4 we obtain, for all $n \geq 0$, the inclusion of DG-vector spaces:

$$
\mathcal{C}_{n} \xrightarrow{i_{n}} \Omega_{n}
$$

We want to extend these inclusions to contractions. This means that we want to introduce two families of maps, π_{m} and h_{m} such that h_{m}, π_{m} and i_{m} satisfy the conditions of Definition 2.1. Moreover we want this construction to be simplicial.

To define these maps we use integration on affine standard simplices. An axiomatic definition of integration of polynomial differential forms on affine standard simplices and a more detailed discussion on its properties is given in Chapter 10 of [8]. The integration map on affine standard simplices is the map

$$
\int_{\Delta_{\mathbb{K}}^{n}}: \Omega_{n} \rightarrow \mathbb{K}
$$

defined by linearity using the two identities:

$$
\begin{equation*}
\int_{\Delta_{\mathbb{K}}^{n}} \eta=0, \quad \text { if } \eta \in \Omega_{n}^{p}, \text { with } p \neq n, \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Delta_{\mathbb{K}}^{n}} x_{0}^{k_{0}} \cdots x_{n}^{k_{n}} d x_{0} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}=(-1)^{i} \frac{k_{0}!\cdots k_{n}!}{\left(k_{0}+\cdots+k_{n}+n\right)!} \tag{3.2}
\end{equation*}
$$

In Construction 3.6 we describe the family of maps $h_{m} \in \operatorname{Hom}_{\mathbb{K}}^{-1}\left(\Omega_{m}, \Omega_{m}\right)$ defined by Dupont in [6].

Notation 3.5. We use the following notation:

$$
\widehat{\Delta}^{n}=\left\{\left(s, t_{0}, \ldots, t_{n}\right) \in \mathbb{K}^{n+1} \mid s+t_{0}+\cdots+t_{n}=1\right\}
$$

while the DG-vector space of polynomial differential forms on $\widehat{\Delta}^{n}$ is denoted by $\widehat{\Omega}_{n}$.

Construction 3.6. Dupont uses \mathbb{R} as base field, but his construction works in any field of characteristic 0 . The map $f_{j}:[0] \rightarrow[m]$ is defined as $f_{j}(0)=j$; to this one we associate the map \widehat{f}_{j} defined as:

$$
\widehat{f}_{j}: \widehat{\Delta}^{0} \times \Delta_{\mathbb{K}}^{m} \rightarrow \Delta_{\mathbb{K}}^{m}, \quad \widehat{f}_{j}\left(\left(s, t_{0}\right), v\right)=s e_{j}+t_{0} v=s e_{j}+(1-s) v .
$$

For any $\eta \in \Omega_{m}$, since $s+t_{0}=1$ and $d s+d t_{0}=0$, there are unique forms $\alpha_{\eta}, \beta_{\eta} \in \Omega_{m}[s]$ such that $\widehat{f}_{j}^{*}(\eta)=d s \wedge \alpha_{\eta}+\beta_{\eta}$, where $\widehat{f}_{j}^{*}: \widehat{\Omega}_{0} \otimes \Omega_{m} \rightarrow \Omega_{m}$ is the pull-back map. First suppose

$$
\alpha_{\eta}=(1-s)^{a} s^{b} x_{0}^{k_{0}} \cdots x_{n}^{k_{n}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}}
$$

then, following Dupont's notation, we define $h_{j} \in \operatorname{Hom}_{\mathbb{K}}\left(\Omega_{m}, \Omega_{m}\right)^{-1}$.

$$
\begin{aligned}
h_{j}(\eta) & =\left(\int_{0}^{1}(1-s)^{a} s^{b} d s\right) x_{0}^{k_{0}} \cdots x_{n}^{k_{n}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}} \\
& =\left(\int_{\hat{\nu}^{0}} t_{0}^{a} s^{b} d t_{0}\right) x_{0}^{k_{0}} \cdots x_{n}^{k_{n}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}} .
\end{aligned}
$$

Now we can extend this by linearity.
For any strictly increasing morphism $f:[n] \rightarrow[m]$ we define:

$$
h_{f} \in \operatorname{Hom}_{\mathbb{K}}^{-n-1}\left(\Omega_{m}, \Omega_{m}\right), \quad h_{f}=h_{f(n)} \circ \cdots \circ h_{f(0)},
$$

and $h_{m} \in \operatorname{Hom}_{\mathbb{K}}^{-1}\left(\Omega_{m}, \Omega_{m}\right)$ is:

$$
h_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge h_{f}(\eta)
$$

Next we describe some properties of the maps h_{f}. These results were proved by Dupont in different parts of Chapter 2 of [6].

Lemma 3.7. Take $f:[n] \rightarrow[m]$ and $g:[m] \rightarrow[p]$ then:
1.

$$
g^{*} \circ h_{g f}=h_{f} \circ g^{*},
$$

2.

$$
\left[h_{f}, d\right](\eta)=h_{f}(d \eta)+(-1)^{n} d h_{f}(\eta)=\int_{\Delta_{\mathbb{K}}^{n}} f^{*} \eta-\sum_{i=0}^{n}(-1)^{i} h_{f \delta_{i}}(\eta)
$$

We use the convention that $h_{f \delta_{0}}$ is the identity.
Theorem 3.8 (Dupont, [6]). Consider for each $m \geq 0$ the two operators

$$
\pi_{m} \in \operatorname{Hom}_{\mathbb{K}}^{0}\left(\Omega_{m}, \Omega_{m}\right), \quad \pi_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)}\left(\int_{\Delta_{\mathbb{K}}^{n}} f^{*} \eta\right) \omega_{f},
$$

the following diagram is a simplicial contraction

Remark 3.9. The first definition of Whitney elementary forms can be found in Section 27 of [17]; they are defined exactly as those forms $\omega_{i_{0}, \ldots, i_{n}}$ which appear in the proof of Proposition 3.4. We prefer Definition 3.3 due to Point (2) and (3) of Proposition 3.4.

The notation used for the space of polynomial differential forms is the same of [12]. An other common notation present in literature is the one of [8] - here Ω_{m} is denoted with $\left(A_{P L}\right)_{m}$.

The family of maps $\left\{\pi_{m}\right\}$ was defined by Whitney in [17], Dupont described the family of maps $\left\{h_{m}\right\}$ explicitly in the original proof of Theorem 3.8 given in [6]. Later Getzler showed in [12] that side conditions $\pi_{m} h_{m}=h_{m}^{2}=0$ (and hence $h_{m} i_{m}=0$) hold.

4 The proof of Dupont's Theorem

In this section we describe a family of maps k_{m} such that the diagram

is a simplicial contraction. The family of maps k_{m} and the proof of this result was shown to us by Manetti at a cycle of seminars at the University "La Sapienza".

Recall that $I(n, m)$ is the subset of $\operatorname{Mor}_{\Delta}([n],[m])$ of injective (and hence strictly increasing) morphisms.

Construction 4.1. Take $f \in I(n, m)$ we define:

$$
\widehat{f}: \widehat{\Delta}^{n} \times \Delta_{\mathbb{K}}^{m} \rightarrow \Delta_{\mathbb{K}}^{m}, \quad\left(\left(s, t_{0}, \ldots, t_{n}\right), v\right) \mapsto s v+\sum_{i=0}^{n} t_{i} e_{f(i)}
$$

The operator $k_{f} \in \operatorname{Hom}_{\mathbb{K}}^{-n-1}\left(\Omega_{m}, \Omega_{m}\right)$ is:

$$
k_{f}: \Omega_{m} \xrightarrow{\widehat{f}^{*}} \widehat{\Omega}_{n} \otimes \Omega_{m} \xrightarrow{\frac{\int_{\Delta^{n}} \cdot \otimes \mathrm{Id}}{}} \Omega_{m}
$$

where $\widehat{f}^{*}: \Omega_{m} \rightarrow \widehat{\Omega}_{n} \otimes \Omega_{m}$ is the usual pull-back map.
The map $k_{m} \in \operatorname{Hom}_{\mathbb{K}}^{-1}\left(\Omega_{m}, \Omega_{m}\right)$ is

$$
k_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge k_{f}(\eta)
$$

The next lemma is exactly Lemma 3.7, but with the maps k_{f} instead of the maps h_{f}. We don't give a proof of this lemma. This result follows, a posteriori, from Lemma 5.3, Lemma 5.4 and Lemma 5.5.

Lemma 4.2. Take $f:[n] \rightarrow[m]$ and $g:[m] \rightarrow[p]$ then:
1.

$$
g^{*} \circ k_{g f}=k_{f} \circ g^{*}
$$

2.

$$
\left[k_{f}, d\right](\eta)=k_{f}(d \eta)+(-1)^{n} d k_{f}(\eta)=\int_{\Delta_{\mathbb{K}}^{n}} f^{*} \eta-\sum_{i=0}^{n}(-1)^{i} k_{f \delta_{i}}(\eta)
$$

We use the convention that $k_{f \delta_{0}}$ is the identity.
The following theorem corresponds to Theorem 3.8, by replacing the maps h_{m} with k_{m}.

Theorem 4.3 (Dupont, [6]). Consider for each $m \geq 0$ the operator k_{m} of Construction 4.1 and π_{m} of Theorem 3.8

$$
\pi_{m} \in \operatorname{Hom}_{\mathbb{K}}^{0}\left(\Omega_{m}, \Omega_{m}\right), \quad \pi_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)}\left(\int_{\Delta_{\mathbb{K}}^{n}} f^{*} \eta\right) \omega_{f},
$$

1. the operator π_{m} is a projector onto \mathcal{C}_{m};
2. the identity $k_{m} d+d k_{m}=i_{m} \pi_{m}-I d_{\Omega_{m}}$ holds;
3. for every $p \in \mathbb{N}$ and every $g:[p] \rightarrow[m]$ we have $k_{p} g^{*}=g^{*} k_{m}$.

Proof. From Point (1) and Point (2) of Proposition 3.4 given $f \in I(n, m)$ we have:

$$
\int_{\Delta_{\mathbb{K}}^{n}} f^{*} \omega_{f}=1, \quad \int_{\Delta_{\mathbb{K}}^{n}} f^{*} \omega_{g}=0 \quad \text { if } f \neq g,
$$

thus π_{m} projects to \mathcal{C}_{m}.
For every $\eta \in \Omega_{m}$ we have:

$$
\begin{aligned}
k_{m}(d \eta)+d k_{m} \eta & =\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge k_{f}(\eta)+\omega_{f} \wedge\left((-1)^{n} d k_{f}(\eta)+k_{f}(d \eta)\right) \\
& =\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge k_{f}(\eta)+\omega_{f} \wedge\left(\int_{\Delta_{\mathbb{K}}^{n}} f^{*} \eta-\sum_{r=0}^{n}(-1)^{r} k_{f \delta_{r}}(\eta)\right) \\
& =\sum_{n=0}^{m} \sum_{f \in I(n, m)}\left(d \omega_{f} \wedge k_{f}(\eta)-\omega_{f} \wedge\left(\sum_{r=0}^{n}(-1)^{r} k_{f \delta_{r}}(\eta)\right)\right)+\pi_{m}(\eta) .
\end{aligned}
$$

Since $k_{f \delta_{0}}=\operatorname{Id}$ and $\sum_{f \in I(0, m)} \omega_{f}=\sum_{i=0}^{m} t_{i}=1$ we have:

$$
\sum_{f \in I(0, m)} \omega_{f} \wedge\left(\sum_{r=0}^{0}(-1)^{r} k_{f \delta_{r}}(\eta)\right)=\sum_{i=0}^{m} t_{i} k_{f \delta_{0}}(\eta)=\eta .
$$

Thus it follows:

$$
\begin{aligned}
k_{m}(d \eta)+d k_{m}(\eta)-\pi_{m}(\eta)+\eta= & \sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge k_{f}(\eta) \\
& +\sum_{n=1}^{m} \sum_{f \in I(n, m)}-\omega_{f} \wedge \sum_{r=0}^{n}(-1)^{r} k_{f \delta_{r}}(\eta) .
\end{aligned}
$$

Using the result of Point 3 of Proposition 3.4 it is possible to show that the right hand side of this equation vanishes:

$$
\begin{aligned}
\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge k_{f}(\eta) & =\sum_{n=0}^{m-1} \sum_{f \in I(n, m)} d \omega_{f} \wedge k_{f}(\eta) \\
& =\sum_{n=0}^{m-1} \sum_{f \in I(n, m)} \sum_{r=0}^{n}(-1)^{r} \sum_{\left\{g \mid f=g \delta_{r}\right\}} \omega_{g} \wedge k_{g \delta_{r}}(\eta) \\
& +\sum_{n=1}^{m} \sum_{g \in I(n, m)} \sum_{r=0}^{n}(-1)^{r} \omega_{g} \wedge k_{g \delta_{r}}(\eta)
\end{aligned}
$$

And thus we proved the identity.
Finally, from Lemma 4.2 follows that

$$
\begin{aligned}
g^{*} k_{m}(\eta) & =\sum_{n=0}^{m} \sum_{f \in I(n, m)} g^{*}\left(\omega_{f}\right) \wedge g^{*} k_{f}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \sum_{\substack{h \in I(n, p), f=g h}} \omega_{h} \wedge g^{*} k_{f}(\eta) \\
& =\sum_{n=0}^{m} \sum_{h \in I(n, p)} \omega_{h} \wedge g^{*} k_{g h}(\eta)=\sum_{n=0}^{m} \sum_{h \in I(n, p)} \omega_{h} \wedge k_{h}\left(g^{*} \eta\right)=k_{p}\left(g^{*} \eta\right) .
\end{aligned}
$$

Remark 4.4. This proof of Theorem 4.3 was shown to a small audience by Manetti. Dupont in [6] showed that Lemma 4.2 holds also for the family of maps h_{m}. Since the proof of Theorem 4.3 is based only on Lemma 4.2 and on some properties of Whitney elementary forms, the same proof works also for Theorem 3.8.

5 Equivalence of the families h_{m} and k_{m}

In this section we compare the family of maps h_{m} of Construction 3.6 and the family of maps of Construction 4.1. The main result of this section is Theorem 5.1, where we prove that the two families coincide. To make the proof more readable we will split it in many lemmas.
Theorem 5.1. For every $m \in \mathbb{N}$ we have that $k_{m}=h_{m}$.
Proof. From the definition of h_{m} and k_{m} if follows that it is enough to prove that for each $f \in I(n, m)$ the identity $k_{f}=h_{f}$ holds. We proceed by induction on n. If $n=0$ this is Lemma 5.3; thus suppose $n>0$ and assume the statement true for every function in $I(p, m)$ with $p<n$. Fix $f \in I(n, m)$, in particular the statement holds for $\left.f\right|_{[n-1]}$, and then we have the chain of equality:

$$
h_{f}=h_{f(n)} \circ h_{\left.f\right|_{[n-1]}}=h_{f(n)} \circ k_{\left.f\right|_{[n-1]}} .
$$

The only thing left to prove is $k_{f}=h_{f(n)} \circ k_{\left.\left.f\right|_{[n-1]}\right]}$. Let $f:[n] \rightarrow[m]$ be an injective map. By linearity we can assume that η is the q -form

$$
\eta=x_{0}^{k_{0}} \cdots x_{f(n)}^{0} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{q}}
$$

with $c_{1}<c_{2}<\cdots<c_{q}$ and $c_{i} \neq f(n)$, for all i.
If $q \leq n$ we have $0=k_{f}(\eta)=h_{f}(\eta)$, since they are forms of negative degree, hence the equality holds.

Suppose now $q>n$. Let $C:=\left\{c_{1}, \ldots, c_{q}\right\}$ and $\operatorname{Im}\left(\left.f\right|_{[n-1]}\right)$ if the intersection is such that $\left|C \cap \operatorname{Im}\left(\left.f\right|_{[n-1]}\right)\right|<n-1$, then by the same degree argument it follows that $0=h_{f}(\eta)=k_{f}(\eta)$. If $\left|C \cap \operatorname{Im}\left(\left.f\right|_{[n-1]}\right)\right|=n-1$ we are under the hypothesis of Lemma 5.4, so $k_{f}(\eta)=h_{f}(\eta)$. If $\left|C \cap \operatorname{Im}\left(\left.f\right|_{[n-1]}\right)\right|=n$ then we are under the hypothesis of Lemma 5.5, so $k_{f}(\eta)=h_{f}(\eta)$.

The next lemmas provide the technicalities behind Theorem 5.1, whose inductive step will be Lemma 5.3 is the inductive base of the proof; Lemma 5.4 and Lemma 5.5 address the computation of the functions $h_{f}(\eta)$ and $k_{f}(\eta)$ in some key cases.

Notation 5.2. When necessary, we use the notation $d_{x_{0}, \ldots, x_{n}}$ for the differential form $d x_{0} \wedge \cdots \wedge d x_{n}$.

Lemma 5.3. For each integer $0 \leq j \leq m$, consider the map:

$$
f_{j}:[0] \rightarrow[m] \quad f_{j}(0)=j
$$

Then the map h_{j} of Construction 3.6 and the maps $k_{f_{j}}$ of Construction 4.1 coincide.

Proof. Take $\eta \in \Omega_{m}$ and assume without loss of generality $j=0$ and

$$
\eta=x_{0}^{k_{0}} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}}
$$

The general case will follow by linearity. Call f the map f_{j}.
Since the two identities:

$$
x_{0}=1-\sum_{i=1}^{m} x_{i}, \quad d x_{0}=-\sum_{i=1}^{m} d x_{i},
$$

hold on the affine standard simplex, we can assume $\eta=x_{1}^{k_{1}} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}}$, with $0<c_{1}<\cdots<c_{l}$. Once again the general case follows by linearity.

Following Construction 3.6 we compute α_{η} :

$$
\alpha_{\eta}=(1-s)^{\sum_{i=1}^{m} k_{i}+l-1} x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}\left(\sum_{i=1}^{l}(-1)^{i} x_{c_{i}} d s \wedge d x_{c_{1}} \wedge \cdots \wedge \widehat{d x_{c_{i}}} \wedge \cdots \wedge d x_{c_{l}}\right),
$$

and then $h_{0}(\eta)$ is:

$$
h_{0}(\eta)=\frac{x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}}{k_{1}+\cdots+k_{m}+l}\left(\sum_{i=1}^{l}(-1)^{i} x_{c_{i}} d x_{c_{1}} \wedge \cdots \wedge \widehat{d x_{c_{i}}} \wedge \cdots \wedge d x_{c_{l}}\right)
$$

Following Construction 4.1 we have

$$
\begin{aligned}
\widehat{f}^{*}(\eta)= & s^{\sum_{i=1}^{m} k_{i}+l-1} x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}\left(\sum_{i=1}^{l}(-1)^{i-1} x_{c_{i}} d s \wedge d x_{c_{1}} \wedge \cdots \wedge \widehat{d x_{c_{i}}} \wedge \cdots \wedge d x_{c_{l}}\right) \\
& +s^{\sum_{i=1}^{m} k_{i}+l} x_{1}^{k_{1}} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}}
\end{aligned}
$$

Using Equation (3.1), it follows

$$
\int_{\widehat{\Delta}^{0}} s^{\sum_{i=1}^{m} k_{i}+l}=0
$$

since we are integrating a 0 -form the 1 -simplex $\widehat{\Omega}_{0}$. And consequently

$$
\left(\int_{\widehat{\Delta}^{0}} \otimes \operatorname{Id}\right)\left(s^{\sum_{i=1}^{m} k_{i}+l} x_{1}^{k_{1}} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{l}}\right)=0
$$

Thus to conclude the proof we have just to compute $k_{f_{0}}$.

$$
\begin{aligned}
k_{f_{0}}(\eta) & =\left(\int_{\widehat{\Delta}^{0}} \otimes \mathrm{Id}\right)\left(\widehat{f}^{*}(\eta)\right) \\
& =\frac{x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}}{k_{1}+\cdots+k_{m}+l}\left(\sum_{i=1}^{l}(-1)^{i} x_{c_{i}} d x_{c_{1}} \wedge \cdots \wedge \widehat{d x_{c_{i}}} \wedge \cdots \wedge d x_{c_{l}}\right)
\end{aligned}
$$

Lemma 5.4. Fix an integer n, a function $f \in I(n, m)$ and a polynomial differential form $\eta=x_{0}^{k_{0}} \cdots x_{f(n)}^{0} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{q}}$. It is not restrictive to assume that $c_{1}<c_{2}<\cdots<c_{q}$ and $c_{i} \neq f(n)$, for all i. Assume, moreover, that we have

$$
\left|\left\{c_{1}, \ldots, c_{q}\right\} \cap \operatorname{Im}\left(\left.f\right|_{[n-1]}\right)\right|=n-1, \quad \text { and } \quad k_{\left.f\right|_{[n-1]}}(\eta)=h_{\left.f\right|_{[n-1]}}(\eta) .
$$

Then it follows that $h_{f}(\eta)=k_{f}(\eta)$.
Proof. The form $k_{f}(\eta)$ has negative degree, therefore it vanishes. It is not restrictive to assume that $n-1 \notin C \cap \operatorname{Im}\left(\left.f\right|_{[n-1]}\right)$. Thus η has the form:

$$
\eta=x_{0}^{k_{0}} \cdots x_{f(n)}^{0} \cdots x_{m}^{k_{m}} d x_{f(0)} \wedge \cdots \wedge d x_{f(n-2)} \wedge d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}}
$$

with $0<b_{1}<b_{2}<\cdots<b_{l}<m, b_{i} \neq f(n-1), f(n)$ and $l=q-n+1>1$. Define the set

$$
P=\left\{\left(p_{0}, \ldots, p_{n-1}\right) \in \mathbb{N}^{n} \text { such that } 0 \leq p_{i} \leq k_{f(i)}, \forall i\right\}
$$

Next we compute ${\widehat{\left.f\right|_{[n-1]}}}^{*}(\eta)$. We have

$$
\widehat{\left.\right|_{[n-1]}} *(\eta)=\sum_{p \in P}\left(\eta_{p}\left(\sum_{i=1}^{l} x_{b_{i}} s^{l-1}(-1)^{i+n} d_{s, t_{0}, \ldots, t_{n-2}, x_{b_{1}}, \ldots, \widehat{x_{i}}, \ldots, x_{b_{l}}}\right)+\omega_{p}\right),
$$

where ω_{p} are forms which vanish under $\int \otimes \mathrm{Id}$ by a degree argument, and η_{p} is the polynomial

$$
\eta_{p}=\prod_{i=0}^{n-1}\binom{k_{f(i)}}{p_{i}} t_{i}^{p_{i}} x_{i}^{k_{f(i)}-p_{i}} s \sum_{i=0}^{\left(\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}\right)} \prod_{\substack{i=0, \ldots, m \\ i \notin f([n-1])}} x_{i}^{k_{i}} .
$$

Thus we have that

$$
h_{\left.f\right|_{[n-1]}}(\eta)=k_{\left.f\right|_{[n-1]}}(\eta)=\sum_{p \in P} \eta_{p}\left(\sum_{i=1}^{l} x_{b_{i}}(-1)^{i} d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge d x_{b_{l}}\right) .
$$

Then $\alpha_{k_{f \mid[n-1]}(\eta)}$ is equal to

$$
\begin{aligned}
& \sum_{p \in P}\left(\sum_{i=1}^{l} \sum_{j<i} x_{b_{i}} x_{b_{j}}(-1)^{i+j} d s \wedge d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{j}}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge d x_{b_{l}}\right. \\
& \left.\quad+\sum_{i=1}^{l} \sum_{j>i} x_{b_{i}} x_{b_{j}}(-1)^{i+j-1} d s \wedge d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge \widehat{d x_{b_{j}}} \wedge \cdots \wedge d x_{b_{l}}\right) \eta_{p} s^{l-1} \\
& \quad=0
\end{aligned}
$$

So we proved that $h_{n} \circ k_{\left.f\right|_{[n-1]}}(\eta)=h_{f}(\eta)=0$; and this completes the first part of the proof.

Lemma 5.5. Fix an integer n, a function $f \in I(n, m)$ and a polynomial differential form $\eta=x_{0}^{k_{0}} \cdots x_{f(n)}^{0} \cdots x_{m}^{k_{m}} d x_{c_{1}} \wedge \cdots \wedge d x_{c_{q}}$. It is not restrictive to assume that $c_{1}<c_{2}<\cdots<c_{q}$ and $c_{i} \neq f(n)$, for all i. Assume, moreover, that we have:

$$
\left|\left\{c_{1}, \ldots, c_{q}\right\} \cap \operatorname{Im}\left(\left.f\right|_{[n-1]}\right)\right|=n, \quad \text { and } \quad k_{\left.f\right|_{[n-1]}}(\eta)=h_{\left.f\right|_{[n-1]}}(\eta)
$$

Then it follows that $h_{f}(\eta)=k_{f}(\eta)$.
Proof. We can write η as

$$
\eta=x_{0}^{k_{0}} \cdots x_{f(n)}^{0} \cdots x_{m}^{k_{m}} d x_{f(0)} \wedge \cdots \wedge d x_{f(n-1)} \wedge d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}}
$$

with $0<b_{1}<b_{2}<\cdots<b_{l}<m, b_{i} \neq f(n)$ and $l=q-n \geq 1$. Consider, as in Lemma 5.4, the set:

$$
P=\left\{\left(p_{0}, \ldots, p_{n-1}\right) \in \mathbb{N}^{n} \text { such that } 0 \leq p_{i} \leq k_{f(i)}, \forall i\right\}
$$

In order to compute $k_{f}(\eta)$, observe that:
$\widehat{f}^{*}(\eta)=\sum_{p \in P} \epsilon_{p} \theta_{p} d\left(s x_{f(0)}+t_{0}\right) \wedge \cdots \wedge d\left(s x_{f(n-1)}+t_{n-1}\right) \wedge d\left(s x_{b_{1}}\right) \wedge \cdots \wedge d\left(s x_{b_{l}}\right)$.
Where θ_{p} and ϵ_{p} are defined as:

$$
\epsilon_{p}=\prod_{i=0}^{n-1}\binom{k_{f(i)}}{p_{i}} x_{f(i)}^{k_{f(i)}-p_{i}} \prod_{\substack{i=0, \ldots, m \\ i \notin f([n-1])}} x_{i}^{k_{i}} ; \quad \theta_{p}=s^{\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}} \prod_{i=0}^{n-1} t_{i}^{p_{i}}
$$

Then $k_{f}(\eta)$ is equal to:

$$
\begin{aligned}
& \left(\int_{\widehat{\Delta}^{n}} \otimes \operatorname{Id}\right)\left(\sum_{p \in P}\left(\epsilon_{p} \theta_{p}\left(\sum_{i=1}^{l} x_{b_{i}} s^{l-1} d_{t_{0}, \ldots, t_{n-1}, x_{b_{1}}, \ldots, x_{b_{i-1}}, s, x_{b_{i+1}}, \ldots, x_{b_{l}}}\right)+\omega_{p}\right)\right) \\
& =\sum_{p \in P} \frac{\left(\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l-1\right)!\prod_{i=0}^{n-1}\left(p_{i}!\right)}{\left(\sum_{i=0}^{m} k_{i}+l+n\right)!} \epsilon_{p}\left(\sum_{i=1}^{l}(-1)^{i} x_{b_{i}} d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge d x_{b_{l}}\right) .
\end{aligned}
$$

The forms ω_{p} vanish under $\int_{\widehat{\Delta}{ }^{n-1}} \otimes \mathrm{Id}$ by a degree argument. Moreover we have

$$
\int_{\widehat{\Delta}^{n}} \theta_{p} s^{l-1} d t_{0} \wedge \cdots \wedge d t_{n}=\frac{\left(\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l-1\right)!\prod_{i=0}^{n-1}\left(p_{i}!\right)}{\left(\sum_{i=0}^{m} k_{i}+l+n\right)!}
$$

We can now compute $k_{\left.f\right|_{[n-1]}}(\eta)$. Recall that

$$
\eta=x_{0}^{k_{0}} \ldots x_{f(n)}^{0} \ldots x_{m}^{k_{m}} d x_{f(0)} \wedge \cdots \wedge d x_{f(n-1)} \wedge d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}}
$$

Thus we have:

$$
\begin{aligned}
& k_{\left.f\right|_{[n-1]}}(\eta) \\
&=\left(\int_{C^{n-1}} \otimes \operatorname{Id}\right)\left(\sum _ { p \in P } \epsilon _ { p } \theta _ { p } s ^ { l } \left(d t_{0} \wedge \cdots \wedge d t_{n-1} \wedge d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}}\right.\right. \\
&+\sum_{i=0}^{n-1} x_{f(i)} d t_{0} \wedge \cdots \wedge d t_{i-1} \wedge d s \wedge d t_{i+1} \wedge \cdots \wedge d t_{n-1} \wedge d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}} \\
&\left.\left.+\sum_{i=1}^{l} \sum_{j=0}^{n-1} x_{b_{i}} d_{t_{0}, \ldots, x_{f(j)}, \ldots, t_{n-1}, x_{b_{1}}, \ldots, x_{b_{i-1}}, s, x_{b_{i+1}}, \ldots, x_{b_{l}}}\right)+\omega_{p}\right) \\
&= \sum_{p \in P} \frac{\left(\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l\right)!\prod_{i=0}^{n-1}\left(p_{i}!\right)}{\left(\sum_{i=0}^{m} k_{i}+l+n\right)!} \epsilon_{p}\left(d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}}\right. \\
&-\sum_{i=0}^{n-1} x_{f(i)} d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}} \\
&\left.+\sum_{i=1}^{l} \sum_{j=0}^{n-1}(-1)^{i-1} x_{b_{i}} d x_{f(j)} \wedge d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge d x_{b_{l}}\right) .
\end{aligned}
$$

For the sake of readability call

$$
\begin{aligned}
& \gamma_{1}= \sum_{p \in P} \\
& \gamma_{2}=\sum_{p \in P} \frac{\left(\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l\right)!\prod_{i=0}^{n-1}\left(p_{i}!\right)}{\left(\sum_{i=0}^{m} k_{i}+l+n\right)!} \epsilon_{p} d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}} ; \\
&\left(\sum_{i=0}^{m} k_{i}+l+n\right)! \\
&\left.\sum_{i=0}^{n-1} p_{i}+l\right)!\prod_{i=0}^{n-1}\left(p_{i}\right)! \\
&+\epsilon_{p}\left(\sum_{i=0}^{n-1}-x_{f(i)} d x_{b_{1}} \wedge \cdots \wedge d x_{b_{l}}\right. \\
&\left.\sum_{j=0}^{n-1}(-1)^{i-1} x_{b_{i}} d x_{f(j)} \wedge d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge d x_{b_{l}}\right)
\end{aligned}
$$

Next we show that $h_{f(n)}\left(\gamma_{1}\right)=k_{f}(\eta)$ and $h_{f(n)}\left(\gamma_{2}\right)=0$, which concludes the proof. The map $h_{f(n)}$ is the one described in Construction 3.6. The pullback of γ_{1} under the map $f_{n}:[0] \rightarrow[m], 0 \mapsto f(n)$ is:

$$
f_{n}^{*}\left(\gamma_{1}\right)=\sum_{p \in P} a_{p}(1-s)^{\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}} \epsilon_{p} d\left((1-s) x_{b_{1}}\right) \wedge \cdots \wedge d\left((1-s) x_{b_{l}}\right)
$$

Where a_{p} is defined for $p \in P$ as

$$
a_{p}=\frac{\left(\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l\right)!\prod_{i=0}^{n-1}\left(p_{i}!\right)}{\left(\sum_{i=0}^{m} k_{i}+l+n\right)!}
$$

Then we have:

$$
\alpha_{\gamma_{1}}=\sum_{p \in P} a_{p} \epsilon_{p}(1-s)^{\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l-1}\left(\sum_{i=1}^{l}-(-1)^{i-1} x_{b_{i}} d_{s, x_{b_{1}}, \ldots, \widehat{x_{b_{i}}}, \ldots, x_{b_{l}}}\right)
$$

By integration we get:

$$
h_{f(n)}\left(\gamma_{1}\right)=\sum_{p \in P} \frac{a_{p}}{\sum_{i=0}^{m} k_{i}-\sum_{i=0}^{n-1} p_{i}+l} \epsilon_{p}\left(\sum_{i=1}^{l}(-1)^{i} x_{b_{i}} d x_{b_{1}} \wedge \cdots \wedge \widehat{d x_{b_{i}}} \wedge \cdots \wedge d x_{b_{l}}\right)
$$

To conclude the proof we need to show that $h_{f(n)}\left(\gamma_{2}\right)=0$, but this follows from Lemma 5.4 since $n \notin\left\{f(1), \ldots, f(n-1), b_{1}, \ldots, b_{l}\right\}$.

Remark 5.6. A remarkable consequence of Theorem 4.3 is that we have a simplicial contraction

Getzler in [12] showed that $k_{m}^{2}=0$ and that $\pi_{m} k_{m}=0$ (his proof of this latter fact works replacing k_{m} with any family of functions satisfying Point (2) of Theorem 4.3). This means that this is a simplicial contraction in the sense of [7] and of [15].

Acknowledgements. I would like to thanks Prof. M. Manetti for his help during the (slow) preparation of this paper. This work was supported by the Engineering and Physical Sciences Research Council [EP/L015234/1]. The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The London School of Geometry and Number Theory), University College London.

References

[1] R. Bandiera: Descent of Deligne-Getzler ∞-groupoids. arXiv:1705.02880.
[2] R. Bandiera and M. Manetti: Algebraic models of local period maps and Yukawa algebras. Lett. Math. Phys. 108, (2018), 2055-2097; doi:10.1007/s11005-018-1064-1.
[3] A.K. Bousfield and V.K.A.M. Gugenheim: On PL De Rham theory and rational homotopy type. Memoirs of the Amer. Math. Soc. 179 (1976).
[4] X. Z. Cheng and E. Getzler: Transferring homotopy commutative algebraic structures. Journal of Pure and Applied Algebra, 212, Issue 11, 2535-2542, (2008).
[5] J. L. Dupont: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15 233-245, (1976).
[6] J.L. Dupont: Curvature and characteristic classes. Lecture Notes in Mathematics 640 Springer-Verlang (1978).
[7] S. Eilenberg and S. Mac Lane: On the groups $H(\pi, n)$. I. Ann. of Math. 58 (1953).
[8] Y. Félix, S. Halperin and J.C. Thomas: Rational homotopy theory. Graduate Texts in Mathematics 205 New York: Springer-Verlag, (2001).
[9] D. Fiorenza and M. Manetti: L_{∞}-structures on mapping cones. Algebra Number Theory, 1, (2007), 301-330.
[10] D. Fiorenza, M. Manetti and E. Martinengo: Cosimplicial DGLAs in deformation theory. Communications in Algebra, 40, (2012), 2243-2260.
[11] K. Fukaya: Deformation theory, homological algebra and mirror symmetry. Geometry and physics of branes (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol (2003) 121-209.
[12] E. Getzler: Lie theory for nilpotent L_{∞}-algebras. Ann. of Math. 170 (1): 271-301 (2009).
[13] J. Huebshmann and T. Kadeishvili: Small models for chain algebras. Math. Z. 207 (1991) 245-280.
[14] M. Kontsevich, Y. Soibelman: Homological mirror symmetry and torus fibrations. K. Fukaya, (ed.) et al., Symplectic geometry and mirror symmetry. Proceedings of the 4th KIAS annual international conference, Seoul, South Korea, August 14-18, 2000. Singapore: World Scientific. (2001) 203-263; arXiv:math.SG/0011041.
[15] L. Lambe, J. Stasheff: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58 (1987), no. 3, 363-376.
[16] V. Navarro Aznar: Sur la théorie de Hodge-Deligne. Invent. Math. 90 (1987) 11-76.
[17] H. Whitney: Geometric integration theory. Princeton University Press, Princeton, N. J., (1957).

Received: 4 October 2017.
Accepted: 9 July 2018.

Huxley Building, 180 Queen's Gate, Kensington, London SW7 2AZ, Office 671.
1.lunardon16@imperial.ac.uk

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

[^0]: 2010 Mathematics Subject Classification: 18G30.
 Keywords: Dupont's theorem, homotopy transfer, polynomial differential forms, simplicial contraction, Whitney elementary forms.
 (C) The Author(s) 2018. This article is an open access publication.

