New invariants of ample vector bundles over smooth projective varieties

Yoshiaki Fukuma

Abstract

Let X be a complex smooth projective variety of dimension n, and let \mathcal{E} be an ample vector bundle on X. In this paper, we will introduce new invariants of generalized polarized manifolds (X, \mathcal{E}), and we will study their properties. As an application, we study a lower bound for $c_{1}(\mathcal{E})^{n}$ and the sectional genus $g\left(X, c_{1}(\mathcal{E})\right)$ of $\left(X, c_{1}(\mathcal{E})\right)$.

1 Introduction

Let X be a smooth projective variety of dimension n defined over the field of complex numbers, and let \mathcal{E} be an ample vector bundle on X. Then (X, \mathcal{E}) is called a generalized polarized manifold. Let $r:=\operatorname{rank}(\mathcal{E})$. Generalized polarized manifolds (X, \mathcal{E}) have been studied by using some invariants of (X, \mathcal{E}). Here we state the history of invariants of (X, \mathcal{E}).

First in [4], Fujita introduced the c_{1}-sectional genus and the $\mathcal{O}(1)$-sectional genus of (X, \mathcal{E}). Next, in [1], for the case where $r=n-1$, Ballico defined an invariant of (X, \mathcal{E}) which is called the curve genus $\operatorname{cg}(X, \mathcal{E})$ of (X, \mathcal{E}), and several authors (in particular Lanteri, Maeda, Sommese and so on) studied this invariant (see [16], [20], [17] and [21]).

As a generalization of the curve genus, for any ample vector bundle \mathcal{E} with $r \leq n-1$, Ishihara ([15, Definition 1.1]) defined an invariant $g(X, \mathcal{E})$, which is called the c_{r}-sectional genus of (X, \mathcal{E}), and in [10] we investigated some properties about $g(X, \mathcal{E})$. We note that if $n-r=1$, then $g(X, \mathcal{E})$ is the curve genus. This invariant means the following: If a general element of $H^{0}(\mathcal{E})$ has a zero locus Z which is smooth of expected dimension $n-r$, then $g(X, \mathcal{E})=g\left(Z,\left.\operatorname{det} \mathcal{E}\right|_{Z}\right)$, that is, $g(X, \mathcal{E})$ is the sectional genus of $\left(Z,\left.\operatorname{det} \mathcal{E}\right|_{Z}\right)$. In [13] Fusi and Lanteri generalized this invariant. In [8, Definition 4.1], we introduced an invariant $v(X, \mathcal{E})$ of generalized polarized manifolds (X, \mathcal{E}) with $r \geq n-1$, which is defined by using a result [8, Theorem 3.2 (3.2.3)]. Here we note that $v(X, \mathcal{E})$ is equal to the curve genus if $r=n-1$.

In this paper, we will introduce new invariants $B^{i}(X, \mathcal{E})$ and $\widehat{B}^{i}(X, \mathcal{E})$ of (X, \mathcal{E}) for every integer i with $0 \leq i \leq n$ and $\operatorname{rank}(\mathcal{E}) \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$ (see Defini-

[^0]tions 3.6 and 3.11). Then the following equalities hold (see Propositions 3.7 and 3.12).
\[

$$
\begin{aligned}
b_{2 n-2-i}\left(\mathbb{P}_{X}(\mathcal{E}), H(\mathcal{E})\right)-h^{2 n-2-i}\left(\mathbb{P}_{X}(\mathcal{E}), \mathbb{C}\right) & =B^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C}), \\
b_{i}\left(\mathbb{P}_{X}(\mathcal{E}), H(\mathcal{E})\right)-h^{i}\left(\mathbb{P}_{X}(\mathcal{E}), \mathbb{C}\right) & =\widehat{B}^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C}),
\end{aligned}
$$
\]

where $H(\mathcal{E})$ denotes the tautological line bundle on $\mathbb{P}_{X}(\mathcal{E})$ and $b_{k}\left(\mathbb{P}_{X}(\mathcal{E}), H(\mathcal{E})\right)$ denotes the k-th sectional Betti number of $\left(\mathbb{P}_{X}(\mathcal{E}), H(\mathcal{E})\right)$.

We note that if $i=1$, then $B^{1}(X, \mathcal{E})=2 v(X, \mathcal{E})$. In this paper, we will study some properties of $B^{i}(X, \mathcal{E})$ and $\widehat{B}^{i}(X, \mathcal{E})$. Furthermore we will also define and study the following invariant $P_{i}(X, \mathcal{E})$

$$
P_{i}(X, \mathcal{E})=b_{i}\left(X, c_{1}(\mathcal{E})\right)-\left(B^{i}(X, \mathcal{E})+\widehat{B}^{i}(X, \mathcal{E})\right) .
$$

Here $b_{i}\left(X, c_{1}(\mathcal{E})\right)$ denotes the i th sectional Betti number of $\left(X, c_{1}(\mathcal{E})\right)$. By studying $P_{i}(X, \mathcal{E})$ for $i=0$ and 1 , we get a lower bound of $c_{1}(\mathcal{E})^{n}$ and $g_{1}\left(X, c_{1}(\mathcal{E})\right)$ (see Section 5).

2 Preliminaries

Notation 2.1. Let X be a smooth projective variety of dimension $n \geq 1$ and let \mathcal{E} be an ample vector bundle of rank r on X. We put $W:=\mathbb{P}_{X}(\mathcal{E}), H:=H(\mathcal{E})$ and $m:=\operatorname{dim} W$, where $H(\mathcal{E})$ denotes the tautological line bundle on W. Then $m=n+r-1$.

Definition 2.2. Let X be a smooth projective variety of dimension n and let \mathcal{E} be a vector bundle of rank r on X.
(i) The Chern polynomial $c_{t}(\mathcal{E})$ is defined by the following:

$$
c_{t}(\mathcal{E})=\sum_{i \geq 0} c_{i}(\mathcal{E}) t^{i}
$$

where $c_{i}(\mathcal{E})$ is the i th Chern classes.
(ii) For every integer j with $j \geq 0$, the j th Segre class $s_{j}(\mathcal{F})$ of \mathcal{F} is defined by the following equation: $c_{t}\left(\mathcal{F}^{\vee}\right) s_{t}(\mathcal{F})=1$, where $c_{t}\left(\mathcal{F}^{\vee}\right)$ is the Chern polynomial of \mathcal{F}^{\vee} and $s_{t}(\mathcal{F})=\sum_{j \geq 0} s_{j}(\mathcal{F}) t^{j}$.

Remark 2.3. (i) Let X be a smooth projective variety and let \mathcal{F} be a vector bundle on X. Let $\tilde{s}_{j}(\mathcal{F})$ be the Segre class which is defined in [11, Chapter 3]. Then $s_{j}(\mathcal{F})=\tilde{s}_{j}\left(\mathcal{F}^{\vee}\right)$.
(ii) For every integer i with $1 \leq i, s_{i}(\mathcal{F})$ can be written by using the Chern classes $c_{j}(\mathcal{F})$ with $1 \leq j \leq i$. (For example, $s_{1}(\mathcal{F})=c_{1}(\mathcal{F}), s_{2}(\mathcal{F})=c_{1}(\mathcal{F})^{2}-c_{2}(\mathcal{F})$, and so on.)

Definition 2.4. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a finite sequence of nonnegative integers with $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then we call this λ a partition. We denote by $\Lambda(n, r)$ the set of all partitions of n in nonnegative integers $\leq r$.
Definition 2.5. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$, we put

$$
\Delta_{\lambda}(c)=\Delta_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}(c)=\operatorname{det}\left(c_{j-i+\lambda_{i}}\right),
$$

where $\left(c_{j-i+\lambda_{i}}\right)$ denotes the n by n matrix whose $i j$ entry is $c_{j-i+\lambda_{i}}$. Then we call this the Schur polynomial associated to λ. Here c_{p} denotes the p th Chern class of a vector bundle.
Remark 2.6. We note that $\Delta_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}(s)=\operatorname{det}\left(s_{j-i+\lambda_{i}}\right)$, where s_{p} denotes the p th Segre class of a vector bundle.
Remark 2.7. Let $\mu_{k}=(2, \underbrace{1, \ldots, 1}_{k-1})$ for every positive integer k. By [11, Lemma
14.5.1] we have

$$
\begin{aligned}
s_{k}(\mathcal{E}) & =\Delta_{(k)}(s) \\
& =\Delta_{(\underbrace{1, \ldots, 1}_{k})}^{(\underbrace{}_{k})} \\
& =c_{1}(\mathcal{E}) \Delta_{(\underbrace{1, \ldots, 1}_{k-1})}(c)-\Delta_{\mu_{k-1}}(c) \\
& =c_{1}(\mathcal{E}) s_{k-1}(\mathcal{E})-\Delta_{\mu_{k-1}}(c) .
\end{aligned}
$$

Theorem 2.8. Let X be a projective variety of dimension n and let \mathcal{E} be an ample vector bundle on X with $\operatorname{rank}(\mathcal{E})=r$. Let $P=\sum_{\lambda \in \Lambda(n, r)} a_{\lambda} \Delta_{\lambda}(c)$. Then the polynomial P is numerically positive for ample vector bundles if and only if P is non-zero and $a_{\lambda} \geq 0$ for all $\lambda \in \Lambda(n, r)$. In particular, $\Delta_{\lambda}(c)>0$ for every $\lambda \in \Lambda(n, r)$.
Proof. See [12, Theorem I].
Definition 2.9. (See [7, Definition 3.1].) Let (X, L) be a polarized manifold of dimension n, and let i be an integer with $0 \leq i \leq n$.
(i) The ith sectional Euler number $e_{i}(X, L)$ of (X, L) is defined by the following:

$$
e_{i}(X, L):=\sum_{k=0}^{i}(-1)^{k}\binom{n-i+k-1}{k} c_{i-k}(X) L^{n-i+k}
$$

(ii) The ith sectional Betti number $b_{i}(X, L)$ of (X, L) is defined by the following:

$$
b_{i}(X, L):= \begin{cases}e_{0}(X, L) & \text { if } i=0 \\ (-1)^{i}\left(e_{i}(X, L)-\sum_{j=0}^{i-1} 2(-1)^{j} h^{j}(X, \mathbb{C})\right) & \text { if } 1 \leq i \leq n\end{cases}
$$

Remark 2.10. (i) If $i=0$, then $b_{0}(X, L)=L^{n}$.
(ii) If $i=1$, then $b_{1}(X, L)=2 g(X, L)$, where $g(X, L)$ denotes the sectional genus of (X, L).

Proposition 2.11. Let (X, L) be a polarized manifold of dimension $n \geq 3$. Assume that L is spanned by its global sections. Then $g(X, L) \geq 2 h^{1}\left(\mathcal{O}_{X}\right)-1$ unless (X, L) is a scroll over a smooth curve.

Proof. The nonnegativity of $g(X, L)$ shows that Proposition 2.11 is true for the case of $h^{1}\left(\mathcal{O}_{X}\right)=0$. So we may assume that $h^{1}\left(\mathcal{O}_{X}\right) \geq 1$. Since L is spanned by its global sections, by taking $(n-2)$ general members $D_{1}, \ldots, D_{n-2} \in|L|$, we can get a smooth projective surface $S:=D_{1} \cap \cdots \cap D_{n-2}$. We consider the polarized surface $\left(S, L_{S}\right)$. Since L is ample and $\mathrm{Bs}\left|L_{S}\right|=\emptyset$, we see from [5, Lemma 1.15] that $g\left(S, L_{S}\right) \geq 2 h^{1}\left(\mathcal{O}_{S}\right)-1$ holds unless $\left(S, L_{S}\right)$ is a scroll over a smooth curve.

If $\left(S, L_{S}\right)$ is a scroll over a smooth projective curve, then so is (X, L) by [3, Theorems 5.5.2 and 5.5.3] because $h^{1}\left(\mathcal{O}_{S}\right)=h^{1}\left(\mathcal{O}_{X}\right) \geq 1$. Hence if (X, L) is not a scroll over a smooth curve, then

$$
\begin{aligned}
g(X, L) & =g\left(S, L_{S}\right) \\
& \geq 2 h^{1}\left(\mathcal{O}_{S}\right)-1 \\
& =2 h^{1}\left(\mathcal{O}_{X}\right)-1
\end{aligned}
$$

So we get the assertion.

3 Definition of new invariants

Notation 3.1. Let n be a positive integer. For every integer i with $0 \leq i \leq n$, we set

$$
\begin{equation*}
E_{i}\left(x_{0}, \ldots, x_{i} ; y_{n-i}, \ldots, y_{n}\right):=\sum_{\substack{0 \leq k, t \\ 0 \leq k+t \leq i}}(-1)^{i-t}\binom{n-t-2}{i-t-k} x_{k} y_{n-k-t} c_{t}(X) \tag{3.1}
\end{equation*}
$$

Remark 3.2. Let W and H be as in Notation 2.1. We see from (3.1) and [8, Theorem 3.1] that for every integer i with $0 \leq i \leq n$

$$
\begin{equation*}
e_{i}(W, H)=E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{n-i}(\mathcal{E}), \ldots, s_{n}(\mathcal{E})\right) \tag{3.2}
\end{equation*}
$$

and by (3.2) we have

$$
\begin{align*}
& b_{i}(W, H)-h^{i}(W, \mathbb{C}) \tag{3.3}\\
& =(-1)^{i}\left(E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{n-i}(\mathcal{E}), \ldots, s_{n}(\mathcal{E})\right)-2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right) \\
& \quad-h^{i}(W, \mathbb{C}) .
\end{align*}
$$

Here we note that if $i=0$, then we regard $\sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})$ as 0 .

Theorem 3.3. Let X be a smooth projective variety of dimension $n \geq 2$, and \mathcal{E} an ample vector bundle of rank r on X. Let W and H be as in Notation 2.1. If $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$, then we have

$$
\begin{aligned}
& b_{2 n-2-i}(W, H)-h^{2 n-2-i}(W, \mathbb{C}) \\
& =(-1)^{i}\left(E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{n-i}(\mathcal{E}), \ldots, c_{n}(\mathcal{E})\right)-2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right) \\
& \quad-h^{i}(W, \mathbb{C}) .
\end{aligned}
$$

Proof. First we prove the following lemma.

Lemma 3.4. If $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$, then

$$
\begin{aligned}
& (-1)^{2 n-2-i}\left((n-i-1) c_{n}(X)-2 \sum_{j=0}^{2 n-2-i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{2 n-2-i}(W, \mathbb{C}) \\
& =(-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C})
\end{aligned}
$$

Proof. By [19, (2.1) Proposition] and the assumption that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$, we obtain

$$
h^{j}(W, \mathbb{C})= \begin{cases}h^{j}(X, \mathbb{C})+h^{j-2}(X, \mathbb{C})+\cdots+h^{0}(X, \mathbb{C}), & \text { if } j \text { is even, } \tag{3.4}\\ h^{j}(X, \mathbb{C})+h^{j-2}(X, \mathbb{C})+\cdots+h^{1}(X, \mathbb{C}), & \text { if } j \text { is odd }\end{cases}
$$

for every integer j with $0 \leq j \leq i$ and $0 \leq j \leq 2 n-2-i$.
(A) Assume that i is even. We set $i=2 l$. Then by (3.4) we have

$$
\begin{align*}
(n & -2 l-1) c_{n}(X)-h^{2 n-2-2 l}(W, \mathbb{C})-2\left(\sum_{j=0}^{2 n-2-2 l-1}(-1)^{j} h^{j}(W, \mathbb{C})\right) \tag{3.5}\\
= & (n-2 l-1) c_{n}(X)-\sum_{k=0}^{n-l-1} h^{2 k}(X, \mathbb{C}) \\
& -2\left(\sum_{k=0}^{n-l-2}(n-k-l-1) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n-l-1}(n-k-l) h^{2 k-1}(X, \mathbb{C})\right) \\
= & (n-2 l-1) c_{n}(X) \\
& -\sum_{k=0}^{n-l-1}(2 n-2 k-2 l-1) h^{2 k}(X, \mathbb{C})+\sum_{k=1}^{n-l-1}(2 n-2 k-2 l) h^{2 k-1}(X, \mathbb{C}) \\
= & (n-2 l) c_{n}(X) \\
& -\left(\sum_{k=0}^{n-l-1}(2 n-2 k-2 l) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n-l}(2 n-2 k-2 l+1) h^{2 k-1}(X, \mathbb{C})\right) \\
& -h^{2 n-2 l}(X, \mathbb{C})+h^{2 n-2 l+1}(X, \mathbb{C})+\cdots+(-1) h^{2 n}(X, \mathbb{C}) \\
= & (n-2 l) c_{n}(X) \\
& -\left(\sum_{k=0}^{n}(2 n-2 k-2 l) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n}(2 n-2 k-2 l+1) h^{2 k-1}(X, \mathbb{C})\right) \\
& +\sum_{k=n-l}^{n}(2 n-2 k-2 l) h^{2 k}(X, \mathbb{C})-\sum_{k=n-l+1}^{n}(2 n-2 k-2 l+1) h^{2 k-1}(X, \mathbb{C}) \\
& -\left(\sum_{k=n-l}^{n} h^{2 k}(X, \mathbb{C})-\sum_{k=n-l+1}^{n} h^{2 k-1}(X, \mathbb{C})\right) \\
= & \sum_{k=0}^{n}(2 k-n) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n}(2 k-n-1) h^{2 k-1}(X, \mathbb{C}) \\
& +\sum_{k=n-l}^{n}(2 n-2 k-2 l-1) h^{2 k}(X, \mathbb{C})-\sum_{k=n-l+1}^{n}(2 n-2 k-2 l) h^{2 k-1}(X, \mathbb{C}) .
\end{align*}
$$

Hence by (3.5) and using the Poincaré duality we get

$$
\begin{aligned}
& (n-2 l-1) c_{n}(X)-2\left(\sum_{j=0}^{2 n-2-2 l-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{2 n-2-2 l}(W, \mathbb{C}) \\
& =\sum_{k=n-l}^{n}(2 n-2 k-2 l-1) h^{2 k}(X, \mathbb{C})-\sum_{k=n-l+1}^{n}(2 n-2 k-2 l) h^{2 k-1}(X, \mathbb{C}) \\
& =\sum_{j=0}^{l}(-2 l+2 j-1) h^{2 n-2 j}(X, \mathbb{C})-\sum_{j=1}^{l}(2 j-2 l-2) h^{2 n-2 j+1}(X, \mathbb{C}) \\
& =-\sum_{j=0}^{l}(2 l-2 j+1) h^{2 j}(X, \mathbb{C})+\sum_{j=1}^{l}(2 l-2 j+2) h^{2 j-1}(X, \mathbb{C})
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& (-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C}) \\
& =-2 \sum_{j=0}^{2 l-1}(-1)^{j} h^{j}(W, \mathbb{C})-h^{2 l}(W, \mathbb{C}) \\
& =-2\left(\sum_{k=0}^{l-1} h^{2 k}(W, \mathbb{C})-\sum_{k=1}^{l} h^{2 k-1}(W, \mathbb{C})\right)-h^{2 l}(W, \mathbb{C}) \\
& =-2\left(\sum_{k=0}^{l-1}(l-k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{l}(l+1-k) h^{2 k-1}(X, \mathbb{C})\right)-\sum_{k=0}^{l} h^{2 k}(X, \mathbb{C}) \\
& =-\sum_{k=0}^{l}(2 l-2 k+1) h^{2 k}(X, \mathbb{C})+\sum_{k=1}^{l}(2 l-2 k+2) h^{2 k-1}(X, \mathbb{C}) .
\end{aligned}
$$

Hence the assertion holds if i is even.
(B) Assume that i is odd. We set $i=2 l+1$. Then by (3.4) we get

$$
\begin{aligned}
& (-1)^{2 n-2-i}\left((n-i-1) c_{n}(X)-2 \sum_{j=0}^{2 n-2-i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{2 n-2-i}(W, \mathbb{C}) \\
& =-(n-2 l-2) c_{n}(X)+2 \sum_{j=0}^{2 n-2 l-4}(-1)^{j} h^{j}(W, \mathbb{C})-h^{2 n-2 l-3}(W, \mathbb{C}) \\
& =-(n-2 l-2) c_{n}(X)-\sum_{k=1}^{n-l-1} h^{2 k-1}(X, \mathbb{C}) \\
& +2\left(\sum_{k=0}^{n-l-2}(n-k-l-1) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n-l-2}(n-k-l-1) h^{2 k-1}(X, \mathbb{C})\right) \\
& =-(n-2 l-2) c_{n}(X)+\sum_{k=0}^{n-l-2}(2 n-2 k-2 l-2) h^{2 k}(X, \mathbb{C}) \\
& -\sum_{k=1}^{n-l-2}(2 n-2 k-2 l-1) h^{2 k-1}(X, \mathbb{C})-h^{2 n-2 l-3}(X, \mathbb{C}) \\
& =-(n-2 l-1) c_{n}(X)+\sum_{k=0}^{n-l-2}(2 n-2 k-2 l-1) h^{2 k}(X, \mathbb{C}) \\
& -\sum_{k=1}^{n-l-2}(2 n-2 k-2 l) h^{2 k-1}(X, \mathbb{C})+\sum_{k=n-l-1}^{n} h^{2 k}(X, \mathbb{C}) \\
& -\sum_{k=n-l-1}^{n} h^{2 k-1}(X, \mathbb{C})-h^{2 n-2 l-3}(X, \mathbb{C}) \\
& =-(n-2 l-1) c_{n}(X)+\sum_{k=0}^{n}(2 n-2 k-2 l-1) h^{2 k}(X, \mathbb{C}) \\
& -\sum_{k=1}^{n}(2 n-2 k-2 l) h^{2 k-1}(X, \mathbb{C})-\sum_{k=n-l-1}^{n}(2 n-2 k-2 l-2) h^{2 k}(X, \mathbb{C}) \\
& +\sum_{k=n-l-1}^{n}(2 n-2 k-2 l-1) h^{2 k-1}(X, \mathbb{C})-h^{2 n-2 l-3}(X, \mathbb{C}) \\
& =\sum_{k=0}^{n}(n-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n}(n-2 k+1) h^{2 k-1}(X, \mathbb{C}) \\
& -\sum_{k=n-l-1}^{n}(2 n-2 k-2 l-2) h^{2 k}(X, \mathbb{C}) \\
& +\sum_{k=n-l-1}^{n}(2 n-2 k-2 l-1) h^{2 k-1}(X, \mathbb{C})-h^{2 n-2 l-3}(X, \mathbb{C}) \text {. }
\end{aligned}
$$

By [8, Claim 3.1], we see that

$$
\sum_{k=0}^{n}(n-2 k) h^{2 k}(X, \mathbb{C})=0
$$

and

$$
\sum_{k=1}^{n}(n-2 k+1) h^{2 k-1}(X, \mathbb{C})=0
$$

Hence by an argument similar to that of the case where i is even, we get

$$
\begin{aligned}
& \sum_{k=0}^{n}(n-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{n}(n-2 k+1) h^{2 k-1}(X, \mathbb{C}) \\
&-\sum_{k=n-l-1}^{n}(2 n-2 k-2 l-2) h^{2 k}(X, \mathbb{C}) \\
&+\sum_{k=n-l-1}^{n}(2 n-2 k-2 l-1) h^{2 k-1}(X, \mathbb{C})-h^{2 n-2 l-3}(X, \mathbb{C}) \\
&= \sum_{k=n-l-1}^{n}(2 k+2 l-2 n+2) h^{2 k}(X, \mathbb{C}) \\
&-\sum_{k=n-l-1}^{n}(2 k+2 l-2 n+1) h^{2 k-1}(X, \mathbb{C})-h^{2 n-2 l-3}(X, \mathbb{C}) \\
&= \sum_{k=n-l-1}^{n}(2 k+2 l-2 n+2) h^{2 k}(X, \mathbb{C}) \\
&-\sum_{k=n-l}^{n}(2 k+2 l-2 n+1) h^{2 k-1}(X, \mathbb{C}) \\
&= \sum_{k=n-l-1}^{n}(2 k+2 l-2 n+2) h^{2 n-2 k}(X, \mathbb{C}) \\
&-\sum_{k=n-l}^{n}(2 k+2 l-2 n+1) h^{2 n-2 k+1}(X, \mathbb{C}) \\
&= \sum_{k=n-l}^{n}(2 k+2 l-2 n+2) h^{2 n-2 k}(X, \mathbb{C}) \\
&-\sum_{k=n-l}^{n}(2 k+2 l-2 n+1) h^{2 n-2 k+1}(X, \mathbb{C}) \\
&= \sum_{k=0}^{l}(2 l-2 k+2) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{l+1}(2 l-2 k+3) h^{2 k-1}(X, \mathbb{C}) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& (-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C}) \\
& =2 \sum_{j=0}^{2 l}(-1)^{j} h^{j}(W, \mathbb{C})-h^{2 l+1}(W, \mathbb{C}) \\
& =2\left(\sum_{k=0}^{l}(l-k+1) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{l}(l+1-k) h^{2 k-1}(X, \mathbb{C})\right) \\
& \quad-\sum_{k=1}^{l+1} h^{2 k-1}(X, \mathbb{C}) \\
& =\sum_{k=0}^{l}(2 l-2 k+2) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{l+1}(2 l-2 k+3) h^{2 k-1}(X, \mathbb{C}) .
\end{aligned}
$$

Hence the assertion holds if i is odd.
In any case we obtain the assertion of Lemma 3.4.

Here we note that by [9, Claim 3.1] we have

$$
\begin{align*}
& e_{2 n-2-i}(W, H) \tag{3.6}\\
& =\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{i-t}\binom{n-t-2}{i-t-l} c_{n-t-l}(\mathcal{E}) c_{t}(X) s_{l}(\mathcal{E})+(n-i-1) c_{n}(X)
\end{align*}
$$

Hence by (3.1), Lemma 3.4 and (3.6) we have

$$
\begin{aligned}
& b_{2 n-2-i}(W, H)-h^{2 n-2-i}(W, \mathbb{C}) \\
&=(-1)^{2 n-2-i}\left(e_{2 n-2-i}(W, L)-2 \sum_{j=0}^{2 n-2-i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right) \\
&-h^{2 n-2-i}(W, \mathbb{C}) \\
&=(-1)^{2 n-2-i}\left(\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{i-t}\binom{n-t-2}{i-t-l} c_{n-t-l}(\mathcal{E}) c_{t}(X) s_{l}(\mathcal{E})\right) \\
&+(-1)^{2 n-2-i}(n-i-1) c_{n}(X) \\
&-2(-1)^{2 n-2-i}\left(\sum_{j=0}^{2 n-2-i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{2 n-2-i}(W, \mathbb{C}) \\
&=(-1)^{i}\left(\sum_{t=0}^{i} \sum_{l=0}^{i-t}(-1)^{i-t}\binom{n-t-2}{i-t-l} c_{n-t-l}(\mathcal{E}) c_{t}(X) s_{l}(\mathcal{E})\right) \\
&+(-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C}) \\
&=(-1)^{i}\left(E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{n-i}(\mathcal{E}), \ldots, c_{n}(\mathcal{E})\right)-2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right) \\
&-h^{i}(W, \mathbb{C}) .
\end{aligned}
$$

Therefore we get the assertion of Theorem 3.3.

Theorem 3.5. Let X, \mathcal{E}, W, H, r and n be as in Notation 2.1. Assume that $n \geq 2$ and $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$ for every integer i with $0 \leq i \leq n$. Then the following holds.

$$
\begin{aligned}
& b_{2 n-2-i}(W, H)-h^{2 n-2-i}(W, \mathbb{C}) \\
& =(-1)^{i} E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{n-i}(\mathcal{E}), \ldots, c_{n}(\mathcal{E})\right) \\
& \quad+(-1)^{i+1}\left(\sum_{k=0}^{\left\lfloor\frac{i-1}{2}\right\rfloor}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})\right) \\
& \quad-h^{i}(X, \mathbb{C}) .
\end{aligned}
$$

Proof. If $i=2 l$, then by (3.4) in the proof of Lemma 3.4 we get

$$
\begin{aligned}
& (-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C}) \\
& =-2 \sum_{k=0}^{l-1}(l-k) h^{2 k}(X, \mathbb{C})+2 \sum_{k=1}^{l}(l+1-k) h^{2 k-1}(X, \mathbb{C})-\sum_{k=0}^{l} h^{2 k}(X, \mathbb{C}) \\
& =-\sum_{k=0}^{l-1}(2 l-2 k+1) h^{2 k}(X, \mathbb{C})+\sum_{k=1}^{l}(2 l+2-2 k) h^{2 k-1}(X, \mathbb{C})-h^{2 l}(X, \mathbb{C}) \\
& =-\sum_{k=0}^{\left\lfloor\frac{i}{2}\right\rfloor-1}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})-h^{i}(X, \mathbb{C}) .
\end{aligned}
$$

If $i=2 l+1$, then

$$
\begin{aligned}
& (-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C}) \\
& =2 \sum_{k=0}^{l}(l+1-k) h^{2 k}(X, \mathbb{C})-2 \sum_{k=1}^{l}(l+1-k) h^{2 k-1}(X, \mathbb{C}) \\
& \quad-\sum_{k=1}^{l+1} h^{2 k-1}(X, \mathbb{C}) \\
& =\sum_{k=0}^{l}(2 l-2 k+2) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{l}(2 l+3-2 k) h^{2 k-1}(X, \mathbb{C})-h^{2 l+1}(X, \mathbb{C}) \\
& =\sum_{k=0}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})-h^{i}(X, \mathbb{C}) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& (-1)^{i+1}\left(2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right)-h^{i}(W, \mathbb{C}) \\
& =(-1)^{i+1}\left(\sum_{k=0}^{\left\lfloor\frac{i-1}{2}\right\rfloor}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})\right) \\
& \quad-h^{i}(X, \mathbb{C}) .
\end{aligned}
$$

(Here we note that if i is odd (resp. even), then $\left\lfloor\frac{i}{2}\right\rfloor=\left\lfloor\frac{i-1}{2}\right\rfloor$ (resp. $\left\lfloor\frac{i}{2}\right\rfloor-1=$ $\left.\left\lfloor\frac{i-1}{2}\right\rfloor\right)$.

So by Theorem 3.3 we get the assertion.

Definition 3.6. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then we define the following invariant $B^{i}(X, \mathcal{E})$ of (X, \mathcal{E}).

$$
\begin{aligned}
B^{i}(X, \mathcal{E}) & :=(-1)^{i} E_{i}\left(s_{0}(\mathcal{E}), \ldots, s_{i}(\mathcal{E}) ; c_{n-i}(\mathcal{E}), \ldots, c_{n}(\mathcal{E})\right) \\
& -(-1)^{i}\left(\sum_{k=0}^{\left\lfloor\frac{i-1}{2}\right\rfloor}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})\right) .
\end{aligned}
$$

We can prove the following proposition by Theorem 3.5 and Definition 3.6.
Proposition 3.7. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $b_{2 n-2-i}(W, H)-h^{2 n-2-i}(W, \mathbb{C})=$ $B^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C})$ holds.

Moreover we get the following result.
Proposition 3.8. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume that \mathcal{E} is spanned by its global sections and $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $B^{i}(X, \mathcal{E}) \geq h^{i}(X, \mathbb{C})$ holds.

Proof. Let W and H be as in Notation 2.1. By Proposition 3.7 we have

$$
b_{2 n-2-i}(W, H)-h^{2 n-2-i}(W, \mathbb{C})=B^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C})
$$

We note that $b_{2 n-2-i}(W, H) \geq h^{2 n-2-i}(W, \mathbb{C})$ since \mathcal{E} is spanned by its global sections. Hence we get the assertion.

Remark 3.9. (i) If $i=0$, then we have $B^{0}(X, \mathcal{E})=c_{n}(\mathcal{E})$. Since \mathcal{E} is ample with $\operatorname{rank}(\mathcal{E}) \geq n$, we see that $B^{0}(X, \mathcal{E}) \geq 1=h^{0}(X, \mathbb{C})$.
(ii) If $i=1$, then $B^{1}(X, \mathcal{E})=2 v(X, \mathcal{E})$, where $v(X, \mathcal{E})$ denotes the invariant in [8, Definition 4.1]. (Here we note that $\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})=0$ if $i=1$.) For details on the invariant $v(X, \mathcal{E})$, see [8].

Considering Proposition 3.8, we can propose the following conjeture.
Conjecture 3.10. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $B^{i}(X, \mathcal{E}) \geq h^{i}(X, \mathbb{C})$ holds.

Definition 3.11. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$.

Assume $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then we define the following invariant $\widehat{B}^{i}(X, \mathcal{E})$ of (X, \mathcal{E}).

$$
\begin{aligned}
\widehat{B}^{i}(X, \mathcal{E}) & :=(-1)^{i} E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{n-i}(\mathcal{E}), \ldots, s_{n}(\mathcal{E})\right) \\
& -(-1)^{i}\left(\sum_{k=0}^{\left\lfloor\frac{i-1}{2}\right\rfloor}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})\right) .
\end{aligned}
$$

Proposition 3.12. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $b_{i}(W, H)-h^{i}(W, \mathbb{C})=$ $\widehat{B}^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C})$ holds.

Proof. First by (3.3) in Remark 3.2 we have

$$
\begin{aligned}
& b_{i}(W, H)-h^{i}(W, \mathbb{C}) \\
& =(-1)^{i}\left(E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{n-i}(\mathcal{E}), \ldots, s_{n}(\mathcal{E})\right)-2 \sum_{j=0}^{i-1}(-1)^{j} h^{j}(W, \mathbb{C})\right) \\
& \quad-h^{i}(W, \mathbb{C}) .
\end{aligned}
$$

On the other hand, by the same argument as the proof of Theorem 3.5, we have

$$
\begin{aligned}
& b_{i}(W, H)-h^{i}(W, \mathbb{C}) \\
& =(-1)^{i} E_{i}\left(c_{0}(\mathcal{E}), \ldots, c_{i}(\mathcal{E}) ; s_{n-i}(\mathcal{E}), \ldots, s_{n}(\mathcal{E})\right) \\
& \quad+(-1)^{i+1}\left(\sum_{k=0}^{\left\lfloor\frac{i-1}{2}\right\rfloor}(i+1-2 k) h^{2 k}(X, \mathbb{C})-\sum_{k=1}^{\left\lfloor\frac{i}{2}\right\rfloor}(i+2-2 k) h^{2 k-1}(X, \mathbb{C})\right) \\
& \quad-h^{i}(X, \mathbb{C})
\end{aligned}
$$

So we get the assertion by Definition 3.11.
Remark 3.13. If $i=0$, then we have $\widehat{B}^{0}(X, \mathcal{E})=s_{n}(\mathcal{E})$. Since \mathcal{E} is ample with $\operatorname{rank}(\mathcal{E}) \geq n$, we see $\widehat{B}^{0}(X, \mathcal{E}) \geq 1=h^{0}(X, \mathbb{C})$.

Here we consider the case of $i=1$. If \mathcal{E} is a line bundle L, then $n=2$ and $\widehat{B}^{1}(X, \mathcal{E})=2+\left(K_{X}+L\right) L=2 g(X, L)$. Therefore $\widehat{B}^{1}(X, \mathcal{E}) \geq 0$ and the classification of (X, \mathcal{E}) with $\widehat{B}^{1}(X, \mathcal{E}) \leq 4$ is known (see [18] and [2]). So we assume that $r \geq 2$.

Theorem 3.14. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Assume that $r \geq \max \{n-1,2\}$. Then $\widehat{B}^{1}(X, \mathcal{E}) \geq 0$ holds.

Proof. Let W and H be as in Notation 2.1. By Proposition 3.12 we have

$$
\widehat{B}^{1}(X, \mathcal{E})-h^{1}(X, \mathbb{C})=b_{1}(W, H)-h^{1}(W, \mathbb{C})
$$

On the other hand, we see that $h^{1}(X, \mathbb{C})=2 q(X)=2 q(W)=h^{1}(W, \mathbb{C})$. So we get

$$
\begin{equation*}
\widehat{B}^{1}(X, \mathcal{E})=b_{1}(W, H) \tag{3.7}
\end{equation*}
$$

Since by Remark 2.10 (ii)

$$
\begin{equation*}
b_{1}(W, H)=2 g(W, H) \geq 0 \tag{3.8}
\end{equation*}
$$

we have $\widehat{B}^{1}(X, \mathcal{E}) \geq 0$ by (3.7) and (3.8).
Remark 3.15. Since $\widehat{B}^{1}(X, \mathcal{E})=2 g(W, H)$, we see from [4, Theorems (3.2), (3.3) and (3.4)] that we can get a classification of (X, \mathcal{E}) with $\widehat{B}^{1}(X, \mathcal{E}) \leq 4$. For details, see $[4$, Theorems (3.2), (3.3) and (3.4)].

Here we propose the following conjecture which is the $\widehat{B}^{i}(X, \mathcal{E})$'s version of Conjecture 3.10.

Conjecture 3.16. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $\widehat{B}^{i}(X, \mathcal{E}) \geq h^{i}(X, \mathbb{C})$ holds.
Proposition 3.17. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X such that \mathcal{E} is generated by its global sections. Let i be an integer with $0 \leq i \leq n$. Assume that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $\widehat{B}^{i}(X, \mathcal{E}) \geq h^{i}(X, \mathbb{C})$ holds.

Proof. Let W and H be as in Notation 2.1. By Proposition 3.12 we have $b_{i}(W, H)-$ $h^{i}(W, \mathbb{C})=\widehat{B}^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C})$. Since \mathcal{E} is spanned by its global sections, we have $b_{i}(W, H) \geq h^{i}(W, \mathbb{C})$. So we get the assertion.
Proposition 3.18. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Let i be an integer with $0 \leq i \leq n$. Assume that $r \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then $B^{i}(X, \mathcal{E})$ and $\widehat{B}^{i}(X, \mathcal{E})$ are even for every odd integer i.

Proof. Assume that i is odd. By Proposition 3.7 we have

$$
b_{2 n-2-i}(W, H)-b_{2 n-2-i}(W, \mathbb{C})=B^{i}(X, \mathcal{E})-h^{i}(X, \mathbb{C})
$$

If i is odd, then $b_{2 n-2-i}(W, H)$ (resp. $b_{2 n-2-i}(W, \mathbb{C})$ and $\left.h^{i}(X, \mathbb{C})\right)$ is even by [7, Theorem 3.1 (3.1.2)] (resp. the Hodge theory). Hence $B^{i}(X, \mathcal{E})$ is even. On the other hand, By Proposition 3.12 we have $b_{i}(W, H)-b_{i}(W, \mathbb{C})=\widehat{B}^{i}(X, \mathcal{E})-$ $h^{i}(X, \mathbb{C})$. If i is odd, then $b_{i}(W, H)\left(\right.$ resp. $b_{i}(W, \mathbb{C})$ and $\left.h^{i}(X, \mathbb{C})\right)$ is even by [7, Theorem 3.1 (3.1.2)] (resp. the Hodge theory). Hence $\widehat{B}^{i}(X, \mathcal{E})$ is also even.

By Propositions 3.7 and 3.12 we get the following.
Proposition 3.19. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Assume that $r \geq \frac{n}{2}$. Then $B^{n-1}(X, \mathcal{E})=\widehat{B}^{n-1}(X, \mathcal{E})$.

Similarily we can get the following relation between $B^{n}(X, \mathcal{E})$ and $\widehat{B}^{n-2}(X, \mathcal{E})$ by Propositions 3.7 and 3.12 .
Theorem 3.20. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle of rank r on X. Assume $r \geq \frac{n+1}{2}$. Then

$$
B^{n}(X, \mathcal{E})-h^{n}(X, \mathbb{C})=\widehat{B}^{n-2}(X, \mathcal{E})-h^{n-2}(X, \mathbb{C})
$$

holds.

4 On $B^{2}(X, \mathcal{E})$ and $\widehat{B}^{2}(X, \mathcal{E})$ for $\operatorname{dim} X=2$ and 3

In this section we study $B^{2}(X, \mathcal{E})$ and $\widehat{B}^{2}(X, \mathcal{E})$ for $\operatorname{dim} X=2$ and 3 .
First we calculate $B^{2}(X, \mathcal{E})$ and $\widehat{B}^{2}(X, \mathcal{E})$ in general. We have

$$
\begin{aligned}
& E_{2}\left(s_{0}(\mathcal{E}), s_{1}(\mathcal{E}), s_{2}(\mathcal{E}) ; c_{n-2}(\mathcal{E}), c_{n-1}(\mathcal{E}), c_{n}(\mathcal{E})\right) \\
&= \sum_{\substack{0 \leq k, t \\
0 \leq k+t \leq 2}}(-1)^{2-t}\binom{n-t-2}{2-t-k} s_{k}(\mathcal{E}) c_{n-k-t}(\mathcal{E}) c_{t}(X) \\
&=\binom{n-2}{2} c_{n}(\mathcal{E})-(n-3) c_{1}(X) c_{n-1}(\mathcal{E})+(n-2) s_{1}(\mathcal{E}) c_{n-1}(\mathcal{E}) \\
&+c_{2}(X) c_{n-2}(\mathcal{E})-s_{1}(\mathcal{E}) c_{n-2}(\mathcal{E}) c_{1}(X)+s_{2}(\mathcal{E}) c_{n-2}(\mathcal{E}), \\
& E_{2}\left(c_{0}(\mathcal{E}), c_{1}(\mathcal{E}), c_{2}(\mathcal{E}) ; s_{n-2}(\mathcal{E}), s_{n-1}(\mathcal{E}), s_{n}(\mathcal{E})\right) \\
&= \sum_{0 \leq k, t}(-1)^{2-t}\binom{n-t-2}{2-t-k} c_{k}(\mathcal{E}) s_{n-k-t}(\mathcal{E}) c_{t}(X) \\
&=\binom{n-2}{0 \leq \bar{k}+t \leq 2} s_{n}(\mathcal{E})-(n-3) c_{1}(X) s_{n-1}(\mathcal{E})+(n-2) c_{1}(\mathcal{E}) s_{n-1}(\mathcal{E}) \\
&+c_{2}(X) s_{n-2}(\mathcal{E})-c_{1}(\mathcal{E}) s_{n-2}(\mathcal{E}) c_{1}(X)+c_{2}(\mathcal{E}) s_{n-2}(\mathcal{E}) .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& \sum_{k=0}^{\left\lfloor\frac{2-1}{2}\right\rfloor}(2+1-2 k) h^{2 k}(X, \mathbb{C})=3 h^{0}(X, \mathbb{C})=3 \\
& \sum_{k=1}^{\left\lfloor\frac{2}{2}\right\rfloor}(2+2-2 k) h^{2 k-1}(X, \mathbb{C})=2 h^{1}(X, \mathbb{C})
\end{aligned}
$$

So we get

$$
\begin{align*}
B^{2}(X, \mathcal{E})= & \binom{n-2}{2} c_{n}(\mathcal{E})-(n-3) c_{1}(X) c_{n-1}(\mathcal{E}) \tag{4.1}\\
& +(n-2) s_{1}(\mathcal{E}) c_{n-1}(\mathcal{E})+c_{2}(X) c_{n-2}(\mathcal{E}) \\
& -s_{1}(\mathcal{E}) c_{n-2}(\mathcal{E}) c_{1}(X)+s_{2}(\mathcal{E}) c_{n-2}(\mathcal{E}) \\
& -3+2 h^{1}(X, \mathbb{C}) \\
\widehat{B}^{2}(X, \mathcal{E})= & \binom{n-2}{2} s_{n}(\mathcal{E})-(n-3) c_{1}(X) s_{n-1}(\mathcal{E}) \tag{4.2}\\
& +(n-2) c_{1}(\mathcal{E}) s_{n-1}(\mathcal{E})+c_{2}(X) s_{n-2}(\mathcal{E}) \\
& -c_{1}(\mathcal{E}) s_{n-2}(\mathcal{E}) c_{1}(X)+c_{2}(\mathcal{E}) s_{n-2}(\mathcal{E}) \\
& -3+2 h^{1}(X, \mathbb{C})
\end{align*}
$$

Proposition 4.1. If $n=2$ and $\operatorname{rank}(\mathcal{E}) \geq 2$, then $B^{2}(X, \mathcal{E}) \geq h^{2}(X, \mathbb{C})$ and $\widehat{B}^{2}(X, \mathcal{E}) \geq h^{2}(X, \mathbb{C})$.

Proof. If $n=2$, then by (4.1) and (4.2) we have

$$
\begin{aligned}
B^{2}(X, \mathcal{E}) & =s_{2}(\mathcal{E})-1+h^{2}(X, \mathbb{C}) \\
\widehat{B}^{2}(X, \mathcal{E}) & =c_{2}(\mathcal{E})-1+h^{2}(X, \mathbb{C})
\end{aligned}
$$

Since \mathcal{E} is ample, we have $s_{2}(\mathcal{E})>0$ and $c_{2}(\mathcal{E})>0$ hold. Hence we get the assertion.

Next we consider the case $n=3$. In particular we treat the case of $\kappa(X) \geq 0$.
Theorem 4.2. Let X be a smooth projective variety of dimension 3 and let \mathcal{E} be an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq 2$. If $\kappa(X) \geq 0$, then $B^{2}(X, \mathcal{E}) \geq$ $2 h^{1}(X, \mathbb{C})$.
Proof. First we note that $\operatorname{rank}(\mathcal{E}) \geq 2 \geq \max \left\{3-\frac{2+1}{2}, \frac{2+1}{2}\right\}$ and by $(4.1) B^{2}(X, \mathcal{E})$ is the following in this situation.

$$
\begin{equation*}
B^{2}(X, \mathcal{E})=c_{2}(X) c_{1}(\mathcal{E})+\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2}-3+2 h^{1}(X, \mathbb{C}) \tag{4.3}
\end{equation*}
$$

Here we note that $e_{2}\left(X, c_{1}(\mathcal{E})\right)=c_{2}(X) c_{1}(\mathcal{E})+\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2}$ by Definition 2.9 (i). So we find

$$
\begin{equation*}
B^{2}(X, \mathcal{E})=e_{2}\left(X, c_{1}(\mathcal{E})\right)-3+2 h^{1}(X, \mathbb{C}) \tag{4.4}
\end{equation*}
$$

Since $\kappa(X) \geq 0$, we see from [22, Theorems 1,2 and 3$]$ that $K_{X}+c_{1}(\mathcal{E})$ is nef. Hence by [14, 2.11 Corollary], we see that

$$
\begin{equation*}
c_{2}(X) c_{1}(\mathcal{E}) \geq-\frac{2}{3} K_{X} c_{1}(\mathcal{E})-\frac{1}{3} c_{1}(\mathcal{E})^{3} \tag{4.5}
\end{equation*}
$$

Hence by (4.3) and (4.5) we have

$$
\begin{aligned}
B^{2}(X, \mathcal{E}) & =c_{2}(X) c_{1}(\mathcal{E})+\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2}-3+2 h^{1}(X, \mathbb{C}) \\
& \geq \frac{1}{3}\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2}+\frac{1}{3} c_{1}(\mathcal{E})^{3}-3+2 h^{1}(X, \mathbb{C})
\end{aligned}
$$

Here we note the following.
Claim 4.3. $c_{1}(\mathcal{E})^{3} \geq 2$.
Proof. Since \mathcal{E} is ample, we have $c_{1}(\mathcal{E})^{3}>c_{1}(\mathcal{E}) c_{2}(\mathcal{E})>0$ by [11, Example 12.1.7].
(i) If $\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2} \geq 6$, then

$$
B^{2}(X, \mathcal{E}) \geq\left\lceil\frac{1}{3} c_{1}(\mathcal{E})^{3}-1+2 h^{1}(X, \mathbb{C})\right\rceil \geq 2 h^{1}(X, \mathbb{C})
$$

(ii) If $\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2} \leq 3$, then by [3, Proposition 2.5.1] we have $\left(K_{X}+\right.$ $\left.c_{1}(\mathcal{E})\right)^{2} c_{1}(\mathcal{E}) \leq 9$. Here we note that since $\kappa(X) \geq 0$ we have $\chi_{2}^{H}\left(X, c_{1}(\mathcal{E})\right)>0$ by [6, Theorem 3.3.1]. Hence by [7, Theorem 4.3] we have

$$
\begin{aligned}
e_{2}\left(X, c_{1}(\mathcal{E})\right) & =12 \chi_{2}^{H}\left(X, c_{1}(\mathcal{E})\right)-\left(K_{X}+c_{1}(\mathcal{E})\right)^{2} c_{1}(\mathcal{E}) \\
& \geq 12-9=3
\end{aligned}
$$

So by (4.4) we have

$$
B^{2}(X, \mathcal{E}) \geq 2 h^{1}(X, \mathbb{C})
$$

(iii) Assume that $\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2}=4$. Then by [3, Proposition 2.5.1] and Claim 4.3 we have $\left(K_{X}+c_{1}(\mathcal{E})\right)^{2} c_{1}(\mathcal{E}) \leq 8$, and by the same argument as the case (ii) we have

$$
\begin{aligned}
e_{2}\left(X, c_{1}(\mathcal{E})\right) & =12 \chi_{2}^{H}\left(X, c_{1}(\mathcal{E})\right)-\left(K_{X}+c_{1}(\mathcal{E})\right)^{2} c_{1}(\mathcal{E}) \\
& \geq 12-8=4
\end{aligned}
$$

So we have

$$
B^{2}(X, \mathcal{E}) \geq 1+2 h^{1}(X, \mathbb{C})
$$

(iv) Finally we assume that $\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})^{2}=5$. If $c_{1}(\mathcal{E})^{3} \geq 3$, then we see from [3, Proposition 2.5.1] that $\left(K_{X}+c_{1}(\mathcal{E})\right)^{2} c_{1}(\mathcal{E}) \leq 8$, and by the same argument as the case (iii) we have

$$
B^{2}(X, \mathcal{E}) \geq 1+2 h^{1}(X, \mathbb{C})
$$

So we may assume that $c_{1}(\mathcal{E})^{3}=1$ or 2 . But $c_{1}(\mathcal{E})^{3}=2$ is impossible because of [3, Lemma 1.1.11]. Hence we get $c_{1}(\mathcal{E})^{3}=1$. But this case does not occur by Claim 4.3.

These complete the proof of Theorem 4.2.

By Proposition 3.19 we get the following.
Corollary 4.4. Let X be a smooth projective variety of dimension 3 and let \mathcal{E} be an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq 2$. If $\kappa(X) \geq 0$, then $\widehat{B}^{2}(X, \mathcal{E}) \geq$ $2 h^{1}(X, \mathbb{C})$.

5 A relation between $b_{i}\left(X, c_{1}(\mathcal{E})\right)$ and $B^{i}(X, \mathcal{E})+\widehat{B}^{i}(X, \mathcal{E})$

Definition 5.1. Let X be a smooth projective variety of dimension $n \geq 2$ and \mathcal{E} an ample vector bundle on X. Let i be an integer with $0 \leq i \leq n$. Assume that $r=\operatorname{rank}(\mathcal{E}) \geq \max \left\{n-\frac{i+1}{2}, \frac{i+1}{2}\right\}$. Then we set

$$
P_{i}(X, \mathcal{E}):=b_{i}\left(X, c_{1}(\mathcal{E})\right)-\left(B^{i}(X, \mathcal{E})+\widehat{B}^{i}(X, \mathcal{E})\right)
$$

5.1 The case $i=0$.

First we consider the case $i=0$.
Remark 5.2. Let X, \mathcal{E} and r be as in Definition 5.1. If $i=0$, then we have

$$
\begin{equation*}
P_{0}(X, \mathcal{E})=c_{1}(\mathcal{E})^{n}-c_{n}(\mathcal{E})-s_{n}(\mathcal{E}) \tag{5.1}
\end{equation*}
$$

Here we prove the following lemma which will be used in the next subsection.
Lemma 5.3. (i) For $p \geq 2$, we have

$$
c_{1}(\mathcal{E})^{p}-c_{p}(\mathcal{E})-s_{p}(\mathcal{E})=\sum_{\lambda \in \Lambda(p, r)} a_{\lambda} \Delta_{\lambda}(c)
$$

where a_{λ} is a non-negative integer for every $\lambda \in \Lambda(p, r)$.
(ii) We have

$$
\sum_{\lambda \in \Lambda(p, r)} a_{\lambda} \geq 2\left(2^{p-2}-1\right)
$$

Proof. (i) We prove (i) by induction on p.
(i.1) If $p=2$, then

$$
c_{1}(\mathcal{E})^{2}-c_{2}(\mathcal{E})-s_{2}(\mathcal{E})=0
$$

So we get the assertion for $p=2$.
(i.2) Assume that the assertion is true for the case of $p=k-1$. We consider the case where $p=k$. First we note that the following holds by Remark 2.7.

$$
\begin{equation*}
s_{k}(\mathcal{E})=c_{1}(\mathcal{E}) s_{k-1}(\mathcal{E})-\Delta_{\mu_{k-1}}(c) \tag{5.2}
\end{equation*}
$$

Here we put $\mu_{k}=(2, \underbrace{1, \ldots, 1}_{k-1})$ for every integer $k \geq 2$.

By [9, Proposition 3.1] and (5.2), we have

$$
\begin{equation*}
c_{k}(\mathcal{E})=s_{1}(\mathcal{E}) c_{k-1}(\mathcal{E})-\Delta_{\mu_{k-1}}(s) \tag{5.3}
\end{equation*}
$$

We see from [11, Lemma 14.5.1] that

$$
\begin{equation*}
\Delta_{\mu_{k-1}}(s)=\Delta_{(k-1,1)}(c) \tag{5.4}
\end{equation*}
$$

Noting that $s_{1}(\mathcal{E})=c_{1}(\mathcal{E})$, we get the following by (5.3) and (5.4).

$$
\begin{equation*}
c_{k}(\mathcal{E})=c_{1}(\mathcal{E}) c_{k-1}(\mathcal{E})-\Delta_{(k-1,1)}(c) \tag{5.5}
\end{equation*}
$$

Therefore by (5.2) and (5.5) we get

$$
\begin{align*}
& c_{1}(\mathcal{E})^{k}-c_{k}(\mathcal{E})-s_{k}(\mathcal{E}) \tag{5.6}\\
&= c_{1}(\mathcal{E})^{k}-c_{1}(\mathcal{E}) c_{k-1}(\mathcal{E})-c_{1}(\mathcal{E}) s_{k-1}(\mathcal{E}) \\
&+\Delta_{(k-1,1)}(c)+\Delta_{\mu_{k-1}}(c) \\
&= c_{1}(\mathcal{E})\left(c_{1}(\mathcal{E})^{k-1}-c_{k-1}(\mathcal{E})-s_{k-1}(\mathcal{E})\right) \\
&+\Delta_{(k-1,1)}(c)+\Delta_{\mu_{k-1}}(c) .
\end{align*}
$$

By assumption $c_{1}(\mathcal{E})^{k-1}-c_{k-1}(\mathcal{E})-s_{k-1}(\mathcal{E})$ can be written as $\sum_{\lambda \in \Lambda(k-1, r)} b_{\lambda} \Delta_{\lambda}(c)$, where $b_{\lambda} \geq 0$ for every $\lambda \in \Lambda(k-1, r)$. So by [11, Lemma 14.5.2] we see that $c_{1}(\mathcal{E})\left(c_{1}(\mathcal{E})^{k-1}-c_{k-1}(\mathcal{E})-s_{k-1}(\mathcal{E})\right)$ can be written as $\sum_{\lambda \in \Lambda(k, r)} c_{\lambda} \Delta_{\lambda}(c)$ too, where $c_{\lambda} \geq 0$ for every $\lambda \in \Lambda(k, r)$. Therefore we get the assertion for the case of $n=k$, and we get the assertion of Lemma 5.3 (i).
(ii) We prove (ii) by induction on n.
(ii.1) If $p=2$, then

$$
c_{1}(\mathcal{E})^{2}-c_{2}(\mathcal{E})-s_{2}(\mathcal{E})=0
$$

Hence $\sum_{\lambda \in \Lambda(2, r)} a_{\lambda}=0=2\left(2^{2-2}-1\right)$ and we get the assertion for $p=2$.
(ii.2) Assume that the assertion is true for the case of $p=k-1$. We consider the case where $p=k$. We set $c_{1}(\mathcal{E})^{k-1}-c_{k-1}(\mathcal{E})-s_{k-1}(\mathcal{E})=\sum_{\lambda \in \Lambda(k-1, r)} b_{\lambda} \Delta_{\lambda}(c)$. Then by assumption we have $\sum_{\lambda \in \Lambda(k-1, r)} b_{\lambda} \geq 2\left(2^{k-3}-1\right)$. Here we note that $c_{1}(\mathcal{E}) \Delta_{\lambda}(c)$ has at least two Schur polynomials (see [11, Lemma 14.5.2]). By (5.6) we get

$$
\sum_{\lambda \in \Lambda(k, r)} a_{\lambda} \geq 2+2\left(\sum_{\lambda \in \Lambda(k-1, r)} b_{\lambda}\right) \geq 2+2^{2}\left(2^{k-3}-1\right)=2\left(2^{k-2}-1\right)
$$

Therefore we get the assertion of Lemma 5.3 (ii).

By (5.1) in Remark 5.2 and Lemma 5.3 we get the following.
Theorem 5.4. Let X be a smooth projective variety of dimension $n \geq 2$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n$. Then

$$
P_{0}(X, \mathcal{E}) \geq 2\left(2^{n-2}-1\right)
$$

Corollary 5.5. Let X be a smooth projective variety of dimension $n \geq 2$ and let \mathcal{E} be an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n$. Then $c_{1}(\mathcal{E})^{n} \geq 2^{n-1}$.

Proof. By Remark 5.2, we have

$$
c_{1}(\mathcal{E})^{n}=c_{n}(\mathcal{E})+s_{n}(\mathcal{E})+P_{0}(X, \mathcal{E})
$$

Since \mathcal{E} is ample, we have $c_{n}(\mathcal{E}) \geq 1$ and $s_{n}(\mathcal{E}) \geq 1$. Therefore by Theorem 5.4 we get

$$
c_{1}(\mathcal{E})^{n} \geq 2+2\left(2^{n-2}-1\right)=2^{n-1}
$$

By (5.6) in Lemma 5.3, [11, Lemma 14.5.2] and Theorem 2.8, we get the following better lower bound for $P_{0}(X, L)$ with small n.

Proposition 5.6. Let X be a smooth projective variety of dimension $n \geq 2$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n$. Then the following hold.
(i) If $n=2$, then $P_{0}(X, \mathcal{E})=0$.
(ii) If $n=3$, then

$$
P_{0}(X, \mathcal{E})=2 \Delta_{(2,1)}(c) \geq 2
$$

(iii) If $n=4$, then

$$
P_{0}(X, \mathcal{E})=2 \Delta_{(2,2)}(c)+3 \Delta_{(3,1)}(c)+3 \Delta_{(2,1,1)}(c) \geq 8
$$

(iv) If $n=5$, then

$$
\begin{aligned}
P_{0}(X, \mathcal{E})= & 5 \Delta_{(3,2)}(c)+5 \Delta_{(2,2,1)}(c)+4 \Delta_{(4,1)}(c) \\
& +6 \Delta_{(3,1,1)}(c)+4 \Delta_{(2,1,1,1)}(c)
\end{aligned}
$$

$$
\geq 24
$$

(v) If $n=6$, then

$$
\begin{aligned}
P_{0}(X, \mathcal{E})= & 5 \Delta_{(3,3)}(c)+16 \Delta_{(3,2,1)}(c)+9 \Delta_{(4,2)}(c)+5 \Delta_{(2,2,2)}(c) \\
& +9 \Delta_{(2,2,1,1)}(c)+5 \Delta_{(5,1)}(c)+10 \Delta_{(4,1,1)}(c) \\
& +10 \Delta_{(3,1,1,1)}(c)+5 \Delta_{(2,1,1,1,1)}(c) \\
\geq & 74
\end{aligned}
$$

(vi) If $n=7$, then

$$
\begin{aligned}
P_{0}(X, \mathcal{E})= & 14 \Delta_{(4,3)}(c)+21 \Delta_{(3,3,1)}(c)+14 \Delta_{(5,2)}(c)+35 \Delta_{(4,2,1)}(c) \\
& +21 \Delta_{(3,2,2)}(c)+35 \Delta_{(3,2,1,1)}(c)+14 \Delta_{(2,2,2,1)}(c) \\
& +14 \Delta_{(2,2,1,1,1)}(c)+6 \Delta_{(6,1)}(c) \\
& +15 \Delta_{(5,1,1)}(c)+15 \Delta_{(3,1,1,1,1)}(c) \\
& +20 \Delta_{(4,1,1,1)}(c)+6 \Delta_{(2,1,1,1,1,1)}(c) \\
\geq & 230
\end{aligned}
$$

Corollary 5.7. Let X be a smooth projective variety of dimension $n \geq 2$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n$. Then the following hold.

$$
c_{1}(\mathcal{E})^{n} \geq \begin{cases}2, & \text { if } n=2, \\ 4, & \text { if } n=3, \\ 10, & \text { if } n=4, \\ 26, & \text { if } n=5, \\ 76, & \text { if } n=6, \\ 232, & \text { if } n=7\end{cases}
$$

5.2 The case $i=1$.

Next we consider the case $i=1$.
Remark 5.8. We have

$$
\begin{align*}
P_{1}(X, \mathcal{E})= & (n-2)\left(c_{1}(\mathcal{E})^{n}-c_{n}(\mathcal{E})-s_{n}(\mathcal{E})\right) \tag{5.7}\\
& +\left(K_{X}+c_{1}(\mathcal{E})\right)\left(c_{1}(\mathcal{E})^{n-1}-c_{n-1}(\mathcal{E})-s_{n-1}(\mathcal{E})\right)-2 .
\end{align*}
$$

Remark 5.9. If $n=2$, then $P_{1}(X, \mathcal{E})=-2-\left(K_{X}+c_{1}(\mathcal{E})\right) c_{1}(\mathcal{E})=-2 g\left(X, c_{1}(\mathcal{E})\right) \leq$ 0 . So we assume that $n \geq 3$ from now on.

Remark 5.10. Let X be a smooth projective variety of dimension $n \geq 3$ and \mathcal{E} an ample vector bundle on X. Assume that $K_{X}+c_{1}(\mathcal{E})$ is not nef and $\operatorname{rank}(\mathcal{E}) \geq n-1$. Then (X, \mathcal{E}) is one of the following types (see [22, Theorems 1, 2 and 3$]$).
(ii.1) $\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n}\right)$.
(ii.2) $\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n-1}\right)$.
(ii.3) $\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n-2} \oplus \mathcal{O}_{\mathbb{P}^{n}}(2)\right)$.
(ii.4) $\left(\mathbb{Q}^{n}, \mathcal{O}_{\mathbb{Q}^{n}}(1)^{\oplus n-1}\right)$.
(ii.5) $X \cong \mathbb{P}_{C}(\mathcal{F})$ for some vector bundle \mathcal{F} of rank n on a smooth projective curve C, and $\mathcal{E} \cong H(\mathcal{F}) \otimes \pi^{*} \mathcal{G}$, where $\pi: X \rightarrow C$ is the bundle projection and \mathcal{G} is a vector bundle on C with $\operatorname{rank}(\mathcal{G})=n-1$.

Then we calculate $P_{1}(X, \mathcal{E})$. In order to do that, first we calculate $s_{i}\left(L^{\oplus r}\right)$ for a line bundle L on X.

Lemma 5.11. Let X be a smooth projective variety of dimension $n \geq 3$ and let L be an ample line bundle on X. Then $s_{i}\left(L^{\oplus r}\right)=\binom{r-1+i}{i} L^{i}$ for every integer i with $0 \leq i \leq n$.
Proof. We set $\mathcal{E}:=L^{\oplus r}$. First we note that $c_{t}(\check{\mathcal{E}})=c_{t}\left((-L)^{\oplus r}\right)=(1-L t)^{r}=$ $\left(c_{t}(-L)\right)^{r}$. On the other hand, since $c_{t}(-L) s_{t}(L)=1$, we have $s_{t}(L)=1+L t+$ $L^{2} t^{2}+\cdots+L^{n} t^{n}$. Therefore

$$
\begin{aligned}
s_{t}(\mathcal{E})=s_{t}(L)^{r} & =\left(1+L t+L^{2} t^{2}+\cdots+L^{n} t^{n}\right)^{r} \\
& =\sum_{i=0}^{n}\binom{r-1+i}{i} L^{i} t^{i} .
\end{aligned}
$$

Therefore we get the assertion.
(ii.1) Assume that $(X, \mathcal{E}) \cong\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n}\right)$. Then by (5.7) in Remark 5.8, we have

$$
\begin{aligned}
P_{1}(X, \mathcal{E}) & =(n-2)\left(n^{n}-1-\binom{2 n-1}{n}\right)+(-1)\left(n^{n-1}-n-\binom{2 n-2}{n-1}\right)-2 \\
& =n^{n-1}\left(n^{2}-2 n-1\right)-(n-2)\binom{2 n-1}{n}+\binom{2 n-2}{n-1} \\
& =n^{n-1}\left(n^{2}-2 n-1\right)-\frac{2 n^{2}-6 n+2}{n}\binom{2 n-2}{n-1} .
\end{aligned}
$$

First we note the following claim.
Claim 5.12. Let x and y be a positive integer with $x<y$. Then the following holds.

$$
\frac{y+1}{x+1}<\frac{y}{x}
$$

By Claim 5.12, we have

$$
\begin{aligned}
\binom{2 n-2}{n-1} & =\frac{(2 n-2) \cdots n}{(n-1)!} \\
& =\frac{2 n-2}{n-1} \cdot \frac{2 n-3}{n-2} \cdots \frac{n+1}{2} \cdot \frac{n}{1} \\
& <n^{n-1}
\end{aligned}
$$

for $n \geq 3$.
On the other hand, we set $f(n):=n\left(n^{2}-2 n-1\right)-\left(2 n^{2}-6 n+2\right)$. Then

$$
\begin{aligned}
f(n) & =n^{3}-4 n^{2}+5 n-2 \\
& =n^{2}(n-4)+5 n-2 .
\end{aligned}
$$

If $n \geq 4$, then $f(n)>0$. Moreover $f(3)=4$. So we get $f(n)>0$ for $n \geq 3$. Therefore we have

$$
n^{n-1}\left(n^{2}-2 n-1\right)>\frac{2 n^{2}-6 n+2}{n}\binom{2 n-2}{n-1}
$$

Namely $P_{1}(X, \mathcal{E})>0$ for $n \geq 3$.
(ii.2) Assume that $(X, \mathcal{E}) \cong\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n-1}\right)$. Then by (5.7) in Remark 5.8, we have

$$
\begin{aligned}
P_{1}(X, \mathcal{E})= & (n-2)\left((n-1)^{n}-\binom{2 n-2}{n}\right) \\
& +(-2)\left((n-1)^{n-1}-1-\binom{2 n-3}{n-1}\right)-2 \\
= & \left(n^{2}-3 n\right)(n-1)^{n-1}-(n-2)\binom{2 n-2}{n}+2\binom{2 n-3}{n-1} .
\end{aligned}
$$

First we note that

$$
-(n-2)\binom{2 n-2}{n}+2\binom{2 n-3}{n-1}=-\frac{2 n^{2}-8 n+4}{n}\binom{2 n-3}{n-1} .
$$

By Claim 5.12, we have

$$
\begin{align*}
\binom{2 n-3}{n-1} & =\frac{(2 n-3) \cdots(n-1)}{(n-1)!} \tag{5.8}\\
& =\frac{2 n-3}{n-1} \cdot \frac{2 n-4}{n-2} \cdots \frac{n}{2} \cdot \frac{n-1}{1} \\
& <(n-1)^{n-1}
\end{align*}
$$

for $n \geq 3$.
On the other hand, we set $f(n):=n^{2}(n-3)-\left(2 n^{2}-8 n+4\right)$. Then

$$
\begin{aligned}
f(n) & =n^{3}-5 n^{2}+8 n-4 \\
& =n^{2}(n-5)+8 n-4 .
\end{aligned}
$$

If $n \geq 5$, then $f(n)>0$. Moreover $f(4)=12$ and $f(3)=2$. So we get $f(n)>0$ for $n \geq 3$.

Therefore we have

$$
n(n-3)(n-1)^{n-1}>\frac{2 n^{2}-8 n+4}{n}\binom{2 n-3}{n-1}
$$

Namely $P_{1}(X, \mathcal{E})>0$ for $n \geq 3$.
(ii.4) Assume that $(X, \mathcal{E}) \cong\left(\mathbb{Q}^{n}, \mathcal{O}_{\mathbb{Q}^{n}}(1)^{\oplus n-1}\right)$. Then by (5.7) in Remark 5.8, we have

$$
\begin{aligned}
P_{1}(X, \mathcal{E})= & (n-2)\left(2(n-1)^{n}-2\binom{2 n-2}{n}\right) \\
& +(-2)\left((n-1)^{n-1}-1-\binom{2 n-3}{n-1}\right)-2 \\
= & \left(2 n^{2}-6 n+2\right)(n-1)^{n-1}-2(n-2)\binom{2 n-2}{n}+2\binom{2 n-3}{n-1}
\end{aligned}
$$

First we note that

$$
2(n-2)\binom{2 n-2}{n}-2\binom{2 n-3}{n-1}=\frac{4 n^{2}-14 n+8}{n}\binom{2 n-3}{n-1}
$$

By (5.8) we have $(n-1)^{n-1}>\binom{2 n-3}{n-1}$ for $n \geq 3$. On the other hand, we set $f(n):=n\left(2 n^{2}-6 n+2\right)-\left(4 n^{2}-14 n+8\right)$. Then

$$
\begin{aligned}
f(n) & =2 n^{3}-10 n^{2}+16 n-8 \\
& =2 n^{2}(n-5)+16 n-8
\end{aligned}
$$

If $n \geq 5$, then $f(n)>0$. Moreover $f(4)=24$ and $f(3)=4$. So we get $f(n)>0$ for $n \geq 3$.

Therefore we have

$$
\left(2 n^{2}-6 n+2\right)(n-1)^{n-1}>\frac{4 n^{2}-14 n+8}{n}\binom{2 n-3}{n-1}
$$

Namely $P_{1}(X, \mathcal{E})>0$ for $n \geq 3$.
(ii.5) Assume that $\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n-2} \oplus \mathcal{O}_{\mathbb{P}^{n}}(2)\right)$. Here we need the following.

Lemma 5.13. Let X be a smooth projective variety of dimension n and let \mathcal{E} and \mathcal{E}_{1} be vector bundles on X and let L be a line bundle on X. Assume that $\mathcal{E}=\mathcal{E}_{1} \oplus L$. Then $s_{t}(\mathcal{E})=s_{t}(L) s_{t}\left(\mathcal{E}_{1}\right)$.

Proof. By assumption we have $c_{t}(\check{\mathcal{E}})=c_{t}(-L) c_{t}\left(\check{\mathcal{E}_{1}}\right)$. Since $c_{t}(-L) s_{t}(L)=1$ and $c_{t}\left(\check{\mathcal{E}}_{1}\right) s_{t}\left(\mathcal{E}_{1}\right)=1$, we get the assertion.

Here we set $L:=\mathcal{O}_{\mathbb{P}^{n}}(2)$ and $\mathcal{E}_{1}:=\mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n-2}$. By Lemma 5.13 we have

$$
\begin{aligned}
s_{n}(\mathcal{E}) & =\sum_{i=0}^{n} 2^{n-i}\binom{n-3+i}{i} \\
s_{n-1}(\mathcal{E}) & =\sum_{i=0}^{n-1} 2^{n-1-i}\binom{n-3+i}{i} \mathcal{O}_{\mathbb{P}^{n}}(1)^{n-1} .
\end{aligned}
$$

Since $K_{X}+c_{1}(\mathcal{E})=\mathcal{O}_{\mathbb{P}^{n}}(-1)$, we see from (5.7) in Remark 5.8 that

$$
\begin{align*}
& P_{1}(X, \mathcal{E}) \tag{5.9}\\
&=(n-2)\left(n^{n}-\sum_{k=0}^{n} 2^{n-k}\binom{n-3+k}{k}\right) \\
&-\left(n^{n-1}-2-\sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k}\right)-2 \\
&=(n-2)\left(n^{n}-\sum_{k=0}^{n} 2^{n-k}\binom{n-3+k}{k}\right) \\
&-\left(n^{n-1}-\sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k}\right) .
\end{align*}
$$

First we note that

$$
\begin{align*}
& n^{n}-\sum_{k=0}^{n} 2^{n-k}\binom{n-3+k}{k} \tag{5.10}\\
& =n^{n}-2 \sum_{k=0}^{n} 2^{n-1-k}\binom{n-3+k}{k} \\
& =n^{n}-2 \sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k}-\binom{2 n-3}{n} \\
& =2 n^{n-1}-2 \sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k}+n^{n}-2 n^{n-1}-\binom{2 n-3}{n} .
\end{align*}
$$

Here $n^{n}-2 n^{n-1}-\binom{2 n-3}{n}=(n-2) n^{n-1}-\binom{2 n-3}{n}$ and by Claim 5.12, we have

$$
\begin{align*}
\binom{2 n-3}{n} & =\frac{(2 n-3) \cdots(n-2)}{(n)!} \tag{5.11}\\
& =\frac{2 n-3}{n} \cdot \frac{2 n-4}{n-1} \cdots \frac{n-1}{2} \cdot \frac{n-2}{1} \\
& \leq(n-2)^{n}
\end{align*}
$$

for $n \geq 3$. Therefore by (5.11)

$$
\begin{align*}
(n-2) n^{n-1}-\binom{2 n-3}{n} & \geq(n-2) n^{n-1}-(n-2)^{n} \tag{5.12}\\
& =(n-2)\left(n^{n-1}-(n-2)^{n-1}\right) \\
& >0
\end{align*}
$$

By (5.10) and (5.12) we have

$$
\begin{equation*}
n^{n}-\sum_{k=0}^{n} 2^{n-k}\binom{n-3+k}{k}>2\left(n^{n-1}-\sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k}\right) \tag{5.13}
\end{equation*}
$$

So by (5.9) and (5.13) we get

$$
\begin{equation*}
P_{1}(X, \mathcal{E})>(2 n-5)\left(n^{n-1}-\sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k}\right) \tag{5.14}
\end{equation*}
$$

Here we prove the following.

Lemma 5.14.

$$
n^{n-1}-\sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k} \geq 0
$$

Proof. By Claim 5.12, we have

$$
\begin{align*}
\binom{n-3+k}{k} & =\frac{(n-3+k) \cdots(n-2)}{k!} \tag{5.15}\\
& =\frac{n-3+k}{k} \cdot \frac{n-4+k}{k-1} \cdots \frac{n-1}{2} \cdot \frac{n-2}{1} \\
& \leq(n-2)^{k}
\end{align*}
$$

for $n \geq 3$. Hence by (5.15)

$$
\begin{aligned}
\sum_{k=0}^{n-1} 2^{n-1-k}\binom{n-3+k}{k} & \leq \sum_{k=0}^{n-1} 2^{n-1-k}(n-2)^{k} \\
& \leq(2+(n-2))^{n-1} \\
& =n^{n-1}
\end{aligned}
$$

This completes the proof of Lemma 5.14.

By (5.14) and Lemma 5.14, $P_{1}(X, \mathcal{E}) \geq 0$ if $n \geq 3$.
(ii.6) Assume that $X \cong \mathbb{P}_{C}(\mathcal{F})$ for some vector bundle \mathcal{F} of rank n on a smooth projective curve C, and $\mathcal{E} \cong H(\mathcal{F}) \otimes \pi^{*} \mathcal{G}$, where $\pi: X \rightarrow C$ is the bundle projection and \mathcal{G} is a vector bundle on C with $\operatorname{rank}(\mathcal{G})=n-1$.

First we calculate $s_{n-1}(\mathcal{E})$. Here we use notation in Remark 2.3 (i). Then by
[11, Example 3.1.1] we have

$$
\begin{aligned}
s_{n-1}(\mathcal{E}) & =s_{n-1}\left(\pi^{*} \mathcal{G} \otimes H(\mathcal{F})\right) \\
& =\hat{s}_{n-1}\left(\left(\pi^{*} \mathcal{G}\right)^{*} \otimes H(\mathcal{F})^{-1}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{n-1-i}\binom{n-2+n-1}{n-2+i} \hat{s}_{i}\left(\left(\pi^{*} \mathcal{G}\right)^{*}\right) c_{1}\left(H(\mathcal{F})^{-1}\right)^{n-1-i} \\
& =\binom{2 n-3}{n-2} H(\mathcal{F})^{n-1}+\binom{2 n-3}{n-1} s_{1}\left(\pi^{*} \mathcal{G}\right) H(\mathcal{F})^{n-2}
\end{aligned}
$$

Next we calculate $s_{n}(\mathcal{E})$.

$$
\begin{aligned}
s_{n}(\mathcal{E}) & =s_{n}\left(\pi^{*} \mathcal{G} \otimes H(\mathcal{F})\right) \\
& =\hat{s}_{n}\left(\left(\pi^{*} \mathcal{G}\right)^{*} \otimes H(\mathcal{F})^{-1}\right) \\
& =\sum_{i=0}^{n}(-1)^{n-i}\binom{n-2+n}{n-2+i} \hat{s}_{i}\left(\left(\pi^{*} \mathcal{G}\right)^{*}\right) c_{1}\left(H(\mathcal{F})^{-1}\right)^{n-i} \\
& =\binom{2 n-2}{n-2} H(\mathcal{F})^{n}+\binom{2 n-2}{n-1} s_{1}\left(\pi^{*} \mathcal{G}\right) H(\mathcal{F})^{n-1} .
\end{aligned}
$$

We also note that

$$
\begin{aligned}
c_{n}(\mathcal{E}) & =0, \\
c_{1}(\mathcal{E})^{n} & =(n-1)^{n} \operatorname{deg} \mathcal{F}+n(n-1)^{n-1} \operatorname{deg} \mathcal{G}, \\
c_{n-1}(\mathcal{E}) & =H(\mathcal{F})^{n-1}+H(\mathcal{F})^{n-2} c_{1}\left(\pi^{*} \mathcal{G}\right) \\
& =H(\mathcal{F})^{n-1}+H(\mathcal{F})^{n-2} s_{1}\left(\pi^{*} \mathcal{G}\right), \\
c_{1}(\mathcal{E})^{n-1} & =(n-1)^{n-1} H(\mathcal{F})^{n-1}+(n-1)^{n-1} H(\mathcal{F})^{n-2} c_{1}\left(\pi^{*} \mathcal{G}\right) \\
& =(n-1)^{n-1} H(\mathcal{F})^{n-1}+(n-1)^{n-1} H(\mathcal{F})^{n-2} s_{1}\left(\pi^{*} \mathcal{G}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
\left(K_{X}\right. & \left.+s_{1}(\mathcal{E})\right)\left(c_{1}(\mathcal{E})^{n-1}-c_{n-1}(\mathcal{E})-s_{n-1}(\mathcal{E})\right) \tag{5.16}\\
= & \left(\pi^{*}\left(K_{C}+\operatorname{det}(\mathcal{G})+\operatorname{det}(\mathcal{F})\right)-H(\mathcal{F})\right) \\
& \times\left\{\left((n-1)^{n-1}-1-\binom{2 n-3}{n-2}\right) H(\mathcal{F})^{n-1}\right. \\
& \left.\quad+\left((n-1)^{n-1}-1-\binom{2 n-3}{n-1}\right) s_{1}\left(\pi^{*} \mathcal{G}\right) H(\mathcal{F})^{n-2}\right\} \\
= & (2 g(C)-2)\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right) \\
& +\left(\binom{2 n-3}{n-1}-\binom{2 n-3}{n-2}\right) \operatorname{deg}(\mathcal{G})
\end{align*}
$$

and

$$
\begin{align*}
& c_{1}(\mathcal{E})^{n}-c_{n}(\mathcal{E})-s_{n}(\mathcal{E}) \tag{5.17}\\
& =(n-1)^{n} H(\mathcal{F})^{n}+n(n-1)^{n-1} H(\mathcal{F})^{n-1} \pi^{*}(\operatorname{det} \mathcal{G}) \\
& \quad-\binom{2 n-2}{n-2} H(\mathcal{F})^{n}-\binom{2 n-2}{n-1} H(\mathcal{F})^{n-1} \pi^{*}(\operatorname{det} \mathcal{G}) \\
& =\left((n-1)^{n}-\binom{n-2}{n-2}\right) \operatorname{deg}(\mathcal{F})+\left(n(n-1)^{n-1}-\binom{n-2}{n-1}\right) \operatorname{deg}(\mathcal{G})
\end{align*}
$$

Therefore by (5.7), (5.16) and (5.17) we have

$$
\begin{align*}
& P_{1}(X, \mathcal{E}) \tag{5.18}\\
&=(n-2)\left((n-1)^{n}-\binom{2 n-2}{n-2}\right) \operatorname{deg}(\mathcal{F}) \\
&+(n-2)\left(n(n-1)^{n-1}-\binom{2 n-2}{n-1}\right) \operatorname{deg}(\mathcal{G}) \\
&+(2 g(C)-2)\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right) \\
&+\left(\binom{2 n-3}{n-1}-\binom{2 n-3}{n-2}\right) \operatorname{deg}(\mathcal{G})-2 \\
&=(n-2)\left((n-1)^{n}-\binom{2 n-2}{n-2}\right) \operatorname{deg}(\mathcal{F}) \\
&+\left(n(n-2)(n-1)^{n-1}-(n-3)\binom{2 n-2}{n-1}-2\binom{2 n-3}{n-2}\right) \operatorname{deg}(\mathcal{G}) \\
&+(2 g(C)-2)\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right)-2 .
\end{align*}
$$

First we note the following.

Claim 5.15.

$$
\frac{1}{n-1}\binom{2 n-2}{n-2}=\frac{n-3}{n(n-2)}\binom{2 n-2}{n-1}+\frac{2}{n(n-2)}\binom{2 n-3}{n-2}
$$

Proof.

$$
\begin{aligned}
& \frac{n-3}{n(n-2)}\binom{2 n-2}{n-1}+\frac{2}{n(n-2)}\binom{2 n-3}{n-2} \\
= & \frac{n-3}{n(n-2)} \cdot \frac{(2 n-2)!}{(n-1)!(n-1)!}+\frac{2}{n(n-2)} \cdot \frac{(2 n-3)!}{(n-2)!(n-1)!} \\
= & \frac{n-3}{(n-1)(n-2)} \cdot \frac{(2 n-2)!}{n!(n-2)!}+\frac{2}{(n-2)(2 n-2)} \cdot \frac{(2 n-2)!}{(n-2)!n!} \\
= & \frac{1}{n-1}\binom{2 n-2}{n-2} .
\end{aligned}
$$

Lemma 5.16.

$$
(n-1) \operatorname{deg} \mathcal{F}+n \operatorname{deg} \mathcal{G} \geq 1
$$

Proof. Since \mathcal{E} is ample, we have $c_{1}(\mathcal{E})^{n}>0$. On the other hand, we have $c_{1}(\mathcal{E})^{n}=$ $(n-1)^{n} \operatorname{deg} \mathcal{F}+n(n-1)^{n-1} \operatorname{deg} \mathcal{G}$. Therefore we get the assertion.

We also note that

$$
\begin{equation*}
(n-1)^{n-1}-\binom{2 n-3}{n-2} \geq 1 \tag{5.19}
\end{equation*}
$$

can be proved by Claim 5.12 as follows:

$$
\begin{aligned}
\binom{2 n-3}{n-2} & =\binom{2 n-3}{n-1} \\
& =\frac{2 n-3}{n-1} \cdot \frac{2 n-4}{n-2} \cdots \frac{n-1}{1} \\
& <(n-1)^{n-1}
\end{aligned}
$$

By (5.18), Claim 5.15, Lemma 5.16 and (5.19), we have

$$
\begin{align*}
& P_{1}(X, \mathcal{E}) \tag{5.20}\\
&=(n-2)(n-1)\left((n-1)^{n-1}-\frac{1}{n-1}\binom{2 n-2}{n-2}\right) \operatorname{deg} \mathcal{F} \\
&+(n-2) n\left((n-1)^{n-1}-\frac{n-3}{n(n-2)}\binom{2 n-2}{n-1}-\frac{2}{n(n-2)}\binom{2 n-3}{n-2}\right) \operatorname{deg} \mathcal{G} \\
&+(2 g(C)-2)\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right)-2 \\
&=(n-2)\left((n-1)^{n-1}-\frac{1}{n-1}\binom{2 n-2}{n-2}\right)((n-1) \operatorname{deg} \mathcal{F}+n \operatorname{deg} \mathcal{G}) \\
&+(2 g(C)-2)\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right)-2 \\
& \geq(n-2)\left((n-1)^{n-1}-\frac{1}{n-1}\binom{n-2}{n-2}\right) \\
&-2\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right)-2 .
\end{align*}
$$

Hence by (5.20)

$$
\begin{align*}
& P_{1}(X, \mathcal{E}) \tag{5.21}\\
& \geq(n-2)\left((n-1)^{n-1}-\frac{1}{n-1}\binom{2 n-2}{n-2}\right) \\
& \quad-2\left((n-1)^{n-1}-\binom{2 n-3}{n-2}-1\right)-2 \\
& =(n-4)(n-1)^{n-1}-\frac{n-2}{n-1}\binom{2 n-2}{n-2}+2\binom{2 n-3}{n-2} .
\end{align*}
$$

On the other hand

$$
\begin{align*}
& -\frac{n-2}{n-1}\binom{2 n-2}{n-2}+2\binom{2 n-3}{n-2} \tag{5.22}\\
& =\left(2-\frac{(n-2)(2 n-2)}{(n-1) n}\right) \frac{(2 n-3)!}{(n-2)!(n-1)!} \\
& =\frac{4}{n}\binom{2 n-3}{n-1}
\end{align*}
$$

Hence by (5.21) and (5.22) we have $P_{1}(X, \mathcal{E}) \geq 0$ if $n \geq 3$.
We see from the above that $P_{1}(X, \mathcal{E}) \geq 0$ if $K_{X}+c_{1}(\mathcal{E})$ is not nef.
Next we consider the case where $n \geq 3$ and $K_{X}+c_{1}(\mathcal{E})$ is nef.
Theorem 5.17. Let X be a smooth projective variety of dimension $n \geq 3$ and let \mathcal{E} be an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n-1$. Assume that $K_{X}+c_{1}(\mathcal{E})$ is nef. Then

$$
P_{1}(X, \mathcal{E}) \geq 2\left(2^{n-2}-1\right)(n-2)-2
$$

holds. In particular, $P_{1}(X, \mathcal{E}) \geq 0$.
Proof. Since $K_{X}+c_{1}(\mathcal{E})$ is nef, we see from Lemma 5.3 (i) and [12, Corollary 3.10] that

$$
\begin{equation*}
\left(K_{X}+c_{1}(\mathcal{E})\right)\left(c_{1}^{n-1}(\mathcal{E})-c_{n-1}(\mathcal{E})-s_{n-1}(\mathcal{E})\right) \geq 0 \tag{5.23}
\end{equation*}
$$

On the other hand, by Lemma 5.3 (ii) and Theorem 2.8, we have

$$
\begin{aligned}
c_{1}(\mathcal{E})^{n}-c_{n}(\mathcal{E})-s_{n}(\mathcal{E}) & =\sum_{\lambda \in \Lambda(n, r)} a_{\lambda} \Delta_{\lambda}(c) \\
& \geq \sum_{\lambda \in \Lambda(n, r)} a_{\lambda} \\
& \geq 2\left(2^{n-2}-1\right)
\end{aligned}
$$

By (5.23) and (5.24) we get

$$
\begin{aligned}
P_{1}(X, \mathcal{E})= & (n-2)\left(c_{1}(\mathcal{E})^{n}-c_{n}(\mathcal{E})-s_{n}(\mathcal{E})\right) \\
& +\left(K_{X}+c_{1}(\mathcal{E})\right)\left(c_{1}(\mathcal{E})^{n-1}-c_{n-1}(\mathcal{E})-s_{n-1}(\mathcal{E})\right)-2 \\
\geq & 2\left(2^{n-2}-1\right)(n-2)-2
\end{aligned}
$$

Therefore we get the assertion of Theorem 5.17.
Here we get the following better lower bound for $P_{1}(X, \mathcal{E})$ with small n.
Proposition 5.18. Let X be a smooth projective variety of dimension $n \geq 3$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n-1$. Assume that $K_{X}+c_{1}(\mathcal{E})$ is nef. Then the following hold.
(i) If $n=3$, then $P_{1}(X, \mathcal{E}) \geq 0$.
(ii) If $n=4$, then $P_{1}(X, \mathcal{E}) \geq 14$.
(iii) If $n=5$, then $P_{1}(X, \mathcal{E}) \geq 70$.
(iv) If $n=6$, then $P_{1}(X, \mathcal{E}) \geq 294$.
(v) If $n=7$, then $P_{1}(X, \mathcal{E}) \geq 1148$.

Proof. Since $K_{X}+c_{1}(\mathcal{E})$ is nef, we see from Lemma 5.3 (i) that

$$
\left(K_{X}+c_{1}(\mathcal{E})\right)\left(c_{1}(\mathcal{E})^{n-1}-c_{n-1}(\mathcal{E})-s_{n-1}(\mathcal{E})\right) \geq 0
$$

We also note that $c_{1}(\mathcal{E})^{n}-c_{n}(\mathcal{E})-s_{n}(\mathcal{E})=P_{0}(X, \mathcal{E})$. Hence by Remark 5.8 and Proposition 5.6 we get the assertion.

As a corollary of Theorem 5.17, we get a lower bound for c_{1}-sectional genus of (X, \mathcal{E}) for the case where \mathcal{E} is generated by its global sections.

Corollary 5.19. Let X be a smooth projective variety of dimension $n \geq 3$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n-1$. Assume that \mathcal{E} is generated by its global sections and $K_{X}+c_{1}(\mathcal{E})$ is nef. Then we have

$$
g\left(X, c_{1}(\mathcal{E})\right) \geq 2 q(X)+\left(2^{n-2}-1\right)(n-2)-1
$$

Proof. First we note that $b_{1}\left(X, c_{1}(\mathcal{E})\right)=2 g\left(X, c_{1}(\mathcal{E})\right)$ (see Remark 2.10 (ii)). Moreover by Propositions 3.8 and 3.17 , we have $B^{1}(X, \mathcal{E})+\widehat{B}^{1}(X, \mathcal{E}) \geq 2 h^{1}(X, \mathbb{C})$. By the Lefshcetz theorem, we have $h^{1}(X, \mathbb{C})=2 q(X)$. Hence by Definition 5.1

$$
\begin{aligned}
g\left(X, c_{1}(\mathcal{E})\right) & =\frac{1}{2} b_{1}\left(X, c_{1}(\mathcal{E})\right) \\
& =\frac{1}{2}\left(B^{1}(X, \mathcal{E})+\widehat{B}^{1}(X, \mathcal{E})+P_{1}(X, \mathcal{E})\right) \\
& \geq 2 q(X)+\frac{1}{2} P_{1}(X, \mathcal{E})
\end{aligned}
$$

By Theorem 5.17, we get the assertion.
By the same argument as above, we get a better lower bound for the case where $3 \leq n \leq 7$ by using Proposition 5.18.

Corollary 5.20. Let X be a smooth projective variety of dimension $n \geq 3$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n-1$. Assume that \mathcal{E} is generated by its global sections and $K_{X}+c_{1}(\mathcal{E})$ is nef. Then the following hold.
(i) If $n=3$, then $g\left(X, c_{1}(\mathcal{E})\right) \geq 2 q(X)$.
(ii) If $n=4$, then $g\left(X, c_{1}(\mathcal{E})\right) \geq 2 q(X)+7$.
(iii) If $n=5$, then $g\left(X, c_{1}(\mathcal{E})\right) \geq 2 q(X)+35$.
(iv) If $n=6$, then $g\left(X, c_{1}(\mathcal{E})\right) \geq 2 q(X)+147$.
(v) If $n=7$, then $g\left(X, c_{1}(\mathcal{E})\right) \geq 2 q(X)+574$.

Moreover, for the case where $h^{1}\left(\mathcal{O}_{X}\right)>0$, we can improve a lower bound for $g\left(X, c_{1}(\mathcal{E})\right)$.

Proposition 5.21. Let X be a smooth projective variety of dimension $n \geq 3$ with $h^{1}\left(\mathcal{O}_{X}\right)>0$ and \mathcal{E} an ample vector bundle on X with $\operatorname{rank}(\mathcal{E}) \geq n-1$. Assume that \mathcal{E} is generated by its global sections and $K_{X}+c_{1}(\mathcal{E})$ is nef. Then we have

$$
g\left(X, c_{1}(\mathcal{E})\right) \geq 3 q(X)+\left(2^{n-2}-1\right)(n-2)-2
$$

Proof. By Proposition 3.8, we have $B^{1}(X, \mathcal{E}) \geq h^{1}(X, \mathbb{C})=2 h^{1}\left(\mathcal{O}_{X}\right)$. We note that

$$
\begin{aligned}
\widehat{B}^{1}(X, \mathcal{E})-h^{1}(X, \mathbb{C}) & =b_{1}(W, H)-h^{1}(W, \mathbb{C}) \\
& =2 g_{1}(W, H)-2 h^{1}\left(\mathcal{O}_{W}\right)
\end{aligned}
$$

Here we prove the following.
Claim 5.22. (W, H) is not a scroll over a smooth projective curve.
Proof. Assume that (W, H) is a scroll over a smooth projective curve C. Let $p: W \rightarrow C$ be the projection. For any fiber F of $p, f(F)$ is a point or $f(F)=$ X because $F \cong \mathbb{P}^{n+r-2}$, where $f: W=\mathbb{P}_{X}(\mathcal{E}) \rightarrow X$ is the projection and $r=\operatorname{rank}(\mathcal{E})$. We note that the case where $f(F)=X$ is impossible because $h^{1}\left(\mathcal{O}_{X}\right)>0$. So we see that $f(F)$ is a point for any fiber F of p. But this case cannot occur because $\operatorname{dim} X \geq 3$.

By Claim 5.22 and Proposition 2.11 we get $g_{1}(W, H) \geq 2 h^{1}\left(\mathcal{O}_{W}\right)-1$. Therefore

$$
\begin{aligned}
\widehat{B}^{1}(X, \mathcal{E})-h^{1}(X, \mathbb{C}) & =2 g_{1}(W, H)-2 h^{1}\left(\mathcal{O}_{W}\right) \\
& \geq 4 h^{1}\left(\mathcal{O}_{W}\right)-2-2 h^{1}\left(\mathcal{O}_{W}\right) \\
& =2 h^{1}\left(\mathcal{O}_{W}\right)-2
\end{aligned}
$$

We also note that $h^{1}\left(\mathcal{O}_{W}\right)=h^{1}\left(\mathcal{O}_{X}\right)$ and $h^{1}(X, \mathbb{C})=2 h^{1}\left(\mathcal{O}_{X}\right)$. Hence we have $\widehat{B}^{1}(X, \mathcal{E}) \geq 4 h^{1}\left(\mathcal{O}_{X}\right)-2$. Therefore

$$
\begin{aligned}
g\left(X, c_{1}(\mathcal{E})\right) & =\frac{1}{2} b_{1}\left(X, c_{1}(\mathcal{E})\right) \\
& =\frac{1}{2}\left(B^{1}(X, \mathcal{E})+\widehat{B}^{1}(X, \mathcal{E})+P_{1}(X, \mathcal{E})\right) \\
& \geq 3 h^{1}\left(\mathcal{O}_{X}\right)-1+\frac{1}{2} P_{1}(X, \mathcal{E}) .
\end{aligned}
$$

By Theorem 5.17, we get the assertion.
Acknowledgements. This research was partially supported by JSPS KAKENHI Grant Number 16K05103.

References

[1] Ballico, E.: On vector bundles on 3-folds with sectional genus 1, Trans. Amer. Math. Soc. 324, 135-147 (1991).
[2] Beltrametti, M. C., Lanteri, A., Palleschi, M.: Algebraic surfaces containing an ample divisor of arithmetic genus two, Ark. Mat. 25, 189-210 (1987).
[3] Beltrametti, M. C., Sommese, A. J.: The adjunction theory of complex projective varieties, de Gruyter Expositions in Math. 16 Walter de Gruyter, Berlin, New York, 1995.
[4] Fujita, T.: Ample vector bundles of small c_{1}-sectional genera, J. Math. Kyoto Univ. 29, 1-16 (1989).
[5] Fukuma, Y.: On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension, II, Kodai Math. J. 23, 136-149 (2000).
[6] Fukuma, Y.: On the second sectional H-arithmetic genus of polarized manifolds, Math. Z. 250, 573-597 (2005).
[7] Fukuma, Y.: On the sectional invariants of polarized manifolds, J. Pure Appl. Algebra 209, 99-117 (2007).
[8] Fukuma, Y.: Sectional invariants of scroll over a smooth projective variety, Rend. Sem. Mat. Univ. Padova 121, 93-119 (2009).
[9] Fukuma, Y.: A property for the formula of the sectional classes of classical scrolls, Yokohama Math. J. 63, 25-40 (2017). http://www.math.kochi-u.ac.jp/fukuma/YMJ2017.html.
[10] Fukuma, Y., Ishihara, H.: A generalization of curve genus for ample vector bundles, II, Pacific J. Math. 193, 307-326 (2000).
[11] Fulton, W.: Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 2 (1984), Springer-Verlag.
[12] Fulton, W., Lazarsfeld, R.: Positive polynomials for ample vector bundles, Ann. of Math. (2) 118, 35-60 (1983).
[13] Fusi, D., Lanteri, A.: Ample vector bundles with small $g-q$, Comm. Alg. 34, 2989-3008 (2006).
[14] Höring, A.: On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21, 721-751 (2012).
[15] Ishihara, H.: A generalization of curve genus for ample vector bundles, I, Comm. Alg. 27, 4327-4335 (1999).
[16] Lanteri, A., Maeda, H., Sommese, A. J.: Ample and spanned vector bundles of minimal curve genus, Arch. Math. 66, 141-149 (1996).

New invariants of ample vector bundles over smooth projective varieties
[17] Lanteri, A., Maeda, H.: Ample vector bundles of curve genus one, Canad. Math. Bull. 42, 209-213 (1999).
[18] Lanteri, A., Palleschi, M.: About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math. 352, 15-23 (1984).
[19] Lanteri, A., Struppa, D.: Projective manifolds whose topology is strongly reflected in their hyperplane sections, Geom. Dedicata 21, 357-374 (1986).
[20] Maeda, H.: Ample vector bundles of small curve genera, Arch. Math. 70, 239-243 (1998).
[21] Maeda, H.: Remarks on ample vector bundles of curve genus two, Arch. Math. 88, 419-424 (2007).
[22] Ye, Y.-G., Zhang, Q.: On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. 60, 671-687 (1990).

Received: 15 November 2017.
Accepted: 2 October 2018.

Department of Mathematics and Physics, Faculty of Science and Technology, Kochi University, Akebono-cho, Kochi 780-8520, Japan.
fukuma@kochi-u.ac.jp
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

[^0]: 2010 Mathematics Subject Classification: Primary 14J60; Secondary 14C17, 14C20, 14C40, 14J30, 14J35, 14J40.

 Keywords: Ample vector bundle, polarized manifold, classical scroll, sectional genus.
 (c) The Author(s) 2018. This article is an open access publication.

