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New invariants of ample vector bundles over smooth
projective varieties

Yoshiaki Fukuma

Abstract. Let X be a complex smooth projective variety of dimension n, and let E be an ample

vector bundle on X. In this paper, we will introduce new invariants of generalized polarized

manifolds (X, E), and we will study their properties. As an application, we study a lower bound

for c1(E)n and the sectional genus g(X, c1(E)) of (X, c1(E)).

1 Introduction

Let X be a smooth projective variety of dimension n defined over the field of
complex numbers, and let E be an ample vector bundle on X. Then (X, E) is
called a generalized polarized manifold. Let r := rank(E). Generalized polarized
manifolds (X, E) have been studied by using some invariants of (X, E). Here we
state the history of invariants of (X, E).

First in [4], Fujita introduced the c1-sectional genus and the O(1)-sectional
genus of (X, E). Next, in [1], for the case where r = n − 1, Ballico defined an
invariant of (X, E) which is called the curve genus cg(X, E) of (X, E), and several
authors (in particular Lanteri, Maeda, Sommese and so on) studied this invariant
(see [16], [20], [17] and [21]).

As a generalization of the curve genus, for any ample vector bundle E with
r ≤ n−1, Ishihara ([15, Definition 1.1]) defined an invariant g(X, E), which is called
the cr-sectional genus of (X, E), and in [10] we investigated some properties about
g(X, E). We note that if n− r = 1, then g(X, E) is the curve genus. This invariant
means the following: If a general element of H0(E) has a zero locus Z which is
smooth of expected dimension n− r, then g(X, E) = g(Z,det E|Z), that is, g(X, E)
is the sectional genus of (Z,det E|Z). In [13] Fusi and Lanteri generalized this
invariant. In [8, Definition 4.1], we introduced an invariant v(X, E) of generalized
polarized manifolds (X, E) with r ≥ n − 1, which is defined by using a result [8,
Theorem 3.2 (3.2.3)]. Here we note that v(X, E) is equal to the curve genus if
r = n− 1.

In this paper, we will introduce new invariants Bi(X, E) and B̂i(X, E) of (X, E)
for every integer i with 0 ≤ i ≤ n and rank(E) ≥ max

{
n− i+1

2 , i+1
2

}
(see Defini-
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tions 3.6 and 3.11). Then the following equalities hold (see Propositions 3.7 and
3.12).

b2n−2−i(PX(E), H(E))− h2n−2−i(PX(E),C) = Bi(X, E)− hi(X,C),

bi(PX(E), H(E))− hi(PX(E),C) = B̂i(X, E)− hi(X,C),

where H(E) denotes the tautological line bundle on PX(E) and bk(PX(E), H(E))
denotes the k-th sectional Betti number of (PX(E), H(E)).

We note that if i = 1, then B1(X, E) = 2v(X, E). In this paper, we will study

some properties of Bi(X, E) and B̂i(X, E). Furthermore we will also define and
study the following invariant Pi(X, E)

Pi(X, E) = bi(X, c1(E))− (Bi(X, E) + B̂i(X, E)).

Here bi(X, c1(E)) denotes the ith sectional Betti number of (X, c1(E)). By studying
Pi(X, E) for i = 0 and 1, we get a lower bound of c1(E)n and g1(X, c1(E)) (see
Section 5).

2 Preliminaries

Notation 2.1. Let X be a smooth projective variety of dimension n ≥ 1 and let
E be an ample vector bundle of rank r on X. We put W := PX(E), H := H(E)
and m := dimW , where H(E) denotes the tautological line bundle on W . Then
m = n+ r − 1.

Definition 2.2. Let X be a smooth projective variety of dimension n and let E
be a vector bundle of rank r on X.

(i) The Chern polynomial ct(E) is defined by the following:

ct(E) =
∑
i≥0

ci(E)ti,

where ci(E) is the ith Chern classes.

(ii) For every integer j with j ≥ 0, the jth Segre class sj(F) of F is defined
by the following equation: ct(F∨)st(F) = 1, where ct(F∨) is the Chern
polynomial of F∨ and st(F) =

∑
j≥0 sj(F)tj .

Remark 2.3. (i) Let X be a smooth projective variety and let F be a vector
bundle on X. Let s̃j(F) be the Segre class which is defined in [11, Chapter
3]. Then sj(F) = s̃j(F∨).

(ii) For every integer i with 1 ≤ i, si(F) can be written by using the Chern classes
cj(F) with 1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2−c2(F),
and so on.)



New invariants of ample vector bundles over smooth projective varieties 99

Definition 2.4. Let λ = (λ1, . . . , λn) be a finite sequence of nonnegative integers
with λ1 ≥ · · · ≥ λn. Then we call this λ a partition. We denote by Λ(n, r) the set
of all partitions of n in nonnegative integers ≤ r.

Definition 2.5. For a partition λ = (λ1, . . . , λn) ∈ Λ(n, r), we put

∆λ(c) = ∆(λ1,...,λn)(c) = det(cj−i+λi
),

where (cj−i+λi
) denotes the n by n matrix whose ij entry is cj−i+λi

. Then we call
this the Schur polynomial associated to λ. Here cp denotes the pth Chern class of
a vector bundle.

Remark 2.6. We note that ∆(λ1,...,λn)(s) = det(sj−i+λi), where sp denotes the
pth Segre class of a vector bundle.

Remark 2.7. Let µk = (2, 1, . . . , 1︸ ︷︷ ︸
k−1

) for every positive integer k. By [11, Lemma

14.5.1] we have

sk(E) = ∆(k)(s)

= ∆(1, . . . , 1︸ ︷︷ ︸
k

)(c)

= c1(E)∆(1, . . . , 1︸ ︷︷ ︸
k−1

)(c)−∆µk−1
(c)

= c1(E)sk−1(E)−∆µk−1
(c).

Theorem 2.8. Let X be a projective variety of dimension n and let E be an
ample vector bundle on X with rank(E) = r. Let P =

∑
λ∈Λ(n,r) aλ∆λ(c). Then

the polynomial P is numerically positive for ample vector bundles if and only if
P is non-zero and aλ ≥ 0 for all λ ∈ Λ(n, r). In particular, ∆λ(c) > 0 for every
λ ∈ Λ(n, r).

Proof. See [12, Theorem I].

Definition 2.9. (See [7, Definition 3.1].) Let (X,L) be a polarized manifold of
dimension n, and let i be an integer with 0 ≤ i ≤ n.

(i) The ith sectional Euler number ei(X,L) of (X,L) is defined by the following:

ei(X,L) :=

i∑
k=0

(−1)k
(
n− i+ k − 1

k

)
ci−k(X)Ln−i+k.

(ii) The ith sectional Betti number bi(X,L) of (X,L) is defined by the following:

bi(X,L) :=


e0(X,L) if i = 0,

(−1)i

ei(X,L)−
i−1∑
j=0

2(−1)jhj(X,C)

 if 1 ≤ i ≤ n.
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Remark 2.10. (i) If i = 0, then b0(X,L) = Ln.

(ii) If i = 1, then b1(X,L) = 2g(X,L), where g(X,L) denotes the sectional genus
of (X,L).

Proposition 2.11. Let (X,L) be a polarized manifold of dimension n ≥ 3. As-
sume that L is spanned by its global sections. Then g(X,L) ≥ 2h1(OX)− 1 unless
(X,L) is a scroll over a smooth curve.

Proof. The nonnegativity of g(X,L) shows that Proposition 2.11 is true for the
case of h1(OX) = 0. So we may assume that h1(OX) ≥ 1. Since L is spanned by
its global sections, by taking (n− 2) general members D1, . . . , Dn−2 ∈ |L|, we can
get a smooth projective surface S := D1 ∩ · · · ∩Dn−2. We consider the polarized
surface (S,LS). Since L is ample and Bs|LS | = ∅, we see from [5, Lemma 1.15]
that g(S,LS) ≥ 2h1(OS)− 1 holds unless (S,LS) is a scroll over a smooth curve.

If (S,LS) is a scroll over a smooth projective curve, then so is (X,L) by [3,
Theorems 5.5.2 and 5.5.3] because h1(OS) = h1(OX) ≥ 1. Hence if (X,L) is not
a scroll over a smooth curve, then

g(X,L) = g(S,LS)

≥ 2h1(OS)− 1

= 2h1(OX)− 1.

So we get the assertion.

3 Definition of new invariants

Notation 3.1. Let n be a positive integer. For every integer i with 0 ≤ i ≤ n,
we set

Ei(x0, . . . , xi; yn−i, . . . , yn) :=
∑

0≤k,t
0≤k+t≤i

(−1)i−t
(
n− t− 2

i− t− k

)
xkyn−k−tct(X). (3.1)

Remark 3.2. Let W and H be as in Notation 2.1. We see from (3.1) and [8,
Theorem 3.1] that for every integer i with 0 ≤ i ≤ n

ei(W,H) = Ei(c0(E), . . . , ci(E); sn−i(E), . . . , sn(E)) (3.2)

and by (3.2) we have

bi(W,H)− hi(W,C) (3.3)

= (−1)i

Ei(c0(E), . . . , ci(E); sn−i(E), . . . , sn(E))− 2

i−1∑
j=0

(−1)jhj(W,C)


−hi(W,C).
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Here we note that if i = 0, then we regard

i−1∑
j=0

(−1)jhj(W,C) as 0.

Theorem 3.3. Let X be a smooth projective variety of dimension n ≥ 2, and E
an ample vector bundle of rank r on X. Let W and H be as in Notation 2.1. If
r ≥ max

{
n− i+1

2 , i+1
2

}
, then we have

b2n−2−i(W,H)− h2n−2−i(W,C)

= (−1)i

Ei(s0(E), . . . , si(E); cn−i(E), . . . , cn(E))− 2

i−1∑
j=0

(−1)jhj(W,C)


−hi(W,C).

Proof. First we prove the following lemma.

Lemma 3.4. If r ≥ max
{
n− i+1

2 , i+1
2

}
, then

(−1)2n−2−i

(n− i− 1)cn(X)− 2

2n−2−i−1∑
j=0

(−1)jhj(W,C)

− h2n−2−i(W,C)

= (−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C).

Proof. By [19, (2.1) Proposition] and the assumption that r ≥ max
{
n− i+1

2 , i+1
2

}
,

we obtain

hj(W,C) =

{
hj(X,C) + hj−2(X,C) + · · ·+ h0(X,C), if j is even,
hj(X,C) + hj−2(X,C) + · · ·+ h1(X,C), if j is odd

(3.4)

for every integer j with 0 ≤ j ≤ i and 0 ≤ j ≤ 2n− 2− i.
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(A) Assume that i is even. We set i = 2l. Then by (3.4) we have

(n− 2l − 1)cn(X)− h2n−2−2l(W,C)− 2

2n−2−2l−1∑
j=0

(−1)jhj(W,C)

 (3.5)

= (n− 2l − 1)cn(X)−
n−l−1∑
k=0

h2k(X,C)

−2

(
n−l−2∑
k=0

(n− k − l − 1)h2k(X,C)−
n−l−1∑
k=1

(n− k − l)h2k−1(X,C)

)
= (n− 2l − 1)cn(X)

−
n−l−1∑
k=0

(2n− 2k − 2l − 1)h2k(X,C) +

n−l−1∑
k=1

(2n− 2k − 2l)h2k−1(X,C)

= (n− 2l)cn(X)

−

(
n−l−1∑
k=0

(2n− 2k − 2l)h2k(X,C)−
n−l∑
k=1

(2n− 2k − 2l + 1)h2k−1(X,C)

)
−h2n−2l(X,C) + h2n−2l+1(X,C) + · · ·+ (−1)h2n(X,C)

= (n− 2l)cn(X)

−

(
n∑
k=0

(2n− 2k − 2l)h2k(X,C)−
n∑
k=1

(2n− 2k − 2l + 1)h2k−1(X,C)

)

+

n∑
k=n−l

(2n− 2k − 2l)h2k(X,C)−
n∑

k=n−l+1

(2n− 2k − 2l + 1)h2k−1(X,C)

−

(
n∑

k=n−l

h2k(X,C)−
n∑

k=n−l+1

h2k−1(X,C)

)

=

n∑
k=0

(2k − n)h2k(X,C)−
n∑
k=1

(2k − n− 1)h2k−1(X,C)

+

n∑
k=n−l

(2n− 2k − 2l − 1)h2k(X,C)−
n∑

k=n−l+1

(2n− 2k − 2l)h2k−1(X,C).

By [8, Claim 3.1], we see that

n∑
k=0

(2k − n)h2k(X,C) = 0

and
n∑
k=1

(2k − n− 1)h2k−1(X,C) = 0.
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Hence by (3.5) and using the Poincaré duality we get

(n− 2l − 1)cn(X)− 2

2n−2−2l−1∑
j=0

(−1)jhj(W,C)

− h2n−2−2l(W,C)

=

n∑
k=n−l

(2n− 2k − 2l − 1)h2k(X,C)−
n∑

k=n−l+1

(2n− 2k − 2l)h2k−1(X,C)

=

l∑
j=0

(−2l + 2j − 1)h2n−2j(X,C)−
l∑

j=1

(2j − 2l − 2)h2n−2j+1(X,C)

= −
l∑

j=0

(2l − 2j + 1)h2j(X,C) +

l∑
j=1

(2l − 2j + 2)h2j−1(X,C).

On the other hand,

(−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C)

= −2

2l−1∑
j=0

(−1)jhj(W,C)− h2l(W,C)

= −2

(
l−1∑
k=0

h2k(W,C)−
l∑

k=1

h2k−1(W,C)

)
− h2l(W,C)

= −2

(
l−1∑
k=0

(l − k)h2k(X,C)−
l∑

k=1

(l + 1− k)h2k−1(X,C)

)
−

l∑
k=0

h2k(X,C)

= −
l∑

k=0

(2l − 2k + 1)h2k(X,C) +

l∑
k=1

(2l − 2k + 2)h2k−1(X,C).

Hence the assertion holds if i is even.

(B) Assume that i is odd. We set i = 2l + 1. Then by (3.4) we get
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(−1)2n−2−i
(

(n− i− 1)cn(X)− 2

2n−2−i−1∑
j=0

(−1)jhj(W,C)

)
− h2n−2−i(W,C)

= −(n− 2l − 2)cn(X) + 2

2n−2l−4∑
j=0

(−1)jhj(W,C)− h2n−2l−3(W,C)

= −(n− 2l − 2)cn(X)−
n−l−1∑
k=1

h2k−1(X,C)

+2

( n−l−2∑
k=0

(n− k − l − 1)h2k(X,C)−
n−l−2∑
k=1

(n− k − l − 1)h2k−1(X,C)

)

= −(n− 2l − 2)cn(X) +

n−l−2∑
k=0

(2n− 2k − 2l − 2)h2k(X,C)

−
n−l−2∑
k=1

(2n− 2k − 2l − 1)h2k−1(X,C)− h2n−2l−3(X,C)

= −(n− 2l − 1)cn(X) +

n−l−2∑
k=0

(2n− 2k − 2l − 1)h2k(X,C)

−
n−l−2∑
k=1

(2n− 2k − 2l)h2k−1(X,C) +

n∑
k=n−l−1

h2k(X,C)

−
n∑

k=n−l−1

h2k−1(X,C)− h2n−2l−3(X,C)

= −(n− 2l − 1)cn(X) +

n∑
k=0

(2n− 2k − 2l − 1)h2k(X,C)

−
n∑
k=1

(2n− 2k − 2l)h2k−1(X,C)−
n∑

k=n−l−1

(2n− 2k − 2l − 2)h2k(X,C)

+

n∑
k=n−l−1

(2n− 2k − 2l − 1)h2k−1(X,C)− h2n−2l−3(X,C)

=

n∑
k=0

(n− 2k)h2k(X,C)−
n∑
k=1

(n− 2k + 1)h2k−1(X,C)

−
n∑

k=n−l−1

(2n− 2k − 2l − 2)h2k(X,C)

+

n∑
k=n−l−1

(2n− 2k − 2l − 1)h2k−1(X,C)− h2n−2l−3(X,C).
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By [8, Claim 3.1], we see that

n∑
k=0

(n− 2k)h2k(X,C) = 0

and
n∑
k=1

(n− 2k + 1)h2k−1(X,C) = 0.

Hence by an argument similar to that of the case where i is even, we get

n∑
k=0

(n− 2k)h2k(X,C)−
n∑
k=1

(n− 2k + 1)h2k−1(X,C)

−
n∑

k=n−l−1

(2n− 2k − 2l − 2)h2k(X,C)

+

n∑
k=n−l−1

(2n− 2k − 2l − 1)h2k−1(X,C)− h2n−2l−3(X,C)

=

n∑
k=n−l−1

(2k + 2l − 2n+ 2)h2k(X,C)

−
n∑

k=n−l−1

(2k + 2l − 2n+ 1)h2k−1(X,C)− h2n−2l−3(X,C)

=

n∑
k=n−l−1

(2k + 2l − 2n+ 2)h2k(X,C)

−
n∑

k=n−l

(2k + 2l − 2n+ 1)h2k−1(X,C)

=

n∑
k=n−l−1

(2k + 2l − 2n+ 2)h2n−2k(X,C)

−
n∑

k=n−l

(2k + 2l − 2n+ 1)h2n−2k+1(X,C)

=

n∑
k=n−l

(2k + 2l − 2n+ 2)h2n−2k(X,C)

−
n∑

k=n−l

(2k + 2l − 2n+ 1)h2n−2k+1(X,C)

=

l∑
k=0

(2l − 2k + 2)h2k(X,C)−
l+1∑
k=1

(2l − 2k + 3)h2k−1(X,C).
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On the other hand,

(−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C)

= 2

2l∑
j=0

(−1)jhj(W,C)− h2l+1(W,C)

= 2

(
l∑

k=0

(l − k + 1)h2k(X,C)−
l∑

k=1

(l + 1− k)h2k−1(X,C)

)

−
l+1∑
k=1

h2k−1(X,C)

=

l∑
k=0

(2l − 2k + 2)h2k(X,C)−
l+1∑
k=1

(2l − 2k + 3)h2k−1(X,C).

Hence the assertion holds if i is odd.

In any case we obtain the assertion of Lemma 3.4.

Here we note that by [9, Claim 3.1] we have

e2n−2−i(W,H) (3.6)

=

i∑
t=0

i−t∑
l=0

(−1)i−t
(
n− t− 2

i− t− l

)
cn−t−l(E)ct(X)sl(E) + (n− i− 1)cn(X).



New invariants of ample vector bundles over smooth projective varieties 107

Hence by (3.1), Lemma 3.4 and (3.6) we have

b2n−2−i(W,H)− h2n−2−i(W,C)

= (−1)2n−2−i

e2n−2−i(W,L)− 2

2n−2−i−1∑
j=0

(−1)jhj(W,C)


−h2n−2−i(W,C)

= (−1)2n−2−i

(
i∑
t=0

i−t∑
l=0

(−1)i−t
(
n− t− 2

i− t− l

)
cn−t−l(E)ct(X)sl(E)

)
+(−1)2n−2−i(n− i− 1)cn(X)

−2(−1)2n−2−i

2n−2−i−1∑
j=0

(−1)jhj(W,C)

− h2n−2−i(W,C)

= (−1)i

(
i∑
t=0

i−t∑
l=0

(−1)i−t
(
n− t− 2

i− t− l

)
cn−t−l(E)ct(X)sl(E)

)

+(−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C)

= (−1)i

Ei(s0(E), . . . , si(E); cn−i(E), . . . , cn(E))− 2

i−1∑
j=0

(−1)jhj(W,C)


−hi(W,C).

Therefore we get the assertion of Theorem 3.3.

Theorem 3.5. Let X, E, W , H, r and n be as in Notation 2.1. Assume that
n ≥ 2 and r ≥ max

{
n− i+1

2 , i+1
2

}
for every integer i with 0 ≤ i ≤ n. Then the

following holds.

b2n−2−i(W,H)− h2n−2−i(W,C)

= (−1)iEi(s0(E), . . . , si(E); cn−i(E), . . . , cn(E))

+(−1)i+1

b i−1
2 c∑

k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)


−hi(X,C).
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Proof. If i = 2l, then by (3.4) in the proof of Lemma 3.4 we get

(−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C)

= −2

l−1∑
k=0

(l − k)h2k(X,C) + 2

l∑
k=1

(l + 1− k)h2k−1(X,C)−
l∑

k=0

h2k(X,C)

= −
l−1∑
k=0

(2l − 2k + 1)h2k(X,C) +

l∑
k=1

(2l + 2− 2k)h2k−1(X,C)− h2l(X,C)

= −
b i
2 c−1∑
k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)− hi(X,C).

If i = 2l + 1, then

(−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C)

= 2

l∑
k=0

(l + 1− k)h2k(X,C)− 2

l∑
k=1

(l + 1− k)h2k−1(X,C)

−
l+1∑
k=1

h2k−1(X,C)

=

l∑
k=0

(2l − 2k + 2)h2k(X,C)−
l∑

k=1

(2l + 3− 2k)h2k−1(X,C)− h2l+1(X,C)

=

b i
2 c∑

k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)− hi(X,C).

Hence

(−1)i+1

2

i−1∑
j=0

(−1)jhj(W,C)

− hi(W,C)

= (−1)i+1

b i−1
2 c∑

k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)


−hi(X,C).

(Here we note that if i is odd (resp. even), then b i2c = b i−1
2 c (resp. b i2c − 1 =

b i−1
2 c).

So by Theorem 3.3 we get the assertion.
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Definition 3.6. Let X be a smooth projective variety of dimension n ≥ 2 and let
E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
Assume r ≥ max

{
n− i+1

2 , i+1
2

}
. Then we define the following invariant Bi(X, E)

of (X, E).

Bi(X, E):= (−1)iEi(s0(E), . . . , si(E); cn−i(E), . . . , cn(E))

−(−1)i

b i−1
2 c∑

k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)

 .

We can prove the following proposition by Theorem 3.5 and Definition 3.6.

Proposition 3.7. Let X be a smooth projective variety of dimension n ≥ 2 and let
E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
Assume that r ≥ max

{
n− i+1

2 , i+1
2

}
. Then b2n−2−i(W,H) − h2n−2−i(W,C) =

Bi(X, E)− hi(X,C) holds.

Moreover we get the following result.

Proposition 3.8. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
Assume that E is spanned by its global sections and r ≥ max

{
n− i+1

2 , i+1
2

}
. Then

Bi(X, E) ≥ hi(X,C) holds.

Proof. Let W and H be as in Notation 2.1. By Proposition 3.7 we have

b2n−2−i(W,H)− h2n−2−i(W,C) = Bi(X, E)− hi(X,C).

We note that b2n−2−i(W,H) ≥ h2n−2−i(W,C) since E is spanned by its global
sections. Hence we get the assertion.

Remark 3.9. (i) If i = 0, then we have B0(X, E) = cn(E). Since E is ample with
rank(E) ≥ n, we see that B0(X, E) ≥ 1 = h0(X,C).
(ii) If i = 1, then B1(X, E) = 2v(X, E), where v(X, E) denotes the invariant in [8,

Definition 4.1]. (Here we note that

b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C) = 0 if i = 1.) For

details on the invariant v(X, E), see [8].

Considering Proposition 3.8, we can propose the following conjeture.

Conjecture 3.10. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
Assume that r ≥ max

{
n− i+1

2 , i+1
2

}
. Then Bi(X, E) ≥ hi(X,C) holds.

Definition 3.11. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
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Assume r ≥ max
{
n− i+1

2 , i+1
2

}
. Then we define the following invariant B̂i(X, E)

of (X, E).

B̂i(X, E):= (−1)iEi(c0(E), . . . , ci(E); sn−i(E), . . . , sn(E))

−(−1)i

b i−1
2 c∑

k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)

 .

Proposition 3.12. Let X be a smooth projective variety of dimension n ≥ 2
and let E be an ample vector bundle of rank r on X. Let i be an integer with
0 ≤ i ≤ n. Assume that r ≥ max

{
n− i+1

2 , i+1
2

}
. Then bi(W,H) − hi(W,C) =

B̂i(X, E)− hi(X,C) holds.

Proof. First by (3.3) in Remark 3.2 we have

bi(W,H)− hi(W,C)

= (−1)i

Ei(c0(E), . . . , ci(E); sn−i(E), . . . , sn(E))− 2

i−1∑
j=0

(−1)jhj(W,C)


−hi(W,C).

On the other hand, by the same argument as the proof of Theorem 3.5, we
have

bi(W,H)− hi(W,C)

= (−1)iEi(c0(E), . . . , ci(E); sn−i(E), . . . , sn(E))

+(−1)i+1

b i−1
2 c∑

k=0

(i+ 1− 2k)h2k(X,C)−
b i
2 c∑

k=1

(i+ 2− 2k)h2k−1(X,C)


−hi(X,C).

So we get the assertion by Definition 3.11.

Remark 3.13. If i = 0, then we have B̂0(X, E) = sn(E). Since E is ample with

rank(E) ≥ n, we see B̂0(X, E) ≥ 1 = h0(X,C).

Here we consider the case of i = 1. If E is a line bundle L, then n = 2
and B̂1(X, E) = 2 + (KX + L)L = 2g(X,L). Therefore B̂1(X, E) ≥ 0 and the

classification of (X, E) with B̂1(X, E) ≤ 4 is known (see [18] and [2]). So we
assume that r ≥ 2.

Theorem 3.14. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Assume that r ≥ max{n− 1, 2}.
Then B̂1(X, E) ≥ 0 holds.
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Proof. Let W and H be as in Notation 2.1. By Proposition 3.12 we have

B̂1(X, E)− h1(X,C) = b1(W,H)− h1(W,C).

On the other hand, we see that h1(X,C) = 2q(X) = 2q(W ) = h1(W,C). So we
get

B̂1(X, E) = b1(W,H). (3.7)

Since by Remark 2.10 (ii)

b1(W,H) = 2g(W,H) ≥ 0, (3.8)

we have B̂1(X, E) ≥ 0 by (3.7) and (3.8).

Remark 3.15. Since B̂1(X, E) = 2g(W,H), we see from [4, Theorems (3.2), (3.3)

and (3.4)] that we can get a classification of (X, E) with B̂1(X, E) ≤ 4. For details,
see [4, Theorems (3.2), (3.3) and (3.4)].

Here we propose the following conjecture which is the B̂i(X, E)’s version of
Conjecture 3.10.

Conjecture 3.16. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
Assume that r ≥ max

{
n− i+1

2 , i+1
2

}
. Then B̂i(X, E) ≥ hi(X,C) holds.

Proposition 3.17. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X such that E is generated by its global
sections. Let i be an integer with 0 ≤ i ≤ n. Assume that r ≥ max

{
n− i+1

2 , i+1
2

}
.

Then B̂i(X, E) ≥ hi(X,C) holds.

Proof. LetW andH be as in Notation 2.1. By Proposition 3.12 we have bi(W,H)−
hi(W,C) = B̂i(X, E)−hi(X,C). Since E is spanned by its global sections, we have
bi(W,H) ≥ hi(W,C). So we get the assertion.

Proposition 3.18. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Let i be an integer with 0 ≤ i ≤ n.
Assume that r ≥ max

{
n− i+1

2 , i+1
2

}
. Then Bi(X, E) and B̂i(X, E) are even for

every odd integer i.

Proof. Assume that i is odd. By Proposition 3.7 we have

b2n−2−i(W,H)− b2n−2−i(W,C) = Bi(X, E)− hi(X,C).

If i is odd, then b2n−2−i(W,H) (resp. b2n−2−i(W,C) and hi(X,C)) is even by
[7, Theorem 3.1 (3.1.2)] (resp. the Hodge theory). Hence Bi(X, E) is even. On

the other hand, By Proposition 3.12 we have bi(W,H) − bi(W,C) = B̂i(X, E) −
hi(X,C). If i is odd, then bi(W,H) (resp. bi(W,C) and hi(X,C)) is even by [7,

Theorem 3.1 (3.1.2)] (resp. the Hodge theory). Hence B̂i(X, E) is also even.
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By Propositions 3.7 and 3.12 we get the following.

Proposition 3.19. Let X be a smooth projective variety of dimension n ≥ 2 and
let E be an ample vector bundle of rank r on X. Assume that r ≥ n

2 . Then

Bn−1(X, E) = B̂n−1(X, E).

Similarily we can get the following relation between Bn(X, E) and B̂n−2(X, E)
by Propositions 3.7 and 3.12.

Theorem 3.20. Let X be a smooth projective variety of dimension n ≥ 2 and let
E be an ample vector bundle of rank r on X. Assume r ≥ n+1

2 . Then

Bn(X, E)− hn(X,C) = B̂n−2(X, E)− hn−2(X,C)

holds.

4 On B2(X, E) and B̂2(X, E) for dimX = 2 and 3

In this section we study B2(X, E) and B̂2(X, E) for dimX = 2 and 3.

First we calculate B2(X, E) and B̂2(X, E) in general. We have

E2(s0(E), s1(E), s2(E); cn−2(E), cn−1(E), cn(E))

=
∑

0≤k,t
0≤k+t≤2

(−1)2−t
(
n− t− 2

2− t− k

)
sk(E)cn−k−t(E)ct(X)

=

(
n− 2

2

)
cn(E)− (n− 3)c1(X)cn−1(E) + (n− 2)s1(E)cn−1(E)

+c2(X)cn−2(E)− s1(E)cn−2(E)c1(X) + s2(E)cn−2(E),

E2(c0(E), c1(E), c2(E); sn−2(E), sn−1(E), sn(E))

=
∑

0≤k,t
0≤k+t≤2

(−1)2−t
(
n− t− 2

2− t− k

)
ck(E)sn−k−t(E)ct(X)

=

(
n− 2

2

)
sn(E)− (n− 3)c1(X)sn−1(E) + (n− 2)c1(E)sn−1(E)

+c2(X)sn−2(E)− c1(E)sn−2(E)c1(X) + c2(E)sn−2(E).

Moreover we have

b 2−1
2 c∑

k=0

(2 + 1− 2k)h2k(X,C) = 3h0(X,C) = 3,

b 22 c∑
k=1

(2 + 2− 2k)h2k−1(X,C) = 2h1(X,C).
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So we get

B2(X, E) =

(
n− 2

2

)
cn(E)− (n− 3)c1(X)cn−1(E) (4.1)

+(n− 2)s1(E)cn−1(E) + c2(X)cn−2(E)

−s1(E)cn−2(E)c1(X) + s2(E)cn−2(E)

−3 + 2h1(X,C),

B̂2(X, E) =

(
n− 2

2

)
sn(E)− (n− 3)c1(X)sn−1(E) (4.2)

+(n− 2)c1(E)sn−1(E) + c2(X)sn−2(E)

−c1(E)sn−2(E)c1(X) + c2(E)sn−2(E)

−3 + 2h1(X,C).

Proposition 4.1. If n = 2 and rank(E) ≥ 2, then B2(X, E) ≥ h2(X,C) and

B̂2(X, E) ≥ h2(X,C).

Proof. If n = 2, then by (4.1) and (4.2) we have

B2(X, E) = s2(E)− 1 + h2(X,C),

B̂2(X, E) = c2(E)− 1 + h2(X,C).

Since E is ample, we have s2(E) > 0 and c2(E) > 0 hold. Hence we get the
assertion.

Next we consider the case n = 3. In particular we treat the case of κ(X) ≥ 0.

Theorem 4.2. Let X be a smooth projective variety of dimension 3 and let E be
an ample vector bundle on X with rank(E) ≥ 2. If κ(X) ≥ 0, then B2(X, E) ≥
2h1(X,C).

Proof. First we note that rank(E) ≥ 2 ≥ max
{

3− 2+1
2 , 2+1

2

}
and by (4.1)B2(X, E)

is the following in this situation.

B2(X, E) = c2(X)c1(E) + (KX + c1(E))c1(E)2 − 3 + 2h1(X,C). (4.3)

Here we note that e2(X, c1(E)) = c2(X)c1(E) + (KX + c1(E))c1(E)2 by Definition
2.9 (i). So we find

B2(X, E) = e2(X, c1(E))− 3 + 2h1(X,C). (4.4)

Since κ(X) ≥ 0, we see from [22, Theorems 1, 2 and 3] that KX + c1(E) is nef.
Hence by [14, 2.11 Corollary], we see that

c2(X)c1(E) ≥ −2

3
KXc1(E)− 1

3
c1(E)3. (4.5)
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Hence by (4.3) and (4.5) we have

B2(X, E) = c2(X)c1(E) + (KX + c1(E))c1(E)2 − 3 + 2h1(X,C)

≥ 1

3
(KX + c1(E))c1(E)2 +

1

3
c1(E)3 − 3 + 2h1(X,C).

Here we note the following.

Claim 4.3. c1(E)3 ≥ 2.

Proof. Since E is ample, we have c1(E)3 > c1(E)c2(E) > 0 by [11, Example 12.1.7].

(i) If (KX + c1(E))c1(E)2 ≥ 6, then

B2(X, E) ≥
⌈

1

3
c1(E)3 − 1 + 2h1(X,C)

⌉
≥ 2h1(X,C).

(ii) If (KX + c1(E))c1(E)2 ≤ 3, then by [3, Proposition 2.5.1] we have (KX +
c1(E))2c1(E) ≤ 9. Here we note that since κ(X) ≥ 0 we have χH2 (X, c1(E)) > 0 by
[6, Theorem 3.3.1]. Hence by [7, Theorem 4.3] we have

e2(X, c1(E)) = 12χH2 (X, c1(E))− (KX + c1(E))2c1(E)

≥ 12− 9 = 3.

So by (4.4) we have
B2(X, E) ≥ 2h1(X,C).

(iii) Assume that (KX + c1(E))c1(E)2 = 4. Then by [3, Proposition 2.5.1] and
Claim 4.3 we have (KX + c1(E))2c1(E) ≤ 8, and by the same argument as the case
(ii) we have

e2(X, c1(E)) = 12χH2 (X, c1(E))− (KX + c1(E))2c1(E)

≥ 12− 8 = 4.

So we have
B2(X, E) ≥ 1 + 2h1(X,C).

(iv) Finally we assume that (KX + c1(E))c1(E)2 = 5. If c1(E)3 ≥ 3, then we see
from [3, Proposition 2.5.1] that (KX+c1(E))2c1(E) ≤ 8, and by the same argument
as the case (iii) we have

B2(X, E) ≥ 1 + 2h1(X,C).

So we may assume that c1(E)3 = 1 or 2. But c1(E)3 = 2 is impossible because
of [3, Lemma 1.1.11]. Hence we get c1(E)3 = 1. But this case does not occur by
Claim 4.3.

These complete the proof of Theorem 4.2.
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By Proposition 3.19 we get the following.

Corollary 4.4. Let X be a smooth projective variety of dimension 3 and let E be
an ample vector bundle on X with rank(E) ≥ 2. If κ(X) ≥ 0, then B̂2(X, E) ≥
2h1(X,C).

5 A relation between bi(X, c1(E)) and Bi(X, E) + B̂i(X, E)

Definition 5.1. Let X be a smooth projective variety of dimension n ≥ 2 and E
an ample vector bundle on X. Let i be an integer with 0 ≤ i ≤ n. Assume that
r = rank(E) ≥ max

{
n− i+1

2 , i+1
2

}
. Then we set

Pi(X, E) := bi(X, c1(E))− (Bi(X, E) + B̂i(X, E)).

5.1 The case i = 0.

First we consider the case i = 0.

Remark 5.2. Let X, E and r be as in Definition 5.1. If i = 0, then we have

P0(X, E) = c1(E)n − cn(E)− sn(E). (5.1)

Here we prove the following lemma which will be used in the next subsection.

Lemma 5.3. (i) For p ≥ 2, we have

c1(E)p − cp(E)− sp(E) =
∑

λ∈Λ(p,r)

aλ∆λ(c)

where aλ is a non-negative integer for every λ ∈ Λ(p, r).
(ii) We have ∑

λ∈Λ(p,r)

aλ ≥ 2(2p−2 − 1).

Proof. (i) We prove (i) by induction on p.
(i.1) If p = 2, then

c1(E)2 − c2(E)− s2(E) = 0.

So we get the assertion for p = 2.
(i.2) Assume that the assertion is true for the case of p = k − 1. We consider

the case where p = k. First we note that the following holds by Remark 2.7.

sk(E) = c1(E)sk−1(E)−∆µk−1
(c). (5.2)

Here we put µk = (2, 1, . . . , 1︸ ︷︷ ︸
k−1

) for every integer k ≥ 2.
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By [9, Proposition 3.1] and (5.2), we have

ck(E) = s1(E)ck−1(E)−∆µk−1
(s). (5.3)

We see from [11, Lemma 14.5.1] that

∆µk−1
(s) = ∆(k−1,1)(c). (5.4)

Noting that s1(E) = c1(E), we get the following by (5.3) and (5.4).

ck(E) = c1(E)ck−1(E)−∆(k−1,1)(c). (5.5)

Therefore by (5.2) and (5.5) we get

c1(E)k − ck(E)− sk(E) (5.6)

= c1(E)k − c1(E)ck−1(E)− c1(E)sk−1(E)

+∆(k−1,1)(c) + ∆µk−1
(c)

= c1(E)(c1(E)k−1 − ck−1(E)− sk−1(E))

+∆(k−1,1)(c) + ∆µk−1
(c).

By assumption c1(E)k−1−ck−1(E)−sk−1(E) can be written as
∑

λ∈Λ(k−1,r)

bλ∆λ(c),

where bλ ≥ 0 for every λ ∈ Λ(k − 1, r). So by [11, Lemma 14.5.2] we see that

c1(E)(c1(E)k−1− ck−1(E)− sk−1(E)) can be written as
∑

λ∈Λ(k,r)

cλ∆λ(c) too, where

cλ ≥ 0 for every λ ∈ Λ(k, r). Therefore we get the assertion for the case of n = k,
and we get the assertion of Lemma 5.3 (i).
(ii) We prove (ii) by induction on n.

(ii.1) If p = 2, then

c1(E)2 − c2(E)− s2(E) = 0.

Hence
∑

λ∈Λ(2,r)

aλ = 0 = 2(22−2 − 1) and we get the assertion for p = 2.

(ii.2) Assume that the assertion is true for the case of p = k−1. We consider the

case where p = k. We set c1(E)k−1−ck−1(E)−sk−1(E) =
∑

λ∈Λ(k−1,r)

bλ∆λ(c). Then

by assumption we have
∑

λ∈Λ(k−1,r)

bλ ≥ 2(2k−3 − 1). Here we note that c1(E)∆λ(c)

has at least two Schur polynomials (see [11, Lemma 14.5.2]). By (5.6) we get

∑
λ∈Λ(k,r)

aλ ≥ 2 + 2

 ∑
λ∈Λ(k−1,r)

bλ

 ≥ 2 + 22(2k−3 − 1) = 2(2k−2 − 1).

Therefore we get the assertion of Lemma 5.3 (ii).
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By (5.1) in Remark 5.2 and Lemma 5.3 we get the following.

Theorem 5.4. Let X be a smooth projective variety of dimension n ≥ 2 and E
an ample vector bundle on X with rank(E) ≥ n. Then

P0(X, E) ≥ 2(2n−2 − 1).

Corollary 5.5. Let X be a smooth projective variety of dimension n ≥ 2 and let
E be an ample vector bundle on X with rank(E) ≥ n. Then c1(E)n ≥ 2n−1.

Proof. By Remark 5.2, we have

c1(E)n = cn(E) + sn(E) + P0(X, E).

Since E is ample, we have cn(E) ≥ 1 and sn(E) ≥ 1. Therefore by Theorem 5.4 we
get

c1(E)n ≥ 2 + 2(2n−2 − 1) = 2n−1.

By (5.6) in Lemma 5.3, [11, Lemma 14.5.2] and Theorem 2.8, we get the
following better lower bound for P0(X,L) with small n.

Proposition 5.6. Let X be a smooth projective variety of dimension n ≥ 2 and
E an ample vector bundle on X with rank(E) ≥ n. Then the following hold.

(i) If n = 2, then P0(X, E) = 0.

(ii) If n = 3, then
P0(X, E) = 2∆(2,1)(c) ≥ 2.

(iii) If n = 4, then

P0(X, E) = 2∆(2,2)(c) + 3∆(3,1)(c) + 3∆(2,1,1)(c) ≥ 8.

(iv) If n = 5, then

P0(X, E) = 5∆(3,2)(c) + 5∆(2,2,1)(c) + 4∆(4,1)(c)

+6∆(3,1,1)(c) + 4∆(2,1,1,1)(c)

≥ 24.

(v) If n = 6, then

P0(X, E) = 5∆(3,3)(c) + 16∆(3,2,1)(c) + 9∆(4,2)(c) + 5∆(2,2,2)(c)

+9∆(2,2,1,1)(c) + 5∆(5,1)(c) + 10∆(4,1,1)(c)

+10∆(3,1,1,1)(c) + 5∆(2,1,1,1,1)(c)

≥ 74.
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(vi) If n = 7, then

P0(X, E) = 14∆(4,3)(c) + 21∆(3,3,1)(c) + 14∆(5,2)(c) + 35∆(4,2,1)(c)

+21∆(3,2,2)(c) + 35∆(3,2,1,1)(c) + 14∆(2,2,2,1)(c)

+14∆(2,2,1,1,1)(c) + 6∆(6,1)(c)

+15∆(5,1,1)(c) + 15∆(3,1,1,1,1)(c)

+20∆(4,1,1,1)(c) + 6∆(2,1,1,1,1,1)(c)

≥ 230.

Corollary 5.7. Let X be a smooth projective variety of dimension n ≥ 2 and E
an ample vector bundle on X with rank(E) ≥ n. Then the following hold.

c1(E)n ≥



2, if n = 2,
4, if n = 3,
10, if n = 4,
26, if n = 5,
76, if n = 6,
232, if n = 7.

5.2 The case i = 1.

Next we consider the case i = 1.

Remark 5.8. We have

P1(X, E) = (n− 2)(c1(E)n − cn(E)− sn(E)) (5.7)

+(KX + c1(E))(c1(E)n−1 − cn−1(E)− sn−1(E))− 2.

Remark 5.9. If n = 2, then P1(X, E) = −2−(KX+c1(E))c1(E) = −2g(X, c1(E)) ≤
0. So we assume that n ≥ 3 from now on.

Remark 5.10. Let X be a smooth projective variety of dimension n ≥ 3 and E an
ample vector bundle on X. Assume that KX+c1(E) is not nef and rank(E) ≥ n−1.
Then (X, E) is one of the following types (see [22, Theorems 1, 2 and 3]).

(ii.1) (Pn,OPn(1)⊕n).

(ii.2) (Pn,OPn(1)⊕n−1).

(ii.3) (Pn,OPn(1)⊕n−2 ⊕OPn(2)).

(ii.4) (Qn,OQn(1)⊕n−1).

(ii.5) X ∼= PC(F) for some vector bundle F of rank n on a smooth projective
curve C, and E ∼= H(F) ⊗ π∗G, where π : X → C is the bundle projection
and G is a vector bundle on C with rank(G) = n− 1.
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Then we calculate P1(X, E). In order to do that, first we calculate si(L
⊕r) for

a line bundle L on X.

Lemma 5.11. Let X be a smooth projective variety of dimension n ≥ 3 and let L
be an ample line bundle on X. Then si(L

⊕r) =
(
r−1+i
i

)
Li for every integer i with

0 ≤ i ≤ n.

Proof. We set E := L⊕r. First we note that ct(Ě) = ct((−L)⊕r) = (1 − Lt)r =
(ct(−L))r. On the other hand, since ct(−L)st(L) = 1, we have st(L) = 1 + Lt +
L2t2 + · · ·+ Lntn. Therefore

st(E) = st(L)r = (1 + Lt+ L2t2 + · · ·+ Lntn)r

=

n∑
i=0

(
r − 1 + i

i

)
Liti.

Therefore we get the assertion.

(ii.1) Assume that (X, E) ∼= (Pn,OPn(1)⊕n). Then by (5.7) in Remark 5.8, we
have

P1(X, E) = (n− 2)

(
nn − 1−

(
2n− 1

n

))
+ (−1)

(
nn−1 − n−

(
2n− 2

n− 1

))
− 2

= nn−1(n2 − 2n− 1)− (n− 2)

(
2n− 1

n

)
+

(
2n− 2

n− 1

)
= nn−1(n2 − 2n− 1)− 2n2 − 6n+ 2

n

(
2n− 2

n− 1

)
.

First we note the following claim.

Claim 5.12. Let x and y be a positive integer with x < y. Then the following
holds.

y + 1

x+ 1
<
y

x
.

By Claim 5.12, we have(
2n− 2

n− 1

)
=

(2n− 2) · · ·n
(n− 1)!

=
2n− 2

n− 1
· 2n− 3

n− 2
· · · n+ 1

2
· n

1

< nn−1

for n ≥ 3.
On the other hand, we set f(n) := n(n2 − 2n− 1)− (2n2 − 6n+ 2). Then

f(n) = n3 − 4n2 + 5n− 2

= n2(n− 4) + 5n− 2.
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If n ≥ 4, then f(n) > 0. Moreover f(3) = 4. So we get f(n) > 0 for n ≥ 3.
Therefore we have

nn−1(n2 − 2n− 1) >
2n2 − 6n+ 2

n

(
2n− 2

n− 1

)
.

Namely P1(X, E) > 0 for n ≥ 3.

(ii.2) Assume that (X, E) ∼= (Pn,OPn(1)⊕n−1). Then by (5.7) in Remark 5.8,
we have

P1(X, E) = (n− 2)

(
(n− 1)n −

(
2n− 2

n

))
+(−2)

(
(n− 1)n−1 − 1−

(
2n− 3

n− 1

))
− 2

= (n2 − 3n)(n− 1)n−1 − (n− 2)

(
2n− 2

n

)
+ 2

(
2n− 3

n− 1

)
.

First we note that

−(n− 2)

(
2n− 2

n

)
+ 2

(
2n− 3

n− 1

)
= −2n2 − 8n+ 4

n

(
2n− 3

n− 1

)
.

By Claim 5.12, we have(
2n− 3

n− 1

)
=

(2n− 3) · · · (n− 1)

(n− 1)!
(5.8)

=
2n− 3

n− 1
· 2n− 4

n− 2
· · · n

2
· n− 1

1

< (n− 1)n−1

for n ≥ 3.
On the other hand, we set f(n) := n2(n− 3)− (2n2 − 8n+ 4). Then

f(n) = n3 − 5n2 + 8n− 4

= n2(n− 5) + 8n− 4.

If n ≥ 5, then f(n) > 0. Moreover f(4) = 12 and f(3) = 2. So we get f(n) > 0
for n ≥ 3.

Therefore we have

n(n− 3)(n− 1)n−1 >
2n2 − 8n+ 4

n

(
2n− 3

n− 1

)
.

Namely P1(X, E) > 0 for n ≥ 3.
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(ii.4) Assume that (X, E) ∼= (Qn,OQn(1)⊕n−1). Then by (5.7) in Remark 5.8,
we have

P1(X, E) = (n− 2)

(
2(n− 1)n − 2

(
2n− 2

n

))
+(−2)

(
(n− 1)n−1 − 1−

(
2n− 3

n− 1

))
− 2

= (2n2 − 6n+ 2)(n− 1)n−1 − 2(n− 2)

(
2n− 2

n

)
+ 2

(
2n− 3

n− 1

)
.

First we note that

2(n− 2)

(
2n− 2

n

)
− 2

(
2n− 3

n− 1

)
=

4n2 − 14n+ 8

n

(
2n− 3

n− 1

)
.

By (5.8) we have (n − 1)n−1 >
(

2n−3
n−1

)
for n ≥ 3. On the other hand, we set

f(n) := n(2n2 − 6n+ 2)− (4n2 − 14n+ 8). Then

f(n) = 2n3 − 10n2 + 16n− 8

= 2n2(n− 5) + 16n− 8.

If n ≥ 5, then f(n) > 0. Moreover f(4) = 24 and f(3) = 4. So we get f(n) > 0
for n ≥ 3.

Therefore we have

(2n2 − 6n+ 2)(n− 1)n−1 >
4n2 − 14n+ 8

n

(
2n− 3

n− 1

)
.

Namely P1(X, E) > 0 for n ≥ 3.

(ii.5) Assume that (Pn,OPn(1)⊕n−2 ⊕OPn(2)). Here we need the following.

Lemma 5.13. Let X be a smooth projective variety of dimension n and let E
and E1 be vector bundles on X and let L be a line bundle on X. Assume that
E = E1 ⊕ L. Then st(E) = st(L)st(E1).

Proof. By assumption we have ct(Ě) = ct(−L)ct(Ě1). Since ct(−L)st(L) = 1 and
ct(Ě1)st(E1) = 1, we get the assertion.

Here we set L := OPn(2) and E1 := OPn(1)⊕n−2. By Lemma 5.13 we have

sn(E) =

n∑
i=0

2n−i
(
n− 3 + i

i

)
,

sn−1(E) =

n−1∑
i=0

2n−1−i
(
n− 3 + i

i

)
OPn(1)n−1.
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Since KX + c1(E) = OPn(−1), we see from (5.7) in Remark 5.8 that

P1(X, E) (5.9)

= (n− 2)

(
nn −

n∑
k=0

2n−k
(
n− 3 + k

k

))

−

(
nn−1 − 2−

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

))
− 2

= (n− 2)

(
nn −

n∑
k=0

2n−k
(
n− 3 + k

k

))

−

(
nn−1 −

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

))
.

First we note that

nn −
n∑
k=0

2n−k
(
n− 3 + k

k

)
(5.10)

= nn − 2

n∑
k=0

2n−1−k
(
n− 3 + k

k

)

= nn − 2

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

)
−
(

2n− 3

n

)

= 2nn−1 − 2

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

)
+ nn − 2nn−1 −

(
2n− 3

n

)
.

Here nn − 2nn−1 −
(

2n−3
n

)
= (n− 2)nn−1 −

(
2n−3
n

)
and by Claim 5.12, we have(

2n− 3

n

)
=

(2n− 3) · · · (n− 2)

(n)!
(5.11)

=
2n− 3

n
· 2n− 4

n− 1
· · · n− 1

2
· n− 2

1
≤ (n− 2)n

for n ≥ 3. Therefore by (5.11)

(n− 2)nn−1 −
(

2n− 3

n

)
≥ (n− 2)nn−1 − (n− 2)n (5.12)

= (n− 2)(nn−1 − (n− 2)n−1)

> 0.
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By (5.10) and (5.12) we have

nn −
n∑
k=0

2n−k
(
n− 3 + k

k

)
> 2

(
nn−1 −

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

))
. (5.13)

So by (5.9) and (5.13) we get

P1(X, E) > (2n− 5)

(
nn−1 −

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

))
. (5.14)

Here we prove the following.

Lemma 5.14.

nn−1 −
n−1∑
k=0

2n−1−k
(
n− 3 + k

k

)
≥ 0.

Proof. By Claim 5.12, we have(
n− 3 + k

k

)
=

(n− 3 + k) · · · (n− 2)

k!
(5.15)

=
n− 3 + k

k
· n− 4 + k

k − 1
· · · n− 1

2
· n− 2

1

≤ (n− 2)k

for n ≥ 3. Hence by (5.15)

n−1∑
k=0

2n−1−k
(
n− 3 + k

k

)
≤
n−1∑
k=0

2n−1−k(n− 2)k

≤ (2 + (n− 2))n−1

= nn−1.

This completes the proof of Lemma 5.14.

By (5.14) and Lemma 5.14, P1(X, E) ≥ 0 if n ≥ 3.

(ii.6) Assume that X ∼= PC(F) for some vector bundle F of rank n on a smooth
projective curve C, and E ∼= H(F)⊗ π∗G, where π : X → C is the bundle projec-
tion and G is a vector bundle on C with rank(G) = n− 1.

First we calculate sn−1(E). Here we use notation in Remark 2.3 (i). Then by
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[11, Example 3.1.1] we have

sn−1(E) = sn−1(π∗G ⊗H(F))

= ŝn−1((π∗G)∗ ⊗H(F)−1)

=

n−1∑
i=0

(−1)n−1−i
(
n− 2 + n− 1

n− 2 + i

)
ŝi((π

∗G)∗)c1(H(F)−1)n−1−i

=

(
2n− 3

n− 2

)
H(F)n−1 +

(
2n− 3

n− 1

)
s1(π∗G)H(F)n−2.

Next we calculate sn(E).

sn(E) = sn(π∗G ⊗H(F))

= ŝn((π∗G)∗ ⊗H(F)−1)

=

n∑
i=0

(−1)n−i
(
n− 2 + n

n− 2 + i

)
ŝi((π

∗G)∗)c1(H(F)−1)n−i

=

(
2n− 2

n− 2

)
H(F)n +

(
2n− 2

n− 1

)
s1(π∗G)H(F)n−1.

We also note that

cn(E) = 0,

c1(E)n = (n− 1)n degF + n(n− 1)n−1 deg G,
cn−1(E) = H(F)n−1 +H(F)n−2c1(π∗G)

= H(F)n−1 +H(F)n−2s1(π∗G),

c1(E)n−1 = (n− 1)n−1H(F)n−1 + (n− 1)n−1H(F)n−2c1(π∗G)

= (n− 1)n−1H(F)n−1 + (n− 1)n−1H(F)n−2s1(π∗G).

Hence

(KX + s1(E))(c1(E)n−1 − cn−1(E)− sn−1(E)) (5.16)

= (π∗(KC + det(G) + det(F))−H(F))

×
{(

(n− 1)n−1 − 1−
(

2n− 3

n− 2

))
H(F)n−1

+

(
(n− 1)n−1 − 1−

(
2n− 3

n− 1

))
s1(π∗G)H(F)n−2

}
= (2g(C)− 2)

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
+

((
2n− 3

n− 1

)
−
(

2n− 3

n− 2

))
deg(G),
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and

c1(E)n − cn(E)− sn(E) (5.17)

= (n− 1)nH(F)n + n(n− 1)n−1H(F)n−1π∗(detG)

−
(

2n− 2

n− 2

)
H(F)n −

(
2n− 2

n− 1

)
H(F)n−1π∗(detG)

=

(
(n− 1)n −

(
2n− 2

n− 2

))
deg(F) +

(
n(n− 1)n−1 −

(
2n− 2

n− 1

))
deg(G).

Therefore by (5.7), (5.16) and (5.17) we have

P1(X, E) (5.18)

= (n− 2)

(
(n− 1)n −

(
2n− 2

n− 2

))
deg(F)

+(n− 2)

(
n(n− 1)n−1 −

(
2n− 2

n− 1

))
deg(G)

+(2g(C)− 2)

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
+

((
2n− 3

n− 1

)
−
(

2n− 3

n− 2

))
deg(G)− 2

= (n− 2)

(
(n− 1)n −

(
2n− 2

n− 2

))
deg(F)

+

(
n(n− 2)(n− 1)n−1 − (n− 3)

(
2n− 2

n− 1

)
− 2

(
2n− 3

n− 2

))
deg(G)

+(2g(C)− 2)

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
− 2.

First we note the following.

Claim 5.15.

1

n− 1

(
2n− 2

n− 2

)
=

n− 3

n(n− 2)

(
2n− 2

n− 1

)
+

2

n(n− 2)

(
2n− 3

n− 2

)
.

Proof.

n− 3

n(n− 2)

(
2n− 2

n− 1

)
+

2

n(n− 2)

(
2n− 3

n− 2

)
=

n− 3

n(n− 2)
· (2n− 2)!

(n− 1)!(n− 1)!
+

2

n(n− 2)
· (2n− 3)!

(n− 2)!(n− 1)!

=
n− 3

(n− 1)(n− 2)
· (2n− 2)!

n!(n− 2)!
+

2

(n− 2)(2n− 2)
· (2n− 2)!

(n− 2)!n!

=
1

n− 1

(
2n− 2

n− 2

)
.
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Lemma 5.16.

(n− 1) degF + ndeg G ≥ 1.

Proof. Since E is ample, we have c1(E)n > 0. On the other hand, we have c1(E)n =
(n− 1)n degF + n(n− 1)n−1 deg G. Therefore we get the assertion.

We also note that

(n− 1)n−1 −
(

2n− 3

n− 2

)
≥ 1 (5.19)

can be proved by Claim 5.12 as follows:(
2n− 3

n− 2

)
=

(
2n− 3

n− 1

)
=

2n− 3

n− 1
· 2n− 4

n− 2
· · · n− 1

1

< (n− 1)n−1.

By (5.18), Claim 5.15, Lemma 5.16 and (5.19), we have

P1(X, E) (5.20)

= (n− 2)(n− 1)

(
(n− 1)n−1 − 1

n− 1

(
2n− 2

n− 2

))
degF

+(n− 2)n

(
(n− 1)n−1 − n− 3

n(n− 2)

(
2n− 2

n− 1

)
− 2

n(n− 2)

(
2n− 3

n− 2

))
deg G

+(2g(C)− 2)

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
− 2

= (n− 2)

(
(n− 1)n−1 − 1

n− 1

(
2n− 2

n− 2

))
((n− 1) degF + ndeg G)

+(2g(C)− 2)

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
− 2

≥ (n− 2)

(
(n− 1)n−1 − 1

n− 1

(
2n− 2

n− 2

))
−2

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
− 2.
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Hence by (5.20)

P1(X, E) (5.21)

≥ (n− 2)

(
(n− 1)n−1 − 1

n− 1

(
2n− 2

n− 2

))
−2

(
(n− 1)n−1 −

(
2n− 3

n− 2

)
− 1

)
− 2

= (n− 4)(n− 1)n−1 − n− 2

n− 1

(
2n− 2

n− 2

)
+ 2

(
2n− 3

n− 2

)
.

On the other hand

−n− 2

n− 1

(
2n− 2

n− 2

)
+ 2

(
2n− 3

n− 2

)
(5.22)

=

(
2− (n− 2)(2n− 2)

(n− 1)n

)
(2n− 3)!

(n− 2)!(n− 1)!

=
4

n

(
2n− 3

n− 1

)
.

Hence by (5.21) and (5.22) we have P1(X, E) ≥ 0 if n ≥ 3.
We see from the above that P1(X, E) ≥ 0 if KX + c1(E) is not nef.

Next we consider the case where n ≥ 3 and KX + c1(E) is nef.

Theorem 5.17. Let X be a smooth projective variety of dimension n ≥ 3 and let
E be an ample vector bundle on X with rank(E) ≥ n−1. Assume that KX + c1(E)
is nef. Then

P1(X, E) ≥ 2(2n−2 − 1)(n− 2)− 2

holds. In particular, P1(X, E) ≥ 0.

Proof. Since KX +c1(E) is nef, we see from Lemma 5.3 (i) and [12, Corollary 3.10]
that

(KX + c1(E))(cn−1
1 (E)− cn−1(E)− sn−1(E)) ≥ 0. (5.23)

On the other hand, by Lemma 5.3 (ii) and Theorem 2.8, we have

c1(E)n − cn(E)− sn(E) =
∑

λ∈Λ(n,r)

aλ∆λ(c) (5.24)

≥
∑

λ∈Λ(n,r)

aλ

≥ 2(2n−2 − 1).

By (5.23) and (5.24) we get

P1(X, E) = (n− 2)(c1(E)n − cn(E)− sn(E))

+(KX + c1(E))(c1(E)n−1 − cn−1(E)− sn−1(E))− 2

≥ 2(2n−2 − 1)(n− 2)− 2.



128 Y. Fukuma

Therefore we get the assertion of Theorem 5.17.

Here we get the following better lower bound for P1(X, E) with small n.

Proposition 5.18. Let X be a smooth projective variety of dimension n ≥ 3 and
E an ample vector bundle on X with rank(E) ≥ n − 1. Assume that KX + c1(E)
is nef. Then the following hold.

(i) If n = 3, then P1(X, E) ≥ 0.

(ii) If n = 4, then P1(X, E) ≥ 14.

(iii) If n = 5, then P1(X, E) ≥ 70.

(iv) If n = 6, then P1(X, E) ≥ 294.

(v) If n = 7, then P1(X, E) ≥ 1148.

Proof. Since KX + c1(E) is nef, we see from Lemma 5.3 (i) that

(KX + c1(E))(c1(E)n−1 − cn−1(E)− sn−1(E)) ≥ 0.

We also note that c1(E)n − cn(E)− sn(E) = P0(X, E). Hence by Remark 5.8 and
Proposition 5.6 we get the assertion.

As a corollary of Theorem 5.17, we get a lower bound for c1-sectional genus
of (X, E) for the case where E is generated by its global sections.

Corollary 5.19. Let X be a smooth projective variety of dimension n ≥ 3 and E
an ample vector bundle on X with rank(E) ≥ n − 1. Assume that E is generated
by its global sections and KX + c1(E) is nef. Then we have

g(X, c1(E)) ≥ 2q(X) + (2n−2 − 1)(n− 2)− 1.

Proof. First we note that b1(X, c1(E)) = 2g(X, c1(E)) (see Remark 2.10 (ii)).

Moreover by Propositions 3.8 and 3.17, we have B1(X, E)+B̂1(X, E) ≥ 2h1(X,C).
By the Lefshcetz theorem, we have h1(X,C) = 2q(X). Hence by Definition 5.1

g(X, c1(E)) =
1

2
b1(X, c1(E))

=
1

2
(B1(X, E) + B̂1(X, E) + P1(X, E))

≥ 2q(X) +
1

2
P1(X, E).

By Theorem 5.17, we get the assertion.

By the same argument as above, we get a better lower bound for the case
where 3 ≤ n ≤ 7 by using Proposition 5.18.
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Corollary 5.20. Let X be a smooth projective variety of dimension n ≥ 3 and E
an ample vector bundle on X with rank(E) ≥ n − 1. Assume that E is generated
by its global sections and KX + c1(E) is nef. Then the following hold.

(i) If n = 3, then g(X, c1(E)) ≥ 2q(X).

(ii) If n = 4, then g(X, c1(E)) ≥ 2q(X) + 7.

(iii) If n = 5, then g(X, c1(E)) ≥ 2q(X) + 35.

(iv) If n = 6, then g(X, c1(E)) ≥ 2q(X) + 147.

(v) If n = 7, then g(X, c1(E)) ≥ 2q(X) + 574.

Moreover, for the case where h1(OX) > 0, we can improve a lower bound for
g(X, c1(E)).

Proposition 5.21. Let X be a smooth projective variety of dimension n ≥ 3 with
h1(OX) > 0 and E an ample vector bundle on X with rank(E) ≥ n − 1. Assume
that E is generated by its global sections and KX + c1(E) is nef. Then we have

g(X, c1(E)) ≥ 3q(X) + (2n−2 − 1)(n− 2)− 2.

Proof. By Proposition 3.8, we have B1(X, E) ≥ h1(X,C) = 2h1(OX). We note
that

B̂1(X, E)− h1(X,C) = b1(W,H)− h1(W,C)

= 2g1(W,H)− 2h1(OW ).

Here we prove the following.

Claim 5.22. (W,H) is not a scroll over a smooth projective curve.

Proof. Assume that (W,H) is a scroll over a smooth projective curve C. Let
p : W → C be the projection. For any fiber F of p, f(F ) is a point or f(F ) =
X because F ∼= Pn+r−2, where f : W = PX(E) → X is the projection and
r = rank(E). We note that the case where f(F ) = X is impossible because
h1(OX) > 0. So we see that f(F ) is a point for any fiber F of p. But this case
cannot occur because dimX ≥ 3.

By Claim 5.22 and Proposition 2.11 we get g1(W,H) ≥ 2h1(OW )− 1. There-
fore

B̂1(X, E)− h1(X,C) = 2g1(W,H)− 2h1(OW )

≥ 4h1(OW )− 2− 2h1(OW )

= 2h1(OW )− 2.
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We also note that h1(OW ) = h1(OX) and h1(X,C) = 2h1(OX). Hence we

have B̂1(X, E) ≥ 4h1(OX)− 2. Therefore

g(X, c1(E)) =
1

2
b1(X, c1(E))

=
1

2
(B1(X, E) + B̂1(X, E) + P1(X, E))

≥ 3h1(OX)− 1 +
1

2
P1(X, E).

By Theorem 5.17, we get the assertion.
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