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New invariants of ample vector bundles over smooth
projective varieties

Yoshiaki Fukuma

Abstract. Let X be a complex smooth projective variety of dimension n, and let £ be an ample
vector bundle on X. In this paper, we will introduce new invariants of generalized polarized
manifolds (X, &), and we will study their properties. As an application, we study a lower bound
for c1(E)™ and the sectional genus g(X,c1(E)) of (X, c1(£)).

1 Introduction

Let X be a smooth projective variety of dimension n defined over the field of
complex numbers, and let £ be an ample vector bundle on X. Then (X&) is
called a generalized polarized manifold. Let r := rank(E). Generalized polarized
manifolds (X, &) have been studied by using some invariants of (X,£). Here we
state the history of invariants of (X, E).

First in [4], Fujita introduced the ¢;-sectional genus and the O(1)-sectional
genus of (X,&). Next, in [1], for the case where r = n — 1, Ballico defined an
invariant of (X, &) which is called the curve genus cg(X,€) of (X, &), and several
authors (in particular Lanteri, Maeda, Sommese and so on) studied this invariant
(see [16], [20], [17] and [21]).

As a generalization of the curve genus, for any ample vector bundle £ with
r < n—1, Ishihara ([15, Definition 1.1]) defined an invariant g(X, £), which is called
the ¢,.-sectional genus of (X, €), and in [10] we investigated some properties about
9(X,E). We note that if n—r = 1, then g(X, £) is the curve genus. This invariant
means the following: If a general element of H°(£) has a zero locus Z which is
smooth of expected dimension n —r, then g(X, &) = g(Z,det £|z), that is, g(X, &)
is the sectional genus of (Z,det£|z). In [13] Fusi and Lanteri generalized this
invariant. In [8, Definition 4.1], we introduced an invariant v(X, &) of generalized
polarized manifolds (X, ) with » > n — 1, which is defined by using a result [8,
Theorem 3.2 (3.2.3)]. Here we note that v(X,&) is equal to the curve genus if
r=n-—1.

In this paper, we will introduce new invariants B*(X, £) and B'(X, &) of (X, £)

for every integer i with 0 < i < n and rank(€) > max {n — =1, 1} (see Defini-
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tions 3.6 and 3.11). Then the following equalities hold (see Propositions 3.7 and
3.12).

bon_o_i(Px(E), H(E)) — h*" 27 (Px(£),C) = BY(X, &) — h'(X,C),
bi(Px (€), H(E)) — hi(Px(€),C) = B'(X, &) — h(X,C

~—

b

where H(E) denotes the tautological line bundle on Px(€) and b (Px (&), H(E))
denotes the k-th sectional Betti number of (Px(€), H(E)).

We note that if i = 1, then B(X,€) = 2v(X, ). In this paper, we will study
some properties of Bi(X,€) and ﬁi(X ,€). Furthermore we will also define and
study the following invariant P;(X, &)

Pi(X,E) = bi(X,c1(E)) — (BY(X,E) + BY(X, E)).

Here b;(X, ¢1(£)) denotes the ith sectional Betti number of (X, ¢ (£)). By studying
Pi(X,E) for i = 0 and 1, we get a lower bound of ¢1(€)™ and g1(X,¢1(E)) (see
Section 5).

2 Preliminaries

Notation 2.1. Let X be a smooth projective variety of dimension n > 1 and let
€ be an ample vector bundle of rank r on X. We put W :=Px(€), H := H(E)
and m := dim W, where H(E) denotes the tautological line bundle on W. Then
m=n-+r—1.

Definition 2.2. Let X be a smooth projective variety of dimension n and let £
be a vector bundle of rank r on X.

(i) The Chern polynomial c;(€) is defined by the following:

a(&) = Zci(c‘))ti,

i>0
where ¢;(€) is the ith Chern classes.

(ii) For every integer j with j > 0, the jth Segre class s;(F) of F is defined
by the following equation: c¢;(FY)s;(F) = 1, where ¢;(F") is the Chern
polynomial of F¥ and s¢(F) = 3,5 5;(F)t/.

Remark 2.3. (i) Let X be a smooth projective variety and let F be a vector
bundle on X. Let 5;(F) be the Segre class which is defined in [11, Chapter
3]. Then s;(F) = §;(FY).

(ii) For every integer ¢ with 1 < ¢, s;(F) can be written by using the Chern classes
¢j(F) with 1 < j <. (For example, s1(F) = ¢1(F), s2(F) = c1(F)? —ca(F),
and so on.)
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Definition 2.4. Let A = (A1,...,\,) be a finite sequence of nonnegative integers
with Ay > --- > \,. Then we call this A a partition. We denote by A(n,r) the set
of all partitions of n in nonnegative integers < r.

Definition 2.5. For a partition A = (A1,...,A,) € A(n,r), we put
Ax(e) = Ap,.n) (€) = det(cj—ivr,),

where (¢;j_;4»,) denotes the n by n matrix whose ij entry is ¢;_;+,. Then we call
this the Schur polynomial associated to A. Here c, denotes the pth Chern class of
a vector bundle.

Remark 2.6. We note that Ay, ., (s) = det(s;_i;»,), where s, denotes the
pth Segre class of a vector bundle.

Remark 2.7. Let up = (2,1,...,1) for every positive integer k. By [11, Lemma
——

14.5.1] we have

=a@)Ag, 10~ Au, ()
k—1

= cl(é‘)sk_l(f) - A,U,kfl(c)'

Theorem 2.8. Let X be a projective variety of dimension n and let £ be an
ample vector bundle on X with rank(€) = r. Let P = 3\ x(,y axAx(c). Then
the polynomial P is numerically positive for ample vector bundles if and only if
P is non-zero and ay > 0 for all A € A(n,r). In particular, Ax(c) > 0 for every
A€ Aln,r).

Proof. See [12, Theorem IJ. O

Definition 2.9. (See [7, Definition 3.1].) Let (X, L) be a polarized manifold of
dimension n, and let ¢ be an integer with 0 <17 < n.

(i) The ith sectional Euler number e;(X, L) of (X, L) is defined by the following:

i

D DV (A PRSI

k=0
(ii) The ith sectional Betti number b;(X, L) of (X, L) is defined by the following:
eo(X,L) ifz’zO,

bi(X,L) = . =t
X, L) (-1) 22 IR(X,C) | if1<i<n.
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Remark 2.10. (i) If i = 0, then bo(X,L) = L.

(ii) If ¢ = 1, then by (X, L) = 2¢g(X, L), where g(X, L) denotes the sectional genus
of (X,L).

Proposition 2.11. Let (X, L) be a polarized manifold of dimension n > 3. As-
sume that L is spanned by its global sections. Then g(X,L) > 2h*(Ox) — 1 unless
(X, L) is a scroll over a smooth curve.

Proof. The nonnegativity of g(X, L) shows that Proposition 2.11 is true for the
case of h'(Ox) = 0. So we may assume that h'(Ox) > 1. Since L is spanned by
its global sections, by taking (n — 2) general members D1, ..., D, _o € |L|, we can
get a smooth projective surface S := Dy N---N D,_5. We consider the polarized
surface (S, Lg). Since L is ample and Bs|Lg| = (), we see from [5, Lemma 1.15]
that ¢(S, Ls) > 2h*(Og) — 1 holds unless (S, Lg) is a scroll over a smooth curve.

If (S, Lg) is a scroll over a smooth projective curve, then so is (X, L) by [3,
Theorems 5.5.2 and 5.5.3] because h!(Og) = h'(Ox) > 1. Hence if (X, L) is not
a scroll over a smooth curve, then

9(X, L) =g(S, Ls)
>2h'(0s) — 1
=2rY(Ox) — 1.

So we get the assertion. O

3 Definition of new invariants

Notation 3.1. Let n be a positive integer. For every integer i with 0 < i < n,
we set

i fn—t—2
Ei(2o, -, TiiYn—is- -, Yn) 1= Z (_1)116(- )xkynktct(X)' (3.1)

i—t—k
0<k,t
0<k+t<i

Remark 3.2. Let W and H be as in Notation 2.1. We see from (3.1) and [8,
Theorem 3.1] that for every integer ¢ with 0 <i <n

ei(W,H) = Ei(co(E),...,¢i(E);sn—i(E),...,sn(E)) (3.2)
and by (3.2) we have

bi(W, H) — h*(W,C) (3.3)
= (=1 | Ei(co (&), ..., ¢i(E); $n_i(E),. —22 1)7h (W, C)

—hY(W,C).
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i—1

Here we note that if ¢ = 0, then we regard Z 1)7h3 (W, C) as 0.
7=0

Theorem 3.3. Let X be a smooth projective variety of dimension n > 2, and £
an ample vector bundle of rank r on X. Let W and H be as in Notation 2.1. If
r > max {n — %, %}, then we have

ban—2—i(W, H) — h*"7>7/(W,C)
= (=)' | Bi(so(E)..-,5:(E); eni(E), - 22 1YW (W, C)

7=0
—h (W, C).

Proof. First we prove the following lemma.

Lemma 3.4. If r > max {n — %, %}, then

(2 (i Des() 2 3 (CLIWW.C) | R w0

j=0
= (—1)"*! 22 170 (W, C) | — B(W,C).

Proof. By [19, (2.1) Proposition| and the assumption that r > max {n — ﬂ, il

2
we obtain

I(X,C)+h2X,C)+---+ hO(X,C), if j is even,

i(X,C) + hi—2(X.C) +---+ BA(X,C), ifjisodd O

for every integer j with 0 < j<iand 0<j <2n—2 —i.
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(A) Assume that i is even. We set ¢ = 2[. Then by (3.4) we have

2n—2—-21—1
(n— 21 —1)e,(X) — 2~ 272(W,C) — 2 ( > (=R W, (C)) (3.5)
=0
n—Il—1
=(n—2l—1)cn (X Zh%xc

n—Il—2 n—Il—1
—2<Z(n—k—l DR*(X,C) = Y (n Y 1(X<C)>

k=0 k=1
= (n— 20— 1)en(X)
n—Il—1 n—Il—1
- Y @n-2k-21-1)R*(X,C)+ > (2n—2k—20)h*(X,C)
k=0 k=1

n—l— n—1
- ( > (2n -2k —20)p**(X,C) Z 2n — 2k — 21 + 1)h?* (X, (C))

k=0
—h2n_21(X, (C) 4 h2n 21—‘,—1()(7 (C) . (_1)h2n()(7 (C)
= (n —2l)c,(X)

— (i@n — 2k —20)h%* (X, C) — . (2n — 2k — 21 + 1)h2*1(X, (C))

k=0 k=1
+ Y @n—2k—2)RM(X,C)— Y (2n—2k—20+1)r* (X, C)
k=n-—I k=n—I1+1
dorhx o - > h%—l(X,C)>
k=n—I1 k=n—I+1

= —n)h?(X,C) — i(% —n—1)h*"1(X,0C)

k:O k=1
n

+ ) @n—2k—2-1KMX,C)— > (2n—2k—20)h*1(X,C).
k=n—I k=n—I+1
y [8, Claim 3.1], we see that

n

> 2k —n)h*(X,C) =0

k=0
and

> @2k —n-1)p*(X,C) =0.

k=1
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Hence by (3.5) and using the Poincaré duality we get

2n—2-2]—1
(n—20=1)cp(X) — 2 ( >, M mw, C)) — R 22(W,C)
7=0

= > (@n-2k-2-1)r*X,C)— > (2n-2k-20)r*(X,C)

k=n—I1 k=n—I+1

l l

= (=2042j - APV (X,C) = Y (2 — 20 - 2)h*" ¥ T(X, C)

7=0 Jj=1

l l
== (20— 2+ DAY (X,C) + > (21— 2j + 2)h¥ (X, C).
7=0 j=1

On the other hand,

1)+t (22 1R ( W(C) — h'(W,C)

2[—-1

:—22 1)7h? (W, C) — h®(W, C)

1 l

l
-2 < WRW,C) = > hP*L(w, (C)) — h¥ (W, C)

k=1
k

l l
ZQZ—2k+1 (X, C) + > (2 — 2k +2)h* (X, C).
k=1

~
= o

l

l
(I—k)p*(X,C) = > (I+1- th—l(X,C)> - _n*(X,C)
k=1 k=0

Il
=]

Hence the assertion holds if 7 is even.

(B) Assume that ¢ is odd. We set ¢ = 2] 4+ 1. Then by (3.4) we get
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2n—2—1—1

(i e -2 3 CDRRE)) -1 o)
j=0
2n—2l—4
—(n—=2—=2cn(X)+2 D (=1)/W(W,C) - h*"*3(W,C)
§=0
n—Il—1
—(n—2l — 2)en (X Zh%lX(C
n—I[{—2 n—I[—2
+2( Y n—k—-1-DEMX,C)- > (n- —l—1)h2’f—1(X,<C)>
k=0 k=1
n—Il—2

—(n =21 — 2)cn(X) + (2n — 2k — 21 — 2)h**(X,C)
0

>
Il

n—Il—2
= (2n — 2k — 21 — 1)A**~1(X,C) — K"~ 273(X, C)
1

>
Il

n—I[—2
—(n =2l —1Dep(X) + (2n — 2k — 21 — 1)h** (X, C)
0

n—Il—2 n

Z (2n -2k —2)R*H(X,C)+ Y K*(X,C)

k=n—I[—1

>
Il

h2k—1 (X, (C) o h2n_2l_3(X7 (C)

MsH

k=n—I1—1
—(n =20 = )ea(X) + (20— 2k — 21 - 1)h* (X, C)
k=0

- (20— 2k — 2)h**71(X,C) Z 2n—2k—2l—2)h2k(X,<C)
k=1

+ Y (2n—2k—20— )P (X, C) - K7 3(X,C)
k=n—I—1

= (n—2K)h*(X,C) =Y (n—2k+1)h* (X, C)
k=0 k=1

- zn: (2n — 2k — 21 — 2)h?*(X,C)

k=n—I—1

+ > (2n—2k-20-1)R*(X,C) - KX, C).
k=n—I1—1
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y [8, Claim 3.1], we see that

zn: 2k)h*F(X,C) = 0

k=0

and
n

> (n—2k+1)p*7H(X,C) = 0.
k=1
Hence by an argument similar to that of the case where i is even, we get
> (n=2k)h*(X,C) = > (n -2k + 1)1 (X,C)

k=0 k=1
n

- > (2n—2k-21-2)h*(X,C)

+ > (2n—2k-20— KX, C) - K" 3(X,C)
k=n—I—1

ST (2k+20 - 20+ 2)h?*(X,C)
k=n—I1—1
> (2k+20-2n+1)R* (X, C) — B2 T(X,C)
k=n—I1—1

Z (2k 4 21 — 2n + 2)h?* (X, C)
k=n—I1—-1

Z (2k + 20 — 2n + 1)R%*~1(X,C)
n—1

k=
Z (2k + 21 — 2n + 2)h*"~2*(X, C)
k=n—1—1

- Z (2k 4 21 — 2n + 1)h2"~2k+1(X Q)
k=n—I
= Y (2k+2—2n+2)K"" (X, C)
k=n—I1
= Y (2k+20—2n+ )R HR(X,C)
k=n—I1
l +1
> (21— 2k +2)h%(X,C) = Y (20 - 2k + 3)h*F (X, C).

k=0 k=1

105
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On the other hand,

1)1 (22 1)7h7 ( ch) — (W, C)

21

=2 (~1/W(W,C) - ¥ (W,C)

§j=0
l l
=2 (Z(z- k+1D)RH(X,C) =) (41— h%—l(X,C)>
k=0 k=1
141
_ Z h%_l(X, (C)
k=1
l I+1
= (21— 2k +2)h(X,C) = Y (20 - 2k + 3)h** (X, C).
k=0 k=1
Hence the assertion holds if 7 is odd.
In any case we obtain the assertion of Lemma 3.4. O

Here we note that by [9, Claim 3.1] we have

egn_g_i(I/V, H) (36)

-y z_:(_l)H <Tf - z2> ent—t(E)er(X)s1(E) + (n — i — Den(X).

t=0 [=0
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Hence by (3.1), Lemma 3.4 and (3.6) we have
ban—o—i(W, H) — h*"">7/(W,C)
4 2n—2—i—1 o
= (=177 egnai(W,L) =2 > (1)K (W,C)
_h2n727i(W, (C)

= (1 ( S (22,7 cn_t_xs)ct(X)sl(a)

=0 1=0
+(=1)*""2(n — i — 1D)ep(X)

p(opynr ( ~ o, @)) i, 0)

j=0
i i—t +—9
= < Z <zt l)cntl(é’)ct(X)sl(E)>
t=0 1=0
1)+t (22 1) 17 (W, C) ) — h{(W,C)
= (-1’ (Ei(so(g), e 8i(E)sen—i(E), - - 22 1)h? (W, C) )
—hY(W,C).
Therefore we get the assertion of Theorem 3.3. O

Theorem 3.5. Let X, &, W, H, r and n be as in Notation 2.1. Assume that
n>2andr > max{n — ”2'1, ”2'1} for every integer i with 0 < i <n. Then the
following holds.

ban—o—i(W, H) — h*"27H(W, C)

= (=1)'Ei(50(&), ..., 8:(E);cni(&),...,cn(E))
L5 L]

+(—1)HH ( (i+1—2k)h*(X,C) = > (i +2—2k)h* (X, (C))
k=0 k=1

—h'(X,C).
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Proof. If i = 21, then by (3.4) in the proof of Lemma 3.4 we get

1)+t (22 171 ( W(C) h' (W, C)

l
:—22(1— k)W (X,C)+2) (141 - k)p* 1 (X,C) - Zh%xc
k=1

-1 l
== (2 —2k+1)r*(X,C)+ ) (20 +2 - 2k)h** (X, C) - h*'(X,C)
k=0 k=1

l4)-1 1)
= Z (i +1—2k)R*(X,C) — ) (i+2—2k)h?*"1(X,C) - hi(X,C).
k=1

(MO

If i = 20 + 1, then

1)+t (22 1) hi (W, C) ) — h'(W,C)

l l
=2 (I+1-k)h*X,C)—2) (I1+1-k)h**(X,C)
0 k=1

+1

Zth 1XC

k=1

(21 + 3 — 2k)h**~1(X,C) — R¥ (X, C)

MN

(20 — 2k + 2)h?* (X, C) —

MN

1

—
s |

— o
Eo

,_
ol
— |l

(i4+1—2k)h*(X,C) — Y (i+2—2k)h**"1(X,C) - h(X,C).
k=1

ES
Il
o

Hence

1)+t (22 1)1 (W, C) ) — h'(W,C)

1552 13
= (=1)"! ( > (i+1-2k)p(X,C) = > (i+2— 26X, C))

k=0 k=1
—h'(X,C).
(Here we note that if ¢ is odd (resp. even), then [%| = [52] (resp. [] —1 =

L5

So by Theorem 3.3 we get the assertion. O
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Definition 3.6. Let X be a smooth projective variety of dimension n > 2 and let
& be an ample vector bundle of rank r on X. Let ¢ be an integer with 0 < i < n.
Assume r > max {n — 21, 21} Then we define the following invariant B*(X, &)
of (X,&).

Bi(X,g)Z: (—1>ZEZ<80((€), ey Sl(g), Cn,i(g), ey

=) L4

(=" D i+ 1-20)p*(X,C) =) (i +2-2k)h* (X, C)
k=0 k=1

We can prove the following proposition by Theorem 3.5 and Definition 3.6.

Proposition 3.7. Let X be a smooth projective variety of dimension n > 2 and let
E be an ample vector bundle of rank r on X. Let ¢ be an integer with 0 < i < n.
Assume that r > max {n — %, %} Then bay_o_;(W, H) — h?2"=274(W,C) =
B'(X,&) — h'(X,C) holds.

Moreover we get the following result.

Proposition 3.8. Let X be a smooth projective variety of dimension n > 2 and
let £ be an ample vector bundle of rank r on X. Let i be an integer with 0 < i < n.
Assume that £ is spanned by its global sections and r > max {n — %, %} Then
B'(X,€&) > h'(X,C) holds.

Proof. Let W and H be as in Notation 2.1. By Proposition 3.7 we have
bon—2—i(W, H) = h*""271(W,C) = B'(X,€) - h'(X,C).

We note that ba, o (W, H) > h?"~27(W,C) since & is spanned by its global
sections. Hence we get the assertion. O

Remark 3.9. (i) If i = 0, then we have B%(X, &) = ¢, (£). Since £ is ample with

rank(£) > n, we see that BY(X, &) > 1 = ho(X,C).

(ii) If i = 1, then BY(X, &) = 2v(X, £), where v(X, ) denotes the invariant in [8,
L3

Definition 4.1]. (Here we note that Z(Z +2 - 2k)h*"H(X,C)=0if i = 1.) For
k=1

details on the invariant v(X, E), see [8].

Considering Proposition 3.8, we can propose the following conjeture.

Conjecture 3.10. Let X be a smooth projective variety of dimension n > 2 and
let £ be an ample vector bundle of rank r on X. Let be an integer with 0 < i < n.

Assume that r > max {n — &L 2L Then BY(X,€) > hi(X,C) holds.

Definition 3.11. Let X be a smooth projective variety of dimension n > 2 and
let £ be an ample vector bundle of rank r on X. Let ¢ be an integer with 0 < i < n.
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Assume r > max {n — 22 2L} Then we define the following invariant Bi(X,€)
of (X,&).

Ei(X,E):: (71)"1*7@(00(5)7 ey Gi(E); 8n—i(E), ..., 8n(E))
1552 1£)
—(=D" | Y (+1-20)h(X,C) = (i +2 - 2k)h* (X, C)

k=0 k=1

s

Proposition 3.12. Let X be a smooth projective variety of dimension n > 2
and let € be an ample vector bundle of rank v on X. Let i be an integer with
0 < i< n. Assume that r > max {n — 2, 2L Then b;(W,H) — h'(W,C) =
Bi(X,€) — hi(X,C) holds.

Proof. First by (3.3) in Remark 3.2 we have

bi(W, H) — h*(W,C)
= (=1)" | Ei(co(&),...,ci(E); snilE),. —22 1) h? (W, C)

—h (W, C).

On the other hand, by the same argument as the proof of Theorem 3.5, we
have

bz(Wa H) - h’l(W7 (C)

= (—1)iE<(co(<€') s Gi(E); 8n—i(E), ..., 8n(E)
L3

[ER—N—1

+(—1)H1 Z i+1—2k)h%*(X,C) =) (i+2-2k)h?* (X, C)
k=0 k=1
—hz(X, C).
So we get the assertion by Definition 3.11. O

Remark 3.13. If i = 0, then we have EO(Xf)) = 5,(&). Since € is ample with
rank(€) > n, we see B(X,€) > 1 =h"(X,C).

Here we consider the case of ¢ = 1. If £ is a line bundle L, then n = 2
and BY(X,€) = 2+ (Kx + L)L = 2g(X,L). Therefore B'(X,€) > 0 and the
classification of (X, &) with BY(X,&) < 4 is known (see [18] and [2]). So we
assume that r > 2.

Theorem 3.14. Let X be a smooth projective variety of dimension n > 2 and
let £ be an ample vector bundle of rank r on X. Assume that r > max{n — 1,2}.
Then BY(X,&) > 0 holds.
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Proof. Let W and H be as in Notation 2.1. By Proposition 3.12 we have
BY(X,&) — h'(X,C) = by(W, H) — k' (W, C).

On the other hand, we see that h'(X,C) = 2¢(X) = 2¢(W) = ht(W,C). So we
get

BY(X,&) = by (W, H). (3.7)

Since by Remark 2.10 (ii)
bi(W, H) = 29(W, H) = 0, (3.8)
we have BY(X, &) > 0 by (3.7) and (3.8). O

Remark 3.15. Since B(X, &) = 2g(W, H), we see from [4, Theorems (3.2), (3.3)
and (3.4)] that we can get a classification of (X, ) with B1(X,£) < 4. For details,
see [4, Theorems (3.2), (3.3) and (3.4)].

Here we propose the following conjecture which is the E’(X ,&)’s version of
Conjecture 3.10.

Conjecture 3.16. Let X be a smooth projective variety of dimension n > 2 and
let £ be an ample vector bundle of rank r on X. Let i be an integer with 0 < i < n.

Assume that r > max {n — %L 211 Then Bi(X,&) > hi(X,C) holds.

Proposition 3.17. Let X be a smooth projective variety of dimension n > 2 and
let € be an ample vector bundle of rank T on X such that £ is generated by its global
sections. Let i be an integer with 0 < i < n. Assume that r > max {n — &1 =11,

2
Then B'(X,€) > hi(X,C) holds.

Proof. Let W and H be as in Notation 2.1. By Proposition 3.12 we have b;(W, H)—
hi(W,C) = BY(X,E)—h*(X,C). Since & is spanned by its global sections, we have
b;(W,H) > h*(W,C). So we get the assertion. O

Proposition 3.18. Let X be a smooth projective variety of dimension n > 2 and
let £ be an ample vector bundle of rankr on X. Let i be an integer with 0 < i < n.
Assume that v > max {n — 22, B4 Then B (X, &) and BY(X,E) are even for
every odd integer i.

Proof. Assume that i is odd. By Proposition 3.7 we have
b2n727i(Wa H) - b2n727i(VV7 (C) = B’L(X7 g) - hz(X7 (C)

If i is odd, then by, _o_;(W, H) (resp. bap_2_;(W,C) and hi(X,C)) is even by
[7, Theorem 3.1 (3.1.2)] (resp. the Hodge theory). Hence B'(X,€) is even. On
the other hand, By Proposition 3.12 we have b;(W, H) — b;(W,C) = ﬁi(X,S) —
hY(X,C). If i is odd, then b;(W, H) (resp. b;(W,C) and hi(X,C)) is even by [7,
Theorem 3.1 (3.1.2)] (resp. the Hodge theory). Hence B*(X, &) is also even. [
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By Propositions 3.7 and 3.12 we get the following.

Proposition 3.19. Let X be a smooth projective variety of dimension n > 2 and

let & be an ample vector bundle of rank v on X. Assume that r > 5. Then

B" (X, &) = B (X, €).

Similarily we can get the following relation between B" (X, £) and B\”*Q(X, )
by Propositions 3.7 and 3.12.

Theorem 3.20. Let X be a smooth projective variety of dimension n > 2 and let
E be an ample vector bundle of rank r on X. Assume r > "7“ Then

B"(X,€) — h"(X,C) = B"2(X,&) — k" %(X,C)
holds.

4 On B%(X,€) and B%(X, &) for dim X =2 and 3

In this section we study B2(X,&) and B2(X, ) for dim X = 2 and 3.
First we calculate B?(X, &) and B2(X,€) in general. We have

E(50(€),51(€), 52(E); en—2(E), en-1(€), en(€))

= Z (—1)2—t <Z_f_z> Sk(g)cn,k,t(é')ct(X)
0<k,t
0<ktt<2
= (n ; 2) Cn(g) - (’ﬂ - S)Cl(X)Cnfl(g) + (n — 2)81(5)071,1(5)

te2(X)en—2(8) = s1(E)en—2(E)er(X) + 52(E)cn—2(E),

Ea(co(€),c1(E), c2(E); 8n—2(E), 8n-1(E), 8n(E))

= Z (_1)27t <Z:::i> Ck(g)sn_k_t(g)Ct(X)
0Shtica
n—2
_ ( ) >sn(5) —(n—)er (X)sn1(E) + (1 — 2)e1 (E)sn1(E)

+ea(X)sn—2(E) — c1(E)sn—2(E)c1(X) + c2(E)sn—2(E).

Moreover we have

125
> (2+1-2k)h*(X,C) = 30°(X,C) = 3,
k=0

ZQ—i—Z k)h?*~1(X,C) = 2n1 (X, C).
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So we get
B(X,€) = (” ) 2) (&) = (n = 3)er(X)en_1(E) (4.1)
+(n = 2)51(E)en-1(€) + c2(X)en—2(E)
—51(E)en—2(E)c1(X) + s2(E)cn—2(E)
-3+ 2r(X,C),
B%(X,€) = (“ ; 2) $n(E) — (n = 3)e1 (X)sn_1(E) (4.2)

+(n = 2)e1(E)sn-1(E) + c2(X)sn—2(€)
—c1(E)sp—2(E)c1 (X)) + c2(E)sp—2(E)
-3+ 2n(X,C).

Proposition 4.1. If n = 2 and rank(£) > 2, then B*(X,€) > h*(X,C) and
B%(X,€) > h*(X,C).
Proof. If n =2, then by (4.1) and (4.2) we have

B*(X,€) = s2(€) — 1+ h*(X,C),

B%(X,€) = co(E) — 1+ h2(X, C).

Since &£ is ample, we have s3(£) > 0 and ¢2(€) > 0 hold. Hence we get the
assertion. O

Next we consider the case n = 3. In particular we treat the case of x(X) > 0.

Theorem 4.2. Let X be a smooth projective variety of dimension 3 and let £ be
an ample vector bundle on X with rank(£) > 2. If k(X) > 0, then B*(X,€) >
2n1 (X, C).

Proof. First we note that rank(€) > 2 > max {3 — 231, 221} and by (4.1) B*(X, )
is the following in this situation.

B*(X,E) = co(X)e1 (&) + (Kx +c1(E))er(E)® — 3+ 2h1 (X, C). (4.3)

Here we note that ex(X, c1(€)) = ca(X)e1(E) + (Kx + ¢1(€))e1(€)? by Definition
2.9 (i). So we find

B*(X,€) = ea(X,e1(E)) — 3+ 2h1 (X, C). (4.4)

Since k(X) > 0, we see from [22, Theorems 1, 2 and 3] that Kx +¢;1(€) is nef.
Hence by [14, 2.11 Corollary], we see that

c2(X)ey (€) > %Kxcl(s) - 501(5)3. (4.5)
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Hence by (4.3) and (4.5) we have
BY(X,E) = ca(X)e1 (&) + (Kx + c1(E))er(E)? — 3+ 2h1(X,C)

> %(KX L ei(€)er(E) + écl(s)B 54 9K1(X,0).

Here we note the following.

Claim 4.3. ¢;(£)3 > 2.

Proof. Since € is ample, we have ¢1(€)® > ¢1(€)c2(€) > 0 by [11, Example 12.1.7].
O

(1) If (KX + 01(5))61(5)2 > 6, then
B*(X,€) > Bcl(e)?’ — 1+ 2h'(X, C)-‘ > 211 (X, C).

(i) If (Kx + c1(&))e1(€)? < 3, then by [3, Proposition 2.5.1] we have (Kx +
c1(£))%c1(€) < 9. Here we note that since x£(X) > 0 we have x (X, ¢1(€)) > 0 by
[6, Theorem 3.3.1]. Hence by [7, Theorem 4.3] we have

e2(X, c1(€)) = 12x3 (X, 1(€)) — (Kx + e1(€))*ea(€)
>12-9=3.

So by (4.4) we have

B*(X,&) > 2h' (X, C).
(iii) Assume that (Kx + ¢1(£))c1(€)? = 4. Then by [3, Proposition 2.5.1] and
Claim 4.3 we have (Kx +c¢1(€))?%c1(€) < 8, and by the same argument as the case
(ii) we have

e2(X, e1(€)) = 12x3' (X, e1(€)) = (Kx + e1(€))?er(€)
>12-8=4.

So we have
B%(X,&) > 1+ 2h'(X,C).
(iv) Finally we assume that (Kx + ¢1(£))c1(€)? = 5. If ¢1(£)3 > 3, then we see

from [3, Proposition 2.5.1] that (K x +c1(£))%c1(€) < 8, and by the same argument
as the case (iii) we have

B%(X,€) > 1+ 2n'(X,C).

So we may assume that ¢;(£)® = 1 or 2. But ¢;(€)® = 2 is impossible because
of [3, Lemma 1.1.11]. Hence we get ¢1(€)® = 1. But this case does not occur by
Claim 4.3.

These complete the proof of Theorem 4.2. O
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By Proposition 3.19 we get the following.

Corollary 4.4. Let X be a smooth projective variety of dimension 3 and let £ be
an ample vector bundle on X with rank(£) > 2. If k(X) > 0, then B*(X,€) >
2r1(X,C).

5 A relation between b;(X,c;(£)) and B (X, &) + Bi(X,€)

Definition 5.1. Let X be a smooth projective variety of dimension n > 2 and £
an ample vector bundle on X. Let ¢ be an integer with 0 < ¢ < n. Assume that

r =rank(£) > max {n — 21 211 Then we set

Pi(X, &) :=b(X,c1(E)) — (BYX,E) + BY(X,E)).

5.1 The case 7 = 0.
First we consider the case i = 0.
Remark 5.2. Let X, £ and r be as in Definition 5.1. If ¢ = 0, then we have
Py(X,E) =c1(E)" — cn(E) — s, (E). (5.1)

Here we prove the following lemma which will be used in the next subsection.

Lemma 5.3. (i) For p > 2, we have
Al =€) = 5(E) = 3 ada@
AEA(p,r)

where ay is a non-negative integer for every A € A(p,r).
(ii) We have
§ ay >2(2P7% - 1).

AeA(p,T)
Proof. (1) We prove (i) by induction on p.
(i.1) If p = 2, then
01(8)2 - 62(5) — 52(5) =0.

So we get the assertion for p = 2.
(i.2) Assume that the assertion is true for the case of p =k — 1. We consider
the case where p = k. First we note that the following holds by Remark 2.7.

sk(€) = c1(E)sk-1(E) = Ay, (o). (5.2)
Here we put pui = (2,1,...,1) for every integer k > 2.
——

k—1
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By [9, Proposition 3.1] and (5.2), we have

k(€)= 51(E)ek-1(E) = Bpy 1 (5). (5:3)
We see from [11, Lemma 14.5.1] that

Ay, ()= A(k—l,l)(c)- (5.4)
Noting that s1(£) = ¢1(€), we get the following by (5.3) and (5.4).

ck(€) = c1(E)cr-1(E) = Ag—1,1)(c). (5.5)
Therefore by (5.2) and (5.5) we get

1 (E)F = cr(€) — sk (&) (5.6)
=c1(E)F — c1(E)er_1(E) — c1(E)sp_1(E)
FAg—1,1)(c) + Ay (c)
= (@) () = e-1(E) = s5-1(8))
+Ag—1,1)(c) + Ay, (o).

By assumption ¢;(€)* 71 —cp_1(€) — sk_1(€) can be written as Z baAx(c),
A€A(k—1,r)
where by > 0 for every A € A(k —1,r). So by [11, Lemma 14.5.2] we see that
c1(E)(c1(E)F L —ck_1(E) — s1_1(€)) can be written as Z cxAx(c) too, where
XeA(k,r)

cx > 0 for every A € A(k,r). Therefore we get the assertion for the case of n =k,
and we get the assertion of Lemma 5.3 (i).

(ii) We prove (ii) by induction on n.

(ii.1) If p = 2, then

c1(E)? — co(E) — 52(E) = 0.

Hence Z ax =0=2(22"2 - 1) and we get the assertion for p = 2.
AEA(2,r)

(ii.2) Assume that the assertion is true for the case of p = k—1. We consider the

case where p = k. Weset ¢1(£)F 1 —cip_1(E)—sk_1() = Z bxAx(c). Then
AEA(k—1,r)
by assumption we have Z by > 2(2F73 — 1). Here we note that ¢;(£)Ax(c)
AEA(k—1,7)

has at least two Schur polynomials (see [11, Lemma 14.5.2]). By (5.6) we get

Z ay>2+2 Z by | >2+22(2F 3 —1)=2(2F2-1).
AEA(K,T) AeA(k—1,r)

Therefore we get the assertion of Lemma 5.3 (ii). O
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By (5.1) in Remark 5.2 and Lemma 5.3 we get the following.

Theorem 5.4. Let X be a smooth projective variety of dimension n > 2 and £
an ample vector bundle on X with rank(€) > n. Then

Py(X,E) >2(2" 2% —1).

Corollary 5.5. Let X be a smooth projective variety of dimension n > 2 and let
& be an ample vector bundle on X with rank(€) > n. Then c1(€)" > 271,

Proof. By Remark 5.2, we have
c1(E)" = cn(€) + sn(€) + Po (X, E).

Since £ is ample, we have ¢, (€) > 1 and s,,(£) > 1. Therefore by Theorem 5.4 we
get
()" >2+202" 2 1) =2""1,

O

By (5.6) in Lemma 5.3, [11, Lemma 14.5.2] and Theorem 2.8, we get the
following better lower bound for Py(X, L) with small n.

Proposition 5.6. Let X be a smooth projective variety of dimension n > 2 and
E an ample vector bundle on X with rank(E) > n. Then the following hold.

(i) If n =2, then Py(X,€E) = 0.

(ii) If n =3, then
Py(X, &) =2A02,1)(c) > 2.

(iil) If n =4, then

Py(X,E) = 202,2)(c) + 3A3,1)(¢) +3A¢2,1,1)(c) = 8.

(iv) If n =5, then

Po(X,€) = 5A(3.2)(¢) + 5A2.2.1)(¢) + 44 (4.1)(c)
+6A(37171)(C) + 4A(2,1,1,1)(C)
> 24,

(v) If n =06, then

Po(X, 5) = 5A(373) (C) + 16A(372,1)(C) + 9A(472)(C) + 5A(27272) (C)
+9A2,2,1,1)(€) +505,1)(c) + 10A4,1,1)(c)
+10A(3,1,1,1)(¢) +5A2,1,1,1,1)(¢)

> 74.
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(vi) If n =17, then

Py(X,E) = 14A4,3)(c) + 21A3,31)(c) + 1445 2y (¢) + 35A (42,1 (¢)
+21A3,2,2)(€c) + 35A3,2,1,1)(c) + 14A2.2.2.1)(c)
+14A2.2,1,1,1)(c) + 6A(6,1)(c)
+15A(57171)(C) + 15A(3717171,1)(0)
+20A4,1,1,1)(¢) +6A(2,1,1,1,1,1)(c)

> 230.

Corollary 5.7. Let X be a smooth projective variety of dimension n > 2 and &
an ample vector bundle on X with rank(€) > n. Then the following hold.

2, ifn=2,

4, ifn=23,

. 10, ifn =4,
@) = 26, ifn =5,
76, ifn=206,

232, ifn="1.

5.2 The case 7 =1.
Next we consider the case i = 1.
Remark 5.8. We have
PUX,E) = (1= 2)(c1(8)" = ealE) — 5(£)) (57)
+H(Kx +1(E)(e(E)" = en1(E) — sn1(E)) — 2.

Remark 5.9. If n = 2, then Py (X, &) = —2—(Kx+c1(€))e1(E) = —29(X, c1(€)) <
0. So we assume that n > 3 from now on.

Remark 5.10. Let X be a smooth projective variety of dimension n > 3 and £ an
ample vector bundle on X. Assume that Kx+cq(€) is not nef and rank(E) > n—1.
Then (X, ) is one of the following types (see [22, Theorems 1, 2 and 3]).

( )
(ii.2) (P ",Ou»n(l)@” b
(ii.3) (P, Opn(1)®"72 & Opn (2))
(ii4) (Q, 0@"(1)@"_1)-
(ii.5) X = Pe(F) for some vector bundle F of rank n on a smooth projective

curve C, and £ = H(F) @ n*G, where 7 : X — C is the bundle projection
and G is a vector bundle on C' with rank(G) =n — 1.
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Then we calculate P; (X, E). In order to do that, first we calculate s;(L®") for
a line bundle L on X.

Lemma 5.11. Let X be a smooth projective variety of dimension n > 3 and let L
be an ample line bundle on X. Then s;(L®") = (“;“)Li for every integer i with
0<i<n.

Proof. We set £ := L®". First we note that ¢;(£) = ¢;((—=L)®") = (1 — Lt)" =
(¢t(—L))". On the other hand, since ¢;(—L)s;(L) = 1, we have s;(L) = 1+ Lt +
L2t + ... 4+ L"t". Therefore

5¢(8) = s¢(L)" = (1 4+ Lt + L*t* + - - - + L™t")"
=2 <r .+Z>thl.
; i
1=0
Therefore we get the assertion. O

(ii.1) Assume that (X,€) = (P™, Opn(1)®"). Then by (5.7) in Remark 5.8, we

have

(n—2) (n” —1- (2”7: 1)) +(-1) (n"_l —n— (2:_12» —2
A" n? — 2 — 1) — (n—2) <2nn_ 1) + (2n B 2)
2n2—6n+2(2n—2>.

P (X,€)

n—1/_2
n" (n n—1) - o
First we note the following claim.

Claim 5.12. Let x and y be a positive integer with x < y. Then the following
holds.

y+1 _y
x+1<;'
By Claim 5.12; we have
2n—2\ (2n—2)---n
<n—1> (n—1)!
2n—2 2n—3 n+1 n
T n—1 n-2 2 1

n—1

<n

for n > 3.
On the other hand, we set f(n) := n(n? —2n — 1) — (2n? — 6n +2). Then

f(n) =n3—4n? +5n —2
=n*(n —4) +5n — 2.
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If n > 4, then f(n) > 0. Moreover f(3) =4. So we get f(n) > 0 for n > 3.
Therefore we have

N2 —6 2/(2n — 2
nn—1<n2_2n_1>>““+(” )

n n—1

Namely P;(X,€) > 0 for n > 3.

(ii.2) Assume that (X,€) = (P*, Opa(1)®"71). Then by (5.7) in Remark 5.8,
we have

Pi(X,E) = (n—2) <(n_ Iy (2n_ 2))

n

+(-2) ((n L (2:__13» —2

3 T — () <2nn 2> N 2<2n - 3)'

n—1

First we note that

2n — 2 2n—3 2n%2 —8n+4/2n—3
—(n—2) + 2 = .
n n—1 n n—1

By Claim 5.12, we have

2n—3 2n—-3)---(n—1)

<n—1>: (n—1)! (58)
_2n—-3 2n—-4 n n-—1
T n—1 n—-2 2 1
<(n—-1)"t

for n > 3.
On the other hand, we set f(n) := n?(n — 3) — (2n? — 8n +4). Then

f(n)=n*—5n+8n—4
=n*(n —5) + 8n — 4.
If n > 5, then f(n) > 0. Moreover f(4) = 12 and f(3) = 2. So we get f(n) >0

for n > 3.
Therefore we have

n(n —3)(n —1)"!

2n2—8n+4(2n—3>
> .
n n—1

Namely P;(X,E) > 0 for n > 3.
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(ii.4) Assume that (X,€) = (Q", Ogn(1)®"~1). Then by (5.7) in Remark 5.8,

we have

Pi(X,&) = (n—2) (2(n— 1" — 2(2"_ 2))

n

+(—2) ((n s <2:__13>) —9

=(2n*—6n+2)(n—1)"""—2(n-2) (2nn 2) +2 <2:_13>.

First we note that

2 —2) 2n -2\ (-3 _4n*—14n+8(2n -3
n n—1) n n—1)

By (5.8) we have (n — 1)"~t > (>3} for n > 3. On the other hand, we set

n—1

f(n) :=n(2n? — 6n + 2) — (4n? — 14n + 8). Then

f(n) =2n® —10n® + 16n — 8
=2n?(n — 5) + 16n — 8.
If n > 5, then f(n) > 0. Moreover f(4) = 24 and f(3) = 4. So we get f(n) >0

for n > 3.
Therefore we have

(20? — 6n 4 2)(n — -1 > 14+ 8 <2” - 3).

n n—1

Namely P;(X,E) > 0 for n > 3.

(ii.5) Assume that (P, Opn (1)"2 @ Opn(2)). Here we need the following.

Lemma 5.13. Let X be a smooth projective variety of dimension n and let €
and &1 be vector bundles on X and let L be a line bundle on X. Assume that
E=&E®L. Then st(E) = s¢(L)st(Er).

Proof. By assumption we have ct(€) = ci(—L)cy(€). Since ¢;(—L)s¢(L) = 1 and
ce(E1)s:(€1) = 1, we get the assertion. O

Here we set L := Opx(2) and &; := Opn(1)®"72, By Lemma 5.13 we have

sn(f):iﬂ‘i(n_?ﬂ),

=0

sn1(E) = S gn—1-i (” A Z) Opn (1)1,

: 1
=0
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Since Kx + ¢1(€) = Opn(—1), we see from (5.7) in Remark 5.8 that

P(X,€) (5.9)

“o (S ()
-( R )
o (S ()
(Z<>>

First we note that

n" — ZH:Q"—’C (" - 2 + k) (5.10)
k=0
:n”—zizn—l—k("_?rk)
. _zan . k( 3+k>_<2nn3>
on 1t — 2%2”—1—k(" a z * k) + 0t =2 = (Znn— 3).

Here n” — 2n"~! — (**~%) = (n — 2)n"~! — (*"~%) and by Claim 5.12, we have

2n —3 :(2n73)'~'(n72) (5.11)
n (n)!
~2n—-3 2n—4 n—-1 n-2
- on n-1 2 1
<(n-2)"
for n > 3. Therefore by (5.11)

o —

(n—2)n""* — ( nn 3) > (n—2)n""t —(n—2)" (5.12)

=(n-2)(n""" = (n-2)"")
> 0.
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y (5.10) and (5.12) we have

Zz”’“( 3+k> ( Z2"1k< 3+k>>. (5.13)

So by (5.9) and (5.13) we get
k
Pi(X,€) > (2n—5) < 22” 1= ’“( m3 )> (5.14)
k=0
Here we prove the following.

Lemma 5.14.

n—1
nnfl _ Z 2n717k <n _2+ k) > 0.

k=0

Proof. By Claim 5.12, we have

n—3+k\ (n—-3+k)---(n—2)
( i > = X (5.15)
n—3+k n—4+k n—1 n—2
-k k—1 2 1
< (n-2)k
for n > 3. Hence by (5.15)
n—1 n—1
Z2n—1—k< 3+k> ZQn 1— kn_2)
k=0
< (2+ (n—2))"!
=n" L
This completes the proof of Lemma 5.14. O

By (5.14) and Lemma 5.14, P;(X,€&) > 0if n > 3.

(ii.6) Assume that X = Pc(F) for some vector bundle F of rank n on a smooth
projective curve C, and £ & H(F) ® 7*G, where w : X — C'is the bundle projec-
tion and G is a vector bundle on C with rank(G) =n — 1.

First we calculate s,,_1(&). Here we use notation in Remark 2.3 (i). Then by
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[11, Example 3.1.1] we have

$n_1(E) = sn_1(7°G ® H(F))
= én—l((ﬂ-*g)* ® H(]:)il)

n—1

D B e S e R (E R E

= n—2+1

= (2" - 3) HF)" !+ (2" a 3) s1(m*G)H (F)" 2,

n—2 n—1
Next we calculate s, (&).

5n(€) = s,(n"G @ H(F))
Sn((7*G) ® H(F)™)

n

=S (M s gy e )

2 n—92+4i
_ <2:_22>H(]-')” + (2:_ 12>51(7r*g)H(]-")”1.

We also note that

(€)= (n—1)" deg F + n(n —1)"" deg,
en-1(8) = HF)' ! + H(F)" 2ei(x°G)
= H(}—)”*l 4 H(J-')””sl(yr*g),

a@)" t=m-D"THF)" + (n- 1" H(F)" e, (n*G)
=(n-D"THFE"" 14+ (n-1)""tH(F)" %s(1G).
Hence
(Kx +51(E)(c1(E)" " = en1(E) = 50-1(E)) (5.16)

= (7" (K¢ + det(G) + det(F)) — H(F))

x {((n s (2?;‘_‘23» H(F)!



New invariants of ample vector bundles over smooth projective varieties 125

and

a(€)" —en(€) - ( ) (5.17)
= (n—1)"H(F)" +n(n - 1)"""H(F)"~ (d t9)
<2n 2)H (F)" (Qn 2) o (det )
= <(n —-1)" - (2:_ 5 )) deg(F) + (n(n 1t - (2:__12>) deg(G).
Therefore by (5.7), (5.16) and (5.17) we have
Pi(X,€) (5.18)

— =2 (-1 = (7)) dest)
(n—2) (n(n Syt (?‘f)) deg(G)
+20() = 2) (-1 = (27 7) 1)
((00) - (052))amier -2

—(n—2) ((n — 1) - <2:_22)) deg(F)

First we note the following.
Claim 5.15.

n i 1 (2: _ 22> - nzln_—32) (2: _ 12> * n(nz— 2) (2:—_ 23>'

_ n—3 (2n — 2)! 2 (2n —3)
T nn—-2) m-D!n-1! nn-2) (n-2)(n-1)!
n—3 (2n —2)! 2 (2n—2)!

—Dm=2) nln—2) " m=2)@n=2) -2l

1 2n — 2
n—1\n—-2)"
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O
Lemma 5.16.
(n—1)deg F + ndegG > 1.
Proof. Since £ is ample, we have ¢1(£)™ > 0. On the other hand, we have ¢ (€)™ =
(n—1)"deg F +n(n —1)""!degG. Therefore we get the assertion. O
We also note that
2n —3
D >1 5.19
== (U202 (5.19)
can be proved by Claim 5.12 as follows:
2n—3\ (2n-—3
n—2) \n-—1
~2n—-3 2n—-4 n-1
n—1 n-2 1
<(n-1)""1
By (5.18), Claim 5.15, Lemma 5.16 and (5.19), we have
Pi(X,€) (5.20)

n—1

N L)
+(29(C) - 2) <(n — )t <2” - 3> - 1> ~9

n—2

= (n—2)(n—1) ((n R (2:_22» deg F

— (-2 ((n N (2:__22» ((n — 1) deg F + ndeg G)
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Hence by (5.20)
P (X,€E) (5.21)

> (n—2) ((n—l)n_l - ni1 <2:—_22>>
_9 ((n -t - <2:_23> B 1> —2

(- = 2R () (),

n—1\n—2 n—2
On the other hand

S () -
- (") e

_4(2n-3
S n\n—-1)°
Hence by (5.21) and (5.22) we have Py (X,£) > 0if n > 3.
We see from the above that P;(X,€) > 0 if Kx + ¢1(€) is not nef.

Next we consider the case where n > 3 and Kx + ¢1(€) is nef.

Theorem 5.17. Let X be a smooth projective variety of dimension n > 3 and let
E be an ample vector bundle on X with rank(E) > n—1. Assume that Kx +c1(E)
is nef. Then

P (X, &) >22" %~ 1)(n—2) -2

holds. In particular, Py(X,E) > 0.
Proof. Since Kx +c¢;1(€) is nef, we see from Lemma 5.3 (i) and [12, Corollary 3.10]
that
(Kx +c(E)(7HE) = cnm1(E) = su-1(E)) 2 0. (5.23)
On the other hand, by Lemma 5.3 (ii) and Theorem 2.8, we have

(&))" —cn(€) —sp(€) = Z arxAx(e) (5.24)
A€eA(n,r)

> Z ay
AEA(n,r)
>2(2"72 —1).
By (5.23) and (5.24) we get
PI(X,E) = (n = 2)(c1(8)" = en(€) = 5n(E))
+H(Kx +e1(€))(e(€)" ™ = cn1(€) = 50-1(€)) — 2
>2(2"2 - 1)(n—2)—2.
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Therefore we get the assertion of Theorem 5.17. O
Here we get the following better lower bound for P; (X, &) with small n.

Proposition 5.18. Let X be a smooth projective variety of dimension n > 3 and
E an ample vector bundle on X with rank(E) > n — 1. Assume that Kx + ¢1(€)
is nef. Then the following hold.

(i) Ifn =3, then P,(X,€) >
(ii) If n =4, then P(X,€) >
(ifi) Ifn =5, then P\(X,&) >
(iv) Ifn =6, then Pi(X,€E) > 294.
(v) Ifn =71, then Pi(X,€) > 1148

Proof. Since Kx + ¢1(€) is nef, we see from Lemma 5.3 (i) that
(Kx 4+ a1(E)ea(€)"™ — ear(€) — 501(£)) 2 0.

We also note that ¢1 (€)™ — ¢, (€) — s, (€) = Po(X,E). Hence by Remark 5.8 and
Proposition 5.6 we get the assertion. [

As a corollary of Theorem 5.17, we get a lower bound for ¢;-sectional genus
of (X, &) for the case where £ is generated by its global sections.

Corollary 5.19. Let X be a smooth projective variety of dimension n > 3 and &
an ample vector bundle on X with rank(E) > n — 1. Assume that € is generated
by its global sections and Kx + c¢1(E) is nef. Then we have

9(X,c1(6)) > 2¢(X) + (2" 2 = 1)(n —2) — 1.

Proof. First we note that b1(X,c1(€)) = 2¢9(X, c1(E)) (see Remark 2.10 (ii)).
Moreover by Propositions 3.8 and 3.17, we have B*(X, 5)—|—Bl(X &) >2h(X,C).
By the Lefshcetz theorem, we have h'(X,C) = 2¢(X). Hence by Definition 5.1

9(X,c1(6) = 30 (X, 1 (€))

— %(Bl(x,e) + BY(X,€) + P1(X,€))

1
>2q(X) + §P1(X,E).

By Theorem 5.17, we get the assertion. O

By the same argument as above, we get a better lower bound for the case
where 3 < n < 7 by using Proposition 5.18.
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Corollary 5.20. Let X be a smooth projective variety of dimension n > 3 and &
an ample vector bundle on X with rank(€) > n — 1. Assume that € is generated
by its global sections and Kx + ¢1(E) is nef. Then the following hold.

(i) If n =3, then g(X,c1(€

(ii) If n =4, then g(X,c1(E

) ( )

) ( )

(iii) If n =5, then g(X,c1(€)

(iv) Ifn =6, then g(X,c1(E)
) (

) = 2q(X)
) = 2q(X)
(€)) > 2¢(X) + 35.
a(€)) = 2q(X)
(v) Ifn =1, then g(X,c1(€)) > 2¢(X)

Moreover, for the case where h!(Ox) > 0, we can improve a lower bound for

9(X, c1(€)).

Proposition 5.21. Let X be a smooth projective variety of dimension n > 3 with
hY(Ox) > 0 and €& an ample vector bundle on X with rank(£) > n — 1. Assume
that £ is generated by its global sections and Kx + ¢1(€) is nef. Then we have

9(X,c1(€)) 2 3¢(X) + (2" = 1)(n — 2) — 2.

Proof. By Proposition 3.8, we have B*(X,€) > h!(X,C) = 2h'(Ox). We note
that

BY(X,€) — h'(X,C) = by (W, H) — h*(W,C)
=29, (W, H) — 2h* (Ow).

Here we prove the following.

Claim 5.22. (W, H) is not a scroll over a smooth projective curve.

Proof. Assume that (W, H) is a scroll over a smooth projective curve C. Let
p : W — C be the projection. For any fiber F of p, f(F) is a point or f(F) =
X because F = P""=2 where f : W = Px(£) — X is the projection and
r = rank(£). We note that the case where f(F) = X is impossible because
h'(Ox) > 0. So we see that f(F) is a point for any fiber F' of p. But this case
cannot occur because dim X > 3. O

By Claim 5.22 and Proposition 2.11 we get g; (W, H) > 2h'(Ow ) — 1. There-
fore

B'(X,€) — (X, C) = 21(W, H) — 21" (Ow)

> 4hH (Ow) — 2 — 201 (Ow)
= 2n (Ow) — 2.
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We also note that h'(Ow) = h'(Ox) and h'(X,C) = 2h*(Ox). Hence we

have B1(X,€) > 4h!(Ox) — 2. Therefore

9(X,c1(6) = 30 (X, 1 (€))
— %(Bl(X,éZ) + B'(X,&) 4+ Pi(X,£))
>3hH(Ox) — 1+ %Pl(X, £).

By Theorem 5.17, we get the assertion. O
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