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Submersions involving some special classes of K-manifolds

Luigia Di Terlizzi∗, Anna Maria Pastore and Robert A. Wolak

Abstract. We study properties of invariant submanifolds of K-manifolds as well as of some

special types of K-manifolds. Moreover, we investigate properties of submersions between f-ma-

nifolds. In particular, we find some curvature identities when the total space is an S-manifold

and the base space is Kähler.

1. Introduction

For many applications in physical models, special Káhler manifolds, in particular
Einstein-Kähler manifolds, are proved to be of great importance. However, the
development of models of physics, in particular the string theory turned attention
of mathematicians/physicists to manifolds which fiber over Kähler manifolds, or
more generally, to foliated manifolds whose foliation is modelled on a Kähler man-
ifold. These facts were behind the renewed interest in Sasakian and 3-Sasakian
manifolds, cf. [3, 2]. In the first case the foliation is 1-dimensional and given by
a global non-vanishing vector field. In the second case there are 3 non-vanishing
vector fields ξ1, ξ2, ξ3 satisfying [ξi, ξj ] = 2εijξk where εij = ±1. In this paper we
study some important geometrical properties of another class of such manifolds,
called K-manifolds, which were introduced by D.E. Blair in [1]. The characteristic
foliation of a K-manifold is transversely Kähler, cf. [6]. They are a natural gener-
alization of Sasakian manifolds in that sense that the characteristic foliation could
be of any dimension, or we have a finite number of commuting Killing vector fields
defining the characteristic foliation.

The paper is divided into six sections. The first two sections are introduc-
tory. In the third section we extend well-known results on invariant submanifolds
of Sasakian manifolds to K-manifolds. The main result is Theorem 3.1 which
presents a sufficient condition for an invariant submanifold of a K-manifold to be
totally geodesic. In the fourth section we study submersions whose total space is
a metric f.pk-manifold and the base space is a metric f.pk-manifold or an almost
Hermitian manifold. The main result of this section is Theorem 4.1, in which we
prove that with some assumptions on the geometric structure of the total space,
the projection is a Riemannian covering map. In the last two sections we study
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invariant submanifolds and submersions in the case of some interesting subclasses
of K-manifolds. Of particular interest could be Corollary 5.3 which provides a
sufficient condition for the base space to be Einstein.

2. K-manifolds

Let M2n+s be a (2n+ s)-dimensional manifold equipped with an f -structure with
complemented frames, that is with a (1,1)-tensor field ϕ, vector fields ξ1, . . . , ξs,
1-forms η1, . . . , ηs satisfying the conditions

ϕ(ξi) = 0, ηi(ξj) = δij , ϕ2 = −id+

s∑
i=1

ηi ⊗ ξi.

Often one simply writes (M2n+s, ϕ, ξi, η
i). Such manifolds have been studied by

several authors under the name of globally framed f -manifolds or f -manifolds with
parallelizable kernel (for short f.pk-manifolds), [11, 12, 13, 14].

It is well known that there exist compatible Riemannian metrics g such that
g(ϕX,ϕY ) = g(X,Y )−

∑s
i=1 η

i(X)ηi(Y ), for any vector fieldsX,Y ∈ Γ(TM2n+s).
When such a metric is chosen, (M2n+s, ϕ, ξi, η

i, g) is called a metric f.pk-manifold.
Thus the distribution D = Imϕ is clearly orthogonal to kerϕ =< ξ1, . . . , ξs > and
there are naturally associated the Sasaki 2-form Φ := g(−, ϕ−) and the tensor
field

N = [ϕ,ϕ] + 2

s∑
i=1

dηi ⊗ ξi,

[ϕ,ϕ] being the Nijenhuis torsion of ϕ. N is known as the normality tensor field
of the f.pk-structure and when N = 0, the manifold is called normal.

Special classes of normal metric f.pk-manifolds have been studied in [1]. Let
us recall the definitions of most important classes of these manifolds.

Defintion 2.1. Let (M2n+s, ϕ, ξi, η
i) be a normal metric f.pk-manifold. If

η1 ∧ . . . ∧ ηs ∧ Φn 6= 0

and

dΦ = 0

then the manifold is called K-manifold.

Clearly, in the case s = 1, one gets quasi-Sasakian manifolds.

There are two interesting subclasses of K-manifolds. Namely,
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Defintion 2.2. Let (M2n+s, ϕ, ξi, η
i) be a K-manifold.

a) If
dη1 = . . . = dηs = Φ

then the manifold is called an S-manifold.

b) If
dη1 = . . . = dηs = 0

then the manifold is called a C-manifold.

Remark If s = 1, the manifolds are called Sasakian and cosymplectic manifolds,
respectively.

In [7] the first and the second authors introduced the following two classes of
K-manifolds:

Defintion 2.3. Let (M2n+s, ϕ, ξi, η
i) be a K-manifold.

a) If
∑s
i=1 dη

i = Φ then the manifold is called a K̂-manifold.

b) If
∑s
i=1 dη

i = 0 then the manifold is called a K0-manifold.

Remark The class K̂ includes Sasakian manifolds when s = 1, excludes C-ma-
nifolds and, for s ≥ 2, S-manifolds. One of the interests of studying this class
comes from the fact that a finite product of Sasakian manifolds carries a structure
of K̂-manifold, cf. [7]. On the other hand, the class K0 includes C-manifolds
(cosymplectic manifolds for s = 1) and excludes S-manifolds.

In [7] one can find the following characterizations for a K-manifold M2n+s to

be either a K̂-manifold or a K0-manifold, where ξ =
∑s
i=1 ξi.

M2n+s is a K̂ −manifold if and only if

s∑
i=1

∇ξi = ∇ξ = −ϕ (2.1)

M2n+s is a K0 −manifold if and only if

s∑
i=1

∇ξi = ∇ξ = 0, (2.2)

Since, cf. [8], any K-manifold verifies

g((∇
X
ϕ)Y,Z) =

s∑
i=1

(
dηi(ϕY,X)ηi(Z)− dηi(ϕZ,X)ηi(Y )

)
, (2.3)

for each X,Y, Z ∈ Γ(TM), then we can state another characterization.

Proposition 2.4. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s} be a K-manifold. Then

it is a

• K̂-manifold if and only if (∇XΦ)(ξ, Y ) = Φ(ϕY,X), X,Y ∈ Γ(TM)
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• K0-manifold if and only if (∇XΦ)(ξ, Y ) = 0, X,Y ∈ Γ(TM).

Proof. From (2.3) we get (∇XΦ)(ξ, Y ) =
∑s
i=1 dη

i(ϕY,X), X,Y ∈ Γ(TM), from
which the claimed properties follow.

Finally, we recall the following curvature identity for K̂-manifolds, cf. [7],

RξXY = (∇Xϕ)Y, X, Y ∈ Γ(TM). (2.4)

3. Invariant submanifolds

Let (M̃2n+s, ϕ, ξi, η
i, g̃) be a K-manifold and M an invariant submanifold. This

means that ξ1, . . . , ξs are tangent to M and ϕ(TxM) ⊂ TxM , for each x ∈ M .

Hence M is (2m + s)-dimensional, m < n. It is easy to check that if M̃2n+s is a

K̂-manifold (respectively a K0-manifold), then the induced structure on M turns

out to be a K̂-structure (respectively a K0-structure).
We shall denote by α the second fundamental form of the immersion and by

AN , N ∈ Γ(TM⊥), the Weingarten operator. Then g(ANX,Y ) = g(α(X,Y ), N),
for X,Y ∈ Γ(TM), N ∈ Γ(TM⊥).

Example 3.1. Let (Mα, ϕα, ξα, η
α, gα), α ∈ {1, . . . , s}, be almost contact metric

manifolds. As proved in [7], the product M̃ = M1 × · · · ×Ms carries a natural
metric f.pk-structure. Let M ′1, . . . ,M

′
s be invariant submanifolds of M1, . . . ,Ms

respectively. Then the product manifold M = M ′1 × · · · × M ′s is an invariant

submanifold of M̃ . Furthermore, if M1, . . . ,Ms are Sasakian manifolds, then M̃
is a K̂-manifold and M is an invariant submanifold of M̃ .

Proposition 3.2. Let M2m+s be an invariant submanifold of a K-manifold M̃2n+s.
Then M2m+s is minimal.

Proof. It is known, ([8], Proposition 4.2), that for a K-manifold,

∇̃ϕXϕX + ∇̃XX = ϕ[ϕX,X] (3.1)

for each X ∈ D, ∇̃ denoting the Levi-Civita connection on M̃2n+s.
Let {e1, . . . , em, ϕe1, . . . , ϕem, ξ1, . . . , ξs} be a local ϕ-basis of TM2m+s and

let ∇ denote the Levi-Civita connection on M2m+s. Then, by using (3.1), for the
mean curvature vector field H, we obtain

H=

m∑
i=1

(∇̃eiei −∇eiei + ∇̃ϕeiϕei −∇ϕeiϕei)=

m∑
i=1

(ϕ[ϕei, ei]− ϕ[ϕei, ei])=0

since each ξj is Killing in both M2m+s and M̃2n+s and then α(ξj , ξj) = 0.
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Lemma 3.3. Let (M̃2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂-manifold and M an

invariant submanifold. Then, for each X ∈ Γ(TM), N ∈ Γ(TM⊥) one obtains
α(X, ξ) = 0 and ANξ = 0.

Proof. From (2.1), for each X ∈ Γ(TM), we get ∇̃Xξ = −ϕX = ∇Xξ. Hence
α(−, ξ̄) = 0 and ANξ = 0.

Lemma 3.4. Let (M̃2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K̂-manifold and M an

invariant submanifold. Then, for each X,Y ∈ Γ(TM)

α(X,ϕY ) + α(ϕX, Y ) = ϕ(α(X,Y )) + (∇̃ξα)(X,Y ). (3.2)

Proof. We apply (2.4) to M̃2n+s and M , since they are both K̂-manifolds, and
after a direct computation we get

(∇̃Xϕ)Y = R̃ξXY = RξXY + (∇̃ξα)(X,Y )− α(ϕX, Y ) (3.3)

= (∇Xϕ)Y + (∇̃ξα)(X,Y )− α(ϕX, Y ).

On the other hand

(∇̃Xϕ)Y = ∇XϕY + α(X,ϕY )− ϕ(∇XY )− ϕ(α(X,Y )) (3.4)

= (∇Xϕ)Y + α(X,ϕY )− ϕ(α(X,Y )).

Comparing (3.3) and (3.4) we get (3.2).

Theorem 3.5. Let M2m+s be an invariant submanifold of a K̂-manifold M̃2n+s.
If the second fundamental form α is parallel, then M2m+s is totally geodesic.

Proof. Using Lemma 3.3 we have, for each X,Y ∈ Γ(TM2m+s),

0 = (∇̃Xα)(Y, ξ) = ∇⊥Xα(Y, ξ)− α(∇XY, ξ)− α(Y,∇Xξ) = α(Y, ϕX).

Hence α(Y, ϕX) = 0 and, using in (3.2) the hypothesis ∇̃ξα = 0, we obtain

ϕ(α(Y,X)) = 0. Thus for X,Y ∈Γ(TM2m+s), α(Y,X)∈ kerϕ⊂Γ(TM2m+s), and
then α = 0.

4. Submersions

Let (M,ϕ, g) and (B,ϕ′, g′) be two Riemannian f -manifolds and assume that ϕ is
not an almost complex structure.

A Riemannian submersion π : M → B preserves the structures if it is a (ϕ,ϕ′)-
holomorphic map, that is π∗ ◦ ϕ = ϕ′ ◦ π∗ or π∗ ◦ ϕ = J ◦ π∗ if the base space is
an almost Hermitian manifold (B, J, g′). As usual V and H denote respectively
the vertical and the horizontal distributions of the submersion, vX and hX the
vertical and the horizontal component of X ∈ TxM , x ∈ M . Moreover, both the
vertical and horizontal distributions are invariant.
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Defintion 4.1. A submersion is called of the first type if both the total and the
base spaces are metric f.pk-manifolds.

A submersion is called of the second type if the total space is a metric f.pk-
manifold and the base space is an almost Hermitian manifold.

The following examples have been inspired by some properties of submersions
studied in the contact context, cf. [9].

Example 4.2. Suppose that (M2n+s
1 , ϕ1, ξi, ηi, g1) and (M2m+t

2 , ϕ2, ζα, µ
α, g2),

i ∈ {1, . . . , s}, α ∈ {1, . . . , t}, are metric f.pk-manifolds. Then the Riemannian
product M = M1 × M2 carries the metric f.pk-structure obtained by putting
(ϕ = ϕ1 + ϕ2, ξi, ζα, η

i, µα, g = g1 + g2). It is well known that the projection
on the first factor, π : M → M1, is a Riemannian submersion [9]. Obviously
it preserves the structures and it is of the first type. Clearly the vector fields
ξ1, . . . , ξs on M are horizontal and ζ1, . . . , ζt are vertical.

Example 4.3. Let (M2n+s
1 , ϕ1, ξi, ηi, g1), i ∈ {1, . . . , s}, be a metric f.pk-manifold

and (M2m
2 , J, g2) an almost Hermitian manifold. Then the product M = M1×M2

carries the metric f.pk-structure (ϕ = ϕ1 + J, ξi, η
i, g1 + g2). We can consider

the Riemannian submersions preserving the structures given by the projections
π1 : M → M1 on the first factor (that is of the first type) and π2 : M → M2 on
the second factor (that is of the second type). The vector fields ξ1, . . . , ξs on M
are horizontal with respect to π1, vertical with respect to π2.

Remark 4.4. Let be (M2n+s, ϕ, ξi, η
i, g) and (B2m+r, ϕ′, ζα, µ

α, g′), n ≥ m,
i ∈ {1, . . . , s}, α ∈ {1, . . . , r}, f.pk-manifolds. Let π : M2n+s → B2m+r be a
Riemannian submersion preserving the f -structures and such that each ξi is hori-
zontal. Hence s ≤ r, each fibre F inherits an almost Hermitian structure and r−s
is even. If moreover ξ1, . . . , ξs are basic, then r = s. Furthermore, when M2n+s is
normal then the fibres are Hermitian manifolds.

Theorem 4.5. Let be (M2n+s, ϕ, ξi, η
i, g) and (B2m+r, ϕ′, ζα, µ

α, g′), n ≥ m,
i ∈ {1, . . . , s}, α ∈ {1, . . . , r}, f.pk-manifolds. Let π : M2n+s → B2m+r be
a Riemannian submersion preserving the f -structures and such that each ξi is
horizontal. If M2n+s is a K̂-manifold then π is a Riemannian covering map.

Proof. The proof goes on as in the Sasakian case (Theorem 4.2 of [9]). In fact,
for U, V vector fields tangent to any fibre, Φ(U, V ) =

∑s
i=1 dη

i(U, V ) = 0 implies
g(U,ϕV ) = 0 and taking V = ϕU we get g(U,U) = 0, that is the fibres are
discrete.

Proposition 4.6. Let be (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, a K0-manifold and

(B2m+s, ϕ′, ζi, µ
i, g′) an f.pk-manifold. Let be π : M2n+s → B2m+s a Riemannian

submersion preserving the structures. If π∗ξi = ζi, for each i ∈ {1, . . . , s}, then
B2m+s is a K0-manifold too.
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Proof. Under the hypothesis π∗ξi = ζi, we get that ξi is horizontal. In fact we
have: 1 = g′(ζi, ζi) = g′(π∗ξi, π∗ξi) = g′(π∗hξi, π∗hξi) = g(hξi, hξi). On the other
hand, 1 = g(ξi, ξi) = g(hξi, hξi)+g(vξi, vξi) implies ‖vξi‖ = 0, that is vξi = 0. We
have also dµi(X ′, Y ′)◦π = dηi(X,Y ) when X,Y are basic vector fields on M2n+s,
π-related with X ′ and Y ′ respectively.

It follows that
∑s
i=1 dη

i(X,Y ) =
∑s
i=1 dµ

i(X ′, Y ′)◦π. Hence, if
∑s
i=1 dη

i = 0,
then also

∑s
i=1 dµ

i = 0.

Now we are going to examine some results regarding the submersions of the
second type.

Let (M2n+s, ϕ, ξi, η
i, g), 1 ≤ i ≤ s, be a metric f.pk-manifold and (B2m, J, g′)

an almost Hermitian manifold, n ≥ m. Let π : M2n+s → B2m be a Riemannian
submersion preserving the structures. Obviously ξ1, . . . , ξs are vertical vector fields
and each fibre F inherits a metric f.pk-structure (ϕ̂, ξ̂i, η̂

i, ĝ), i ∈ {1, . . . , s}, whose
structure tensors are the restrictions to F of the tensor fields acting on the total
space.

Proposition 4.7. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be a K-manifold and

(B2m, J, g′) an almost Hermitian manifold, n ≥ m, π : M2n+s → B2m a Rieman-
nian submersion preserving the structures. Then (B2m, J, g′) is a Kähler manifold

and the fibres are K-manifolds. This also holds if M2n+s is a K̂- or a K0-manifold
and in such cases the fibres are of the same type.

Proof. We observe that if Ω is the Kähler 2-form of the base space, then π∗Ω(X,Y )
= Φ(X,Y ), for basic horizontal vector fields X,Y . In fact if X is π-related with X ′,
then ϕX is the basic vector field π-related with JX ′. Furthermore, h(Nϕ(X,Y ))
is basic π-related with [J, J ](X ′, Y ′).

The next example presents submersions from K̂-manifolds on Kähler manifolds.

Example 4.8. Let us consider the Hopf fibration π : S2n+1 → Pn(C) ([9], The-
orem 1.1). It is well known that S2n+1 admits a Sasakian structure. Hence by

virtue of Theorem 2.2 of [7] the product manifold (S2n+1)s carries a K̂-structure

(ϕ̃, ξ̃i, η̃
i, g̃), i ∈ {1, . . . , s}. On the other hand we can consider the product

manifold (Pn(C))s with its Kähler structure (J̃ , G̃) and we can construct a nat-
ural Riemannian submersion π̃ : (S2n+1)s → (Pn(C))s. It is easy to check that

J̃ ◦ π̃∗ = π̃∗ ◦ ϕ̃.

5. Submersions from S-manifolds and Einstein-like conditions

In this section we consider Riemannian submersions from an S-manifold to a
Kähler manifold. Similar results for the transverse manifolds of a foliation on
a Sasakian manifold may be found in [16] or [15].
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Proposition 5.1. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be an S-manifold,

(B2n, J, g′) a Kähler manifold and π : M2n+s → B2n a Riemannian submersion
preserving the structures. For X,Y vector fields on B2m we have

(∇′XY )∗ = ∇X∗Y ∗ − g(Y ∗, ϕX∗)ξ (5.1)

where ∗ denotes the horizontal lift, and ∇, ∇′ are the Levi-Civita connections of
g and g′ respectively.

Proof. Obviously, from π∗ ◦ ϕ = J ◦ π∗ it follows that the ξi are vertical vector
fields and then ξ̄ =

∑s
i=1 ξi is vertical too. Furthermore it is easy to verify that

the horizontal lift of ∇′XY is given by −ϕ2∇X∗Y ∗. Hence

(∇′XY )∗ = ∇X∗Y ∗ −
s∑
i=1

g(∇X∗Y ∗, ξi)ξi = ∇X∗Y ∗ +

s∑
i=1

g(Y ∗,∇X∗ξi)ξi.

Then using ∇X∗ξi = −ϕX∗, i ∈ {1, . . . , s}, we get (5.1).

Proposition 5.2. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be an S-manifold and

(B2n, J, g′) a Kähler manifold, π : M2n+s → B2n a Riemannian submersion pre-
serving the structures. For X,Y, Z vector fields on B2n we have

(R′XY Z)∗ = RX∗Y ∗Z∗ (5.2)

+s
(
g(Z∗, ϕY ∗)ϕX∗ − g(Z∗, ϕX∗)ϕY ∗ − 2g(Y ∗, ϕX∗)ϕZ∗

)
.

Proof. We apply (5.1) and using (∇X∗ϕ)Y ∗ = g(ϕX∗, ϕY ∗)ξ+ η(Y ∗)ϕ2X∗, given
in [8], then g(∇X∗ϕY ∗, Z∗) = g(ϕ∇X∗Y ∗, Z∗) and we get

(∇′X∇′Y Z)∗ = ∇X∗∇Y ∗Z∗ − g(∇X∗Z∗, ϕY ∗)ξ (5.3)

− g(Z∗, ϕ∇X∗Y ∗)ξ + sg(Z∗, ϕY ∗)ϕX∗ − g(∇Y ∗Z∗, ϕX∗)ξ.

Again from (5.1), we get [X,Y ]∗ = [X∗, Y ∗]−2(Y ∗, ϕX∗)ξ which implies ϕ([X,Y ]∗)
= ϕ[X∗, Y ∗]. Furthermore ∇X∗ξ = ∇ξX∗ as [X∗, ξ] vanishes being vertical and
orthogonal to each ξi, i ∈ {1, . . . , s}. Hence we obtain

(∇′[X,Y ]Z)∗ = ∇[X∗,Y ∗]Z
∗ + 2sg(Y ∗, ϕX∗)ϕZ∗ − g(Z∗, ϕ[X∗, Y ∗])ξ. (5.4)

With a straightforward computation, using (5.3), (5.4), we obtain (5.2).

Corollary 5.3. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be an S-manifold and

(B2n, J, g′) a Kähler manifold, π : M2n+s → B2n a Riemannian submersion pre-
serving the structures. Then for each X,Y ∈ Γ(TB2n), we have the following
identity regarding the Ricci tensor fields ρ′ and ρ of ∇′ and ∇ respectively

ρ′(X,Y ) ◦ π = ρ(X∗, Y ∗) + 2sg(X∗, Y ∗). (5.5)
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Proof. Let E1, . . . , E2n be a local orthonormal basis of B2n. Then the horizontal
lifts E∗1 , . . . , E

∗
2n together with ξ1, . . . , ξs make up a local orthonormal basis of

M2n+s and, given X,Y vector fields on B2n, we get

ρ′(X,Y ) =

2n∑
i=1

g′(R′EiXY,Ei)

ρ(X∗, Y ∗) =

2n∑
i=1

g(RE∗
iX

∗Y ∗, E∗i ) +

s∑
j=1

g(RξjX∗Y ∗, ξj).

Furthermore, [4], g(RξjX∗Y ∗, ξj) = −g(RX∗ξjξj , Y
∗) = g(X∗, Y ∗), so that

ρ(X∗, Y ∗) =

2n∑
i=1

g(RE∗
iX

∗Y ∗, E∗i ) + sg(X∗, Y ∗)

and, by (5.2),
∑2n
i=1 g(RE∗

iX
∗Y ∗, E∗i ) =

∑2n
i=1 g((R′EiX

Y )∗, E∗i )+sg(X∗, Y ∗). Hence

ρ(X∗, Y ∗) =

2n∑
i=1

g((R′EiXY )∗, E∗i ) + 2sg(X∗, Y ∗)

and (5.5) follows.

In [14] it is proved that there doesn’t exist any Einstein S-manifold; on the
other hand an S-manifold is said to be η-Einstein if there exist two real constants
a, b such that the Ricci tensor field can be written as

ρ = a(g +
∑
i6=j

ηi ⊗ ηj) + b

s∑
i,j=1

ηi ⊗ ηj .

Moreover in [10] the definition of {ηi}-Einstein f.pk-manifold is given as

ρ = ag +

s∑
i=1

biη
i ⊗ ηi,

where a, b1, . . . , bs are real constants. Hence we can state the following results.

Corollary 5.4. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be an S-manifold and

(B2n, J, g′) a Kähler manifold, π : M2n+s → B2n a Riemannian submersion pre-
serving the structures. If M2n+s is η-Einstein, then B2n is an Einstein manifold.

Proof. In fact if X,Y are vector fields on B2n then

ρ′(X,Y ) ◦ π = ρ(X∗, Y ∗) + 2sg(X∗, Y ∗) = (a+ 2s)g(X∗, Y ∗)

= (a+ 2s)g′(X,Y ) ◦ π

and this completes the proof.
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Corollary 5.5. Let (M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}, be an S-manifold and

(B2n, J, g′) a Kähler manifold, π : M2n+s → B2n a Riemannian submersion
preserving the structures. If M2n+s is {ηi}-Einstein, then B2n is an Einstein
manifold.

Proof. The proof is analogous to that of the previous Corollary.

6. Semi-invariant submanifolds with orthonormal system and
submersions

In this section we consider Riemannian submersions from almost Hermitian man-
ifolds to metric f.pk-manifolds, in analogy with the complex-contact submersions
discussed in [5, 9].

Defintion 6.1. Let (M̃2m, J, g̃) be an almost Hermitian manifold and M a sub-

manifold. If there exist vector fields Ũ1, . . . , Ũs ∈ Γ(TM̃2m) such that

1. for each p ∈M, i ∈ {1, . . . , s}, (Ũi)p ∈ TpM⊥

2. U1 = Ũ1|M , . . . , Us = Ũs|M set up an orthonormal basis

3. ξ1 = JU1, . . . , ξs = JUs are vector fields tangent to M

4. for each X ∈ Γ(TM), JX = ϕX −
∑s
i=1 η

i(X)Ui, where ϕX is the tangent
part of JX,

then M is said a semi-invariant submanifold with orthonormal system U1, . . . , Us.
Clearly M is (2n+ s)-dimensional, where n ≤ m− s.

It is easy to verify that (M2n+s, ϕ, ξi, η
i, g) (g the induced metric) is an f.pk-

manifold. Moreover, for each X,Y ∈ Γ(TM2n+s), Ω̃(X,Y ) = Φ(X,Y ), being

Ω̃ and Φ respectively the Kähler 2-form of (M̃2m, J, g̃) and the Sasaki 2-form of
(M2n+s, ϕ, ξi, η

i, g).

By a long direct computation we get:

Proposition 6.2. Let (M̃2m, J, g̃) be an almost Hermitian manifold and M2n+s

a semi-invariant submanifold with orthonormal system U1, . . . , Us. Then for each
X,Y, Z ∈ Γ(TM2n+s) we have

(∇̃XΩ̃)(Y, Z)=(∇XΦ)(Y, Z)− 1

2

s∑
i=1

{
ηi(Z)(LUi

g̃)(X,Y )−ηi(Y )(LUi
g̃)(X,Z)

}
where ∇̃ and ∇ are the Riemannian connection of g̃ and g, respectively.
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Corollary 6.3. Let (M̃2m, J, g̃) be an almost Hermitian manifold and M2n+s a

semi-invariant submanifold with orthonormal system U1, . . . , Us. If (M̃2m, J, g̃) is
a Kähler manifold and U1, . . . , Us are Killing, then the structure (ϕ, ξi, η

i, g) on
M2n+s provided in Definition 6.1 is a C-structure.

Coming back to submersions, we give the following

Defintion 6.4. Let (M̃2n, J, g̃) and (B2m+s, ϕ, ξi, η
i, g) be an almost Hermitian

manifold and a metric f.pk-manifold respectively. A Riemannian submersion
π : M̃2n → B2m+s is called a complex-f.pk submersion if there exist η̃1, . . . , η̃s

1-forms on M̃2n such that

π∗ ◦ J = ϕ ◦ π∗ −
s∑
i=1

η̃i ⊗ ξi, and Jξ∗1 , . . . , Jξ
∗
s are vertical

where ξ∗1 , . . . , ξ
∗
s are the horizontal lifts of ξ1, . . . , ξs.

It follows that the η̃i are the dual forms of Jξ∗i since for each i, k ∈ {1, . . . , s}
and for each X ∈ Γ(TM̃2n),

η̃i(ξ∗k) = 0, η̃i(Jξ∗k) = δik, η̃i(X) = g̃(X, Jξ∗i ).

Proposition 6.5. Let (M̃2n, J, g̃) and (B2m+s, ϕ, ξi, η
i, g) be an almost Hermitian

manifold and a metric f.pk-manifold respectively, π : M̃2n → B2m+s a Rieman-
nian complex-f.pk submersion. Then we have

1. J(V) ⊆ V⊕ < ξ∗1 , . . . , ξ
∗
s >

2. J(H) ⊆ H⊕ < Jξ∗1 , . . . , Jξ
∗
s >

3. if X ∈ Γ(H) is basic π-related with X ′, then JX −
∑s
i=1 g̃(X, ξ∗i )Jξ∗i is

horizontal and basic, π-related with ϕX ′.

Proof. For any vertical vector field V we have π∗JV = ϕπ∗V −
∑s
i=1 η̃

i(V )π∗ξ
∗
i

and hence π∗
(
JV +

∑s
i=1 η̃

i(V )ξ∗i
)

= 0, that is W = JV +
∑s
i=1 η̃

i(V )ξ∗i is vertical.
Then JV = W −

∑s
i=1 η̃

i(V )ξ∗i and 1. follows.
Let X be a horizontal vector field normal to < ξ∗1 , . . . , ξ

∗
s >, V a vertical vector

field. Then

g̃(JX, V ) = −g(π∗X,π∗JV ) = −g(π∗X,ϕπ∗V −
s∑
i=1

η̃i(V )ξi)

=

s∑
i=1

η̃i(V )g̃(X, ξ∗i ) = 0

so that JX is horizontal. It follows that if Y is a horizontal vector field given
by Y = X +

∑s
i=1 a

iξ∗i , where the vector field X is horizontal and normal to
< ξ∗1 , . . . , ξ

∗
s >, then JY = JX +

∑s
i=1 a

iJξ∗i , that is 2. is verified.
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Let X be horizontal, basic, π-related with X ′, then η̃i(X) = g̃(X, Jξ∗i ) = 0,
as the Jξ∗i ’s are vertical, and hence π∗(JX −

∑s
i=1 g̃(X, ξ∗i )Jξ∗i ) = ϕπ∗X = ϕX ′.

Moreover, the component of JX with respect to Jξ∗i is g̃(JX, Jξ∗i ) = g̃(X, ξ∗i ) and
hence from 2. it follows that JX −

∑s
i=1 g̃(X, ξ∗i )Jξ∗i is horizontal.

Proposition 6.6. Let be (M̃2n, J, g̃) an almost Hermitian manifold and assume

that (B2m+s, ϕ, ξi, η
i, g) is a metric f.pk-manifold. Let be π : M̃2n → B2m+s a

Riemannian complex-f.pk submersion. Putting

J(V ) = ϕ̂V −
s∑
i=1

η̂i(V )ξ∗i (6.1)

for each vertical vector field V , we get, on any fibre F , a metric f.pk-structure
(ϕ̂, ξ̂i, η̂

i, ĝ), i ∈ {1, . . . , s}, where, ĝ is the induced metric and each ξ̂i and η̂i

denotes the restriction to F of Jξ∗i and η̃i, respectively.

Proposition 6.7. Let (M̃2n, J, g̃) and (B2m+s, ϕ, ξi, η
i, g) be an almost Hermitian

manifold and a metric f.pk-manifold respectively, π : M̃2n → B2m+s a Rieman-
nian complex-f.pk submersion. If (M̃2n, J, g̃) is a Kähler manifold and for each
i ∈ {1, . . . , s}, Ui = Jξ∗i is Killing, then the fibres are C−manifold.

Proof. Each fibre F is a semi-invariant submanifold with orthonormal system
U1, . . . , Us, hence from Corollary 6.3 we get that F is a C-manifold.

We end this section giving an example related to Definition 6.1 which essen-
tially says that a metric f.pk manifold can be viewed as a semi-invariant subman-
ifold with orthonormal system of a suitable almost Hermitian manifold.

Let (M2n+s, ϕ, ξi, η
i, g) be a metric f.pk manifold, consider (Rs, g0), where

g0 is the canonical metric, and M̃ = M2n+s × Rs with the Riemannian metric
g̃ = g + g0. The tangent bundle TM̃ splits naturally into the direct sum

T (M2n+s)⊕ T (Rs) = D ⊕ kerϕ⊕ Rs

where D = Imϕ.
A local basis is given by (e1, . . . , en, ϕe1, . . . , ϕen, ξ1, . . . , ξs, ∂1, . . . , ∂s) where

∂i = ∂
∂xi , x1, . . . , xs being the natural coordinates on Rs. It is well known that

one can consider on the manifold M̃ an almost complex structure J putting, for
each X̃ = (X,

∑s
i=1 a

i∂i) ∈ Γ(TM̃), X ∈ Γ(TM2n+s):

J(X̃) = J(X,

s∑
i=1

ai∂i) = (ϕX −
s∑
i=1

aiξi,

s∑
j=1

ηj(X)∂j) (6.2)

where ai are smooth functions. Hence, if X ∈ Γ(D) and i ∈ {1, . . . , s}, then

J(X) = ϕX, J(ξi) = ∂i, J(∂i) = −ξi.
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Moreover, by direct computation or consulting [9], p.131, M̃ is almost Hermitian
with respect to the metric g̃ = g + g0. It is also well known that the normality
of the f.pk-structure on M2n+s is equivalent to the integrability of the almost
complex structure J on the manifold M̃ .

According to the Definition 6.1, M2n+s as a submanifold of M̃ turns out to
be a semi-invariant submanifold with orthonormal system Ui = −∂i|M2n+s , i ∈
{1, . . . , s}. Namely:

1. (−∂i)p ∈ TpM2n+s⊥, for each p ∈M2n+s and i ∈ {1, . . . , s}

2. −∂1|M2n+s , . . . ,−∂s|M2n+s set up an orthonormal system at any p ∈M2n+s

3. J(−∂1) = ξ1, . . . , J(−∂s) = ξs are vector fields tangent to M2n+s

4. for each X ∈ Γ(TM2n+s), JX = ϕX −
∑s
i=1 η

i(X)Ui.
Namely, from (6.2) one obtains that ϕX is the tangent part of JX.
Hence JX decomposes as JX = ϕX +

∑s
i=1 g̃(JX,Ui)Ui and clearly one

gets g̃(JX,Ui) = −g̃(X, JUi) = −g̃(X, ξi) = −g(X, ξi) = −ηi(X).

The above example allows to give also an example related to Definition 6.4
since we can state that the projection π : M̃ →M2n+s is a complex-f.pk Rieman-
nian submersion. Namely, since M̃ is a Riemannian product the projections are
Riemannian submersions and vertical and horizontal distributions are integrable
and totally geodesic.

We need to prove that there exist η̃1, . . . , η̃s 1-forms on M̃ such that
π∗ ◦ J = ϕ ◦ π∗ −

∑s
i=1 η̃

i ⊗ ξi and Jξ∗1 , . . . , Jξ
∗
s are vertical, where ξ∗1 , . . . , ξ

∗
s are

the horizontal lifts of ξ1, . . . , ξs.
Note that at any point p̃ = (p, x) ∈ M̃ one has ξ∗i p̃ = ξip and since J(−∂i) = ξi

we get that Jξ∗1 , . . . , Jξ
∗
s are vertical. We consider the 1-forms η̃i defined for

each X̃ ∈ Γ(TM̃) by η̃i(X̃) = g̃(X̃, Jξ∗i ). Now, for each i, k ∈ {1, . . . , s} we get
η̃i(ξ∗k) = 0 and η̃i(Jξ∗k) = δik so for any i ∈ {1, . . . , s} the 1-form η̃i is g̃-dual of
Jξ∗i .

Finally, η̃i(X̃) = g̃(X̃, Jξ∗i ) = −g(ϕX−
∑s
j=1 a

jξj , ξ
∗
i ) = g(

∑s
j=1 a

jξj , ξi) = ai

implies that π∗(JX̃) = ϕ(X)−
∑s
i=1 a

iξi = ϕ(π∗X̃)−
∑s
i=1 η̃

i(X̃)ξi.
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