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Existence of T-j(-)-solutions for some quasilinear anisotropic
elliptic problem

Ahmed Dakkak, Hassane Hjiaj and Ahmed Sanhaji*

Abstract. The aim of this paper is to study the existence of solutions for some quasilineare
anisotropic elliptic problem associated with differential inclusion. We study the two cases of
f € L>®(Q) and f € L1(Q). Moreover, we show the uniqueness of solution under some additional

assumptions.

1. Introduction

Let ©Q be a bounded open subset of RY (N > 2), with a Lipschitz boundary
condition 9€2. For 2— 1 < p < N, L. Boccardo and T. Gallouét [11] have treated
the problem

Au=f in Q,

u= 0 on 0,

where Au = —div a(z,u, Vu) is a Leray-Lions operator from W, (Q) into its
dual, and f is a bounded Radon measure on ). They have proved the existence
and some regularity results (see also [18, 19]). M. Bendahmane and P. Wittbold
in [9] have shown the existence and uniqueness of the renormalized solution for
the nonlinear elliptic problem

—div(|Vu|P®)2Vu) = f in €,
u =20 on 01,

in the variable exponent Sobolev spaces, where the right-hand side f € L(Q), we
refer the reader also to [25] for the existence and uniqueness of entropy solution.

Recently, anisotropic variable exponent Sobolev spaces Wl’ﬁ(')(ﬂ) have at-
tracted the interest of many scientists and researchers, this attention come essen-
tially from their applications in nonhomogeneous materials that behave differently
on different space directions, we can refer here to the electrorheological and ther-
moelectric fluids (see for example [5, 23]).
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These spaces are the appropriate framework to deal with a class of problems

having non-standard structural conditions, involving a variable growth exponent
p(+), where prototype of the differential operator considered is the (-)-Laplacian

pi()=2g L),

N
Ajpy(w) = 0r, (10,1
i=1

which generalize the p(-)-Laplace operator. Di Nardo, Feo and Guibé have stud-
ied in [16] the existence of renormalized solutions for some class of nonlinear
anisotropic elliptic problems of the type

N
— Zax (ai(x,u)|0p,ulP 20,,u) = f —divg in 09,
i=1

u =0 on 01,

with f € L(Q) and g € I, L” (), the uniqueness of renormalized solution
was concluded under some 1ocal Lipschitz conditions on the function a;(x, s) with
respect to s (see also [1, 3, 4, 6, 15]).

In [14], Gwiazda and al. have proved the existence of renormalized solutions
for the quasilinear elliptic equation

—div A(z,Vu)=f in Q
u=~0 on 09,

in the Musielak-Orlicz-Sobolev spaces, where f € L'(€) and A(-, ) is a Carathéodory
function verifying some non-standard growth and coercivity conditions, and with-
out using the Ay—condition. For more results we refer the reader to [2, 20] and
[21].

In this work, we establish the existence of T-p{(-)-solutions for the following
quasilinear anisotropic elliptic problem

N
Z: (z,Vu) > f in Q, (1.1)
u=20 on 01,
where ((+): R — 2% is a set-valued maximal monotone mapping such that 0 €
£(0). We assume that a;(-,-): Q x RV ——= R are Carathéodory functions for
i =1,2,...,N (i.e. measurable with respect to = in Q for every ¢ in RY and

continuous with respect to ¢ in RY for almost every = in ), which satisfies the
following conditions

lai(z, )| < Ki(z) + &P @1 for i=1,...,N, (1.2)

ai(z,€)& > algP™ for i=1,...,N, (1.3)
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and the function a;(z,-) have only a wide monotone, i.e.

(ai(2,€) — ai(x,£))(& — &) 2 0, (1.4)

for a.e. x € Q, and all £ € RY, where a > 0 and K;(-) is a non-negative function

/ 1 1
lying in LP:()(Q) where —— + —— =
() where L * @)

As a natural hypothesis on the Carathéodory function a(x, ), we assume that
a(z,0)=0.

In this paper we will extend the results of [26] to the anisotropic variable
exponent case, and our main ideas and methods come from [11] and [12].

The paper is organized as follows. In section 2, we recall some definitions
and results concerning the anisotropic variable exponent Sobolev Spaces. Also,
we introduce some lemmas useful to prove our main results. In the section 3,
we will study the existence and regularity of weak solutions for our quasilinear
anisotropic elliptic problem (1.1) in the case of f € L*(€2). The section 4 will be
devoted to the study of the existence of T-p(-)-solution in the case of f € L'(Q).

—

In the last section, we will prove the uniqueness of T-p(-)-solution under some
additional assumption.

2. Preliminaries
Let © be a bounded open subset of RY (N > 2), we denote
C+(Q) = {measurable function p(-):Q+—R suchthat 1<p~ <p" < N},
where
p~ =essinf{p(x) /x € Q} and pt = esssup{p(z) /z € Q}.

We define the Lebesgue space with variable exponent LP()(Q) as the set of all
measurable functions u : 2 — R for which the convex modular

Pp(y () = / [P da:
Q
is finite. If the exponent is bounded, i.e. if p™ < 400, then the expression
lullpy = IE{A > 0 pye (w/A) < 1}

defines a norm in LP)((2), called the Luxemburg norm. Then (LPO)(Q), ]| - [|,())
is a separable Banach space. Moreover, if 1 < p~ < p™ < 400, then Lp(‘)(Q) is
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uniformly convex, hence reflexive, and its dual space is isomorphic to L”/(')(Q),

1 1
where —— 4+ —— = 1. Finally, we have the Holder type inequality:

p(z)  p(x)
1 1
/qu dz| < (p + (p')) HU”p(-)HUHp’(')

for any u € LP()(Q) and v € L? ()(Q). The Sobolev space with variable exponent
Wr()(Q) is defined by

WhPO(Q) = {u e LPO(Q) and |Vu| € LPO(Q)},
which is a Banach space, equipped with the following norm
lullipey = lullpey + 1 Vullpe) -

The space (W'PO(Q), ||-[|1,p() is a separable and reflexive Banach space. We de-

fine Wol’p(‘)(Q) as the closure of C3°(Q) in WP()(Q). For more details on variable
exponent Lebesgue and Sobolev spaces, we refer the reader to [17].

Remark 2.1. Recall that the definition of these spaces requires only the measur-
ability of p(+), while the Poincaré and the Sobolev-Poincaré inequalities are proved
for p(-)—log-Hélder continuous, (see. [17]).

Now, we present the anisotropic variable exponent Sobolev space, used in the
study of our quasilinear anisotropic elliptic problem. Let p1(-),p2(:),...,pn(-) be
N variable exponents in C; (£2). We denote

p()=@1();---,pn()), and D'u = g;:z

for i=1,...,N,
and we define

BJF:max{pl_,...,p;,} and p=min{p,,...,py} then 1<B§B+'

The anisotropic variable exponent Sobolev space Wl’ﬁ(‘)(Q) is defined as follow:
WO Q) = {u e WHH(Q) and Diue LPO(Q) for i=1,2,...,N},

endowed with the norm

N
lully zey = Nl + Y 1D ullp - (2.1)
i=1
We define also Wol’ﬁ(')(Q) as the closure of C5°(Q) in W1P()(Q) with respect to

the norm (2.1). The space (Wol’ﬁ(‘)(Q)7 llull1,5.)) is a reflexive Banach space (cf.
[24]).
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Lemma 2.2. We have the following continuous and compact embedding

Np
Nfg’

e if p < N then Wol’ﬁ(')(Q) —— LI(Q) for g€ [Q,B*[, where B* =
o ifp=N then Wy"')(Q) s LUQ) Vg € [p, +o0],
o if p> N then Wy P (Q) s L®(Q) N CO(Q).

The proof of this lemma follows from the fact that the embedding W, PC) Q) —

1, . . S .
Wy 2(Q) is continuous, and in view of the compact embedding theorem for Sobolev
spaces.

Remark 2.3. In view of the continuous embedding Wol’ﬁ(‘)(Q) — W, ' (Q) and
the Poincaré type inequality we conclude that the two norms ||ul|; 5.) and |uly 5.y =

N .
Z [|ID*u
i=1

W, P ().

p:(-) are equivalents in the anisotropic variable exponent Sobolev spaces

Indeed, thanks to Holder’s inequality we have

N N
IVulls = S ID%ly < Y [ Diully, ) for any we Wy (Q).

=1 =1
Moreover, the embedding VVO1 P0) (Q) < Wy' () is continuous, by using Poincaré’s
inequality, we have

N
llulh < Cpl|Vul1 < Co Z ||Diu\|pi(,) for any wu € Wol’p(')(Q) .

i=1

It follows that

N
11 = ully + [ Vull < (Cp + DIIVull < C3 ) | D'u

i=1

[|u pi():

We conclude that for any u € Wol’ﬁ(')(Q)

lul1 gy < llullgey = lulli + lulige) < (Cs+ Dluly g,

thus, the result is concluded.
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Proposition 2.4. The dual of W&’ﬁ(‘)(Q) is denoted by W’l”?(')(Q), where
- , , 1 1
() =), ..., pn()) and — + —= =1,

(cf. [8] for the constant exponent case). For each F' € Wﬁl’pﬁ/(')(Q) there exist Fy €
N

(L2(Q)) and F; € LPO(Q) for i = 1,2,...,N, such that F = Fy — Y D'F;.
=1

Moreover, for any u € Wol’ﬁ(')(ﬂ), we have

N
Fou) = /F Diudx.
(F,u) ; ;

We define a norm on the dual space by

N N
1Pl 50y =it {I1Bllgey + DI Fillyy) with F=Fy— Y D'Fy
=1 =1

such that Fy € (Lf(Q))’ and F; € Lp;(')(Q)}.

Definition 2.5. Let k > 0, the truncation function T (-): R — R is defined by
S if |s| <k,
Ti(s) = { k2 s >k
and we define
761’ﬁ(')(Q) = {u: Q — R measurable, such that Tj(u) € Wol’ﬁ(')(Q) for any k > 0}.
Note that, a measurable function u verifying Ty (u) € Wol’ﬁ(')(Q) for all k£ > 0,

does not necessarily belong to W,''(Q). However, for any u € 761’5(')(9) it is
possible to define the weak gradient of u, still denoted Vu.

Proposition 2.6. Let u € 761’5(')(9). For any i € {1,...,N}, there exists a
unique measurable function v;: Q — R such that

vk >0 DlTk(u) = Vi-X{|u|<k} @€ TE Q,

where x4 denotes the characteristic function of a measurable set A. The functions
v; are called the weak partial derivatives of u and are still denoted D'u. More-
over, if u belongs to Wol’l(Q), then v; coincides with the standard distributional
derivative of u, that is, v; = D'u.

The proof of the Proposition 2.6 follows the usual techniques developed in [10]
for the case of Sobolev spaces. For more details concerning the anisotropic Sobolev
spaces, we refer the reader to [8] and [16].

Lemma 2.7 (see [7]). Let g € L"(Q) and g,, € L™O(Q) with ||gn |-y < C for
L<r(x) <oo. If gu(x) = g(z) ae in Q, then g, —g in L"(Q).
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3. Existence of weak solutions in the case of f € L>()

Let Q be a bounded open subset of RN (N > 2), and let p;(-) € C.(Q) for
i =1,...,N. In this section, we will study the existence of weak solution in the
case of f € L>=(Q).

Definition 3.1. Let f € L>=°(2). A weak solution of the quasilinear elliptic prob-
lem (1.1) is a pair of functions (u,b) such that u € Wol’p(')(ﬂ) and b € B(u) with
b e L>(Q), satisfying

N
/bvdm—i—Z/aKx,Vu)D%dx:/fvdx,
Q —Ja Q

for any v € Wol’ﬁ(')(Q).

Theorem 3.2. Let f € L*>®(Q), assuming that the conditions (1.2) — (1.4) hold
)

true. Then, there exists at least one weak solution (u,b) € Wgﬁ(' (Q) x L*(Q) of
the quasilinear anisotropic elliptic problem (1.1).

Proof. Step 1: Approximate problems

Let 0 < e < 1, we consider the approximate problem

{ 52(21(/)5(“6)) + Aue = f ;r; %’97 (3.1)

where Av = Z oz, (z,Vov) and B.(-): R — R be the Yosida approximation
of A(+), note that7 for any v € Wol’ﬁ(')(Q) and 0 < € <1 we have
1 .
(Be(v),v) 20, [Be(v)] < Z|v| and  lim S (v) = (v).
3 e—0

We refer the reader to [13] for more details.
We introduce the operators G, : Wol’p(')(Q) — W=LP'C)(Q), defined by

(Geu,v) = / Be(T1/e(u))vdr  for any w,v € Wol’ﬁ(')(Q).
Q
Thanks to the generalized Holder type inequality, we have

1
(G ru,v) /\65 Tl/E ) vl dx < 7/ |T1( )| |v| dx

/ o] dz (3.2)

2||v| 1,5()-

IN

IN
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Lemma 3.3 (see [22]). The bounded operator B = A+ G, acted from Wol’ﬁ(')(Q)

into W‘l”?(')(ﬂ) is pseudo-monotone. Moreover, B. is coercive in the following
sense:

(Bew,v)

” — +oo as |vlli5.) =00 for verp()(Q).
v

l1,50)

Proof. In view of the Holder’s inequality and the growth condition (1.2), it’s easy
to see that the operator A is bounded, and by (3.2) we conclude that B. is bounded.

For the coercivity, we have for any u € W}, S )(Q),

(Beu,u) = (Au,u) + (Geu, u)

N
;/ﬂai(x,VU) Diuder/Qﬂs(Tl/a(u))udx
N .

2 a;/ﬁ|D U

> aZ D ully, () — aN
> Co ||u||1 —aN,

Pi(e) qo

()

it follows that
<BEU7U>
— L +oo as  Jully gy — 00
[[ull1,p)

It remains to show that B. is pseudo-monotone. Let (ug)reny be a sequence in
Wol’p(')(Q) such that

Up — U in VV()L[Y(')(Q)a
B.ug — xe in W), (3.3)
lim sup(Bug, ur) < (Xe, ).

k—o0

We will prove that
Xe = Beu  and  (Boug,ug) — (Xxe,u) as k — +oo.

In view of the compact embedding Wol’ﬁ(')(Q) —— LE(Q), we have up — u
in L2(Q) for a subsequence still denoted (ug)gen. As (ug)ren is a bounded se-
quence in VVO1 P0) (Q), using the growth condition (1.2) it’s clear that the sequence
(ai(z, Vug))pen is bounded in LP:()(€2), then there exists a function ¢; € LP:()(€)
such that

a;(z, Vug) = ; in LPO(Q) ask — oo, forany i=1,...,N. (3.4)
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1
Moreover, we have |8:(T1/:(ux))| < —, and since ux — u almost everywhere in

Q. In view of Lebesgue’s dominated convergence theorem we obtain

Be(Ty e (ug)) — Be(Thye(w)) in LZ (). (3.5)

For any v € Wol’ﬁ(')(Q)7 we have

(Xe;v) = lim (Beug,v)
k—o0
= k]ggoz:/ a;i(z, Vug) D' dx + hm / Be (T /e (ur))v dx (3.6)
= Z/ ¥; D' dx—i—/ Be (T /e (u))v d.
= Ja Q
Having in mind (3.3) and (3.6), we obtain
N .
limsup(B.(ug), ur) = limsup { Z/ a;(z, Vug)D'uy, dx
k—o0 k—o0 i—1 /9
b [ 5y o)
Q
N .
< Z/ ; D'u der/ Be (T e (u))u de.
=179 Q2
Thanks to (3.5), we have
/ﬂs(Tl/E(uk))uk drx — / Be (T e (u))u du, (3.7
Q Q
it follows that
N
lim supZ/ a;i(z, Vug)D'uy, do < Z lbi Diu dx. (3.8)
k—o0 =179

On the other hand, using (1.4) we have

then
N

N
; /Q(ai(x, Vug) — a;(z, Vu))(D'uy — D'u) dz > 0,

Z/al(x Vuy)D'uy, dx >Z/aleuk Diu dx

+Z/ a;i(x, Vu)(D'uy, — D'u) de.
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Since D'uy, — D'u in LPi()(Q) for i = 1,..., N, and using (3.4) we get

N N
lim inf /ai x, Vug)Diuy, de > / ; D dx.

Having in mind (3.8), we conclude that
N

N
lim / ai(x, Vug) Dug de =y / ¥; D'uda. (3.9)
Q P )

k—00 4
i=1

Therefore, by combining (3.6), (3.7) and (3.9), we obtain
(Beug, ug) — (Xe,u) as k — oo.

It remain to show that a;(x, Vug) — a;(x, Vu) in LPi()(Q). In view of (3.9) we
can prove that

N . .
lim Z /Q(ai(x, Vug) — ai(x, Vu))(D'up — D*u) do = 0,

k—o00 4
=1

by virtue of (3.4), we obtain

lim [ a;(z, Vug)D'uy do = / Y;D'udx for i=1,...,N. (3.10)
Q

k—o0 Q

Now, thanks to (1.4) we have any v € Wol’ﬁ(')(Q)
(ai(z, Vuy)) — a;(z, Vv)) (D'up — D'v) >0 for i=1,...,N,
then
kl'l)nolo A ai(x, Vug)(Duy, — D'v)dx > kli_g)lo A ai(x, Vv)(D'uy, — D) dz,

thanks to (3.10) we conclude that
/Q (i — a;(z, Vv) (D'u — D'v) dz >0 for any v € Wol’ﬁ(')(Q).
Let w € Wol’ﬁ(')(ﬂ), taking v = u — tw, for ¢t > 0 we have
t/ﬂ(d’z‘ —ai(z,V(u—tw)))Dwdr > 0.
Dividing by ¢, then letting ¢ tends to 0 we obtain

/(% —a;(z,Vu))D'wdr > 0.
Q
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Similarly, by taking v = w — tw with ¢t < 0, then letting ¢ tends to 0, we get
/9(7/%' —a;(z,Vu))D'w dr < 0.
It follows that
/Q(zbi —ai(z,Vu))Diwdr =0 VYwe Wg’ﬁ(')(ﬁ).
Consequently, we have 1; = a(z, Vu) in LPi()(Q), and we deduce that
ai(z, V) = ai(z,Vu) in LPO(Q) for i=1,...,N. (3.11)
Thanks to (3.5) we obtain x. = B.u, which conclude the proof of Lemma 3.3. [

In view of Lemma 3.3, there exists at least one weak solution u. € W(} e (')(Q)
of the problem (3.1) (cf. [22, Theorem 8.2]).

Step 2: A priori estimates.

In this step, we will give some estimates on weak solutions of approximate prob-
lems. By taking u. as a test function in (3.1), we obtain

N
/BE(Tl/E(us))uedz—&—Z/ai(z,Vus)Diue dx:/fued:l:,
Q = Ja Q

since f¢(T1/-(uc)) has the same sign as u., and thanks to (1.3) we obtain

N
ozz:/ﬂ|Diu€\pi(””)dac§/qu6 dzx.
i=1

We have f € L*°(Q), and in view of Young’s inequality we obtain

/fugda: <Co/|f|p dm+—/|ug|”dx

< Co||fHLOO(Q)meaS(Q) + 5/ |Diu, |2 dx
Q

o ]
<Ci+ — /|Dlu
)

[P da + %meaS(Q),

it follows that

1P de < .

0
- | D'
12,
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N
Thanks to Remark 2.3, the two norms || - ||, 5.y and Z| .

i=1

pi(-) are equivalent in
Wol’ﬁ(‘)(Q), we conclude that

N
p i P
luelf oy < Ca D 1D uelly

i=1

N
< 03; (L |Diu€

< Ch.

Pi(®) dg + 1)

Consequently,
[ue 1,50y < Cs,

with C5 is a constant that don’t depend on e. It follows that there exists a subse-
quence still denoted (ue)e such that

{ U —u in Wol’p(')(Q), (3.12)

ue —»u in LE2(Q) and a.e. in Q.

1
On the other hand, by taking vs . = 5 (Tk+5 (BT /e (ue))) — Ti(Be (Tl/s(ua)))) as

a test function in the approximate problem (3.1) where § > 0, we have

N
/ Be(Th e (ue) )vs cdx + Z/ ai(r, Vue)D'vs odx = / fvs ede,
Q — Ja Q
and it’s clear that |vs .| < 1, then

5 [ BTy () Tis (BT e (1) = Ti(Be (T o (0.))) do
{k+6<18 (T /e (uwe))l}

N
1 .
+g Z/ ai($7 V’U’E)ﬂé(Tl/s(ue))DlTUE(UE) dx
i=1 Y {k<IB (T e (ue)) [ <k+6}

< | f] d.
{E<IBe (T /e (ue))[}
(3.13)
In view of (1.3), the second term on the left-hand side of (3.13) is positive. Having
in mind that vs. has the same sign as u., and using the monotonicity of the
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operator (. (-) we conclude that

k meas{k 4+ < [Bc (T /= (ue))|}

< |6€(T1/E(u€))| dx
1{k+5S\BE(T1/s(ue))I}
<3 Be(T e (ue)) (Tits (Be (T e (ue))) = Tio(Be(Th e (ue)))) da
{k<1B8: (T /e (ue)) [}
< |f| dx

J{R<IB(Ty e (we)) [}
<[ flloe (o) meas{k < [Be (T e (ue))l}-

By passing to the limit with 0 — 0 and choosing k > || f|| () we obtain
k meas{k < |Be(T1e(ue))[} < [ fllzee @) meas{k < |Be(T1/e(ue))l},

it follows necessary that meas{k < [B:(T1/c(uc))|} = 0 for any k& > || f| L(q)-
Therefore

1Be(Th /e (ue) M o=@y < 1 fllL (),
and there exists b € L>=°(Q) such that

Be(Th)e(us)) — b weak—x in  L>(Q).

Step 3: Weak convergence of (a;(x,Vu.)). in LPi()(Q)

In the sequel, we denote by 7;(n), ¢ = 1,2, ..., various real-valued functions of real
variable that converge to 0 as n tends to infinity. We will show that

a;(,Vue) = a;(z,Vu) weakly in LPiO)(Q) for i=1,...,N. (3.14)
Indeed, by taking w. = u. — u as a test function in (3.1), we obtain

/QBE(Tl/E(uE))(uE —u)dz + ; /Q ai(x, Vue)(D'u. — D'u)dx = /Q fue —u)dz.

(3.15)
For the first term on the left-hand side of (3.15). In view of (3.12) we have u, — u
in L*(©2), and thanks to 8(Ty /- (uc)) = b weak—x in L>(Q), then

m(e) = / Be(Th)e(ue))(ue —u)dr — 0 as e — 0. (3.16)
Q
Similarly, we have f belongs to L>°(Q2) then

nz(a)z‘/szf(ug—u)dx—>0 as € — 0. (3.17)
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By combining (3.15) — (3.17), we deduce that

N
Z/ a;i(z, Vu. ) (D'ue — D'u) doz = n3(¢),
=179

then

Z/ (ai(z,Vuo) — a;(z, Vu)) (D'u. — D'u) dx

1J/a
N . .
+ Z/ a;(z, Vu)(D'ue — D*u) do = n3(e).
i=17/%

Thanks to (1.2) we have a;(x, Vu) € LP()(Q), and since Diu. — D'y weakly in
LPi()(Q), then

774(5):/ai(x,Vu)(Diug—Diu) der —0 as ¢ =0 forany i=1,...,N.
Q

It follows that
N . .
Z/ (a;(z,Vue) — a;(z, Vu)) (D'u. — D'u) dx = n5(e).
=179

Therefore, by letting € goes to zero we conclude that

lim [ (a;(z, Vue) — a;(2, Vu))(D'u. — D'u)der =0 for i=1,...,N.
e=0 Jq

We have (a;(z, Vue)). is bounded in LPi()(Q), then there exists a function t; €
LPi)(Q), such that a;(z, Vue) — ¢; in LPi0)(Q), we obtain

lim [ a;(x, Vue)D'u, doe = / W D' dz.
Q

e—=0 Jo

On the other hand, thanks to (1.4), we have for any v € Wol’ﬁ(')(Q)
(a;(z, Vue)) — ai(z, Vv)) (D'u. — D'v) >0 for i=1,...,N.

Following the same way used in the proof of (3.11), we can show that

/(wi —a(z,Vu))D'wdr =0 forany w € Wol’p( )(Q)
Q

Consequently,
V; = a(z,Vu) in LPO(Q) for i=1,...,N,

which conclude the proof of the convergence (3.14).
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Step 4: Passage to the limit.

By taking v € Wol’ﬁ(')(ﬂ) as a test function in the approximate problem (3.1), we
have

N
/ Be (T (ue))v do + Z/ ai(x, Vu.)D'v dx = / fode. (3.18)
Q = Ja Q
Since B (T} /c(ue)) — b weak—* in L>(Q2) for i = 1,..., N, then
/ Be(Th e (ue))v do — / bv dx as ¢—0.
Q Q

Also, we have a;(z, Vue) — a;(z, Vu) in LPi() () then

N N
Z/ ai(x, Vuo) D' d:c—)Z/ ai(x,Vu)D'vdr as & — 0.
=179 =179

Therefore, by letting € goes to zero in (3.18), we conclude that
N _ _
/ bv dx + Z/ ai(x,Vu)D'vdx = [ fvdr forany wv€ ng(-)(Q).
Q =/ Q

Step 5: Subdifferential argument.

Firstly, since 3(+) a is maximal monotone graph, there exists a convex lower semi-
continuous and proper function j: R — [0, 0c], such that

B(r)=0j4(r) forall reR.

According to [13], we have the following result.
Proposition 3.4. For any 0 < € < 1, the mapping jo: R —— R defined by:
Je(r) = / B:(s)ds, has the following properties:

0

(i) The mapping j is convex and differentiable for all r € R, such that:
ju(r) = Ba(r) forany 0<e<1

(i) For all r € R we have: je(r) — j(r) as e — 0.

It remain to show that u(z) € D(8(+)) and b(x) € B(u(x)) for a.e x € Q.
We have 3(-) is a maximal monotone operator, and in view of (i) for any 0 < e < 1,
we have

Je(r) > js(Tl/e(UE)) +(r— Tl/s(”é))ﬁS(Tl/e(UE))v (3.19)
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for all » € R and almost everywhere in 2.

Let F be an arbitrary measurable subset of 2 and x g its characteristic function.
Let h,e0 > 0 and we set v e = 1 —|T1(ue — Th(ue))|. By multiplying (3.19) by the
test function vy . x g, then integrating over (), we obtain

/ js(T)U}L,E dx > / jeo (Th-l—l(us))vh,e dx + / (7‘ - Th+1(us))vh,eﬁa(Tl/a(ue)) dm,
E E E

1
for all r € Rand all 0 < ¢ < min(so,m), we have v, . = 0 on the set

{Jue| > h + 1}. By letting e tends to 0, we have vy, . — v, = 1 — |T1(u — Th(w))],
having in mind (ii) we obtain

/Ej(T)Uh dr > /Ejeo (Thy1(u))vp dz + /E(T — Thi1(uw))vpbde.

Taking into account that E is arbitrary we obtain
J(r)on 2 Jeo (The1(w))vn + (1 — Thya(u))vnb (3:20)

for all » € R almost everywhere in 2. By letting h tends to infinity, then g goes
to zero in (3.20) we deduce that

jr) > j(u(x)) + b(z)(r —u(z)) ae. in Q, forany r€R.

Hence u € D(B) and b € (u) almost everywhere in 2. which conclude the proof
of the Theorem 3.2. O

4. The existence of T-p(-)-solution in the case of f € L'().

Definition 4.1. Let f € L'(Q) and $(-) a maximal monotone mapping, the pair
of measurable functions (u,b) is called T-p(-)-solution of the quasilinear elliptic
problem (1.1), if this pair satisfying the following conditions:

(C1) The function u:  — R is measurable and b € L*(f2), such that u(x) €
D(B) and b(x) € B(u(z)) for a.e. x € .

(C2) For each k > 0, we have Ty (u) € Wol’ﬁ(')(Q) and
N .
/ ka(u—ap)dx—i—Z/ a;(z, Vu)D'Ty,(u—p)dx = / fTe(u—yp)dz, (4.1)
Q —Ja Q

for every ¢ € Wol’ﬁ(‘)(Q) N L>(Q).
Theorem 4.2. Let f € L*(), assuming that (1.2)—(1.4) hold true, then the quasi-

linear anisotropic elliptic problem (1.1) has at least one T-p(+)-solution. Moreover,
1 Np-1
ifp>2-— N then the solution belongs to Wol’q(Q) forany 1 <qg< %
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Proof. Step 1: The approximate problems.

Let (fn)nen+ be a sequence of measurable function in L°°(€2) N L1(2) such that
fo — fin LY(Q) and |f,| < |fn] for any m < n. Let B1(-) be the Yosida
approximation of 3(-), note that

(B1(),0) 20, [B1(0)| <nle| and  lim B (v) = A(v).

— 00

We consider the approximate problem

5l (un) + Aun = fn in Qa
U € WEPO(Q).

In view of Theorem 3.2, there exists at least one pair of functions (uy,b,) €
Wol’p(‘)(Q) x L™ (Q) satisfying u,, € D(B1) and b, € B1(uy) almost everywhere
in Q such that ’ '

N
/bnwdz+2/ ai(z,Vun)Diwdx:/fnwdx for anyweWOlvﬁ()(Q). (4.2)
Q = Jo Q

Now, let m € N* with m < n. Similarly, we have the existence of (u,,b,) €
Wol’p(')(Q) x L>°(Q) satisfying un, € D(B1) and by, € B (usm) such that

N
/bmwdx—l—Z/ ai(x, Vi) Diwdr = / fmwdz for any w € Wol»ﬁ()(Q). (4.3)
Q — Jo Q

Let E be a measurable subset of Q, by taking w = (u, — v,) - xg in the two
equations (4.2) and (4.3), and then subtracting the two equations we obtain

N
/ (b, — b)) (U, — Uy d + Z/ (ai(z, Vun) — a;(z, V) (D'u, — Diuy,) do
E = JE
= / (frn = ) (U — up,) da.
E

We have b, € B1(uy,) and by, € B1 (U, ), then thanks to (1.4) we deduce that

0< / (b, — b)) (U, — upy) da < / (fn — fm)(tn — up) dz for any E € Q.
E E

It follows necessary that the two sequences (u, ), and (b,), are increasing.

Step 2: Weak convergence of Ty (u,) in Wol’ﬁ(')(Q).

By taking T} (u,) as a test function in the approximate problem (4.2), we have

b T (un)dx + Z/ ai (2, Vun)D T (uy) dz = [ fTh(un) dz, (4.4)
Q
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since b, has the same sign as u,, and thanks to (1.3) we obtain

N N
aZ/Q|DiTk(un)|p"(x) dx S/anT;g(un)dx—l-Z/Qai(x,un,Vun)DiTk(un) dx
i=1 i=1
< k£l

It follows that

N
ITew) 5, < C S ID T

1E1
< CZ/ | DTy, (un)
i=179

k
< Oallfllch.

Pi(®) g + CN

We conclude that there exists a constant C'; that does not depend on n and k,
such that )
| Tk (un)|l1,50) < C1k2  for any k> 1. (4.5)

It follows that the sequence (Tj(uy)), is bounded in VVO1 7 (')(Q). Therefore, there
exists a subsequence still denoted (Tk(u,))n, and a measurable function v, €

W&’ﬁ(')(Q) such that

Ti(un) — v in W()Lﬁ(V)(Q)a (4.6)
Ti(un) = vx in L°(Q) and ae. in Q. '
Now, we will show that (uy,), is a Cauchy sequence in measure in €.
Firstly, according to (4.5) we have
k meas{|u,| > k} = |Th (un)| dz < / |T% (un,)| dz
{|un|>k} Q
< T (un) 1,50
< Cokt .
Consequently,
1
meas{|u,| >k} <Co—F — 0 as k — oo. (4.7)

1—1
P
Taking A > 0, it’s clear that

meas{ [ty — tm| > A} < meas{|u,| > k} + meas{|un,| > k}
+meas{|Tx(un) — Tr(um)| > A}.
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Let o > 0, using (4.7) we can choose k = k(o) large enough such that

meas{|u,| > k} < % and  meas{|um| > k} < (4.8)

wlQ

On the other hand, thanks to (4.6) we can assume that (Tx(un))nen is a Cauchy
sequence in measure. Thus, for any £ > 0 and \,0 > 0, there exists ng =
no(k, A, o) such that

~—

meas{| Ty (un) — Tg(um)] > A} < % for any n,m > ng(k, A, o). (4.9)

In view of (4.8) and (4.9), we deduce that for any \,o > 0, there exists ng =
no(A, o) such that

meas{|un, — um| > A} <o forany n,m > ng(X, o),

which proves that the sequence (uy,), is a Cauchy sequence in measure and then
converges almost everywhere to some measurable function u. Consequently, we
have _

Tilun) = Ti(w) in - Wy (@),

and using Lebesgue’s dominated convergence theorem, we obtain
Ti(un) = Tp(u) in Lp"(')(Q) forany i=1,...,N.

Moreover, thanks to (4.4) we have

/ b [T ()] der < / FuTi(un) de < K| flray for any k>0,
Q Q
it follows that
- Tk (un)]
1onllzr ) = %13%/9 [bn] == dz < [If |22 (@),

we have (b,,), is increasing and uniformly bounded sequence in L!(£2), then, there
exists a measurable function b € L!(£2) such that

b, — b strongly in L'(Q). (4.10)

Step 3: Some regularity results.

1 1
Assume that p > 2—N and 1 < 6 < p. By takingw = (1 — W) sign(uy,)

as a test function in the approximate problem (4.2), we have

ai(x, Vuy,)D"u
bnwdx—I— -1) /$da¢= nw dx,
Z o (14 |un)? Qf
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since b, has the same sign as u,, and |w| < 1, in view of (1.3) we get

N .
D e
0—1 ———dx < .

N(p-10 N 0
L we have ¢* = ¢ _ Y . Thus, in view of Holder’s
N -0 N—-q p—q

and Sobolev inequalities we deduce that

Z/ D'u, |qufz/ Dl ®

By choosing ¢ =

(1+ |unl) 2
S A SO T
= (L fual) > T
| D, |2 =< o =
<o ([ ariap ™) (/S<1+w>f i)
N .
|Dlun pi(z) 0
SCIE( dex_FK)‘ ‘un|q dl‘+|Q|)
N Z4
= CZZ (a(HHfl 1) +|Q|) (I‘Di“'rbnf +03)
1=1
N g
5042( IDiunlqu)z+C5.

i=1 /8
. 4 . . .
Since — < 1, it follows that there exists a positive constant Cg that does not
p

depend on n, such that

N .
Z/ |D*up|? dx < C,

then, there exists a subsequence still denoted (u,, ), such that
U, —u weakly in W, (€).

We refer the reader to [11] for more details.

Step 4: Passage to the limit.

Let ¢ € Wol’ﬁ(')(Q) N L>(£2), by taking Tj(u, — ¢) as a test function in (4.2), we
obtain

b Ti(un — @) dx + Z/ 2, Vu, ) DTy (uy, — @) de = | fuTh(u, — @) da.
Q Q
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Choosing M =k + ||¢]leo then {|u, — ¢| < k} C {|un| < M}. In view of (1.4) we
obtain

N
Z/ (ai(a:, Vu,) — ai(z, V@))(Diun — D'p) dx >0,
{lun—p|<k}

then

N N
> [ aie. VoD Telu, — 9) do <3 [ ai(o Vu) D'Tiw, — ) do
=179 i=17¢

it follows that

N
[ 0T, =) do+ 3 [ aie. VoD Tulun — ) do < [ fuTi(un — ) do
Q = Ja Q

(4.11)
Now, we pass to the limit on each terms of (4.11), we have
Z/ ai(x, Vo) DTy, (uy, —p)dx = Z/ (2, V) (D' Tas(un)—D'op)da,
{lun— w\<k}

and since DTy (uy,) — DTy (u) in LPiO)(Q), then

lim ai(x, Vo) (DT (u,) — D) dx

0 S {lun—pl<k}

= ai(x, V) (DT (u) — D'p) dx (4.12)

lu—|<k}
= [ ai(z,V)D'Ty(u — @) dx.
Q

Moreover, thanks to (4.10) and since Ty (un, — @) — Ti(u — @) weak-* in L>(§2),
then

/ b Ty (uy — @) do — / bTk (u — ) du, (4.13)
Q Q

and

/ foTk(up — @) doe — / f Ti(u— @) dx. (4.14)

By combining (4.12) — (4.14), we conclude that
N .
/ Tk (u — ) do + Z/ a;(x, Vp)D'T(u — ¢) dez < / fTe(u— ) dz, (4.15)
Q = Ja Q

for any ¢ € Wol’ﬁ(‘)(Q) N L> ().
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Step 5: The Minty lemma.

Now, we will introduce the following lemma considered as an L'-version of the
Minty’s lemma.

Lemma 4.3. Let u be a measurable function such that Tj(u) € Wol’ﬁ(‘)(ﬂ) for

every k > 0. Then, for any ¢ € Wol’ﬁ(')(Q) N L>°(Q), the following assertions are
equivalent:
Assertion 1:

N
/Qka(u — ) dx + ;/ﬂai(:ﬂ,Vga)DiTk(u — ) dx < /Qka(u — ) dz,

for any ¢ € Wol’ﬁ(')(ﬂ) NL>(Q).
Assertion 2:

ka (u—¢ dx—&—Z/aleuDTk(u— ) de= | fTi(u— ) dz,
Q
for any © € WP (Q) N L*(Q).

Proof. (Assertion 2) = (Assertion 1). In view of (1.4), we have

N .
Z/Qai(x,Vu)D’Tk(u — ) dx
=1 N |
=3 [ @@ VoD Ti(u =) da
i=1 N
+ ; /Q(ai(x, Vu) — ai(x, V) D'Ti(u — ) dx
N .
> ;/Qai(x,Vgo)D Ti(u — @) dx,

The assertion 1 is concluded.

(Assertion 1) = (Assertion 2)
Let h and k be two positive real numbers and A € [-1,1].

Let ¢ € WP (Q)NL>® (), choosing ¢ = T, (u—ATy(u—1))) € Wa P (Q)NL=(Q)
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as test function in the (Assertion 1), we have
/ﬂ WTy (1 — Ty (1 — NTy (1 — ) da
+ il /Q ai(z, Vi (u — Ny (v — ) DTy (u — Tp(u — XTg(u — 1)) dz (4.16)
< Z/Qka(u = Th(u = ATy (u —))) dx .

Concerning the second term on the left-hand side of (4.16), we have a;(z,0) =0
then

/Q i (. V(4 — Tt — ) D' Ti(u — T — AT (u — ) d

= A/ ai(x, VT (u — N (u — ) DTy (u — 1) de,
{lu—g| <E}N{|lu=ATi (u—9))|<h}

and since {Ju — AT (v — )| < h} — Q as h — oo, it follows that

hlim ai (2, VT (u — XTk(u — 1)) D T (u — T (u — AT (u — 1)) dx
eeJa 4 (4.17)
= /\/ ai(z, V(u— AT (u— ) D' Ty (u — ) dx.
Q

Moreover, it is easy to see that,

h— o0

lim / BTy (1 — Tn(u — ATo(u— ) do = A | bTh(u— ) dz,  (4.18)
Q Q

and

h—o0

lim /Qka(u T (= AT(u — ) da = )\/Qka(u ) dr. (419)
By combining (4.16) — (4.19), we deduce that
N .
A /Q bT(u — ) d + A ; /Q (2, V (1 — Ny (1 — ) DTy (u — ) dar
< )x/Qka(u — ) da.

Choosing A\ > 0, dividing both sides by A, then letting A tend to zero, we obtain

N .
/Qka(u—lb) dm—i—iz_;/gai(m,Vu)D Ti(u—1) dx < /Q fTe(u— ) dx.
(4.20)
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Doing the same for the case of A < 0, we obtain

N
/Q b (u — o) da + ; /Q ai(z, Vu) DTy, (u — ) do > /Q fTi(u— 1) de.

(4.21)
By combining (4.20) and (4.21), we conclude the following equality:

kau— dx—|—Z/aszuDTk(u—w)dx= fTe(u— ) dx
Q

for any ¢ € Wol’ﬁ(‘)(Q) N L>° (), which completes the proof of Lemma 4.3. O

By using the subdifferential argument (as in the proof of Theorem 3.2) we
show that uw € D(B) and b € S(u) a.e. in Q. Thus, in view of (4.15) and Lemma
4.3, we conclude the proof of the Theorem 4.2. O

5. Uniqueness of T-p(-)-solution solution

Theorem 5.1. Let f € LY(2), assuming that (1.2) — (1.4) hold true. If one of the
following conditions is verified:

o If B(+) is a strictly increasing, continuous function,

e If B(-) is a monotone graph, and there exists ig € {1,2,...,N} such that
ai, (x,-) is strictly monotone.

Then, the T-p(-)-solution of the quasilinear anisotropic elliptic problem (1.1) is
unique.

Proof. Let h > k > 0. Assuming that there exists two T-p(-)-solutions (u, b) and
(v,d) of the problem (1.1), and we will show that u = v.

We consider u as a T-p(-)-solution of the elliptic problem (1.1) and by taking
¢ =Ty (v) in (4.1), we have

N
/Qka(u—Th(v))d:E—&—i_Zl/Qai(m,Vu)DiTk(u—Th(v))dm:/Qka(u—Th(v)) dx,

it follows that

/ bTk(u — v) d;v—k/ |b] dx:
{Iv\Sh}N {lv[>h}

+ Z/ ai(x, Vu)(D'u — D'v) dx (5.1)

{lu—v|<k}n{lv|<h}

< fTi(u—v) dx+k/ |f| da.
{lvl<h} {lv[>h}
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For the second term on the left-hand side of (5.1), we have b(-) belong to L' (),
and since meas{|v| > h} — 0 as h tends to infinity, we obtain

eo(h) = k/ |b|de — 0 as h — 0. (5.2)
{lvI>h}
Similarly, we have f € L'(Q) then

h):k:/ fldz — 0 as h— 0. (5.3)
|lv|>h}

By combining (5.1)—(5.3) we conclude that

N
/ Tk (u —v) de + Z/ a;(z, Vu)(D'u — D) da
{lvl<h} i=1 Y {lu—v|<k}n{|v|<h}

< ka(u—v) dI+€2(h).
{lv|<h}

By letting h goes to infinity, we get

N
/ bTy(u — v) dx + Z/ ai(z, Vu)(D'u — D'v) dx < / fTi(u—v) du.
Q {lu—v|<k} Q

Similarly, by taking (v,d) as a T-p(-)-solution of the elliptic problem (1.1) and
using ¢ = Ty (v) in (4.1), we obtain

N . .
/Qdi(v—u) dsr:—i—Z/{u . a;(z, Vo)(D'v — D'u) de/Qka(v—u) dx.

By adding the two previous inequalities, we conclude that

/(b d)Ti(u—v d:chZ/ aZ x, Vu) — -(I,V'U))(DiufDiv)daj <0,

{|lu—v|<k}

We have b € B(u) and d € S(v), and thanks to (1.4) we deduce that
/ (b—d)Ti(u—v)de =0,
Q
and

/ (ai(x,Vu) — an,Vv))(Diu —Dw)dr=0 for i=1,...,N.
{lu—v|<k}

e If the maximal monotone operator §(:) is a strictly increasing, continuous
function, then

/(b—d)Tk(u—v)dxzo = u=v ae. in Q.
Q
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e If there exists ig € {1,2,..., N} such that a;,(x,-) is strictly monotone, then

/ (aio (z, Vu) — aj, (z, VU)) (D"y — D"v)dz =0
{lu—v|<k}

= Du= D"y ae. in {|ju—v| <k}

1
We have u,v € W' (Q) for p>2— N In view of Poincaré’s inequality we
obtain

1Tk (u—v)||1 < Cp||Di°Tk(u —0)|[1 =0 forany k>0,

it follows necessary that © = v a.e. in €.

Which conclude the proof of the Theorem 5.1. O
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