Existence of T- $\vec{p}(\cdot)$-solutions for some quasilinear anisotropic elliptic problem

Ahmed Dakkak, Hassane Hjiaj and Ahmed Sanhaji*

Abstract

The aim of this paper is to study the existence of solutions for some quasilineare anisotropic elliptic problem associated with differential inclusion. We study the two cases of $f \in L^{\infty}(\Omega)$ and $f \in L^{1}(\Omega)$. Moreover, we show the uniqueness of solution under some additional assumptions.

1. Introduction

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, with a Lipschitz boundary condition $\partial \Omega$. For $2-\frac{1}{N}<p<N$, L. Boccardo and T. Gallouët [11] have treated the problem

$$
\left\{\begin{aligned}
A u=f & \text { in } \quad \Omega \\
u=0 & \text { on } \quad \partial \Omega
\end{aligned}\right.
$$

where $A u=-\operatorname{div} a(x, u, \nabla u)$ is a Leray-Lions operator from $W_{0}^{1, p}(\Omega)$ into its dual, and f is a bounded Radon measure on Ω. They have proved the existence and some regularity results (see also $[18,19]$). M. Bendahmane and P. Wittbold in [9] have shown the existence and uniqueness of the renormalized solution for the nonlinear elliptic problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

in the variable exponent Sobolev spaces, where the right-hand side $f \in L^{1}(\Omega)$, we refer the reader also to [25] for the existence and uniqueness of entropy solution.

Recently, anisotropic variable exponent Sobolev spaces $W^{1, \vec{p}(\cdot)}(\Omega)$ have attracted the interest of many scientists and researchers, this attention come essentially from their applications in nonhomogeneous materials that behave differently on different space directions, we can refer here to the electrorheological and thermoelectric fluids (see for example [5, 23]).

[^0]These spaces are the appropriate framework to deal with a class of problems having non-standard structural conditions, involving a variable growth exponent $\vec{p}(\cdot)$, where prototype of the differential operator considered is the $\vec{p}(\cdot)$-Laplacian

$$
\Delta_{\vec{p}(\cdot)}(u)=\sum_{i=1}^{N} \partial_{x_{i}}\left(\left|\partial_{x_{i}} u\right|^{p_{i}(\cdot)-2} \partial_{x_{i}} u\right),
$$

which generalize the $p(\cdot)$-Laplace operator. Di Nardo, Feo and Guibé have studied in [16] the existence of renormalized solutions for some class of nonlinear anisotropic elliptic problems of the type

$$
\begin{cases}-\sum_{i=1}^{N} \partial_{x_{i}}\left(a_{i}(x, u)\left|\partial_{x_{i}} u\right|^{p_{i}-2} \partial_{x_{i}} u\right)=f-\operatorname{div} g & \text { in } \quad \partial \Omega \\ u=0 & \text { on } \quad \partial \Omega\end{cases}
$$

with $f \in L^{1}(\Omega)$ and $g \in \Pi_{i=1}^{N} L^{p_{i}^{\prime}}(\Omega)$, the uniqueness of renormalized solution was concluded under some local Lipschitz conditions on the function $a_{i}(x, s)$ with respect to s (see also $[1,3,4,6,15]$).

In [14], Gwiazda and al. have proved the existence of renormalized solutions for the quasilinear elliptic equation

$$
\begin{cases}-\operatorname{div} A(x, \nabla u)=f & \text { in } \quad \Omega \\ u=0 & \text { on } \quad \partial \Omega\end{cases}
$$

in the Musielak-Orlicz-Sobolev spaces, where $f \in L^{1}(\Omega)$ and $A(\cdot, \cdot)$ is a Carathéodory function verifying some non-standard growth and coercivity conditions, and without using the Δ_{2}-condition. For more results we refer the reader to [2, 20] and [21].

In this work, we establish the existence of $\mathrm{T}-\vec{p}(\cdot)$-solutions for the following quasilinear anisotropic elliptic problem

$$
\begin{cases}\beta(u)-\sum_{i=1}^{N} D^{i} a_{i}(x, \nabla u) \ni f & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\beta(\cdot): \mathbb{R} \longmapsto 2^{\mathbb{R}}$ is a set-valued maximal monotone mapping such that $0 \in$ $\beta(0)$. We assume that $a_{i}(\cdot, \cdot): \Omega \times \mathbb{R}^{N} \longmapsto \mathbb{R}$ are Carathéodory functions for $i=1,2, \ldots, N$ (i.e. measurable with respect to x in Ω for every ξ in \mathbb{R}^{N} and continuous with respect to ξ in \mathbb{R}^{N} for almost every x in Ω), which satisfies the following conditions

$$
\begin{gather*}
\left|a_{i}(x, \xi)\right| \leq K_{i}(x)+\left|\xi_{i}\right|^{p_{i}(x)-1} \quad \text { for } \quad i=1, \ldots, N \tag{1.2}\\
a_{i}(x, \xi) \xi_{i} \geq \alpha\left|\xi_{i}\right|^{p_{i}(x)} \quad \text { for } \quad i=1, \ldots, N \tag{1.3}
\end{gather*}
$$

and the function $a_{i}(x, \cdot)$ have only a wide monotone, i.e.

$$
\begin{equation*}
\left(a_{i}(x, \xi)-a_{i}\left(x, \xi^{\prime}\right)\right)\left(\xi_{i}-\xi_{i}^{\prime}\right) \geq 0 \tag{1.4}
\end{equation*}
$$

for a.e. $x \in \Omega$, and all $\xi \in \mathbb{R}^{N}$, where $\alpha>0$ and $K_{i}(\cdot)$ is a non-negative function lying in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$ where $\frac{1}{p_{i}(x)}+\frac{1}{p_{i}^{\prime}(x)}=1$.

As a natural hypothesis on the Carathéodory function $a(x, \xi)$, we assume that

$$
a(x, 0)=0 .
$$

In this paper we will extend the results of [26] to the anisotropic variable exponent case, and our main ideas and methods come from [11] and [12].

The paper is organized as follows. In section 2, we recall some definitions and results concerning the anisotropic variable exponent Sobolev Spaces. Also, we introduce some lemmas useful to prove our main results. In the section 3, we will study the existence and regularity of weak solutions for our quasilinear anisotropic elliptic problem (1.1) in the case of $f \in L^{\infty}(\Omega)$. The section 4 will be devoted to the study of the existence of $\mathrm{T}-\vec{p}(\cdot)$-solution in the case of $f \in L^{1}(\Omega)$. In the last section, we will prove the uniqueness of T- $\vec{p}(\cdot)$-solution under some additional assumption.

2. Preliminaries

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, we denote $\mathcal{C}_{+}(\Omega)=\left\{\right.$ measurable function $\quad p(\cdot): \Omega \longmapsto \mathbb{R} \quad$ such that $\left.1<p^{-} \leq p^{+}<N\right\}$, where

$$
p^{-}=e s s \inf \{p(x) / x \in \Omega\} \quad \text { and } \quad p^{+}=e s s \sup \{p(x) / x \in \Omega\}
$$

We define the Lebesgue space with variable exponent $L^{p(\cdot)}(\Omega)$ as the set of all measurable functions $u: \Omega \longmapsto \mathbb{R}$ for which the convex modular

$$
\rho_{p(\cdot)}(u):=\int_{\Omega}|u|^{p(x)} d x
$$

is finite. If the exponent is bounded, i.e. if $p^{+}<+\infty$, then the expression

$$
\|u\|_{p(\cdot)}=\inf \left\{\lambda>0: \rho_{p(\cdot)}(u / \lambda) \leq 1\right\}
$$

defines a norm in $L^{p(\cdot)}(\Omega)$, called the Luxemburg norm. Then $\left(L^{p(\cdot)}(\Omega),\|\cdot\|_{p(\cdot)}\right)$ is a separable Banach space. Moreover, if $1<p^{-} \leq p^{+}<+\infty$, then $L^{p(\cdot)}(\Omega)$ is
uniformly convex, hence reflexive, and its dual space is isomorphic to $L^{p^{\prime}(\cdot)}(\Omega)$, where $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$. Finally, we have the Hölder type inequality:

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)\|u\|_{p(\cdot)}\|v\|_{p^{\prime}(\cdot)}
$$

for any $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p^{\prime}(\cdot)}(\Omega)$. The Sobolev space with variable exponent $W^{1, p(\cdot)}(\Omega)$ is defined by

$$
W^{1, p(\cdot)}(\Omega)=\left\{u \in L^{p(\cdot)}(\Omega) \quad \text { and } \quad|\nabla u| \in L^{p(\cdot)}(\Omega)\right\}
$$

which is a Banach space, equipped with the following norm

$$
\|u\|_{1, p(\cdot)}=\|u\|_{p(\cdot)}+\|\nabla u\|_{p(\cdot)} .
$$

The space $\left(W^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right)$ is a separable and reflexive Banach space. We define $W_{0}^{1, p(\cdot)}(\Omega)$ as the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $W^{1, p(\cdot)}(\Omega)$. For more details on variable exponent Lebesgue and Sobolev spaces, we refer the reader to [17].

Remark 2.1. Recall that the definition of these spaces requires only the measurability of $p(\cdot)$, while the Poincaré and the Sobolev-Poincaré inequalities are proved for $p(\cdot)-\log$-Hölder continuous, (see. [17]).

Now, we present the anisotropic variable exponent Sobolev space, used in the study of our quasilinear anisotropic elliptic problem. Let $p_{1}(\cdot), p_{2}(\cdot), \ldots, p_{N}(\cdot)$ be N variable exponents in $\mathcal{C}_{+}(\Omega)$. We denote

$$
\vec{p}(\cdot)=\left(p_{1}(\cdot), \ldots, p_{N}(\cdot)\right), \quad \text { and } \quad D^{i} u=\frac{\partial u}{\partial x_{i}} \quad \text { for } \quad i=1, \ldots, N
$$

and we define

$$
\underline{p}^{+}=\max \left\{p_{1}^{-}, \ldots, p_{N}^{-}\right\} \quad \text { and } \quad \underline{p}=\min \left\{p_{1}^{-}, \ldots, p_{N}^{-}\right\} \quad \text { then } \quad 1<\underline{p} \leq \underline{p}^{+}
$$

The anisotropic variable exponent Sobolev space $W^{1, \vec{p}(\cdot)}(\Omega)$ is defined as follow:

$$
W^{1, \vec{p}(\cdot)}(\Omega)=\left\{u \in W^{1,1}(\Omega) \quad \text { and } \quad D^{i} u \in L^{p_{i}(\cdot)}(\Omega) \quad \text { for } \quad i=1,2, \ldots, N\right\}
$$

endowed with the norm

$$
\begin{equation*}
\|u\|_{1, \vec{p}(\cdot)}=\|u\|_{1,1}+\sum_{i=1}^{N}\left\|D^{i} u\right\|_{p_{i}(\cdot)} \tag{2.1}
\end{equation*}
$$

We define also $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ as the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $W^{1, \vec{p}(\cdot)}(\Omega)$ with respect to the norm (2.1). The space $\left(W_{0}^{1, \vec{p}(\cdot)}(\Omega),\|u\|_{1, \vec{p}(\cdot)}\right)$ is a reflexive Banach space (cf. [24]).

Lemma 2.2. We have the following continuous and compact embedding

- if $\underline{p}<N$ then $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{q}(\Omega) \quad$ for $q \in\left[\underline{p}, \underline{p}^{*}\left[, \quad\right.\right.$ where $\underline{p}^{*}=\frac{N \underline{p}}{N-\underline{p}}$,
- if $\underline{p}=N$ then $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{q}(\Omega) \quad \forall q \in[\underline{p},+\infty[$,
- if $\underline{p}>N$ then $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{\infty}(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})$.

The proof of this lemma follows from the fact that the embedding $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow$ $W_{0}^{1, \underline{p}}(\Omega)$ is continuous, and in view of the compact embedding theorem for Sobolev spaces.

Remark 2.3. In view of the continuous embedding $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow W_{0}^{1,1}(\Omega)$ and the Poincaré type inequality we conclude that the two norms $\|u\|_{1, \vec{p}(\cdot)}$ and $|u|_{1, \vec{p}(\cdot)}=$ $\sum_{i=1}^{N}\left\|D^{i} u\right\|_{p_{i}(\cdot)}$ are equivalents in the anisotropic variable exponent Sobolev spaces $W_{0}^{1, \vec{p} \cdot)}(\Omega)$.

Indeed, thanks to Hölder's inequality we have

$$
\|\nabla u\|_{1}=\sum_{i=1}^{N}\left\|D^{i} u\right\|_{1} \leq C_{1} \sum_{i=1}^{N}\left\|D^{i} u\right\|_{p_{i}(\cdot)} \quad \text { for any } \quad u \in W_{0}^{1, \vec{p} \cdot \cdot)}(\Omega)
$$

Moreover, the embedding $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow W_{0}^{1,1}(\Omega)$ is continuous, by using Poincaré's inequality, we have

$$
\|u\|_{1} \leq C_{p}\|\nabla u\|_{1} \leq C_{2} \sum_{i=1}^{N}\left\|D^{i} u\right\|_{p_{i}(\cdot)} \quad \text { for any } \quad u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)
$$

It follows that

$$
\|u\|_{1,1}=\|u\|_{1}+\|\nabla u\|_{1} \leq\left(C_{p}+1\right)\|\nabla u\|_{1} \leq C_{3} \sum_{i=1}^{N}\left\|D^{i} u\right\|_{p_{i}(\cdot)} .
$$

We conclude that for any $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$

$$
|u|_{1, \vec{p}(\cdot)} \leq\|u\|_{1, \vec{p}(\cdot)}=\|u\|_{1,1}+|u|_{1, \vec{p}(\cdot)} \leq\left(C_{3}+1\right)|u|_{1, \vec{p}(\cdot)},
$$

thus, the result is concluded.

Proposition 2.4. The dual of $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ is denoted by $W^{-1, \overrightarrow{p^{\prime}}(\cdot)}(\Omega)$, where

$$
\overrightarrow{p^{\prime}}(\cdot)=\left(p_{1}^{\prime}(\cdot), \ldots, p_{N}^{\prime}(\cdot)\right) \text { and } \frac{1}{p_{i}^{\prime}(\cdot)}+\frac{1}{p_{i}(\cdot)}=1
$$

(cf. [8] for the constant exponent case). For each $F \in W^{-1, p^{\prime}(\cdot)}(\Omega)$ there exist $F_{0} \in$ $\left(L^{\underline{p}^{+}}(\Omega)\right)^{\prime}$ and $F_{i} \in L^{p_{i}^{\prime}(\cdot)}(\Omega)$ for $i=1,2, \ldots, N$, such that $F=F_{0}-\sum_{i=1}^{N} D^{i} F_{i}$. Moreover, for any $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, we have

$$
\langle F, u\rangle=\sum_{i=0}^{N} \int_{\Omega} F_{i} D^{i} u d x
$$

We define a norm on the dual space by

$$
\begin{aligned}
\|F\|_{-1, \bar{p}^{\prime}(\cdot)}=\inf \left\{\left\|F_{i}\right\|_{\left(\underline{p}^{+}\right)^{\prime}}+\sum_{i=1}^{N}\left\|F_{i}\right\|_{p_{i}^{\prime}(\cdot)} \text { with } F=F_{0}-\sum_{i=1}^{N} D^{i} F_{i}\right. \\
\text { such that } \left.F_{0} \in\left(L^{\underline{p}^{+}}(\Omega)\right)^{\prime} \quad \text { and } \quad F_{i} \in L^{p_{i}^{\prime}(\cdot)}(\Omega)\right\} .
\end{aligned}
$$

Definition 2.5. Let $k>0$, the truncation function $T_{k}(\cdot): \mathbb{R} \longmapsto \mathbb{R}$ is defined by

$$
T_{k}(s)=\left\{\begin{array}{ccc}
s & \text { if } & |s| \leq k \\
k \frac{s}{|s|} & \text { if } & |s|>k
\end{array}\right.
$$

and we define
$\mathcal{T}_{0}^{1, \vec{p}(\cdot)}(\Omega):=\left\{u: \Omega \mapsto \mathbb{R}\right.$ measurable, such that $T_{k}(u) \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ for any $\left.k>0\right\}$.
Note that, a measurable function u verifying $T_{k}(u) \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ for all $k>0$, does not necessarily belong to $W_{0}^{1,1}(\Omega)$. However, for any $u \in \mathcal{T}_{0}^{1, \vec{p}(\cdot)}(\Omega)$ it is possible to define the weak gradient of u, still denoted ∇u.
Proposition 2.6. Let $u \in \mathcal{T}_{0}^{1, \vec{p}(\cdot)}(\Omega)$. For any $i \in\{1, \ldots, N\}$, there exists a unique measurable function $v_{i}: \Omega \longmapsto \mathbb{R}$ such that

$$
\forall k>0 \quad D^{i} T_{k}(u)=v_{i} \cdot \chi_{\{|u|<k\}} \quad \text { a.e. } \quad x \in \Omega
$$

where χ_{A} denotes the characteristic function of a measurable set A. The functions v_{i} are called the weak partial derivatives of u and are still denoted $D^{i} u$. Moreover, if u belongs to $W_{0}^{1,1}(\Omega)$, then v_{i} coincides with the standard distributional derivative of u, that $i s, v_{i}=D^{i} u$.

The proof of the Proposition 2.6 follows the usual techniques developed in [10] for the case of Sobolev spaces. For more details concerning the anisotropic Sobolev spaces, we refer the reader to [8] and [16].
Lemma 2.7 (see [7]). Let $g \in L^{r(\cdot)}(\Omega)$ and $g_{n} \in L^{r(\cdot)}(\Omega)$ with $\left\|g_{n}\right\|_{r(\cdot)} \leq C$ for $1<r(x)<\infty$. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ in $L^{r(\cdot)}(\Omega)$.

3. Existence of weak solutions in the case of $f \in L^{\infty}(\Omega)$

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, and let $p_{i}(\cdot) \in \mathcal{C}_{+}(\Omega)$ for $i=1, \ldots, N$. In this section, we will study the existence of weak solution in the case of $f \in L^{\infty}(\Omega)$.

Definition 3.1. Let $f \in L^{\infty}(\Omega)$. A weak solution of the quasilinear elliptic problem (1.1) is a pair of functions (u, b) such that $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ and $b \in \beta(u)$ with $b \in L^{\infty}(\Omega)$, satisfying

$$
\int_{\Omega} b v d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} v d x=\int_{\Omega} f v d x
$$

for any $v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$.
Theorem 3.2. Let $f \in L^{\infty}(\Omega)$, assuming that the conditions (1.2) - (1.4) hold true. Then, there exists at least one weak solution $(u, b) \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \times L^{\infty}(\Omega)$ of the quasilinear anisotropic elliptic problem (1.1).

Proof. Step 1: Approximate problems

Let $0<\varepsilon \leq 1$, we consider the approximate problem

$$
\begin{cases}\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)+A u_{\varepsilon}=f & \text { in } \Omega \tag{3.1}\\ u_{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

where $A v=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, \nabla v)$ and $\beta_{\varepsilon}(\cdot): \mathbb{R} \longmapsto \mathbb{R}$ be the Yosida approximation of $\beta(\cdot)$, note that, for any $v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ and $0<\varepsilon \leq 1$ we have

$$
\left\langle\beta_{\varepsilon}(v), v\right\rangle \geq 0, \quad\left|\beta_{\varepsilon}(v)\right| \leq \frac{1}{\varepsilon}|v| \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0} \beta_{\varepsilon}(v)=\beta(v) .
$$

We refer the reader to [13] for more details.
We introduce the operators $G_{\varepsilon}: W_{0}^{1, \vec{p}(\cdot)}(\Omega) \longmapsto W^{-1, \overrightarrow{p^{\prime}}(\cdot)}(\Omega)$, defined by

$$
\left\langle G_{\varepsilon} u, v\right\rangle=\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right) v d x \quad \text { for any } \quad u, v \in W_{0}^{1, \vec{p} \cdot \cdot)}(\Omega)
$$

Thanks to the generalized Hölder type inequality, we have

$$
\begin{align*}
\left|\left\langle G_{n} u, v\right\rangle\right| & \leq \int_{\Omega}\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right)\right||v| d x \leq \frac{1}{\varepsilon} \int_{\Omega}\left|T_{\frac{1}{\varepsilon}}(u)\right||v| d x \\
& \leq \frac{1}{\varepsilon^{2}} \int_{\Omega}|v| d x \tag{3.2}\\
& \leq \frac{1}{\varepsilon^{2}}\|v\|_{1, \vec{p}(\cdot)}
\end{align*}
$$

Lemma 3.3 (see [22]). The bounded operator $B_{\varepsilon}=A+G_{\varepsilon}$ acted from $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ into $W^{-1, \overrightarrow{p^{\prime}}(\cdot)}(\Omega)$ is pseudo-monotone. Moreover, B_{ε} is coercive in the following sense:

$$
\frac{\left\langle B_{\varepsilon} v, v\right\rangle}{\|v\|_{1, \vec{p}(\cdot)}} \longrightarrow+\infty \quad \text { as } \quad\|v\|_{1, \vec{p}(\cdot)} \rightarrow \infty \quad \text { for } \quad v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)
$$

Proof. In view of the Hölder's inequality and the growth condition (1.2), it's easy to see that the operator A is bounded, and by (3.2) we conclude that B_{ε} is bounded. For the coercivity, we have for any $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$,

$$
\begin{aligned}
\left\langle B_{\varepsilon} u, u\right\rangle & =\langle A u, u\rangle+\left\langle G_{\varepsilon} u, u\right\rangle \\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} u d x+\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right) u d x \\
& \geq \alpha \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u\right|^{p_{i}(x)} d x \\
& \geq \alpha \sum_{i=1}^{N}\left\|D^{i} u\right\|_{p_{i}(\cdot)}^{p}-\alpha N \\
& \geq C_{0}\|u\|_{1, \vec{p}(\cdot)}^{p}-\alpha N,
\end{aligned}
$$

it follows that

$$
\frac{\left\langle B_{\varepsilon} u, u\right\rangle}{\|u\|_{1, \vec{p}(\cdot)}} \longrightarrow+\infty \quad \text { as } \quad\|u\|_{1, \vec{p}(\cdot)} \rightarrow \infty
$$

It remains to show that B_{ε} is pseudo-monotone. Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ such that

$$
\begin{cases}u_{k} \rightharpoonup u & \text { in } W_{0}^{1, \vec{p}(\cdot)}(\Omega) \tag{3.3}\\ B_{\varepsilon} u_{k} \rightharpoonup \chi_{\varepsilon} & \text { in } W^{-1, p^{\prime}(\cdot)}(\Omega), \\ \limsup _{k \rightarrow \infty}\left\langle B_{\varepsilon} u_{k}, u_{k}\right\rangle \leq\left\langle\chi_{\varepsilon}, u\right\rangle\end{cases}
$$

We will prove that

$$
\chi_{\varepsilon}=B_{\varepsilon} u \quad \text { and } \quad\left\langle B_{\varepsilon} u_{k}, u_{k}\right\rangle \longrightarrow\left\langle\chi_{\varepsilon}, u\right\rangle \text { as } k \rightarrow+\infty .
$$

In view of the compact embedding $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{\underline{p}}(\Omega)$, we have $u_{k} \rightarrow u$ in $L^{\underline{p}}(\Omega)$ for a subsequence still denoted $\left(u_{k}\right)_{k \in \mathbb{N}}$. As $\left(u_{k}\right)_{k \in \mathbb{N}}$ is a bounded sequence in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, using the growth condition (1.2) it's clear that the sequence $\left(a_{i}\left(x, \nabla u_{k}\right)\right)_{k \in \mathbb{N}}$ is bounded in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$, then there exists a function $\psi_{i} \in L^{p_{i}^{\prime}(\cdot)}(\Omega)$ such that

$$
\begin{equation*}
a_{i}\left(x, \nabla u_{k}\right) \rightharpoonup \psi_{i} \quad \text { in } \quad L^{p_{i}^{\prime}(\cdot)}(\Omega) \text { as } k \rightarrow \infty, \quad \text { for any } \quad i=1, \ldots, N \tag{3.4}
\end{equation*}
$$

Moreover, we have $\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{k}\right)\right)\right| \leq \frac{1}{\varepsilon^{2}}$, and since $u_{k} \rightarrow u$ almost everywhere in Ω. In view of Lebesgue's dominated convergence theorem we obtain

$$
\begin{equation*}
\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{k}\right)\right) \longrightarrow \beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right) \quad \text { in } \quad L^{\underline{p}^{\prime}}(\Omega) . \tag{3.5}
\end{equation*}
$$

For any $v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, we have

$$
\begin{align*}
\left\langle\chi_{\varepsilon}, v\right\rangle & =\lim _{k \rightarrow \infty}\left\langle B_{\varepsilon} u_{k}, v\right\rangle \\
& =\lim _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} v d x+\lim _{k \rightarrow \infty} \int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{k}\right)\right) v d x \tag{3.6}\\
& =\sum_{i=1}^{N} \int_{\Omega} \psi_{i} D^{i} v d x+\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right) v d x
\end{align*}
$$

Having in mind (3.3) and (3.6), we obtain

$$
\begin{aligned}
\limsup _{k \rightarrow \infty}\left\langle B_{\varepsilon}\left(u_{k}\right), u_{k}\right\rangle= & \limsup _{k \rightarrow \infty}\left\{\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u_{k} d x\right. \\
& \left.+\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{k}\right)\right) u_{k} d x\right\} \\
\leq & \sum_{i=1}^{N} \int_{\Omega} \psi_{i} D^{i} u d x+\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right) u d x .
\end{aligned}
$$

Thanks to (3.5), we have

$$
\begin{equation*}
\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{k}\right)\right) u_{k} d x \longrightarrow \int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}(u)\right) u d x \tag{3.7}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u_{k} d x \leq \sum_{i=1}^{N} \int_{\Omega} \psi_{i} D^{i} u d x \tag{3.8}
\end{equation*}
$$

On the other hand, using (1.4) we have

$$
\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, \nabla u_{k}\right)-a_{i}(x, \nabla u)\right)\left(D^{i} u_{k}-D^{i} u\right) d x \geq 0
$$

then

$$
\begin{aligned}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u_{k} d x \geq & \sum_{i=1}^{N} \\
& \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u d x \\
& +\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u)\left(D^{i} u_{k}-D^{i} u\right) d x
\end{aligned}
$$

Since $D^{i} u_{k} \rightharpoonup D^{i} u$ in $L^{p_{i}(\cdot)}(\Omega)$ for $i=1, \ldots, N$, and using (3.4) we get

$$
\liminf _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u_{k} d x \geq \sum_{i=1}^{N} \int_{\Omega} \psi_{i} D^{i} u d x
$$

Having in mind (3.8), we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u_{k} d x=\sum_{i=1}^{N} \int_{\Omega} \psi_{i} D^{i} u d x . \tag{3.9}
\end{equation*}
$$

Therefore, by combining (3.6), (3.7) and (3.9), we obtain

$$
\left\langle B_{\varepsilon} u_{k}, u_{k}\right\rangle \longrightarrow\left\langle\chi_{\varepsilon}, u\right\rangle \text { as } k \rightarrow \infty .
$$

It remain to show that $a_{i}\left(x, \nabla u_{k}\right) \rightharpoonup a_{i}(x, \nabla u)$ in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$. In view of (3.9) we can prove that

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, \nabla u_{k}\right)-a_{i}(x, \nabla u)\right)\left(D^{i} u_{k}-D^{i} u\right) d x=0
$$

by virtue of (3.4), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right) D^{i} u_{k} d x=\int_{\Omega} \psi_{i} D^{i} u d x \quad \text { for } \quad i=1, \ldots, N . \tag{3.10}
\end{equation*}
$$

Now, thanks to (1.4) we have any $v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$

$$
\left.\left(a_{i}\left(x, \nabla u_{k}\right)\right)-a_{i}(x, \nabla v)\right)\left(D^{i} u_{k}-D^{i} v\right) \geq 0 \quad \text { for } \quad i=1, \ldots, N,
$$

then

$$
\lim _{k \rightarrow \infty} \int_{\Omega} a_{i}\left(x, \nabla u_{k}\right)\left(D^{i} u_{k}-D^{i} v\right) d x \geq \lim _{k \rightarrow \infty} \int_{\Omega} a_{i}(x, \nabla v)\left(D^{i} u_{k}-D^{i} v\right) d x
$$

thanks to (3.10) we conclude that

$$
\int_{\Omega}\left(\psi_{i}-a_{i}(x, \nabla v)\left(D^{i} u-D^{i} v\right) d x \geq 0 \quad \text { for any } v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)\right.
$$

Let $\omega \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, taking $v=u-t \omega$, for $t>0$ we have

$$
t \int_{\Omega}\left(\psi_{i}-a_{i}(x, \nabla(u-t \omega))\right) D^{i} \omega d x \geq 0
$$

Dividing by t, then letting t tends to 0 we obtain

$$
\int_{\Omega}\left(\psi_{i}-a_{i}(x, \nabla u)\right) D^{i} \omega d x \geq 0
$$

Similarly, by taking $v=u-t \omega$ with $t<0$, then letting t tends to 0 , we get

$$
\int_{\Omega}\left(\psi_{i}-a_{i}(x, \nabla u)\right) D^{i} \omega d x \leq 0
$$

It follows that

$$
\int_{\Omega}\left(\psi_{i}-a_{i}(x, \nabla u)\right) D^{i} \omega d x=0 \quad \forall \omega \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)
$$

Consequently, we have $\psi_{i}=a(x, \nabla u)$ in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$, and we deduce that

$$
\begin{equation*}
a_{i}\left(x, \nabla u_{k}\right) \rightharpoonup a_{i}(x, \nabla u) \quad \text { in } \quad L^{p_{i}^{\prime}(\cdot)}(\Omega) \quad \text { for } \quad i=1, \ldots, N . \tag{3.11}
\end{equation*}
$$

Thanks to (3.5) we obtain $\chi_{\varepsilon}=B_{\varepsilon} u$, which conclude the proof of Lemma 3.3.
In view of Lemma 3.3, there exists at least one weak solution $u_{\varepsilon} \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ of the problem (3.1) (cf. [22, Theorem 8.2]).

Step 2: A priori estimates.

In this step, we will give some estimates on weak solutions of approximate problems. By taking u_{ε} as a test function in (3.1), we obtain

$$
\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) u_{\varepsilon} d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right) D^{i} u_{\varepsilon} d x=\int_{\Omega} f u_{\varepsilon} d x
$$

since $\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)$ has the same sign as u_{ε}, and thanks to (1.3) we obtain

$$
\alpha \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{\varepsilon}\right|^{p_{i}(x)} d x \leq \int_{\Omega} f u_{\varepsilon} d x
$$

We have $f \in L^{\infty}(\Omega)$, and in view of Young's inequality we obtain

$$
\begin{aligned}
\left|\int_{\Omega} f u_{\varepsilon} d x\right| & \leq C_{0} \int_{\Omega}|f|^{\underline{p^{\prime}}} d x+\frac{\alpha}{2 C^{\frac{p}{p}}} \int_{\Omega}\left|u_{\varepsilon}\right|^{\underline{p}} d x \\
& \leq C_{0}\|f\|^{\frac{p^{\prime}}{L^{\infty}(\Omega)}} \operatorname{meas}(\Omega)+\frac{\alpha}{2} \int_{\Omega}\left|D^{i} u_{\varepsilon}\right|^{\underline{p}} d x \\
& \leq C_{1}+\frac{\alpha}{2} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{\varepsilon}\right|^{p_{i}(x)} d x+\frac{\alpha}{2} \operatorname{meas}(\Omega)
\end{aligned}
$$

it follows that

$$
\frac{\alpha}{2} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{\varepsilon}\right|^{p_{i}(x)} d x \leq C_{2}
$$

Thanks to Remark 2.3, the two norms $\|\cdot\|_{1, \vec{p}(\cdot)}$ and $\sum_{i=1}^{N}|\cdot|_{p_{i}(\cdot)}$ are equivalent in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, we conclude that

$$
\begin{aligned}
\left\|u_{\varepsilon}\right\|_{1, \vec{p}(\cdot)}^{\frac{p}{p}} & \leq C_{3} \sum_{i=1}^{N}\left\|D^{i} u_{\varepsilon}\right\|_{p_{i}(\cdot)}^{\frac{p}{p}} \\
& \leq C_{3} \sum_{i=1}^{N}\left(\int_{\Omega}\left|D^{i} u_{\varepsilon}\right|^{p_{i}(x)} d x+1\right) \\
& \leq C_{4} .
\end{aligned}
$$

Consequently,

$$
\left\|u_{\varepsilon}\right\|_{1, \vec{p}(\cdot)} \leq C_{5}
$$

with C_{5} is a constant that don't depend on ε. It follows that there exists a subsequence still denoted $\left(u_{\varepsilon}\right)_{\varepsilon}$ such that

$$
\begin{cases}u_{\varepsilon} \rightharpoonup u & \text { in } \quad W_{0}^{1, \vec{p}(\cdot)}(\Omega), \tag{3.12}\\ u_{\varepsilon} \rightarrow u & \text { in } \quad L^{\underline{p}}(\Omega) \text { and } \quad \text { a.e. in } \Omega .\end{cases}
$$

On the other hand, by taking $v_{\delta, \varepsilon}=\frac{1}{\delta}\left(T_{k+\delta}\left(\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right)-T_{k}\left(\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right)\right)$ as a test function in the approximate problem (3.1) where $\delta>0$, we have

$$
\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) v_{\delta, \varepsilon} d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right) D^{i} v_{\delta, \varepsilon} d x=\int_{\Omega} f v_{\delta, \varepsilon} d x
$$

and it's clear that $\left|v_{\delta, \varepsilon}\right| \leq 1$, then

$$
\begin{align*}
& \frac{1}{\delta} \int_{\left\{k+\delta \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\}} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) T_{k+\delta}\left(\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right)-T_{k}\left(\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right) d x \\
& \quad+\frac{1}{\delta} \sum_{i=1}^{N} \int_{\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|<k+\delta\right\}} a_{i}\left(x, \nabla u_{\varepsilon}\right) \beta_{\varepsilon}^{\prime}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) D^{i} T_{1 / \varepsilon}\left(u_{\varepsilon}\right) d x \\
& \leq \int_{\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\}}|f| d x . \tag{3.13}
\end{align*}
$$

In view of (1.3), the second term on the left-hand side of (3.13) is positive. Having in mind that $v_{\delta, \varepsilon}$ has the same sign as u_{ε}, and using the monotonicity of the
operator $\beta_{\varepsilon}(\cdot)$ we conclude that

$$
\begin{aligned}
& k \text { meas }\left\{k+\delta \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\} \\
& \leq \int_{\left\{k+\delta \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\}}\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right| d x \\
& \leq \frac{1}{\delta} \int_{\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\}} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\left(T_{k+\delta}\left(\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right)-T_{k}\left(\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right)\right) d x \\
& \leq \int_{\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\}}|f| d x \\
& \leq\|f\|_{L^{\infty}(\Omega)} \operatorname{meas}\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\} .
\end{aligned}
$$

By passing to the limit with $\delta \rightarrow 0$ and choosing $k>\|f\|_{L^{\infty}(\Omega)}$ we obtain

$$
k \operatorname{meas}\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\} \leq\|f\|_{L^{\infty}(\Omega)} \operatorname{meas}\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\},
$$

it follows necessary that $\operatorname{meas}\left\{k \leq\left|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right|\right\}=0$ for any $k>\|f\|_{L^{\infty}(\Omega)}$. Therefore

$$
\left\|\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\right\|_{L^{\infty}(\Omega)} \leq\|f\|_{L^{\infty}(\Omega)},
$$

and there exists $b \in L^{\infty}(\Omega)$ such that

$$
\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) \rightharpoonup b \quad \text { weak }-* \text { in } \quad L^{\infty}(\Omega)
$$

Step 3: Weak convergence of $\left(a_{i}\left(x, \nabla u_{\varepsilon}\right)\right)_{\varepsilon}$ in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$
In the sequel, we denote by $\eta_{i}(n), i=1,2, \ldots$, various real-valued functions of real variable that converge to 0 as n tends to infinity. We will show that

$$
\begin{equation*}
a_{i}\left(x, \nabla u_{\varepsilon}\right) \rightharpoonup a_{i}(x, \nabla u) \quad \text { weakly in } \quad L^{p_{i}^{\prime}(\cdot)}(\Omega) \quad \text { for } \quad i=1, \ldots, N . \tag{3.14}
\end{equation*}
$$

Indeed, by taking $w_{\varepsilon}=u_{\varepsilon}-u$ as a test function in (3.1), we obtain

$$
\begin{equation*}
\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\left(u_{\varepsilon}-u\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x=\int_{\Omega} f\left(u_{\varepsilon}-u\right) d x . \tag{3.15}
\end{equation*}
$$

For the first term on the left-hand side of (3.15). In view of (3.12) we have $u_{\varepsilon} \rightarrow u$ in $L^{1}(\Omega)$, and thanks to $\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) \rightharpoonup b$ weak-* in $L^{\infty}(\Omega)$, then

$$
\begin{equation*}
\eta_{1}(\varepsilon)=\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)\left(u_{\varepsilon}-u\right) d x \longrightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0 . \tag{3.16}
\end{equation*}
$$

Similarly, we have f belongs to $L^{\infty}(\Omega)$ then

$$
\begin{equation*}
\eta_{2}(\varepsilon)=\int_{\Omega} f\left(u_{\varepsilon}-u\right) d x \longrightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0 \tag{3.17}
\end{equation*}
$$

By combining (3.15) - (3.17), we deduce that

$$
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x=\eta_{3}(\varepsilon)
$$

then

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, \nabla u_{\varepsilon}\right)-a_{i}(x, \nabla u)\right)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x \\
& \quad+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x=\eta_{3}(\varepsilon)
\end{aligned}
$$

Thanks to (1.2) we have $a_{i}(x, \nabla u) \in L^{p_{i}^{\prime}(\cdot)}(\Omega)$, and since $D^{i} u_{\varepsilon} \rightharpoonup D^{i} u$ weakly in $L^{p_{i}(\cdot)}(\Omega)$, then

$$
\eta_{4}(\varepsilon)=\int_{\Omega} a_{i}(x, \nabla u)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text { for any } i=1, \ldots, N .
$$

It follows that

$$
\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, \nabla u_{\varepsilon}\right)-a_{i}(x, \nabla u)\right)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x=\eta_{5}(\varepsilon) .
$$

Therefore, by letting ε goes to zero we conclude that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(a_{i}\left(x, \nabla u_{\varepsilon}\right)-a_{i}(x, \nabla u)\right)\left(D^{i} u_{\varepsilon}-D^{i} u\right) d x=0 \quad \text { for } \quad i=1, \ldots, N
$$

We have $\left(a_{i}\left(x, \nabla u_{\varepsilon}\right)\right)_{\varepsilon}$ is bounded in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$, then there exists a function $\psi_{i} \in$ $L^{p_{i}^{\prime}(\cdot)}(\Omega)$, such that $a_{i}\left(x, \nabla u_{\varepsilon}\right) \rightharpoonup \psi_{i}$ in $L^{p_{i}^{\prime}(\cdot)}(\Omega)$, we obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right) D^{i} u_{\varepsilon} d x=\int_{\Omega} \psi_{i} D^{i} u d x
$$

On the other hand, thanks to (1.4), we have for any $v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$

$$
\left.\left(a_{i}\left(x, \nabla u_{\varepsilon}\right)\right)-a_{i}(x, \nabla v)\right)\left(D^{i} u_{\varepsilon}-D^{i} v\right) \geq 0 \quad \text { for } \quad i=1, \ldots, N
$$

Following the same way used in the proof of (3.11), we can show that

$$
\int_{\Omega}\left(\psi_{i}-a(x, \nabla u)\right) D^{i} \omega d x=0 \quad \text { for any } \quad \omega \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)
$$

Consequently,

$$
\psi_{i}=a(x, \nabla u) \quad \text { in } \quad L^{p_{i}^{\prime}(\cdot)}(\Omega) \quad \text { for } \quad i=1, \ldots, N
$$

which conclude the proof of the convergence (3.14).

Step 4: Passage to the limit.

By taking $v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ as a test function in the approximate problem (3.1), we have

$$
\begin{equation*}
\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) v d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right) D^{i} v d x=\int_{\Omega} f v d x . \tag{3.18}
\end{equation*}
$$

Since $\beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) \rightharpoonup b$ weak-* in $L^{\infty}(\Omega)$ for $i=1, \ldots, N$, then

$$
\int_{\Omega} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) v d x \longrightarrow \int_{\Omega} b v d x \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Also, we have $a_{i}\left(x, \nabla u_{\varepsilon}\right) \rightharpoonup a_{i}(x, \nabla u)$ in $L^{p_{i}^{\prime}(.)}(\Omega)$ then

$$
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{\varepsilon}\right) D^{i} v d x \longrightarrow \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} v d x \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Therefore, by letting ε goes to zero in (3.18), we conclude that

$$
\int_{\Omega} b v d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} v d x=\int_{\Omega} f v d x \quad \text { for any } \quad v \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) .
$$

Step 5: Subdifferential argument.

Firstly, since $\beta(\cdot)$ a is maximal monotone graph, there exists a convex lower semicontinuous and proper function $j: \mathbb{R} \longmapsto[0, \infty]$, such that

$$
\beta(r)=\partial j(r) \quad \text { for all } \quad r \in \mathbb{R}
$$

According to [13], we have the following result.
Proposition 3.4. For any $0<\varepsilon \leq 1$, the mapping $j_{\varepsilon}: \mathbb{R} \longmapsto \mathbb{R}$ defined by: $j_{\varepsilon}(r)=\int_{0}^{r} \beta_{\varepsilon}(s) d s$, has the following properties:
(i) The mapping j_{ε} is convex and differentiable for all $r \in \mathbb{R}$, such that:

$$
j_{\varepsilon}^{\prime}(r)=\beta_{\varepsilon}(r) \quad \text { for any } \quad 0<\varepsilon \leq 1
$$

(ii) For all $r \in \mathbb{R}$ we have: $j_{\varepsilon}(r) \longrightarrow j(r)$ as $\varepsilon \rightarrow 0$.

It remain to show that $u(x) \in D(\beta(\cdot))$ and $b(x) \in \beta(u(x))$ for a.e $x \in \Omega$.
We have $\beta(\cdot)$ is a maximal monotone operator, and in view of (i) for any $0<\varepsilon \leq 1$, we have

$$
\begin{equation*}
j_{\varepsilon}(r) \geq j_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right)+\left(r-T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) \tag{3.19}
\end{equation*}
$$

for all $r \in \mathbb{R}$ and almost everywhere in Ω.
Let E be an arbitrary measurable subset of Ω and χ_{E} its characteristic function. Let $h, \varepsilon_{0}>0$ and we set $v_{h, \varepsilon}=1-\left|T_{1}\left(u_{\varepsilon}-T_{h}\left(u_{\varepsilon}\right)\right)\right|$. By multiplying (3.19) by the test function $v_{h, \varepsilon} \chi_{E}$, then integrating over Ω, we obtain
$\int_{E} j_{\varepsilon}(r) v_{h, \varepsilon} d x \geq \int_{E} j_{\varepsilon_{0}}\left(T_{h+1}\left(u_{\varepsilon}\right)\right) v_{h, \varepsilon} d x+\int_{E}\left(r-T_{h+1}\left(u_{\varepsilon}\right)\right) v_{h, \varepsilon} \beta_{\varepsilon}\left(T_{1 / \varepsilon}\left(u_{\varepsilon}\right)\right) d x$, for all $r \in \mathbb{R}$ and all $0<\varepsilon \leq \min \left(\varepsilon_{0}, \frac{1}{h+1}\right)$, we have $v_{h, \varepsilon}=0$ on the set $\left\{\left|u_{\varepsilon}\right| \geq h+1\right\}$. By letting ε tends to 0 , we have $v_{h, \varepsilon} \rightarrow v_{h}=1-\left|T_{1}\left(u-T_{h}(u)\right)\right|$, having in mind (ii) we obtain

$$
\int_{E} j(r) v_{h} d x \geq \int_{E} j_{\varepsilon_{0}}\left(T_{h+1}(u)\right) v_{h} d x+\int_{E}\left(r-T_{h+1}(u)\right) v_{h} b d x
$$

Taking into account that E is arbitrary we obtain

$$
\begin{equation*}
j(r) v_{h} \geq j_{\varepsilon_{0}}\left(T_{h+1}(u)\right) v_{h}+\left(r-T_{h+1}(u)\right) v_{h} b \tag{3.20}
\end{equation*}
$$

for all $r \in \mathbb{R}$ almost everywhere in Ω. By letting h tends to infinity, then ε_{0} goes to zero in (3.20) we deduce that

$$
j(r) \geq j(u(x))+b(x)(r-u(x)) \quad \text { a.e. in } \quad \Omega, \quad \text { for any } \quad r \in \mathbb{R} .
$$

Hence $u \in D(\beta)$ and $b \in \beta(u)$ almost everywhere in Ω. which conclude the proof of the Theorem 3.2.

4. The existence of $\mathbf{T}-\vec{p}(\cdot)$-solution in the case of $f \in L^{1}(\Omega)$.

Definition 4.1. Let $f \in L^{1}(\Omega)$ and $\beta(\cdot)$ a maximal monotone mapping, the pair of measurable functions (u, b) is called T- $\vec{p}(\cdot)$-solution of the quasilinear elliptic problem (1.1), if this pair satisfying the following conditions:
(C1) The function $u: \Omega \longmapsto \mathbb{R}$ is measurable and $b \in L^{1}(\Omega)$, such that $u(x) \in$ $D(\beta)$ and $b(x) \in \beta(u(x))$ for a.e. $x \in \Omega$.
(C2) For each $k>0$, we have $T_{k}(u) \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega} b T_{k}(u-\varphi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}(u-\varphi) d x=\int_{\Omega} f T_{k}(u-\varphi) d x \tag{4.1}
\end{equation*}
$$

for every $\varphi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.
Theorem 4.2. Let $f \in L^{1}(\Omega)$, assuming that (1.2)-(1.4) hold true, then the quasilinear anisotropic elliptic problem (1.1) has at least one T- $\vec{p}(\cdot)$-solution. Moreover, if $\underline{p} \geq 2-\frac{1}{N}$, then the solution belongs to $W_{0}^{1, q}(\Omega)$ for any $1 \leq q<\frac{N(\underline{p}-1)}{N-1}$.

Proof. Step 1: The approximate problems.

Let $\left(f_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of measurable function in $L^{\infty}(\Omega) \cap L^{1}(\Omega)$ such that $f_{n} \rightarrow f$ in $L^{1}(\Omega)$ and $\left|f_{m}\right| \leq\left|f_{n}\right|$ for any $m \leq n$. Let $\beta_{\frac{1}{n}}(\cdot)$ be the Yosida approximation of $\beta(\cdot)$, note that

$$
\left\langle\beta_{\frac{1}{n}}(v), v\right\rangle \geq 0, \quad\left|\beta_{\frac{1}{n}}(v)\right| \leq n|v| \quad \text { and } \quad \lim _{n \rightarrow \infty} \beta_{\frac{1}{n}}(v)=\beta(v)
$$

We consider the approximate problem

$$
\left\{\begin{array}{l}
\beta_{\frac{1}{n}}\left(u_{n}\right)+A u_{n}=f_{n} \quad \text { in } \quad \Omega \\
u_{n} \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)
\end{array}\right.
$$

In view of Theorem 3.2, there exists at least one pair of functions $\left(u_{n}, b_{n}\right) \in$ $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \times L^{\infty}(\Omega)$ satisfying $u_{n} \in D\left(\beta_{\frac{1}{n}}\right)$ and $b_{n} \in \beta_{\frac{1}{n}}\left(u_{n}\right)$ almost everywhere in Ω such that

$$
\begin{equation*}
\int_{\Omega} b_{n} w d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{n}\right) D^{i} w d x=\int_{\Omega} f_{n} w d x \quad \text { for any } w \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \tag{4.2}
\end{equation*}
$$

Now, let $m \in \mathbb{N}^{*}$ with $m \leq n$. Similarly, we have the existence of $\left(u_{m}, b_{m}\right) \in$ $W_{0}^{1, \vec{p}(\cdot)}(\Omega) \times L^{\infty}(\Omega)$ satisfying $u_{m} \in D\left(\beta_{\frac{1}{m}}\right)$ and $b_{m} \in \beta_{\frac{1}{m}}\left(u_{m}\right)$ such that

$$
\begin{equation*}
\int_{\Omega} b_{m} w d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{m}\right) D^{i} w d x=\int_{\Omega} f_{m} w d x \text { for any } w \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \tag{4.3}
\end{equation*}
$$

Let E be a measurable subset of Ω, by taking $w=\left(u_{n}-v_{n}\right) \cdot \chi_{E}$ in the two equations (4.2) and (4.3), and then subtracting the two equations we obtain

$$
\begin{aligned}
\int_{E} & \left(b_{n}-b_{m}\right)\left(u_{n}-u_{m}\right) d x+\sum_{i=1}^{N} \int_{E}\left(a_{i}\left(x, \nabla u_{n}\right)-a_{i}\left(x, \nabla u_{m}\right)\right)\left(D^{i} u_{n}-D^{i} u_{m}\right) d x \\
& =\int_{E}\left(f_{n}-f_{m}\right)\left(u_{n}-u_{m}\right) d x
\end{aligned}
$$

We have $b_{n} \in \beta_{\frac{1}{n}}\left(u_{n}\right)$ and $b_{m} \in \beta_{\frac{1}{m}}\left(u_{m}\right)$, then thanks to (1.4) we deduce that

$$
0 \leq \int_{E}\left(b_{n}-b_{m}\right)\left(u_{n}-u_{m}\right) d x \leq \int_{E}\left(f_{n}-f_{m}\right)\left(u_{n}-u_{m}\right) d x \quad \text { for any } E \in \Omega
$$

It follows necessary that the two sequences $\left(u_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are increasing.
Step 2: Weak convergence of $T_{k}\left(u_{n}\right)$ in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$.
By taking $T_{k}\left(u_{n}\right)$ as a test function in the approximate problem (4.2), we have

$$
\begin{equation*}
\int_{\Omega} b_{n} T_{k}\left(u_{n}\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{n}\right) D^{i} T_{k}\left(u_{n}\right) d x=\int_{\Omega} f_{n} T_{k}\left(u_{n}\right) d x \tag{4.4}
\end{equation*}
$$

since b_{n} has the same sign as u_{n}, and thanks to (1.3) we obtain

$$
\begin{aligned}
\alpha \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}(x)} d x & \leq \int_{\Omega} b_{n} T_{k}\left(u_{n}\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla u_{n}\right) D^{i} T_{k}\left(u_{n}\right) d x \\
& \leq k\|f\|_{1}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|T_{k}\left(u_{n}\right)\right\|_{1, \vec{p}(\cdot)}^{\frac{p}{p}} & \leq C \sum_{i=1}^{N}\left\|D^{i} T_{k}\left(u_{n}\right)\right\|_{p_{i}(\cdot)}^{\frac{p}{p}} \\
& \leq C \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}(x)} d x+C N \\
& \leq C \frac{k}{\alpha}\|f\|_{1}+C N
\end{aligned}
$$

We conclude that there exists a constant C_{1} that does not depend on n and k, such that

$$
\begin{equation*}
\left\|T_{k}\left(u_{n}\right)\right\|_{1, \vec{p}(\cdot)} \leq C_{1} k^{\frac{1}{\underline{p}}} \quad \text { for any } \quad k \geq 1 \tag{4.5}
\end{equation*}
$$

It follows that the sequence $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is bounded in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$. Therefore, there exists a subsequence still denoted $\left(T_{k}\left(u_{n}\right)\right)_{n}$, and a measurable function $v_{k} \in$ $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ such that

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightharpoonup v_{k} & \text { in } \quad W^{1, \vec{p}(\cdot)}(\Omega), \tag{4.6}\\ T_{k}\left(u_{n}\right) \rightarrow v_{k} & \text { in } \quad L^{\underline{p}}(\Omega) \quad \text { and a.e. in } \Omega\end{cases}
$$

Now, we will show that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure in Ω. Firstly, according to (4.5) we have

$$
\begin{aligned}
k \text { meas }\left\{\left|u_{n}\right|>k\right\} & =\int_{\left\{\left|u_{n}\right|>k\right\}}\left|T_{k}\left(u_{n}\right)\right| d x \leq \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right| d x \\
& \leq\left\|T_{k}\left(u_{n}\right)\right\|_{1, \vec{p}(\cdot)} \\
& \leq C_{2} k^{\frac{1}{\underline{p}}}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leq C_{2} \frac{1}{k^{1-\frac{1}{\underline{p}}}} \longrightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Taking $\lambda>0$, it's clear that

$$
\begin{array}{r}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\lambda\right\} \leq \\
+\operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\left\{\left|u_{m}\right|>k\right\} \\
+\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\lambda\right\}
\end{array}
$$

Let $\sigma>0$, using (4.7) we can choose $k=k(\sigma)$ large enough such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leq \frac{\sigma}{3} \quad \text { and } \quad \operatorname{meas}\left\{\left|u_{m}\right|>k\right\} \leq \frac{\sigma}{3} \tag{4.8}
\end{equation*}
$$

On the other hand, thanks to (4.6) we can assume that $\left(T_{k}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in measure. Thus, for any $k>0$ and $\lambda, \sigma>0$, there exists $n_{0}=$ $n_{0}(k, \lambda, \sigma)$ such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\lambda\right\} \leq \frac{\sigma}{3} \quad \text { for any } n, m \geq n_{0}(k, \lambda, \sigma) \tag{4.9}
\end{equation*}
$$

In view of (4.8) and (4.9), we deduce that for any $\lambda, \sigma>0$, there exists $n_{0}=$ $n_{0}(\lambda, \sigma)$ such that

$$
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\lambda\right\} \leq \sigma \quad \text { for any } \quad n, m \geq n_{0}(\lambda, \sigma)
$$

which proves that the sequence $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure and then converges almost everywhere to some measurable function u. Consequently, we have

$$
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { in } \quad W_{0}^{1, \vec{p}(\cdot)}(\Omega)
$$

and using Lebesgue's dominated convergence theorem, we obtain

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { in } \quad L^{p_{i}(\cdot)}(\Omega) \quad \text { for any } \quad i=1, \ldots, N .
$$

Moreover, thanks to (4.4) we have

$$
\int_{\Omega}\left|b_{n}\right|\left|T_{k}\left(u_{n}\right)\right| d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}\right) d x \leq k\|f\|_{L^{1}(\Omega)} \quad \text { for any } \quad k>0
$$

it follows that

$$
\left\|b_{n}\right\|_{L^{1}(\Omega)}=\lim _{k \rightarrow 0} \int_{\Omega}\left|b_{n}\right| \frac{\left|T_{k}\left(u_{n}\right)\right|}{k} d x \leq\|f\|_{L^{1}(\Omega)}
$$

we have $\left(b_{n}\right)_{n}$ is increasing and uniformly bounded sequence in $L^{1}(\Omega)$, then, there exists a measurable function $b \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
b_{n} \longrightarrow b \text { strongly in } L^{1}(\Omega) \tag{4.10}
\end{equation*}
$$

Step 3: Some regularity results.

Assume that $\underline{p} \geq 2-\frac{1}{N}$ and $1<\theta<\underline{p}$. By taking $\omega=\left(1-\frac{1}{\left(1+\left|u_{n}\right|\right)^{\theta-1}}\right) \operatorname{sign}\left(u_{n}\right)$ as a test function in the approximate problem (4.2), we have

$$
\int_{\Omega} b_{n} \omega d x+(\theta-1) \sum_{i=1}^{N} \int_{\Omega} \frac{a_{i}\left(x, \nabla u_{n}\right) D^{i} u_{n}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x=\int_{\Omega} f_{n} \omega d x
$$

since b_{n} has the same sign as u_{n} and $|\omega| \leq 1$, in view of (1.3) we get

$$
\alpha(\theta-1) \sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} u_{n}\right|^{p_{i}(x)}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x \leq\|f\|_{1}
$$

By choosing $q=\frac{N(\underline{p}-\theta)}{N-\theta}$ we have $q^{*}=\frac{N q}{N-q}=\frac{\theta q}{\underline{p}-q}$. Thus, in view of Hölder's and Sobolev inequalities we deduce that

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{n}\right|^{q} d x=\sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} u_{n}\right|^{q}}{\left(1+\left|u_{n}\right|\right)^{\frac{\theta q}{\underline{p}}}}\left(1+\left|u_{n}\right|\right)^{\frac{\theta q}{\underline{p}}} d x \\
& \leq \sum_{i=1}^{N}\left\|\frac{\left|D^{i} u_{n}\right|^{q}}{\left(1+\left|u_{n}\right|\right)^{\frac{\theta q}{\underline{p}}}}\right\|_{\frac{p}{\bar{q}}}\left\|\left(1+\left|u_{n}\right|\right)^{\frac{\theta q}{\underline{\underline{p}}}}\right\|_{\frac{p}{\underline{p}}-\underline{p}} \\
& \leq C_{0} \sum_{i=1}^{N}\left(\int_{\Omega} \frac{\left|D^{i} u_{n}\right| \underline{\underline{p}}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x\right)^{\frac{\underline{q}}{\underline{p}}}\left(\int_{\Omega}\left(1+\left|u_{n}\right|\right)^{\frac{\frac{\theta q}{\underline{p}}}{\underline{p}-q}} d x\right)^{\frac{\underline{\underline{p}-q}}{\underline{\underline{p}}}} \\
& \leq C_{1} \sum_{i=1}^{N}\left(\int_{\Omega} \frac{\left|D^{i} u_{n}\right|^{p_{i}(x)}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x+|\Omega|\right)^{\frac{q}{\underline{p}}}\left(\int_{\Omega}\left|u_{n}\right|^{q^{*}} d x+|\Omega|\right)^{\frac{\theta_{q}}{q^{*} \underline{p}}} \\
& \leq C_{2} \sum_{i=1}^{N}\left(\frac{\|f\|_{1}}{\alpha(\theta-1)}+|\Omega|\right)^{\frac{q}{\underline{\underline{p}}}}\left(\left\|D^{i} u_{n}\right\|_{q}^{\frac{\theta q}{p}}+C_{3}\right) \\
& \leq C_{4} \sum_{i=1}^{N}\left(\int_{\Omega}\left|D^{i} u_{n}\right|^{q} d x\right)^{\frac{\theta}{p}}+C_{5} .
\end{aligned}
$$

Since $\frac{\theta}{\underline{p}}<1$, it follows that there exists a positive constant C_{6} that does not depend on n, such that

$$
\sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{n}\right|^{q} d x \leq C_{6}
$$

then, there exists a subsequence still denoted $\left(u_{n}\right)_{n}$ such that

$$
u_{n} \rightharpoonup u \quad \text { weakly in } \quad W_{0}^{1, q}(\Omega)
$$

We refer the reader to [11] for more details.

Step 4: Passage to the limit.

Let $\varphi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$, by taking $T_{k}\left(u_{n}-\varphi\right)$ as a test function in (4.2), we obtain

$$
\int_{\Omega} b_{n} T_{k}\left(u_{n}-\varphi\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{n}\right) D^{i} T_{k}\left(u_{n}-\varphi\right) d x=\int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) d x
$$

Choosing $M=k+\|\varphi\|_{\infty}$ then $\left\{\left|u_{n}-\varphi\right| \leq k\right\} \subseteq\left\{\left|u_{n}\right| \leq M\right\}$. In view of (1.4) we obtain

$$
\sum_{i=1}^{N} \int_{\left\{\left|u_{n}-\varphi\right| \leq k\right\}}\left(a_{i}\left(x, \nabla u_{n}\right)-a_{i}(x, \nabla \varphi)\right)\left(D^{i} u_{n}-D^{i} \varphi\right) d x \geq 0
$$

then

$$
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}\left(u_{n}-\varphi\right) d x \leq \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla u_{n}\right) D^{i} T_{k}\left(u_{n}-\varphi\right) d x
$$

it follows that

$$
\begin{equation*}
\int_{\Omega} b_{n} T_{k}\left(u_{n}-\varphi\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}\left(u_{n}-\varphi\right) d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) d x \tag{4.11}
\end{equation*}
$$

Now, we pass to the limit on each terms of (4.11), we have

$$
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}\left(u_{n}-\varphi\right) d x=\sum_{i=1}^{N} \int_{\left\{\left|u_{n}-\varphi\right| \leq k\right\}} a_{i}(x, \nabla \varphi)\left(D^{i} T_{M}\left(u_{n}\right)-D^{i} \varphi\right) d x
$$

and since $D^{i} T_{M}\left(u_{n}\right) \rightharpoonup D^{i} T_{M}(u)$ in $L^{p_{i}(\cdot)}(\Omega)$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\left\{\left|u_{n}-\varphi\right| \leq k\right\}} a_{i}(x, \nabla \varphi)\left(D^{i} T_{M}\left(u_{n}\right)-D^{i} \varphi\right) d x \\
& =\int_{\{|u-\varphi| \leq k\}} a_{i}(x, \nabla \varphi)\left(D^{i} T_{M}(u)-D^{i} \varphi\right) d x \tag{4.12}\\
& =\int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}(u-\varphi) d x .
\end{align*}
$$

Moreover, thanks to (4.10) and since $T_{k}\left(u_{n}-\varphi\right) \rightharpoonup T_{k}(u-\varphi)$ weak-* in $L^{\infty}(\Omega)$, then

$$
\begin{equation*}
\int_{\Omega} b_{n} T_{k}\left(u_{n}-\varphi\right) d x \longrightarrow \int_{\Omega} b T_{k}(u-\varphi) d x \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) d x \longrightarrow \int_{\Omega} f T_{k}(u-\varphi) d x \tag{4.14}
\end{equation*}
$$

By combining (4.12) - (4.14), we conclude that

$$
\begin{equation*}
\int_{\Omega} b T_{k}(u-\varphi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}(u-\varphi) d x \leq \int_{\Omega} f T_{k}(u-\varphi) d x \tag{4.15}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.

Step 5: The Minty lemma.

Now, we will introduce the following lemma considered as an L^{1}-version of the Minty's lemma.

Lemma 4.3. Let u be a measurable function such that $T_{k}(u) \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ for every $k>0$. Then, for any $\varphi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$, the following assertions are equivalent:
Assertion 1:

$$
\int_{\Omega} b T_{k}(u-\varphi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}(u-\varphi) d x \leq \int_{\Omega} f T_{k}(u-\varphi) d x
$$

for any $\varphi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.
Assertion 2:

$$
\int_{\Omega} b T_{k}(u-\varphi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}(u-\varphi) d x=\int_{\Omega} f T_{k}(u-\varphi) d x
$$

for any $\varphi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.

Proof. (Assertion 2) \Longrightarrow (Assertion 1). In view of (1.4), we have

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}(u-\varphi) d x \\
&= \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}(u-\varphi) d x \\
& \quad+\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}(x, \nabla u)-a_{i}(x, \nabla \varphi)\right) D^{i} T_{k}(u-\varphi) d x \\
& \geq \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla \varphi) D^{i} T_{k}(u-\varphi) d x
\end{aligned}
$$

The assertion 1 is concluded.

(Assertion 1) \Longrightarrow (Assertion 2)

Let h and k be two positive real numbers and $\lambda \in[-1,1]$.
Let $\psi \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$, choosing $\varphi=T_{h}\left(u-\lambda T_{k}(u-\psi)\right) \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$
as test function in the (Assertion 1), we have

$$
\begin{align*}
& \int_{\Omega} b T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x \\
& +\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) D^{i} T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x \tag{4.16}\\
& \leq \int_{\Omega} f T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x
\end{align*}
$$

Concerning the second term on the left-hand side of (4.16), we have $a_{i}(x, 0)=0$ then

$$
\begin{aligned}
& \int_{\Omega} a_{i}\left(x, \nabla T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) D^{i} T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x \\
& =\lambda \int_{\{|u-\varphi| \leq k\} \cap\left\{\left|u-\lambda T_{k}(u-\psi)\right| \leq h\right\}} a_{i}\left(x, \nabla T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) D^{i} T_{k}(u-\psi) d x,
\end{aligned}
$$

and since $\left\{\left|u-\lambda T_{k}(u-\psi)\right| \leq h\right\} \rightarrow \Omega$ as $h \rightarrow \infty$, it follows that

$$
\begin{align*}
& \lim _{h \rightarrow \infty} \int_{\Omega} a_{i}\left(x, \nabla T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) D^{i} T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x \tag{4.17}\\
& \quad=\lambda \int_{\Omega} a_{i}\left(x, \nabla\left(u-\lambda T_{k}(u-\psi)\right) D^{i} T_{k}(u-\psi) d x\right.
\end{align*}
$$

Moreover, it is easy to see that,

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{\Omega} b T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x=\lambda \int_{\Omega} b T_{k}(u-\psi) d x \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{\Omega} f T_{k}\left(u-T_{h}\left(u-\lambda T_{k}(u-\psi)\right)\right) d x=\lambda \int_{\Omega} f T_{k}(u-\psi) d x \tag{4.19}
\end{equation*}
$$

By combining (4.16) - (4.19), we deduce that

$$
\begin{aligned}
& \lambda \int_{\Omega} b T_{k}(u-\psi) d x+\lambda \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, \nabla\left(u-\lambda T_{k}(u-\psi)\right)\right) D^{i} T_{k}(u-\psi) d x \\
& \quad \leq \lambda \int_{\Omega} f T_{k}(u-\psi) d x
\end{aligned}
$$

Choosing $\lambda>0$, dividing both sides by λ, then letting λ tend to zero, we obtain

$$
\begin{equation*}
\int_{\Omega} b T_{k}(u-\psi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}(u-\psi) d x \leq \int_{\Omega} f T_{k}(u-\psi) d x \tag{4.20}
\end{equation*}
$$

Doing the same for the case of $\lambda<0$, we obtain

$$
\begin{equation*}
\int_{\Omega} b T_{k}(u-\psi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}(u-\psi) d x \geq \int_{\Omega} f T_{k}(u-\psi) d x \tag{4.21}
\end{equation*}
$$

By combining (4.20) and (4.21), we conclude the following equality:

$$
\int_{\Omega} b T_{k}(u-\psi) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}(u-\psi) d x=\int_{\Omega} f T_{k}(u-\psi) d x
$$

for any $\varphi \in W_{0}^{1, \vec{p} \cdot \cdot)}(\Omega) \cap L^{\infty}(\Omega)$, which completes the proof of Lemma 4.3.
By using the subdifferential argument (as in the proof of Theorem 3.2) we show that $u \in D(\beta)$ and $b \in \beta(u)$ a.e. in Ω. Thus, in view of (4.15) and Lemma 4.3, we conclude the proof of the Theorem 4.2.

5. Uniqueness of $\mathrm{T}-\vec{p}(\cdot)$-solution solution

Theorem 5.1. Let $f \in L^{1}(\Omega)$, assuming that (1.2)-(1.4) hold true. If one of the following conditions is verified:

- If $\beta(\cdot)$ is a strictly increasing, continuous function,
- If $\beta(\cdot)$ is a monotone graph, and there exists $i_{0} \in\{1,2, \ldots, N\}$ such that $a_{i_{0}}(x, \cdot)$ is strictly monotone.

Then, the $T-\vec{p}(\cdot)$-solution of the quasilinear anisotropic elliptic problem (1.1) is unique.
Proof. Let $h>k>0$. Assuming that there exists two T- $\vec{p}(\cdot)$-solutions (u, b) and (v, d) of the problem (1.1), and we will show that $u=v$.

We consider u as a T- $\vec{p}(\cdot)$-solution of the elliptic problem (1.1) and by taking $\varphi=T_{h}(v)$ in (4.1), we have
$\int_{\Omega} b T_{k}\left(u-T_{h}(v)\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, \nabla u) D^{i} T_{k}\left(u-T_{h}(v)\right) d x=\int_{\Omega} f T_{k}\left(u-T_{h}(v)\right) d x$,
it follows that

$$
\begin{align*}
& \int_{\{|v| \leq h\}} b T_{k}(u-v) d x-k \int_{\{|v|>h\}}|b| d x \\
& \quad+\sum_{i=1}^{N} \int_{\{|u-v| \leq k\} \cap\{|v| \leq h\}} a_{i}(x, \nabla u)\left(D^{i} u-D^{i} v\right) d x \tag{5.1}\\
& \leq \int_{\{|v| \leq h\}} f T_{k}(u-v) d x+k \int_{\{|v|>h\}}|f| d x .
\end{align*}
$$

For the second term on the left-hand side of (5.1), we have $b(\cdot)$ belong to $L^{1}(\Omega)$, and since meas $\{|v|>h\} \rightarrow 0$ as h tends to infinity, we obtain

$$
\begin{equation*}
\varepsilon_{0}(h)=k \int_{\{|v|>h\}}|b| d x \longrightarrow 0 \quad \text { as } \quad h \rightarrow 0 . \tag{5.2}
\end{equation*}
$$

Similarly, we have $f \in L^{1}(\Omega)$ then

$$
\begin{equation*}
\varepsilon_{1}(h)=k \int_{\{|v|>h\}}|f| d x \longrightarrow 0 \quad \text { as } \quad h \rightarrow 0 . \tag{5.3}
\end{equation*}
$$

By combining (5.1)-(5.3) we conclude that

$$
\begin{aligned}
& \int_{\{|v| \leq h\}} b T_{k}(u-v) d x+\sum_{i=1}^{N} \int_{\{|u-v| \leq k\} \cap\{|v| \leq h\}} a_{i}(x, \nabla u)\left(D^{i} u-D^{i} v\right) d x \\
& \leq \int_{\{|v| \leq h\}} f T_{k}(u-v) d x+\varepsilon_{2}(h) .
\end{aligned}
$$

By letting h goes to infinity, we get

$$
\int_{\Omega} b T_{k}(u-v) d x+\sum_{i=1}^{N} \int_{\{|u-v| \leq k\}} a_{i}(x, \nabla u)\left(D^{i} u-D^{i} v\right) d x \leq \int_{\Omega} f T_{k}(u-v) d x .
$$

Similarly, by taking (v, d) as a T- $\vec{p}(\cdot)$-solution of the elliptic problem (1.1) and using $\varphi=T_{h}(v)$ in (4.1), we obtain

$$
\int_{\Omega} d T_{k}(v-u) d x+\sum_{i=1}^{N} \int_{\{|u-v| \leq k\}} a_{i}(x, \nabla v)\left(D^{i} v-D^{i} u\right) d x \leq \int_{\Omega} f T_{k}(v-u) d x .
$$

By adding the two previous inequalities, we conclude that

$$
\int_{\Omega}(b-d) T_{k}(u-v) d x+\sum_{i=1}^{N} \int_{\{|u-v| \leq k\}}\left(a_{i}(x, \nabla u)-a_{i}(x, \nabla v)\right)\left(D^{i} u-D^{i} v\right) d x \leq 0
$$

We have $b \in \beta(u)$ and $d \in \beta(v)$, and thanks to (1.4) we deduce that

$$
\int_{\Omega}(b-d) T_{k}(u-v) d x=0
$$

and

$$
\int_{\{|u-v| \leq k\}}\left(a_{i}(x, \nabla u)-a_{i}(x, \nabla v)\right)\left(D^{i} u-D^{i} v\right) d x=0 \quad \text { for } \quad i=1, \ldots, N .
$$

- If the maximal monotone operator $\beta(\cdot)$ is a strictly increasing, continuous function, then

$$
\int_{\Omega}(b-d) T_{k}(u-v) d x=0 \quad \Longrightarrow \quad u=v \quad \text { a.e. in } s
$$

- If there exists $i_{0} \in\{1,2, \ldots, N\}$ such that $a_{i_{0}}(x, \cdot)$ is strictly monotone, then

$$
\begin{aligned}
\int_{\{|u-v| \leq k\}} & \left(a_{i_{0}}(x, \nabla u)-a_{i_{0}}(x, \nabla v)\right)\left(D^{i_{0}} u-D^{i_{0}} v\right) d x=0 \\
& \Longrightarrow D^{i_{0}} u=D^{i_{0}} v \quad \text { a.e. in } \quad\{|u-v| \leq k\}
\end{aligned}
$$

We have $u, v \in W_{0}^{1,1}(\Omega)$ for $\underline{p} \geq 2-\frac{1}{N}$. In view of Poincaré's inequality we obtain

$$
\left\|T_{k}(u-v)\right\|_{1} \leq C_{p}\left\|D^{i_{0}} T_{k}(u-v)\right\|_{1}=0 \quad \text { for any } \quad k>0
$$

it follows necessary that $u=v$ a.e. in Ω.
Which conclude the proof of the Theorem 5.1.

References

[1] Ahmed, A., Ahmedatt, A., Hjiaj, H., Touzani, A.: Existence of infinitely many weak solutions for some quasilinear $\vec{p}(x)$-elliptic Neumann problems. Math. Bohem. 142, 243-262 (2017)
[2] Alberico, A., Chlebicka, I., Cianchi, A., Zatorska-Goldstein, A.: Fully anisotropic elliptic problems with minimally integrable data. Calc. Var. Partial Differential Equations (forthcoming), arXiv:1903.00751 (2019)
[3] Al-Hawmi, M., Benkirane, A., Hjiaj, H., Touzani, A.: Existence of solutions for some nonlinear elliptic problems involving Minty's lemma. Ric. Mat. (2018); doi:10.1007/s11587-018-0423-7
[4] Antontsev, S., Chipot, M.: Anisotropic equations: uniqueness and existence results., Differential Integral Equations 21, 401-419 (2008)
[5] Antontsev, S. N., Rodrigues, J. F.: On stationary thermorheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19-36 (2007)
[6] Azroul, E., Bouziani, M., Hjiaj, H., Youssfi, A.: Existence of solutions for some quasilinear $\vec{p}(x)$-elliptic problem with Hardy potential. Math. Bohem, 144, 299-324 (2019); doi:10.21136/MB.2018.0093-17
[7] Benboubker, M. B., Azroul, E., Barbara, A.: Quasilinear elliptic problems with nonstandard growths. Electron. J. Differential Equations, 62, 1-16 (2011)
[8] Bendahmane, M., Chrif, M., El Manouni, S.: An Approximation Result in Generalized Anisotripic Sobolev Spaces and Application. J. Appl. Anal. 30 (2011), 341-353 (2011)
[9] Bendahmane, M., Wittbold, P.: Renormalized solutions for nonlinear elliptic equations with variable exponents and L^{1}-data. Nonlinear Anal. 70, 567-583 (2009)
[10] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L.: An L^{1} theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci., 4, 241-273 (1995)
[11] Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations 17, 64-655 (1992)
[12] Boccardo, L., Murat, F., Puel, J. P.: Existence of bounded solutions for non linear elliptic unilateral problems. Ann. Mat. Pura Appl. (4). 152, 183-196 (1988)
[13] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes in Math., North-Holland, Amsterdam, (1973)
[14] Chlebicka, I.: A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces. Nonlinear Anal. 175, 1-27 (2018)
[15] Di Nardo, R., Feo, F.: Existence and uniqueness for nonlinear anisotropic elliptic equations. Arch. Math. (Basel) 102, 141-153 (2014)
[16] Di Nardo, R., Feo, F., Guibé, O.: Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differential Equations 18, 433-458 (2013)
[17] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, (2011)
[18] Guibé, O.: Uniqueness of the renormalized solution to a class of nonlinear elliptic equations. On the notions of solution to nonlinear elliptic problems: results and developments, Quad. Mat. Dept. Math., Seconda Univ. Napoli, Caserta 23, 255-282 (2008)
[19] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data. Trans. Amer. Math. Soc., 360, 643-669 (2008)
[20] Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space. J. Differential Equations, (I), 264, 341-377 (2018)
[21] Gwiazda, P., Wittbold, P., Wroblewska, A., Zimmermann, A.: Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differential Equations, (II), 253, 635-666 (2012)
[22] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthiers-Villars, Paris (1969)
[23] Liu, Y., Davidson, R., Taylor, P.: Investigation of the touch sensitivity of ER fluid based tactile display. Proceeding of SPIE, Smart Structures and Materials: Smart Structures and Integrated Systems 5764, 92-99 (2005)
[24] Mihailescu, M., Pucci, P., Radulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687-698 (2008)
[25] Sanchón, M., Urbano, J.M.: Entropy solutions for the $p(x)$-Laplace equation. Trans. Amer. Math. Soc. 361, 6387-6405 (2009)
[26] Wittbold, P., Zimmermann, A.: Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents L^{1}-data. Nonlinear Anal. 72, 2990-3008 (2010)

Received: 12 March 2019.
Accepted: 25 September 2019.

Ahmed Dakkak
Laboratory LSI, Department of Mathematics, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza, Morocco.
ahmed.dakkak@usmba.ac.ma
Hassane Hjiaj
Department of Mathematics, Faculty of Sciences Tetouan, Abdelmalek Essaadi University, B.P. 2121, Tetouan, Morocco.
hjiajhassane@yahoo.fr
Ahmed Sanhaji
Laboratory LSI, Department of Mathematics, Polydisciplinary Faculty of Taza. Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza, Morocco.
ahmed.sanhaji1@usmba.ac.ma

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

[^0]: 2010 Mathematics Subject Classification: 35J15, 35J62, 35J70.
 Keywords: Anisotropic variable exponent Sobolev spaces, quasilinear elliptic equations, boundary value problems, T- $\vec{p}(\cdot)$-solutions.
 (C) The Author(s) 2019. This article is an open access publication.
 *Corresponding author.

