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Existence of T-~p(·)-solutions for some quasilinear anisotropic
elliptic problem

Ahmed Dakkak, Hassane Hjiaj and Ahmed Sanhaji∗

Abstract. The aim of this paper is to study the existence of solutions for some quasilineare

anisotropic elliptic problem associated with differential inclusion. We study the two cases of

f ∈ L∞(Ω) and f ∈ L1(Ω). Moreover, we show the uniqueness of solution under some additional

assumptions.

1. Introduction

Let Ω be a bounded open subset of RN (N ≥ 2), with a Lipschitz boundary
condition ∂Ω. For 2− 1

N < p < N, L. Boccardo and T. Gallouët [11] have treated
the problem {

Au = f in Ω,

u = 0 on ∂Ω,

where Au = −div a(x, u,∇u) is a Leray-Lions operator from W 1,p
0 (Ω) into its

dual, and f is a bounded Radon measure on Ω. They have proved the existence
and some regularity results (see also [18, 19]). M. Bendahmane and P. Wittbold
in [9] have shown the existence and uniqueness of the renormalized solution for
the nonlinear elliptic problem{

−div(|∇u|p(x)−2∇u) = f in Ω,

u = 0 on ∂Ω,

in the variable exponent Sobolev spaces, where the right-hand side f ∈ L1(Ω), we
refer the reader also to [25] for the existence and uniqueness of entropy solution.

Recently, anisotropic variable exponent Sobolev spaces W 1,~p(·)(Ω) have at-
tracted the interest of many scientists and researchers, this attention come essen-
tially from their applications in nonhomogeneous materials that behave differently
on different space directions, we can refer here to the electrorheological and ther-
moelectric fluids (see for example [5, 23]).
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These spaces are the appropriate framework to deal with a class of problems
having non-standard structural conditions, involving a variable growth exponent
~p(·), where prototype of the differential operator considered is the ~p(·)-Laplacian

∆~p(·)(u) =

N∑
i=1

∂xi(|∂xiu|pi(·)−2∂xiu),

which generalize the p(·)-Laplace operator. Di Nardo, Feo and Guibé have stud-
ied in [16] the existence of renormalized solutions for some class of nonlinear
anisotropic elliptic problems of the type −

N∑
i=1

∂xi(ai(x, u)|∂xiu|pi−2∂xiu) = f − div g in ∂Ω,

u = 0 on ∂Ω,

with f ∈ L1(Ω) and g ∈ ΠN
i=1L

p′i(Ω), the uniqueness of renormalized solution
was concluded under some local Lipschitz conditions on the function ai(x, s) with
respect to s (see also [1, 3, 4, 6, 15]).

In [14], Gwiazda and al. have proved the existence of renormalized solutions
for the quasilinear elliptic equation{

−div A(x,∇u) = f in Ω
u = 0 on ∂Ω,

in the Musielak-Orlicz-Sobolev spaces, where f ∈ L1(Ω) andA(·, ·) is a Carathéodory
function verifying some non-standard growth and coercivity conditions, and with-
out using the ∆2−condition. For more results we refer the reader to [2, 20] and
[21].

In this work, we establish the existence of T-~p(·)-solutions for the following
quasilinear anisotropic elliptic problem β(u)−

N∑
i=1

Diai(x,∇u) 3 f in Ω,

u = 0 on ∂Ω,

(1.1)

where β(·) : R 7−→ 2R is a set-valued maximal monotone mapping such that 0 ∈
β(0). We assume that ai(·, ·) : Ω × RN 7−→ R are Carathéodory functions for
i = 1, 2, . . . , N (i.e. measurable with respect to x in Ω for every ξ in RN and
continuous with respect to ξ in RN for almost every x in Ω), which satisfies the
following conditions

|ai(x, ξ)| ≤ Ki(x) + |ξi|pi(x)−1 for i = 1, . . . , N, (1.2)

ai(x, ξ)ξi ≥ α|ξi|pi(x) for i = 1, . . . , N, (1.3)
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and the function ai(x, ·) have only a wide monotone, i.e.

(ai(x, ξ)− ai(x, ξ′))(ξi − ξ′i) ≥ 0, (1.4)

for a.e. x ∈ Ω, and all ξ ∈ RN , where α > 0 and Ki(·) is a non-negative function

lying in Lp
′
i(·)(Ω) where

1

pi(x)
+

1

p′i(x)
= 1.

As a natural hypothesis on the Carathéodory function a(x, ξ), we assume that

a(x, 0) = 0 .

In this paper we will extend the results of [26] to the anisotropic variable
exponent case, and our main ideas and methods come from [11] and [12].

The paper is organized as follows. In section 2, we recall some definitions
and results concerning the anisotropic variable exponent Sobolev Spaces. Also,
we introduce some lemmas useful to prove our main results. In the section 3,
we will study the existence and regularity of weak solutions for our quasilinear
anisotropic elliptic problem (1.1) in the case of f ∈ L∞(Ω). The section 4 will be
devoted to the study of the existence of T-~p(·)-solution in the case of f ∈ L1(Ω).
In the last section, we will prove the uniqueness of T-~p(·)-solution under some
additional assumption.

2. Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 2), we denote

C+(Ω) = {measurable function p(·) : Ω 7−→ R such that 1 < p− ≤ p+ < N},

where

p− = ess inf{p(x) / x ∈ Ω} and p+ = ess sup{p(x) / x ∈ Ω}.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all
measurable functions u : Ω 7−→ R for which the convex modular

ρp(·)(u) :=

∫
Ω

|u|p(x)dx

is finite. If the exponent is bounded, i.e. if p+ < +∞, then the expression

‖u‖p(·) = inf{λ > 0 : ρp(·)(u/λ) ≤ 1}

defines a norm in Lp(·)(Ω), called the Luxemburg norm. Then (Lp(·)(Ω), ‖ · ‖p(·))
is a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(·)(Ω) is
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uniformly convex, hence reflexive, and its dual space is isomorphic to Lp
′(·)(Ω),

where
1

p(x)
+

1

p′(x)
= 1. Finally, we have the Hölder type inequality:

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
‖u‖p(·)‖v‖p′(·)

for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω). The Sobolev space with variable exponent
W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)},

which is a Banach space, equipped with the following norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) .

The space (W 1,p(·)(Ω), ‖ ·‖1,p(·)) is a separable and reflexive Banach space. We de-

fine W
1,p(·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(·)(Ω). For more details on variable

exponent Lebesgue and Sobolev spaces, we refer the reader to [17].

Remark 2.1. Recall that the definition of these spaces requires only the measur-
ability of p(·), while the Poincaré and the Sobolev-Poincaré inequalities are proved
for p(·)−log-Hölder continuous, (see. [17]).

Now, we present the anisotropic variable exponent Sobolev space, used in the
study of our quasilinear anisotropic elliptic problem. Let p1(·), p2(·), . . . , pN (·) be
N variable exponents in C+(Ω). We denote

~p(·) = (p1(·), . . . , pN (·)), and Diu =
∂u

∂xi
for i = 1, . . . , N,

and we define

p+ = max{p−1 , . . . , p
−
N} and p = min{p−1 , . . . , p

−
N} then 1 < p ≤ p+ .

The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined as follow:

W 1,~p(·)(Ω) = {u ∈W 1,1(Ω) and Diu ∈ Lpi(·)(Ω) for i = 1, 2, . . . , N},

endowed with the norm

‖u‖1,~p(·) = ‖u‖1,1 +

N∑
i=1

‖Diu‖pi(·). (2.1)

We define also W
1,~p(·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,~p(·)(Ω) with respect to

the norm (2.1). The space (W
1,~p(·)
0 (Ω), ‖u‖1,~p(·)) is a reflexive Banach space (cf.

[24]).
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Lemma 2.2. We have the following continuous and compact embedding

• if p < N then W
1,~p(·)
0 (Ω) ↪→↪→ Lq(Ω) for q ∈ [p, p∗[, where p∗ =

Np

N − p
,

• if p = N then W
1,~p(·)
0 (Ω) ↪→↪→ Lq(Ω) ∀q ∈ [p,+∞[,

• if p > N then W
1,~p(·)
0 (Ω) ↪→↪→ L∞(Ω) ∩ C0(Ω).

The proof of this lemma follows from the fact that the embeddingW
1,~p(·)
0 (Ω) ↪→

W
1,p

0 (Ω) is continuous, and in view of the compact embedding theorem for Sobolev
spaces.

Remark 2.3. In view of the continuous embedding W
1,~p(·)
0 (Ω) ↪→ W 1,1

0 (Ω) and
the Poincaré type inequality we conclude that the two norms ‖u‖1,~p(·) and |u|1,~p(·) =
N∑
i=1

‖Diu‖pi(·) are equivalents in the anisotropic variable exponent Sobolev spaces

W
1,~p(·)
0 (Ω).

Indeed, thanks to Hölder’s inequality we have

‖∇u‖1 =

N∑
i=1

‖Diu‖1 ≤ C1

N∑
i=1

‖Diu‖pi(·) for any u ∈W 1,~p(·)
0 (Ω).

Moreover, the embeddingW
1,~p(·)
0 (Ω) ↪→W 1,1

0 (Ω) is continuous, by using Poincaré’s
inequality, we have

‖u‖1 ≤ Cp‖∇u‖1 ≤ C2

N∑
i=1

‖Diu‖pi(·) for any u ∈W 1,~p(·)
0 (Ω) .

It follows that

‖u‖1,1 = ‖u‖1 + ‖∇u‖1 ≤ (Cp + 1)‖∇u‖1 ≤ C3

N∑
i=1

‖Diu‖pi(·).

We conclude that for any u ∈W 1,~p(·)
0 (Ω)

|u|1,~p(·) ≤ ‖u‖1,~p(·) = ‖u‖1,1 + |u|1,~p(·) ≤ (C3 + 1)|u|1,~p(·),

thus, the result is concluded.
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Proposition 2.4. The dual of W
1,~p(·)
0 (Ω) is denoted by W−1,~p′(·)(Ω), where

~p′(·) = (p′1(·), . . . , p′N (·)) and
1

p′i(·)
+

1

pi(·)
= 1,

(cf. [8] for the constant exponent case). For each F ∈W−1,~p′(·)(Ω) there exist F0 ∈

(Lp
+

(Ω))′ and Fi ∈ Lp
′
i(·)(Ω) for i = 1, 2, . . . , N, such that F = F0 −

N∑
i=1

DiFi.

Moreover, for any u ∈W 1,~p(·)
0 (Ω), we have

〈F, u〉 =

N∑
i=0

∫
Ω

Fi D
iu dx.

We define a norm on the dual space by

‖F‖−1,~p′(·) = inf
{
‖Fi‖(p+)′ +

N∑
i=1

‖Fi‖p′i(·) with F = F0 −
N∑
i=1

DiFi

such that F0 ∈ (Lp
+

(Ω))′ and Fi ∈ Lp
′
i(·)(Ω)

}
.

Definition 2.5. Let k > 0, the truncation function Tk(·) : R 7−→ R is defined by

Tk(s) =

{
s if |s| ≤ k,

k
s

|s|
if |s| > k,

and we define

T 1,~p(·)
0 (Ω):= {u : Ω 7→ R measurable, such that Tk(u) ∈W 1,~p(·)

0 (Ω) for any k > 0}.

Note that, a measurable function u verifying Tk(u) ∈W 1,~p(·)
0 (Ω) for all k > 0,

does not necessarily belong to W 1,1
0 (Ω). However, for any u ∈ T 1,~p(·)

0 (Ω) it is
possible to define the weak gradient of u, still denoted ∇u.

Proposition 2.6. Let u ∈ T 1,~p(·)
0 (Ω). For any i ∈ {1, . . . , N}, there exists a

unique measurable function vi : Ω 7−→ R such that

∀k > 0 DiTk(u) = vi.χ{|u|<k} a.e. x ∈ Ω,

where χA denotes the characteristic function of a measurable set A. The functions
vi are called the weak partial derivatives of u and are still denoted Diu. More-
over, if u belongs to W 1,1

0 (Ω), then vi coincides with the standard distributional
derivative of u, that is, vi = Diu.

The proof of the Proposition 2.6 follows the usual techniques developed in [10]
for the case of Sobolev spaces. For more details concerning the anisotropic Sobolev
spaces, we refer the reader to [8] and [16].

Lemma 2.7 (see [7]). Let g ∈ Lr(·)(Ω) and gn ∈ Lr(·)(Ω) with ‖gn‖r(·) ≤ C for

1 < r(x) <∞ . If gn(x)→ g(x) a.e. in Ω, then gn ⇀ g in Lr(·)(Ω).
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3. Existence of weak solutions in the case of f ∈ L∞(Ω)

Let Ω be a bounded open subset of RN (N ≥ 2), and let pi(·) ∈ C+(Ω) for
i = 1, . . . , N. In this section, we will study the existence of weak solution in the
case of f ∈ L∞(Ω).

Definition 3.1. Let f ∈ L∞(Ω). A weak solution of the quasilinear elliptic prob-

lem (1.1) is a pair of functions (u, b) such that u ∈ W 1,~p(·)
0 (Ω) and b ∈ β(u) with

b ∈ L∞(Ω), satisfying∫
Ω

bv dx+

N∑
i=1

∫
Ω

ai(x,∇u)Div dx =

∫
Ω

fv dx,

for any v ∈W 1,~p(·)
0 (Ω).

Theorem 3.2. Let f ∈ L∞(Ω), assuming that the conditions (1.2) − (1.4) hold

true. Then, there exists at least one weak solution (u, b) ∈W 1,~p(·)
0 (Ω)× L∞(Ω) of

the quasilinear anisotropic elliptic problem (1.1).

Proof. Step 1: Approximate problems

Let 0 < ε ≤ 1, we consider the approximate problem{
βε(T1/ε(uε)) +Auε = f in Ω,
uε = 0 on ∂Ω,

(3.1)

where Av = −
N∑
i=1

∂

∂xi
ai(x,∇v) and βε(·) : R 7−→ R be the Yosida approximation

of β(·), note that, for any v ∈W 1,~p(·)
0 (Ω) and 0 < ε ≤ 1 we have

〈βε(v), v〉 ≥ 0, |βε(v)| ≤ 1

ε
|v| and lim

ε→0
βε(v) = β(v).

We refer the reader to [13] for more details.

We introduce the operators Gε : W
1,~p(·)
0 (Ω) 7−→W−1,~p′(·)(Ω), defined by

〈Gεu, v〉 =

∫
Ω

βε(T1/ε(u))v dx for any u, v ∈W 1,~p(·)
0 (Ω).

Thanks to the generalized Hölder type inequality, we have

|〈Gnu, v〉| ≤
∫

Ω

|βε(T1/ε(u))| |v| dx ≤ 1

ε

∫
Ω

|T 1
ε
(u)| |v| dx

≤ 1

ε2

∫
Ω

|v| dx

≤ 1

ε2
‖v‖1,~p(·).

(3.2)
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Lemma 3.3 (see [22]). The bounded operator Bε = A+Gε acted from W
1,~p(·)
0 (Ω)

into W−1,~p′(·)(Ω) is pseudo-monotone. Moreover, Bε is coercive in the following
sense:

〈Bεv, v〉
‖v‖1,~p(·)

−→ +∞ as ‖v‖1,~p(·) →∞ for v ∈W 1,~p(·)
0 (Ω) .

Proof. In view of the Hölder’s inequality and the growth condition (1.2), it’s easy
to see that the operator A is bounded, and by (3.2) we conclude that Bε is bounded.

For the coercivity, we have for any u ∈W 1,~p(·)
0 (Ω),

〈Bεu, u〉 = 〈Au, u〉+ 〈Gεu, u〉

=

N∑
i=1

∫
Ω

ai(x,∇u) Diu dx+

∫
Ω

βε(T1/ε(u))u dx

≥ α
N∑
i=1

∫
Ω

|Diu|pi(x) dx

≥ α
N∑
i=1

‖Diu‖ppi(·) − αN

≥ C0 ‖u‖
p

1,~p(·) − αN,

it follows that
〈Bεu, u〉
‖u‖1,~p(·)

−→ +∞ as ‖u‖1,~p(·) →∞ .

It remains to show that Bε is pseudo-monotone. Let (uk)k∈N be a sequence in

W
1,~p(·)
0 (Ω) such that 

uk ⇀ u in W
1,~p(·)
0 (Ω),

Bεuk ⇀ χε in W−1,~p′(·)(Ω),
lim sup
k→∞

〈Bεuk, uk〉 ≤ 〈χε, u〉.
(3.3)

We will prove that

χε = Bεu and 〈Bεuk, uk〉 −→ 〈χε, u〉 as k → +∞.

In view of the compact embedding W
1,~p(·)
0 (Ω) ↪→↪→ Lp(Ω), we have uk → u

in Lp(Ω) for a subsequence still denoted (uk)k∈N. As (uk)k∈N is a bounded se-

quence in W
1,~p(·)
0 (Ω), using the growth condition (1.2) it’s clear that the sequence

(ai(x,∇uk))k∈N is bounded in Lp
′
i(·)(Ω), then there exists a function ψi ∈ Lp

′
i(·)(Ω)

such that

ai(x,∇uk) ⇀ ψi in Lp
′
i(·)(Ω) as k →∞, for any i = 1, . . . , N. (3.4)
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Moreover, we have |βε(T1/ε(uk))| ≤ 1

ε2
, and since uk → u almost everywhere in

Ω. In view of Lebesgue’s dominated convergence theorem we obtain

βε(T1/ε(uk)) −→ βε(T1/ε(u)) in Lp
′
(Ω). (3.5)

For any v ∈W 1,~p(·)
0 (Ω), we have

〈χε, v〉 = lim
k→∞

〈Bεuk, v〉

= lim
k→∞

N∑
i=1

∫
Ω

ai(x,∇uk)Div dx+ lim
k→∞

∫
Ω

βε(T1/ε(uk))v dx

=

N∑
i=1

∫
Ω

ψi D
iv dx+

∫
Ω

βε(T1/ε(u))v dx.

(3.6)

Having in mind (3.3) and (3.6), we obtain

lim sup
k→∞

〈Bε(uk), uk〉 = lim sup
k→∞

{ N∑
i=1

∫
Ω

ai(x,∇uk)Diuk dx

+

∫
Ω

βε(T1/ε(uk))uk dx
}

≤
N∑
i=1

∫
Ω

ψi D
iu dx+

∫
Ω

βε(T1/ε(u))u dx.

Thanks to (3.5), we have∫
Ω

βε(T1/ε(uk))uk dx −→
∫

Ω

βε(T1/ε(u))u dx, (3.7)

it follows that

lim sup
k→∞

N∑
i=1

∫
Ω

ai(x,∇uk)Diuk dx ≤
N∑
i=1

∫
Ω

ψi D
iu dx. (3.8)

On the other hand, using (1.4) we have

N∑
i=1

∫
Ω

(ai(x,∇uk)− ai(x,∇u))(Diuk −Diu) dx ≥ 0,

then

N∑
i=1

∫
Ω

ai(x,∇uk)Diuk dx ≥
N∑
i=1

∫
Ω

ai(x,∇uk)Diu dx

+

N∑
i=1

∫
Ω

ai(x,∇u)(Diuk −Diu) dx.
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Since Diuk ⇀ Diu in Lpi(·)(Ω) for i = 1, . . . , N , and using (3.4) we get

lim inf
k→∞

N∑
i=1

∫
Ω

ai(x,∇uk)Diuk dx ≥
N∑
i=1

∫
Ω

ψi D
iu dx.

Having in mind (3.8), we conclude that

lim
k→∞

N∑
i=1

∫
Ω

ai(x,∇uk)Diuk dx =

N∑
i=1

∫
Ω

ψi D
iu dx. (3.9)

Therefore, by combining (3.6), (3.7) and (3.9), we obtain

〈Bεuk, uk〉 −→ 〈χε, u〉 as k →∞.

It remain to show that ai(x,∇uk) ⇀ ai(x,∇u) in Lp
′
i(·)(Ω). In view of (3.9) we

can prove that

lim
k→∞

N∑
i=1

∫
Ω

(ai(x,∇uk)− ai(x,∇u))(Diuk −Diu) dx = 0,

by virtue of (3.4), we obtain

lim
k→∞

∫
Ω

ai(x,∇uk)Diuk dx =

∫
Ω

ψiD
iu dx for i = 1, . . . , N. (3.10)

Now, thanks to (1.4) we have any v ∈W 1,~p(·)
0 (Ω)

(ai(x,∇uk))− ai(x,∇v))
(
Diuk −Div

)
≥ 0 for i = 1, . . . , N,

then

lim
k→∞

∫
Ω

ai(x,∇uk)(Diuk −Div)dx ≥ lim
k→∞

∫
Ω

ai(x,∇v)(Diuk −Div) dx,

thanks to (3.10) we conclude that∫
Ω

(ψi − ai(x,∇v) (Diu−Div) dx ≥ 0 for any v ∈W 1,~p(·)
0 (Ω).

Let ω ∈W 1,~p(·)
0 (Ω), taking v = u− tω, for t > 0 we have

t

∫
Ω

(ψi − ai(x,∇(u− tω)))Diω dx ≥ 0 .

Dividing by t, then letting t tends to 0 we obtain∫
Ω

(ψi − ai(x,∇u))Diω dx ≥ 0 .
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Similarly, by taking v = u− tω with t < 0, then letting t tends to 0, we get∫
Ω

(ψi − ai(x,∇u))Diω dx ≤ 0.

It follows that ∫
Ω

(ψi − ai(x,∇u))Diω dx = 0 ∀ω ∈W 1,~p(·)
0 (Ω).

Consequently, we have ψi = a(x,∇u) in Lp
′
i(·)(Ω), and we deduce that

ai(x,∇uk) ⇀ ai(x,∇u) in Lp
′
i(·)(Ω) for i = 1, . . . , N. (3.11)

Thanks to (3.5) we obtain χε = Bεu, which conclude the proof of Lemma 3.3.

In view of Lemma 3.3, there exists at least one weak solution uε ∈W 1,~p(·)
0 (Ω)

of the problem (3.1) (cf. [22, Theorem 8.2]).

Step 2: A priori estimates.

In this step, we will give some estimates on weak solutions of approximate prob-
lems. By taking uε as a test function in (3.1), we obtain∫

Ω

βε(T1/ε(uε))uεdx+

N∑
i=1

∫
Ω

ai(x,∇uε)Diuε dx =

∫
Ω

fuεdx,

since βε(T1/ε(uε)) has the same sign as uε, and thanks to (1.3) we obtain

α

N∑
i=1

∫
Ω

|Diuε|pi(x)dx ≤
∫

Ω

fuε dx.

We have f ∈ L∞(Ω), and in view of Young’s inequality we obtain∣∣∣ ∫
Ω

fuε dx
∣∣∣ ≤ C0

∫
Ω

|f |p
′
dx+

α

2C
p
p

∫
Ω

|uε|p dx

≤ C0‖f‖
p′

L∞(Ω)meas(Ω) +
α

2

∫
Ω

|Diuε|p dx

≤ C1 +
α

2

N∑
i=1

∫
Ω

|Diuε|pi(x) dx+
α

2
meas(Ω),

it follows that

α

2

N∑
i=1

∫
Ω

|Diuε|pi(x)dx ≤ C2 .
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Thanks to Remark 2.3, the two norms ‖ · ‖1,~p(·) and

N∑
i=1

| · |pi(·) are equivalent in

W
1,~p(·)
0 (Ω), we conclude that

‖uε‖
p

1,~p(·) ≤ C3

N∑
i=1

‖Diuε‖
p

pi(·)

≤ C3

N∑
i=1

(∫
Ω

|Diuε|pi(x)dx+ 1
)

≤ C4.

Consequently,

‖uε‖1,~p(·) ≤ C5,

with C5 is a constant that don’t depend on ε. It follows that there exists a subse-
quence still denoted (uε)ε such that

{
uε ⇀ u in W

1,~p(·)
0 (Ω),

uε → u in Lp(Ω) and a.e. in Ω.
(3.12)

On the other hand, by taking vδ,ε =
1

δ

(
Tk+δ(βε(T1/ε(uε)))− Tk(βε(T1/ε(uε)))

)
as

a test function in the approximate problem (3.1) where δ > 0, we have

∫
Ω

βε(T1/ε(uε))vδ,εdx+

N∑
i=1

∫
Ω

ai(x,∇uε)Divδ,εdx =

∫
Ω

fvδ,εdx,

and it’s clear that |vδ,ε| ≤ 1, then

1

δ

∫
{k+δ≤|βε(T1/ε(uε))|}

βε(T1/ε(uε))Tk+δ(βε(T1/ε(uε)))− Tk(βε(T1/ε(uε))) dx

+
1

δ

N∑
i=1

∫
{k≤|βε(T1/ε(uε))|<k+δ}

ai(x,∇uε)β′ε(T1/ε(uε))D
iT1/ε(uε) dx

≤
∫
{k≤|βε(T1/ε(uε))|}

|f | dx.

(3.13)
In view of (1.3), the second term on the left-hand side of (3.13) is positive. Having
in mind that vδ,ε has the same sign as uε, and using the monotonicity of the
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operator βε(·) we conclude that

k meas{k + δ ≤ |βε(T1/ε(uε))|}

≤
∫
{k+δ≤|βε(T1/ε(uε))|}

|βε(T1/ε(uε))| dx

≤ 1

δ

∫
{k≤|βε(T1/ε(uε))|}

βε(T1/ε(uε))
(
Tk+δ(βε(T1/ε(uε)))− Tk(βε(T1/ε(uε)))

)
dx

≤
∫
{k≤|βε(T1/ε(uε))|}

|f | dx

≤ ‖f‖L∞(Ω) meas{k ≤ |βε(T1/ε(uε))|}.

By passing to the limit with δ → 0 and choosing k > ‖f‖L∞(Ω) we obtain

k meas{k ≤ |βε(T1/ε(uε))|} ≤ ‖f‖L∞(Ω) meas{k ≤ |βε(T1/ε(uε))|},

it follows necessary that meas{k ≤ |βε(T1/ε(uε))|} = 0 for any k > ‖f‖L∞(Ω).
Therefore

‖βε(T1/ε(uε))‖L∞(Ω) ≤ ‖f‖L∞(Ω),

and there exists b ∈ L∞(Ω) such that

βε(T1/ε(uε)) ⇀ b weak−∗ in L∞(Ω).

Step 3: Weak convergence of (ai(x,∇uε))ε in Lp
′
i(·)(Ω)

In the sequel, we denote by ηi(n), i = 1, 2, . . . , various real-valued functions of real
variable that converge to 0 as n tends to infinity. We will show that

ai(x,∇uε) ⇀ ai(x,∇u) weakly in Lp
′
i(·)(Ω) for i = 1, . . . , N. (3.14)

Indeed, by taking wε = uε − u as a test function in (3.1), we obtain

∫
Ω

βε(T1/ε(uε))(uε − u)dx+

N∑
i=1

∫
Ω

ai(x,∇uε)(Diuε −Diu)dx =

∫
Ω

f(uε − u)dx.

(3.15)
For the first term on the left-hand side of (3.15). In view of (3.12) we have uε → u
in L1(Ω), and thanks to βε(T1/ε(uε)) ⇀ b weak−∗ in L∞(Ω), then

η1(ε) =

∫
Ω

βε(T1/ε(uε))(uε − u) dx −→ 0 as ε→ 0. (3.16)

Similarly, we have f belongs to L∞(Ω) then

η2(ε) =

∫
Ω

f (uε − u) dx −→ 0 as ε→ 0. (3.17)
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By combining (3.15)− (3.17), we deduce that

N∑
i=1

∫
Ω

ai(x,∇uε)(Diuε −Diu) dx = η3(ε),

then
N∑
i=1

∫
Ω

(ai(x,∇uε)− ai(x,∇u)) (Diuε −Diu) dx

+

N∑
i=1

∫
Ω

ai(x,∇u)(Diuε −Diu) dx = η3(ε).

Thanks to (1.2) we have ai(x,∇u) ∈ Lp′i(·)(Ω), and since Diuε ⇀ Diu weakly in
Lpi(·)(Ω), then

η4(ε) =

∫
Ω

ai(x,∇u)(Diuε −Diu) dx→ 0 as ε→ 0 for any i = 1, . . . , N.

It follows that

N∑
i=1

∫
Ω

(ai(x,∇uε)− ai(x,∇u)) (Diuε −Diu) dx = η5(ε).

Therefore, by letting ε goes to zero we conclude that

lim
ε→0

∫
Ω

(ai(x,∇uε)− ai(x,∇u))(Diuε −Diu) dx = 0 for i = 1, . . . , N.

We have (ai(x,∇uε))ε is bounded in Lp
′
i(·)(Ω), then there exists a function ψi ∈

Lp
′
i(·)(Ω), such that ai(x,∇uε) ⇀ ψi in Lp

′
i(·)(Ω), we obtain

lim
ε→0

∫
Ω

ai(x,∇uε)Diuε dx =

∫
Ω

ψiD
iu dx.

On the other hand, thanks to (1.4), we have for any v ∈W 1,~p(·)
0 (Ω)

(ai(x,∇uε))− ai(x,∇v))
(
Diuε −Div

)
≥ 0 for i = 1, . . . , N.

Following the same way used in the proof of (3.11), we can show that∫
Ω

(ψi − a(x,∇u))Diω dx = 0 for any ω ∈W 1,~p(·)
0 (Ω).

Consequently,

ψi = a(x,∇u) in Lp
′
i(·)(Ω) for i = 1, . . . , N,

which conclude the proof of the convergence (3.14).
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Step 4: Passage to the limit.

By taking v ∈W 1,~p(·)
0 (Ω) as a test function in the approximate problem (3.1), we

have ∫
Ω

βε(T1/ε(uε))v dx+

N∑
i=1

∫
Ω

ai(x,∇uε)Div dx =

∫
Ω

f v dx. (3.18)

Since βε(T1/ε(uε)) ⇀ b weak−∗ in L∞(Ω) for i = 1, . . . , N , then∫
Ω

βε(T1/ε(uε))v dx −→
∫

Ω

bv dx as ε→ 0.

Also, we have ai(x,∇uε) ⇀ ai(x,∇u) in Lp
′
i(.)(Ω) then

N∑
i=1

∫
Ω

ai(x,∇uε)Div dx −→
N∑
i=1

∫
Ω

ai(x,∇u)Div dx as ε→ 0.

Therefore, by letting ε goes to zero in (3.18), we conclude that∫
Ω

bv dx+

N∑
i=1

∫
Ω

ai(x,∇u)Div dx =

∫
Ω

fv dx for any v ∈W 1,~p(·)
0 (Ω).

Step 5: Subdifferential argument.

Firstly, since β(·) a is maximal monotone graph, there exists a convex lower semi-
continuous and proper function j : R 7−→ [0,∞], such that

β(r) = ∂j(r) for all r ∈ R.

According to [13], we have the following result.

Proposition 3.4. For any 0 < ε ≤ 1, the mapping jε : R 7−→ R defined by:

jε(r) =

∫ r

0

βε(s)ds, has the following properties:

(i) The mapping jε is convex and differentiable for all r ∈ R, such that:

j
′

ε(r) = βε(r) for any 0 < ε ≤ 1

(ii) For all r ∈ R we have: jε(r) −→ j(r) as ε→ 0.

It remain to show that u(x) ∈ D(β(·)) and b(x) ∈ β(u(x)) for a.e x ∈ Ω.
We have β(·) is a maximal monotone operator, and in view of (i) for any 0 < ε ≤ 1,
we have

jε(r) ≥ jε(T1/ε(uε)) + (r − T1/ε(uε))βε(T1/ε(uε)), (3.19)
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for all r ∈ R and almost everywhere in Ω.
Let E be an arbitrary measurable subset of Ω and χE its characteristic function.
Let h, ε0 > 0 and we set vh,ε = 1−|T1(uε−Th(uε))|. By multiplying (3.19) by the
test function vh,εχE , then integrating over Ω, we obtain∫
E

jε(r)vh,ε dx ≥
∫
E

jε0(Th+1(uε))vh,ε dx+

∫
E

(r − Th+1(uε))vh,εβε(T1/ε(uε)) dx,

for all r ∈ R and all 0 < ε ≤ min(ε0,
1

h+ 1
), we have vh,ε = 0 on the set

{|uε| ≥ h+ 1}. By letting ε tends to 0, we have vh,ε → vh = 1− |T1(u− Th(u))|,
having in mind (ii) we obtain∫

E

j(r)vh dx ≥
∫
E

jε0(Th+1(u))vh dx+

∫
E

(r − Th+1(u))vhb dx .

Taking into account that E is arbitrary we obtain

j(r)vh ≥ jε0(Th+1(u))vh + (r − Th+1(u))vhb (3.20)

for all r ∈ R almost everywhere in Ω. By letting h tends to infinity, then ε0 goes
to zero in (3.20) we deduce that

j(r) ≥ j(u(x)) + b(x)(r − u(x)) a.e. in Ω, for any r ∈ R.

Hence u ∈ D(β) and b ∈ β(u) almost everywhere in Ω. which conclude the proof
of the Theorem 3.2.

4. The existence of T-~p(·)-solution in the case of f ∈ L1(Ω).

Definition 4.1. Let f ∈ L1(Ω) and β(·) a maximal monotone mapping, the pair
of measurable functions (u, b) is called T-~p(·)-solution of the quasilinear elliptic
problem (1.1), if this pair satisfying the following conditions:

(C1) The function u : Ω 7−→ R is measurable and b ∈ L1(Ω), such that u(x) ∈
D(β) and b(x) ∈ β(u(x)) for a.e. x ∈ Ω.

(C2) For each k > 0, we have Tk(u) ∈W 1,~p(·)
0 (Ω) and∫

Ω

bTk(u−ϕ)dx+

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u−ϕ)dx =

∫
Ω

fTk(u−ϕ)dx, (4.1)

for every ϕ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω).

Theorem 4.2. Let f ∈ L1(Ω), assuming that (1.2)−(1.4) hold true, then the quasi-
linear anisotropic elliptic problem (1.1) has at least one T-~p(·)-solution. Moreover,

if p ≥ 2− 1

N
, then the solution belongs to W 1,q

0 (Ω) for any 1 ≤ q <
N(p− 1)

N − 1
.
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Proof. Step 1: The approximate problems.

Let (fn)n∈N∗ be a sequence of measurable function in L∞(Ω) ∩ L1(Ω) such that
fn → f in L1(Ω) and |fm| ≤ |fn| for any m ≤ n. Let β 1

n
(·) be the Yosida

approximation of β(·), note that

〈β 1
n

(v), v〉 ≥ 0, |β 1
n

(v)| ≤ n|v| and lim
n→∞

β 1
n

(v) = β(v).

We consider the approximate problem{
β 1
n

(un) +Aun = fn in Ω,

un ∈W 1,~p(·)
0 (Ω).

In view of Theorem 3.2, there exists at least one pair of functions (un, bn) ∈
W

1,~p(·)
0 (Ω) × L∞(Ω) satisfying un ∈ D(β 1

n
) and bn ∈ β 1

n
(un) almost everywhere

in Ω such that∫
Ω

bnwdx+

N∑
i=1

∫
Ω

ai(x,∇un)Diwdx =

∫
Ω

fnwdx for any w ∈W 1,~p(·)
0 (Ω). (4.2)

Now, let m ∈ N∗ with m ≤ n. Similarly, we have the existence of (um, bm) ∈
W

1,~p(·)
0 (Ω)× L∞(Ω) satisfying um ∈ D(β 1

m
) and bm ∈ β 1

m
(um) such that∫

Ω

bmwdx+

N∑
i=1

∫
Ω

ai(x,∇um)Diwdx =

∫
Ω

fmwdx for any w ∈W 1,~p(·)
0 (Ω). (4.3)

Let E be a measurable subset of Ω, by taking w = (un − vn) · χE in the two
equations (4.2) and (4.3), and then subtracting the two equations we obtain∫
E

(bn − bm)(un − um) dx+

N∑
i=1

∫
E

(ai(x,∇un)− ai(x,∇um))(Diun −Dium) dx

=

∫
E

(fn − fm)(un − um) dx.

We have bn ∈ β 1
n

(un) and bm ∈ β 1
m

(um), then thanks to (1.4) we deduce that

0 ≤
∫
E

(bn − bm)(un − um) dx ≤
∫
E

(fn − fm)(un − um) dx for any E ∈ Ω.

It follows necessary that the two sequences (un)n and (bn)n are increasing.

Step 2: Weak convergence of Tk(un) in W
1,~p(·)
0 (Ω).

By taking Tk(un) as a test function in the approximate problem (4.2), we have∫
Ω

bnTk(un)dx+

N∑
i=1

∫
Ω

ai(x,∇un)DiTk(un) dx =

∫
Ω

fnTk(un) dx, (4.4)
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since bn has the same sign as un, and thanks to (1.3) we obtain

α

N∑
i=1

∫
Ω

|DiTk(un)|pi(x) dx ≤
∫

Ω

bnTk(un)dx+

N∑
i=1

∫
Ω

ai(x, un,∇un)DiTk(un) dx

≤ k‖f‖1.

It follows that

‖Tk(un)‖p1,~p(·) ≤ C
N∑
i=1

‖DiTk(un)‖ppi(·)

≤ C
N∑
i=1

∫
Ω

|DiTk(un)|pi(x) dx+ CN

≤ C k
α
‖f‖1 + CN.

We conclude that there exists a constant C1 that does not depend on n and k,
such that

‖Tk(un)‖1,~p(·) ≤ C1k
1
p for any k ≥ 1. (4.5)

It follows that the sequence (Tk(un))n is bounded in W
1,~p(·)
0 (Ω). Therefore, there

exists a subsequence still denoted (Tk(un))n, and a measurable function vk ∈
W

1,~p(·)
0 (Ω) such that{

Tk(un) ⇀ vk in W
1,~p(·)
0 (Ω),

Tk(un)→ vk in L
p

(Ω) and a.e. in Ω.
(4.6)

Now, we will show that (un)n is a Cauchy sequence in measure in Ω.
Firstly, according to (4.5) we have

k meas{|un| > k} =

∫
{|un|>k}

|Tk(un)| dx ≤
∫

Ω

|Tk(un)| dx

≤ ‖Tk(un)‖1,~p(·)

≤ C2k
1
p .

Consequently,

meas
{
|un| > k

}
≤ C2

1

k
1− 1

p

−→ 0 as k →∞. (4.7)

Taking λ > 0, it’s clear that

meas
{
|un − um| > λ

}
≤ meas

{
|un| > k

}
+ meas

{
|um| > k

}
+meas

{
|Tk(un)− Tk(um)| > λ

}
.
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Let σ > 0, using (4.7) we can choose k = k(σ) large enough such that

meas{|un| > k} ≤ σ

3
and meas{|um| > k} ≤ σ

3
. (4.8)

On the other hand, thanks to (4.6) we can assume that (Tk(un))n∈N is a Cauchy
sequence in measure. Thus, for any k > 0 and λ, σ > 0, there exists n0 =
n0(k, λ, σ) such that

meas
{
|Tk(un)− Tk(um)| > λ

}
≤ σ

3
for any n,m ≥ n0(k, λ, σ). (4.9)

In view of (4.8) and (4.9), we deduce that for any λ, σ > 0, there exists n0 =
n0(λ, σ) such that

meas{|un − um| > λ} ≤ σ for any n,m ≥ n0(λ, σ),

which proves that the sequence (un)n is a Cauchy sequence in measure and then
converges almost everywhere to some measurable function u. Consequently, we
have

Tk(un) ⇀ Tk(u) in W
1,~p(·)
0 (Ω),

and using Lebesgue’s dominated convergence theorem, we obtain

Tk(un)→ Tk(u) in Lpi(·)(Ω) for any i = 1, . . . , N.

Moreover, thanks to (4.4) we have∫
Ω

|bn| |Tk(un)| dx ≤
∫

Ω

fnTk(un) dx ≤ k‖f‖L1(Ω) for any k > 0,

it follows that

‖bn‖L1(Ω) = lim
k→0

∫
Ω

|bn|
|Tk(un)|

k
dx ≤ ‖f‖L1(Ω),

we have (bn)n is increasing and uniformly bounded sequence in L1(Ω), then, there
exists a measurable function b ∈ L1(Ω) such that

bn −→ b strongly in L1(Ω). (4.10)

Step 3: Some regularity results.

Assume that p ≥ 2− 1

N
and 1 < θ < p. By taking ω =

(
1− 1

(1 + |un|)θ−1

)
sign(un)

as a test function in the approximate problem (4.2), we have∫
Ω

bnω dx+ (θ − 1)

N∑
i=1

∫
Ω

ai(x,∇un)Diun
(1 + |un|)θ

dx =

∫
Ω

fnω dx,
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since bn has the same sign as un and |ω| ≤ 1, in view of (1.3) we get

α(θ − 1)

N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ
dx ≤ ‖f‖1.

By choosing q =
N(p− θ)
N − θ

we have q∗ =
Nq

N − q
=

θq

p− q
. Thus, in view of Hölder’s

and Sobolev inequalities we deduce that

N∑
i=1

∫
Ω

|Diun|q dx =

N∑
i=1

∫
Ω

|Diun|q

(1 + |un|)
θq
p

(1 + |un|)
θq
p dx

≤
N∑
i=1

∥∥∥ |Diun|q

(1 + |un|)
θq
p

∥∥∥ p
q

‖(1 + |un|)
θq
p ‖ p

p−q

≤ C0

N∑
i=1

(∫
Ω

|Diun|p

(1 + |un|)θ
dx
) q

p
(∫

Ω

(1 + |un|)
θq
p−q dx

) p−q
p

≤ C1

N∑
i=1

(∫
Ω

|Diun|pi(x)

(1 + |un|)θ
dx+ |Ω|

) q
p
(∫

Ω

|un|q
∗
dx+ |Ω|

) θq
q∗p

≤ C2

N∑
i=1

( ‖f‖1
α(θ − 1)

+ |Ω|
) q

p
(
‖Diun‖

θq
p

q + C3

)
≤ C4

N∑
i=1

(∫
Ω

|Diun|q dx
) θ
p

+ C5.

Since
θ

p
< 1, it follows that there exists a positive constant C6 that does not

depend on n, such that
N∑
i=1

∫
Ω

|Diun|q dx ≤ C6,

then, there exists a subsequence still denoted (un)n such that

un ⇀ u weakly in W 1,q
0 (Ω).

We refer the reader to [11] for more details.

Step 4: Passage to the limit.

Let ϕ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω), by taking Tk(un − ϕ) as a test function in (4.2), we

obtain∫
Ω

bnTk(un − ϕ) dx+

N∑
i=1

∫
Ω

ai(x,∇un)DiTk(un − ϕ) dx =

∫
Ω

fnTk(un − ϕ) dx.
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Choosing M = k + ‖ϕ‖∞ then {|un − ϕ| ≤ k} ⊆ {|un| ≤M}. In view of (1.4) we
obtain

N∑
i=1

∫
{|un−ϕ|≤k}

(
ai(x,∇un)− ai(x,∇ϕ)

)
(Diun −Diϕ) dx ≥ 0,

then

N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(un − ϕ) dx ≤
N∑
i=1

∫
Ω

ai(x,∇un)DiTk(un − ϕ) dx

it follows that∫
Ω

bnTk(un − ϕ) dx+

N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(un − ϕ) dx ≤
∫

Ω

fnTk(un − ϕ) dx.

(4.11)
Now, we pass to the limit on each terms of (4.11), we have

N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(un−ϕ)dx =

N∑
i=1

∫
{|un−ϕ|≤k}

ai(x,∇ϕ)(DiTM (un)−Diϕ)dx,

and since DiTM (un) ⇀ DiTM (u) in Lpi(·)(Ω), then

lim
n→∞

∫
{|un−ϕ|≤k}

ai(x,∇ϕ) (DiTM (un)−Diϕ) dx

=

∫
{|u−ϕ|≤k}

ai(x,∇ϕ) (DiTM (u)−Diϕ) dx

=

∫
Ω

ai(x,∇ϕ)DiTk(u− ϕ) dx.

(4.12)

Moreover, thanks to (4.10) and since Tk(un − ϕ) ⇀ Tk(u − ϕ) weak-∗ in L∞(Ω),
then ∫

Ω

bnTk(un − ϕ) dx −→
∫

Ω

bTk(u− ϕ) dx, (4.13)

and ∫
Ω

fnTk(un − ϕ) dx −→
∫

Ω

f Tk(u− ϕ) dx. (4.14)

By combining (4.12)− (4.14), we conclude that∫
Ω

bTk(u− ϕ) dx+

N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ) dx, (4.15)

for any ϕ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω).
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Step 5: The Minty lemma.

Now, we will introduce the following lemma considered as an L1-version of the
Minty’s lemma.

Lemma 4.3. Let u be a measurable function such that Tk(u) ∈ W
1,~p(·)
0 (Ω) for

every k > 0. Then, for any ϕ ∈ W 1,~p(·)
0 (Ω) ∩ L∞(Ω), the following assertions are

equivalent:
Assertion 1:

∫
Ω

bTk(u− ϕ) dx+

N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ) dx,

for any ϕ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω).

Assertion 2:

∫
Ω

bTk(u− ϕ) dx+

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u− ϕ) dx =

∫
Ω

fTk(u− ϕ) dx,

for any ϕ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω).

Proof. (Assertion 2) =⇒ (Assertion 1). In view of (1.4), we have

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u− ϕ) dx

=

N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(u− ϕ) dx

+

N∑
i=1

∫
Ω

(ai(x,∇u)− ai(x,∇ϕ))DiTk(u− ϕ) dx

≥
N∑
i=1

∫
Ω

ai(x,∇ϕ)DiTk(u− ϕ) dx,

The assertion 1 is concluded.

(Assertion 1) =⇒ (Assertion 2)
Let h and k be two positive real numbers and λ ∈ [−1, 1].

Let ψ ∈W 1,~p(·)
0 (Ω)∩L∞(Ω), choosing ϕ = Th(u−λTk(u−ψ)) ∈W 1,~p(·)

0 (Ω)∩L∞(Ω)
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as test function in the (Assertion 1), we have∫
Ω

bTk(u− Th(u− λTk(u− ψ))) dx

+

N∑
i=1

∫
Ω

ai(x,∇Th(u− λTk(u− ψ)))DiTk(u− Th(u− λTk(u− ψ))) dx

≤
∫

Ω

fTk(u− Th(u− λTk(u− ψ))) dx .

(4.16)

Concerning the second term on the left-hand side of (4.16), we have ai(x, 0) = 0
then∫

Ω

ai(x,∇Th(u− λTk(u− ψ)))DiTk(u− Th(u− λTk(u− ψ))) dx

= λ

∫
{|u−ϕ|≤k}∩{|u−λTk(u−ψ)|≤h}

ai(x,∇Th(u− λTk(u− ψ)))DiTk(u− ψ) dx,

and since {|u− λTk(u− ψ)| ≤ h} → Ω as h→∞, it follows that

lim
h→∞

∫
Ω

ai(x,∇Th(u− λTk(u− ψ)))DiTk(u− Th(u− λTk(u− ψ))) dx

= λ

∫
Ω

ai(x,∇(u− λTk(u− ψ))DiTk(u− ψ) dx.
(4.17)

Moreover, it is easy to see that,

lim
h→∞

∫
Ω

bTk(u− Th(u− λTk(u− ψ))) dx = λ

∫
Ω

bTk(u− ψ) dx, (4.18)

and

lim
h→∞

∫
Ω

fTk(u− Th(u− λTk(u− ψ))) dx = λ

∫
Ω

fTk(u− ψ) dx. (4.19)

By combining (4.16)− (4.19), we deduce that

λ

∫
Ω

bTk(u− ψ) dx+ λ

N∑
i=1

∫
Ω

ai(x,∇(u− λTk(u− ψ)))DiTk(u− ψ) dx

≤ λ
∫

Ω

fTk(u− ψ) dx.

Choosing λ > 0, dividing both sides by λ, then letting λ tend to zero, we obtain∫
Ω

bTk(u− ψ) dx+

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u− ψ) dx ≤
∫

Ω

fTk(u− ψ) dx.

(4.20)
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Doing the same for the case of λ < 0, we obtain∫
Ω

bTk(u− ψ) dx+

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u− ψ) dx ≥
∫

Ω

fTk(u− ψ) dx.

(4.21)
By combining (4.20) and (4.21), we conclude the following equality:∫

Ω

bTk(u− ψ) dx+

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u− ψ) dx =

∫
Ω

fTk(u− ψ) dx

for any ϕ ∈W 1,~p(·)
0 (Ω) ∩ L∞(Ω), which completes the proof of Lemma 4.3.

By using the subdifferential argument (as in the proof of Theorem 3.2) we
show that u ∈ D(β) and b ∈ β(u) a.e. in Ω. Thus, in view of (4.15) and Lemma
4.3, we conclude the proof of the Theorem 4.2.

5. Uniqueness of T-~p(·)-solution solution

Theorem 5.1. Let f ∈ L1(Ω), assuming that (1.2)− (1.4) hold true. If one of the
following conditions is verified:

• If β(·) is a strictly increasing, continuous function,

• If β(·) is a monotone graph, and there exists i0 ∈ {1, 2, . . . , N} such that
ai0(x, ·) is strictly monotone.

Then, the T-~p(·)-solution of the quasilinear anisotropic elliptic problem (1.1) is
unique.

Proof. Let h > k > 0. Assuming that there exists two T-~p(·)-solutions (u, b) and
(v, d) of the problem (1.1), and we will show that u = v.

We consider u as a T-~p(·)-solution of the elliptic problem (1.1) and by taking
ϕ = Th(v) in (4.1), we have∫

Ω

bTk(u−Th(v)) dx+

N∑
i=1

∫
Ω

ai(x,∇u)DiTk(u−Th(v)) dx =

∫
Ω

fTk(u−Th(v)) dx,

it follows that∫
{|v|≤h}

bTk(u− v) dx− k
∫
{|v|>h}

|b| dx

+

N∑
i=1

∫
{|u−v|≤k}∩{|v|≤h}

ai(x,∇u)(Diu−Div) dx

≤
∫
{|v|≤h}

fTk(u− v) dx+ k

∫
{|v|>h}

|f | dx.

(5.1)
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For the second term on the left-hand side of (5.1), we have b(·) belong to L1(Ω),
and since meas{|v| > h} → 0 as h tends to infinity, we obtain

ε0(h) = k

∫
{|v|>h}

|b| dx −→ 0 as h→ 0. (5.2)

Similarly, we have f ∈ L1(Ω) then

ε1(h) = k

∫
{|v|>h}

|f | dx −→ 0 as h→ 0. (5.3)

By combining (5.1)–(5.3) we conclude that∫
{|v|≤h}

bTk(u− v) dx+

N∑
i=1

∫
{|u−v|≤k}∩{|v|≤h}

ai(x,∇u)(Diu−Div) dx

≤
∫
{|v|≤h}

fTk(u− v) dx+ ε2(h).

By letting h goes to infinity, we get∫
Ω

bTk(u− v) dx+

N∑
i=1

∫
{|u−v|≤k}

ai(x,∇u)(Diu−Div) dx ≤
∫

Ω

fTk(u− v) dx.

Similarly, by taking (v, d) as a T-~p(·)-solution of the elliptic problem (1.1) and
using ϕ = Th(v) in (4.1), we obtain∫

Ω

dTk(v − u) dx+

N∑
i=1

∫
{|u−v|≤k}

ai(x,∇v)(Div −Diu) dx ≤
∫

Ω

fTk(v − u) dx.

By adding the two previous inequalities, we conclude that∫
Ω

(b−d)Tk(u− v)dx+

N∑
i=1

∫
{|u−v|≤k}

(
ai(x,∇u)−ai(x,∇v)

)
(Diu−Div)dx ≤ 0,

We have b ∈ β(u) and d ∈ β(v), and thanks to (1.4) we deduce that∫
Ω

(b− d)Tk(u− v) dx = 0,

and∫
{|u−v|≤k}

(
ai(x,∇u)− ai(x,∇v)

)
(Diu−Div) dx = 0 for i = 1, . . . , N.

• If the maximal monotone operator β(·) is a strictly increasing, continuous
function, then∫

Ω

(b− d)Tk(u− v) dx = 0 =⇒ u = v a.e. in Ω.
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• If there exists i0 ∈ {1, 2, . . . , N} such that ai0(x, ·) is strictly monotone, then∫
{|u−v|≤k}

(
ai0(x,∇u)− ai0(x,∇v)

)
(Di0u−Di0v) dx = 0

=⇒ Di0u = Di0v a.e. in {|u− v| ≤ k}.

We have u, v ∈ W 1,1
0 (Ω) for p ≥ 2− 1

N
. In view of Poincaré’s inequality we

obtain

‖Tk(u− v)‖1 ≤ Cp‖Di0Tk(u− v)‖1 = 0 for any k > 0,

it follows necessary that u = v a.e. in Ω.

Which conclude the proof of the Theorem 5.1.
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