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Existence and Ulam stability for two orders delay fractional
differential equations
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Salah Zitouni

Abstract. In this paper, we study the existence and uniqueness for nonlinear delay fractional

differential equations with two orders of Caputo’s fractional derivative using the Banach fixed

point theorem. Also, we establish the Ulam stability of solutions. Finally, we give an example

to illustrate the results.

1. Introduction

The original motivation of the area of fractional calculus has started when L’Hôspi-
tal in 1695 wrote a letter to Leibniz related to the generalization of differentiation
and raised the question about fractional derivative. After, Leibniz, Euler, Laplace,
Lacroix and Fourier made mention of fractional derivatives or arbitrary order but
the first use of fractional operations can be found in Abel’s 1823 paper [4] that
was considered as chapter II in his posthumous Euvres completes de Niels Henrik
Abel [5] compiled by L. Sylow and S. Lie in 1881. Abel applied the fractional
calculus in the solution of an integral equation which arises in the formulation of
the tautochrone (isochrone) problem. However a rigorous investigation was first
carried out by Liouville in a series of papers from 1832-1837, where he defined
the first outcast of an operator of fractional integration. Later investigations and
further developments by among others Riemann led to the construction of the
integral-based Riemann-Liouville fractional integral operator, which has been a
valuable cornerstone in fractional calculus ever since. To learn more about the
chronological progress of fractional calculus from 1695 to 1900 (see [38]). Along
side with Riemann-Liouville, Professor Michele Caputo introduced an alternative
definition in his paper in 1967 [14] and in his book [15] in 1969, which has the
advantage of defining integer order initial conditions for fractional order differential
equations.

Fractional differential equations (FDEs) have gained considerable attention in
various fields of applied mathematics and engineering such as physics, polymer
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rheology, regular vibration in thermodynamics and biophysics, etc. For more de-
tails, see the monographs of Kilbas et al. [28], Podlubny [32] and Samko et.al. [39].
The theory of (FDEs) has attracted the attention of many mathematicians and
many works has been released in this area (for example [3, 6, 7, 11, 22, 30]). On
the other hand, delay differential equations arise in many processes and describe
a lot of phenomena emanates from physics and life sciences (populations biology,
physiology, economics and epidemiology). In [41] we can find many applications
of delay differential equations in biological science, economic and physiology. In
[10] Belair et al. obtained a system of delay differential equation concerning the
production of red blood cells by the stem cells in the bone marrow. Also we can
find more application of delay differential equations on the regulation of blood cell
in [19, 20]. Recently, the topic of delay fractional differential equations (DFDEs) is
growing interest among mathematicians and physicists, which explains the emer-
gence of a large number of papers in this area. Among the first investigations
about (DFDEs) we cite the work of Y. Chen and K. L. Moore [18] where they
established the analytical stability bound for a special class of delayed fractional-
order dynamic systems by using Lambert function. Also, the asymptotic stability
of linear (DFDEs) has studied by using different methods such as the final-value
theorem of the Laplace transform [21] and a Gronwall inequality approach [31].
Other investigations has appeared regarding the existence of solutions by exploit-
ing the fixed point theorems (see [2, 13, 16, 25, 29, 30, 42]) and the references
therein.

In 1940, Ulam [44] proposed a general stability problem in the talk before the
Mathematics Club of University of Wisconsin in which he discussed a number of
important unsolved problems: “Under what conditions does there exist an additive
mapping near an approximately additive mapping?” (for more details see [43, 44]).
In the following year, Hyers [24] gave the first answer to the question of Ulam in
the case of Banach spaces. In fact, let E1, E2 be two real Banach spaces and ε > 0.
Then for every mapping f : E1 −→ E2 satisfying

‖f (x+ y)− f (x)− f (y)‖ ≤ ε,

for all x, y ∈ E1, there exists a unique additive mapping g : E1 −→ E2 with the
property

‖f (x)− g (x)‖ ≤ ε, for all x ∈ E1.

Thereafter, this type of stability is called the Ulam-Hyers stability and it means
that one does not seek the exact solution for an Ulam-Hyers stable system but
it is required to find a function which satisfies a suitable approximation inequal-
ity. This approach can guarantee that there exists a close exact solution useful in
many applications. Further in 1978, Rassias [33, 35, 36, 43] provided an exten-
sion of Ulam-Hyers stability by introducing new function variables. As a result,
another new stability concept, Ulam-Hyers-Rassias stability, was named by math-
ematicians. For more details on the recent advances on the Ulam-Hyers stability
and Ulam-Hyers-Rassias stability of differential equations, one can see the books
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[17, 33, 34] and the research papers ([23, 26, 27]). Moreover, many investigations
were realized concerning Ulam-Hyers stability and Ulam-Hyers-Rassias stability
of (FDEs) such as [1, 9, 12, 16, 37, 42] and the references therein.

For example in [9], Atmania and Bouzitouna discussed the existence of the
unique solution and the Ulam stability for the following nonlinear fractional dif-
ferential equation with two orders{

CDβ
0+

(
p (t)

C
Dα

0+u (t)
)

+ h (t)u (t) = f (t, u (t)) , t ∈ [0, T ] ,

u (t) = φ (t) , t ∈ [−r, 0] ,

where CDβ
0+ is the Caputo fractional derivative, α, β ∈ (0, 1) such that 0 < α+β <

1.
In [2], Abbas established the existence of solutions using Krasnoselskii’s fixed

point theorem for the following delay fractional differential equation
dα

dtα
u (t) = f (t, u (t) , u (t− τ)) , t ∈ [0, T ] ,

u (t) = φ (t) , t ∈ [−τ, 0] , 0 < α < 1,

where
dα

dtα
denotes the Riemann-Liouville fractional derivative.

In [8], Ardjouni, Boulares and Djoudi showed the asymptotic stability of the
zero solution for the following nonlinear fractional differential equation with vary-
ing delay{

CDα
0+u (t) = ku (t) + f (t, u (t) , u (t− τ (t))) +C Dα−1

0+ g (t, u (t− τ (t))) , t ≥ 0,

x′ (0) = 0, x (t) = φ (t) , t ∈ [m0, 0] ,

where CDβ
0+ is the Caputo fractional derivative, k ∈ R, 1 < α < 2, φ is real

function defined on [m0, 0] where m0 = inf
t∈[0,T ]

{t− τ (t)}, and τ : R+ −→ R+is the

delay variable.
Motivated to the above problems, we consider the following nonlinear delay

fractional differential equation with two-orders

CDβ
0+

(
p (t)

C
Dα

0+u (t)− g (t, u (t− τ (t)))
)

= f (t, u (t) , u (t− τ (t))) , t ∈ [0, T ] ,

(1.1)
subject to the initial history condition

u (t) = φ (t) , t ∈ [m0, 0] , (1.2)

where α, β ∈ (0, 1) such that 0 < α + β < 1, p and φ are real functions defined
respectively on [0, T ] and [m0, 0], m0 = inf

t∈[0,T ]
{t− τ (t)}, τ : [0, T ]→ R+ represent

the delay term, f : [0, T ] × R × R −→ R and g : [0, T ] × R −→ R are given real
functions.
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In this paper we study the existence of the solution of (1.1)-(1.2) using the
Banach fixed point theorem and we establish the four types Ulam stability for this
problem.

The paper is organized as follows. In Section 2, we introduce some preliminaries
concerning the hypothesis and several lemmas needed throughout this work. In
Section 3, we prove the result of existence and uniqueness of solutions by using
the Banach fixed point theorem. In section 4, we give and prove our main results
on stability. Finally, we give an example to illustrate our results.

2. Preliminaries

In this section, we present some definitions and properties from fractional calculus
that used throughout this paper. For more details see [28, 32, 39, 45].

Definition 2.1 ([28]). The Riemann-Liouville fractional (arbitrary) integral of
order α > 0 of the function f ∈ L1 ([0, T ] ,R) is formally defined by

Iα0+f (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f (s) ds,

where Γ is the classical Gamma function.

Definition 2.2 ([28]). The Caputo fractional derivative of order α > 0 for a given
function f on [0, T ] is defined by

CDα
0+f(t) = Dα

0+

[
f(t)−

n−1∑
k=0

f (k) (0)

k!
tk

]
, (2.1)

where n = [α]+1, [α] means the integer part of α and Dα
0+ is the Riemann-Liouville

fractional derivative operator of order α defined by

Dα
0+f(t) =

1

Γ (n− α)

dn

dtn

∫ t

0

(t− s)n−α−1 f (s) ds = DnIn−α0+ f (t) for t > 0.

The Caputo fractional derivative cDα
0+f exists for f belonging toACn ([0, T ] ,R)

the space of functions which have continuous derivatives up to order (n− 1) on
[0, T ] such that f (n−1)∈ AC1 ([0, T ] ,R). AC1 ([0, T ] ,R) also denotedAC ([0, T ] ,R)
is the space of absolutely continuous functions. In this case, Caputo’s fractional
derivative is defined by

CDα
0+f(t) =

1

Γ (n− α)

∫ t

0

(t− s)n−α−1 f (n) (s) ds = In−α0+ Dnf (t) for t > 0.

Remark that when α = n, we have CDn
0+f(t) = Dnf (t).
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Lemma 2.3 ([28]). The fractional integration operator is bounded on C ([0, T ] ,R),
in the sense that for each f ∈ C ([0, T ] ,R) there exists a positive constant a such
that

‖Iα0+f‖∞ ≤ a ‖f‖∞ .

Furthermore,

Iα0+t
µ =

Γ (β + 1)

Γ (α+ β + 1)
tα+µ, µ > −1, α > 0. (2.2)

Lemma 2.4 ([28]). Let f ∈ ACn ([0, T ] ,R), then the Caputo fractional derivative
of order α > 0 such that n = [α] + 1 is continuous on [0, T ] and

CDα
0+I

α
0+f (t) = f (t) , IαC0+ D

α
0+f (t) = f (t)−

n−1∑
k=0

f (k) (0)

k!
tk. (2.3)

In particular, when 0 < α ≤ 1 we have IαC0+ D
α
0+f (t) = f (t)− f (0).

To define four types of Ulam stability, we consider the following fractional
differential equation

CDα
0+u (t) = f (t, u (t)) , 0 < α < 1, t ∈ [0, T ] . (2.4)

Definition 2.5 ([45]). The equation (2.4) is said to be Ulam-Hyers stable if there
exists a real numberKf > 0 such that for each ε > 0 and for each y ∈ AC ([0, T ] ,R)
solution of the inequality∣∣CDα

0+y (t)− f (t, y (t))
∣∣ ≤ ε, t ∈ [0, T ] , (2.5)

there exists a solution u ∈ AC ([0, T ] ,R) of the equation (2.4) with

|y (t)− u (t)| ≤ Kf ε, t ∈ [0, T ] .

Definition 2.6 ([45]). The equation (2.4) is generalized Ulam-Hyers stable if
there exists ψ ∈ C ([0, T ] ,R+) with ψ (0) = 0 such that for each ε > 0 and for
each solution y ∈ AC ([0, T ] ,R) of the inequality∣∣CDα

0+y (t)− f (t, y (t))
∣∣ ≤ ε, t ∈ [0, T ] ,

there exists a solution u ∈ AC ([0, T ] ,R) of the equation (2.4) with

|y (t)− u (t)| ≤ ψ (ε) , t ∈ [0, T ] .

Definition 2.7 ([45]). The equation (2.4) is Ulam-Hyers-Rassias stable with re-
spect to ψ ∈ C ([0, T ] ,R+) if there exists a real number Jf,ψ > 0 such that for
each ε > 0 and for each y ∈ AC ([0, T ] ,R) solution of the inequality∣∣CDα

0+y (t)− f (t, y (t))
∣∣ ≤ εψ (t) , t ∈ [0, T ] ,

there exists a solution u ∈ AC ([0, T ] ,R) of the equation (2.4) with

|y (t)− u (t)| ≤ Jf,ψεψ (t) , t ∈ [0, T ] .



146 H. E. Khochemane, A. Ardjouni and S. Zitouni

Definition 2.8 ([45]). The equation (2.4) is generalized Ulam-Hyers-Rassias sta-
ble with respect to ψ ∈ C ([0, T ] ,R+) if there exists Jf,ψ > 0 such that for each
solution y ∈ AC ([0, T ] ,R) of the inequality∣∣CDα

0+y (t)− f (t, y (t))
∣∣ ≤ ψ (t) , t ∈ [0, T ] ,

there exists a solution u ∈ AC ([0, T ] ,R) of the equation (2.4) with

|y (t)− u (t)| ≤ Jf,ψψ (t) , t ∈ [0, T ] .

Definition 2.9. A function y ∈ AC ([0, T ] ,R) is a solution of the inequality
(2.5) if and only if there exists a function h ∈ AC ([0, T ] ,R) such that for every
t ∈ [0, T ] , |h (t)| ≤ ε and CDα

0+y (t) = f (t, y (t)) + h (t).

Lastly in this section, we state the Banach fixed point theorem which enable
us to prove the existence and uniqueness of a solution of (1.1)-(1.2).

Definition 2.10. Let (X, ‖·‖) be a Banach space and A : X → X. The operator
A is a contraction operator if there is an λ ∈ (0, 1) such that x, y ∈ X imply

‖Ax−Ay‖ ≤ λ ‖x− y‖ .

Theorem 2.11 (Banach [40]). Let K be a nonempty closed convex subset of a
Banach space X and A : K → K be a contraction operator. Then there is a unique
x ∈ K with Ax = x.

3. Existence and uniqueness

In this section, we are concerned with the existence of a unique solution for the
problem (1.1)-(1.2). Let us start by recalling what we mean by a solution.

Definition 3.1. A function u ∈ AC ([m0, T ] ,R) is said to be a solution of the
initial value problem (1.1)-(1.2) if it satisfies the equation (1.1) on [0, T ] and the
initial condition (1.2) on the small interval [m0, 0].

In the sequel, we introduce the following assumptions

(H1) p ∈ AC([0, T ],R) such that p (t) 6= 0, t ∈ [0, T ], p (0) = p0, φ ∈ C1([m0, 0],R)
with

φ (0) = φ0 and CDα
0+ φ (0) = φα, (3.1)

where φ0, p0 and φα are real constants.

(H2) f : [0, T ]× R× R −→ R and g : [0, T ]× R −→ R are continuous functions.

(H3) There exist positive constants L1, L2, L3 such that for any t ∈ [0, T ] and
u1, v1, u2, v2 ∈ R, we have

|f (t, u1, u2)− f (t, v1, v2)| ≤ L1 |u1 − v1|+ L2 |u2 − v2| ,

and
|g (t, u1)− g (t, v1)| ≤ L3 |u1 − v1| .
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(H4) For q = inf
t∈[0,T ]

|p (t)| with q 6= 0, we have

k :=

(
L3

Γ (α+ 1)
+

L1 + L2

Γ (α+ β + 1)
T β
)
Tα

q
< 1. (3.2)

Now we convert the initial value problem to an integral equation which is
also used in the existence and the stability studies. Indeed, we are interested in
the solution of the problem (1.1) with (3.1) on the interval [0, T ] in view of the
supplementary data of u on the interval [m0, 0].

Lemma 3.2. Assume that (H1) and (H2) hold. A function u ∈ C ([m0, T ] ,R) is
a solution of the following fractional integral equation for t ∈ [0, T ]

u (t) = φ0 + (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

+

∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, u (s− τ (s))) ds

+

∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, u (σ) , u (σ − τ (σ))) dσds, (3.3)

with g0 = g (0, u (−τ (0))) and u (t) = φ (t) for t ∈ [m0, 0] if and only if u is a
solution of the two-orders delay fractional initial value problem (1.1)-(1.2).

Proof. First, we apply CDα
0+ to (3.3) and obtain with CDα

0+φ0 = 0

CDα
0+u (t) =

p0φα − g0
p (t)

+
g (t, u (t− τ (t)))

p (t)
+

1

p (t)
Iβ0+f (t, u (t) , u (t− τ (t))) .

Then, we apply CDβ
0+ to p (t)

C
Dα

0+u (t) to get (1.1). For t = 0, u (0) = φ0.
Furthermore, under (H1) and (H2) we conclude that u ∈ AC ([m0, T ] ,R).

Conversely, we apply the fractional integral Iβ0+ to (1.1) to obtain, in view of
Lemma 2.4,

CDα
0+u (t) =

p (0)
C
Dα

0+u (0)− g (0, u (−τ (0)))

p (t)
+
g (t, u (t− τ (t)))

p (t)

+
1

p (t)

∫ t

0

(t− s)β−1

Γ (β)
f (s, u (s) , u (s− τ (s))) ds. (3.4)

Using the fact that u ∈ C ([m0, T ] ,R) and φ ∈ C1 ([m0, 0] ,R) , we obtain

CDα
0+u (0) = CDα

0+u (t)
∣∣
t=0

= CDα
0+φ (t)

∣∣
t=0

= φα.

We apply the fractional integral Iα0+ to (3.4), we get (3.3). This completes the
proof.
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Now, we give the existence and uniqueness result based on the Banach fixed
point theorem.

Theorem 3.3. Assume that (H1) − (H4) are satisfied. Then the problem (1.1)-
(1.2) has a unique solution.

Proof. First, we denote by X = C ([m0, T ] ,R) the Banach space of all continuous
functions from [m0, T ] into R with the sup norm ‖u‖∞ = sup

t∈[m0,T ]

|u (t)|.

Define the operator A : X −→ X for all t ∈ [0, T ]

(Au) (t) = φ0 + (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

+

∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, u (s− τ (s))) ds

+

∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, u (σ) , u (σ − τ (σ))) dσds,

and (Au) (t) = φ (t) for t ∈ [m0, 0]. It is clear that the fixed points of the operator
A are solutions of the problem (1.1)-(1.2).

Now, we define the nonempty convex closed set of X as follows

BR = {u ∈ X : ‖u− φ0‖∞ ≤ R} ,

such that

R ≥
(
|p0φα|+ |g0|+ cg

Γ (α+ 1)
+

cf
Γ (α+ β + 1)

T β
)

Tα

q (1− k)
, (3.5)

where cf = sup
t∈[0,T ]

|f (t, φ0, φ0)| and cg = sup
t∈[0,T ]

|g (t, φ0)|.

To show that ABR ⊂ BR for each u ∈ BR

|(Au) (t)− φ0|

≤ (|p0φα|+ |g0|)
∫ t

0

(t− s)α−1

Γ (α) |p (s)|
ds

+

∫ t

0

(t− s)α−1

Γ (α) |p (s)|
|g (s, u (s− τ (s)))| ds

+

∫ t

0

(t− s)α−1

Γ (α) |p (s)|

∫ s

0

(s− σ)
β−1

Γ (β)
|f (σ, u (σ) , u (σ − τ (σ)))| dσds. (3.6)



Existence and Ulam stability 149

On the other hand, we have

|f (t, u (t) , u (t− τ (t)))|
≤ |f (t, u (t) , u (t− τ (t)))− f (t, φ0, φ0)|+ |f (t, φ0, φ0)|
≤ L1 |u (t)− φ0|+ L2 |u (t− τ (t))− φ0|+ |f (t, φ0, φ0)|
≤ L1 ‖u− φ0‖∞ + L2 ‖u− φ0‖∞ + cf

≤ (L1 + L2)R+ cf ,

By the same technique, we obtain the following estimation

|g (t, u (t− τ (t)))| ≤ L3R+ cg.

Therefore the estimate (3.6) becomes

|(Au) (t)− φ0|

≤ (|p0φα|+ |g0|) + L3R+ cg
q

∫ t

0

(t− s)α−1

Γ (α)
ds

+
(L1 + L2)R+ cf

q

∫ t

0

(t− s)α−1

Γ (α)

∫ s

0

(s− σ)
β−1

Γ (β)
dσds

≤ (|p0φα|+ |g0|) + L3R+ cg
αΓ (α) q

tα +
(L1 + L2)R+ cf
qΓ (α+ β + 1)

tα+β

≤ (|p0φα|+ |g0|) + L3R+ cg
qΓ (α+ 1)

Tα +
(L1 + L2)R+ cf
qΓ (α+ β + 1)

Tα+β .

We conclude from (3.5) that

‖Au− φ0‖∞ ≤ R.

Then BR is stable by A. We proceed to prove that A is a contraction mapping.
For each u, v ∈ BR and for all t ∈ [m0, T ] we have

|(Au) (t)− (Av) (t)|

≤
∫ t

0

(t− s)α−1

Γ (α) |p (s)|
|g (s, u (s− τ (s)))− g (s, v (s− τ (s)))| ds

+

∫ t

0

(t− s)α−1

Γ (α) |p (s)|

∫ s

0

(s− σ)
β−1

Γ (β)

× |f (σ, u (σ) , u (σ − τ (σ)))− f (σ, v (σ) , v (σ − τ (σ)))| dσds.
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By using (H3), (H4) and (2.2), we get

|(Au) (t)− (Av) (t)|

≤ L3

qΓ (α)
‖u− v‖∞

∫ t

0

(t− s)α−1 ds

+

(
L1 + L2

qΓ (β)

)
‖u− v‖∞

∫ t

0

(t− s)α−1

Γ (α)

∫ s

0

(s− σ)
β−1

dσds

=

(
L3

qΓ (α+ 1)
tα +

(
L1 + L2

qΓ (β + 1)

)
Iα0+

(
tβ
))
‖u− v‖∞

=

(
L3

qΓ (α+ 1)
tα +

L1 + L2

qΓ (α+ β + 1)
tα+β

)
‖u− v‖∞

≤
(

L3

Γ (α+ 1)
+

L1 + L2

Γ (α+ β + 1)
T β
)
Tα

q
‖u− v‖∞ .

Thus,
‖Au−Av‖∞ ≤ k ‖u− v‖∞ .

Then, A is a contraction by (3.2). The conclusion of the theorem follows by the
Banach fixed point theorem. This completes the proof.

4. Ulam stability

In this section, we study four types of Ulam stability of the problem (1.1)-(1.2)
which are Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias and general-
ized Ulam-Hyers-Rassias stabilities.

Lemma 4.1. If y ∈ AC ([m0, T ] ,R) is a solution of the fractional differential
inequality for each ε > 0∣∣∣CDβ

0+

(
p (t)

C
Dα

0+y (t)− g (t, y (t− τ (t)))
)
− f (t, y (t) , y (t− τ (t)))

∣∣∣ ≤ ε, (4.1)

and the initial condition (1.2) then y is a solution of the following integral inequal-
ity ∣∣∣∣∣y (t)− φ0 − (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, y (s− τ (s))) ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, y (σ) , y (σ − τ (σ))) dσds

∣∣∣∣∣
≤ Tα+β

qΓ (α+ β + 1)
ε.
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Proof. Let y ∈ AC ([m0, T ] ,R) be a solution of the inequality (4.1) and (1.2) for
each ε > 0. Then, from Definition 2.9 and Lemma 3.2 for some continuous function
h such that |h(t)| ≤ ε, t ∈ [0, T ], we have

y (t) = φ0 + (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

+

∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, y (s− τ (s))) ds

+

∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
[f (σ, y (σ) , y (σ − τ (σ))) + h(σ)] dσds.

Then, we use the properties of Iα0+ to get

∣∣∣∣Iα0+ ( 1

p (t)
Iβ0+h (t)

)∣∣∣∣ ≤ ∫ t

0

(t− s)α−1

Γ (α) |p (s)|

∫ s

0

(s− σ)
β−1

Γ (β)
|h(σ)| dσds

≤ ε
∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
dσds

≤ Tα+β

qΓ (α+ β + 1)
ε.

The proof is complete.

Theorem 4.2. Assume that the assumptions (H1)−(H4) hold. Then the problem
(1.1)-(1.2) is Ulam-Hyers stable.

Proof. Under (H1) − (H4), (1.1)-(1.2) has a unique solution in AC([m0, T ] ,R).
Let y ∈ AC ([m0, T ] ,R) be a solution of the inequality (4.1) and (1.2), then for
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each t ∈ [m0, T ]

|y (t)− u (t)|

≤

∣∣∣∣∣y (t)− φ0 − (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, y (s− τ (s))) ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, y (σ) , y (σ − τ (σ))) dσds

∣∣∣∣∣
+

∫ t

0

(t− s)α−1

Γ (α) |p (s)|
|g (s, y (s− τ (s)))− g (s, u (s− τ (s)))| ds

+

∫ t

0

(t− s)α−1

Γ (α) |p (s)|

∫ s

0

(s− σ)
β−1

Γ (β)

× |f (σ, y (σ) , y (σ − τ (σ)))− f (σ, u (σ) , u (σ − τ (σ)))| dσds

≤ Tα+β

qΓ (α+ β + 1)
ε+

(
L3

Γ (α+ 1)
+

L1 + L2

Γ (α+ β + 1)
T β
)
Tα

q
‖y − u‖∞ .

Thus, in view of (H4)

‖y − u‖∞ ≤
Tα+β

qΓ (α+ β + 1) (1− k)
ε.

Then, there exists a real number Kf =
Tα+β

qΓ (α+ β + 1) (1− k)
> 0 such that

|y (t)− u (t)| ≤ Kf ε. (4.2)

Thus (1.1)-(1.2) has the Ulam-Hyers stability, which completes the proof.

Corollary 4.3. Suppose that all the assumptions of Theorem 4.2 are satisfied.
Then the problem (1.1)-(1.2) is generalized Ulam-Hyers stable.

Proof. Let ψ (ε) = Kf ε =
Tα+β

qΓ (α+ β + 1) (1− k)
ε in (4.2) then ψ(0) = 0 and

problem (1.1)-(1.2) is generalized Ulam-Hyers stable.

In the next, we introduce the following hypothesis

(H5) ψ ∈ C ([0, T ] ,R) an increasing function which satisfies the property

Iγ0+ψ (t) ≤ λψ,γψ (t) , 0 < γ < 1,

for some constant λψ,γ > 0.
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Lemma 4.4. Assume that ψ satisfies (H5). If y ∈ AC ([m0, T ] ,R) is a solution
of the inequality for each ε > 0∣∣∣CDβ

0+

(
p (t)

C
Dα

0+y (t)− g (t, y (t− τ (t)))
)
− f (t, y (t) , y (t− τ (t)))

∣∣∣ ≤ εψ (t) ,

(4.3)
and the initial condition (1.2) for t ∈ [m0,0], then y is a solution of the following
integral inequality∣∣∣∣∣y (t)− φ0 − (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, y (s− τ (s))) ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, y (σ) , y (σ − τ (σ))) dσds

∣∣∣∣∣
≤
λ2ψ
q
εψ (t) . (4.4)

Proof. Let y ∈ AC ([m0, T ] ,R) be a solution of the inequality (4.3) and (1.2) for
each ε > 0. From Definition 2.9 and Lemma 3.2, for some continuous function h
such that |h(t)| ≤ εψ (t) for each ε > 0, t ∈ [0, T ], we have∣∣∣∣∣y (t)− φ0 − (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, y (s− τ (s))) ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, y (σ) , y (σ − τ (σ))) dσds

∣∣∣∣∣
≤
∫ t

0

(t− s)α−1

Γ (α) |p (s)|

∫ s

0

(s− σ)
β−1

Γ (β)
|h(σ)| dσds

≤ ε
∫ t

0

(t− s)α−1

Γ (α) |p (s)|
Iβ0+ (ψ (s)) ds ≤ ελψ,β

∫ t

0

(t− s)α−1

Γ (α) |p (s)|
ψ (s) ds

≤ λψ,βλψ,α
q

εψ (t) ≤
λ2ψ
q
εψ (t) ,

where λψ = max (λψ,β , λψ,α). This completes the proof.

Theorem 4.5. Assume that the assumptions (H1)− (H5) hold, then the problem
(1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect to ψ.
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Proof. Under (H1) − (H4), (1.1)-(1.2) has a unique solution in AC([m0, T ] ,R).
Let y ∈ AC ([m0, T ] ,R) be a solution of the inequality (4.3) and (1.2), then for
each t ∈ [m0, T ]

|y (t)− u (t)|

≤

∣∣∣∣∣y (t)− φ0 − (p0φα − g0)

∫ t

0

(t− s)α−1

Γ (α) p (s)
ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)
g (s, u (s− τ (s))) ds

−
∫ t

0

(t− s)α−1

Γ (α) p (s)

∫ s

0

(s− σ)
β−1

Γ (β)
f (σ, u (σ) , u (σ − τ (σ))) dσds

∣∣∣∣∣
≤
λ2ψ
q
εψ (t) +

∫ t

0

(t− s)α−1

Γ (α) |p (s)|
|g (s, y (s− τ (s)))− g (s, u (s− τ (s)))| ds

+

∫ t

0

(t− s)α−1

Γ (α) |p (s)|

∫ s

0

(s− σ)
β−1

Γ (β)

× |f (σ, y (σ) , y (σ − τ (σ)))− f (σ, u (σ) , u (σ − τ (σ)))| dσds

≤
λ2ψ
q
εψ (t) +

(
L3

Γ (α+ 1)
+

L1 + L2

Γ (α+ β + 1)
T β
)
Tα

q
‖y − u‖∞ .

Hence, it follows that there exists a real number Jf,ψ =
λ2ψ

q (1− k)
> 0 such that

|y (t)− u (t)| ≤
λ2ψ

q (1− k)
εψ (t) = Jf,ψεψ (t) , t ∈ [m0, T ] .

This gives the wanted result and completes the proof.

Corollary 4.6. Under the hypothesis of Theorem 4.5, the problem (1.1)-(1.2) is
generalized Ulam-Hyers-Rassias stable with respect to ψ ∈ C ([0, T ] ,R).

Proof. Set ε = 1 and Jf,ψ =
λ2ψ

q (1− k)
it directly follows that the problem (1.1)-

(1.2) is generalized Ulam-Hyers-Rassias stable.

5. Example

Consider the following nonlinear delay problem
CD

1
3

0+

(
1
t+1

CD
1
2

0+ u (t)− t
10 sin

(
u
(
t− t2 − 1/4

)))
=

t

30 (t+ 1)
cosu

(
t− t2 − 1/4

)
+

1

20
sinu (t) , t ∈ [0, 1] ,

u (t) = et, t ∈ [−0.25, 0] ,

(5.1)
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where

α =
1

2
, β =

1

3
, p (t) =

1

t+ 1
, τ (t) = t2 + 1/4,

g
(
t, u
(
t− t2 − 1/4

))
=

t

10
sin
(
u
(
t− t2 − 1/4

))
, φ (t) = et,

f
(
t, u (t) , u

(
t− t2 − 1/4

))
=

t

30 (t+ 1)
cosu

(
t− t2 − 1/4

)
+

1

20
sinu (t) .

The unique solution exists for

L1 =
1

20
, L2 =

1

30
, L3 =

1

10
, q =

1

2
,

satisfying the condition (3.2)

k =

(
L3

Γ (α+ 1)
+

(L1 + L2)

Γ (α+ β + 1)
T β
)
Tα

q

= 0.4028 < 1.

It follows from Theorem 4.2 that the problem (5.1) is Ulam-Hyers stable on
[−0.25, 1]. Also, by Corollary 4.3, the generalized Ulam-Hyers stability is obtained.

Now, we choose ψ (t) = t which satisfies (H5) and in view of (2.2) we have

Iγ0+ψ (t) =
Γ (2)

Γ (γ + 2)
tγ+1 ≤ 1

(γ + 1) Γ (γ + 1)
t, 0 < γ < 1.

For α =
1

2
and β =

1

3
we have

λψ,α =
1

3

2
Γ

(
1

2
+ 1

) = 0.7447, λψ,β =
1

4

3
Γ

(
1

3
+ 1

) = 0.8398,

then we take λψ = 0.8398 to get (4.4) satisfied. Hence, by Theorem 4.5, the
problem (5.1) is Ulam-Hyers-Rassias stable with respect to ψ and by Corollary
4.6, it is generalized Ulam-Hyers-Rassias stable with respect to ψ.

Remark 5.1. In the case where α+ β ≥ 1, we distinguish four cases (α ≥ 1 and
0 < β < 1), (β ≥ 1 and 0 < α < 1), (α ≥ 1 and β ≥ 1), (α ≤ 1 and β ≤ 1), which
requires to equipped the problem by two initials history conditions. Furthermore,
according to (2.3), the integral equation will be changed but the Lipshitz constant
k remains the same and we will have the same results concerning the Ulam types
stability.
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6. Discussion

We can consider the following neutral (DFDE)

CDβ
0+

(
p (t)

C
Dα

0+ [u (t)− g (t, u (t− τ (t)))]
)

= f (t, u (t) , u (t− τ (t))) , t ∈ [0, T ],

subject to the initial history condition

u (t) = φ (t) , t ∈ [m0, 0] .

The theory of neutral (DFDEs) is even more complicated than the theory of non-
neutral (DFDEs). In the case of the above neutral (DFDEs), we can use another
technique to establish the existence of solution, for example Krasnoselskii’s fixed
point theorem. Also, we can consider the same problem of (1.1)-(1.2) involving
Hadamard fractional derivatives or Prabhakar derivatives which might be the in-
teresting object of research.
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[15] Caputo, M.: Elasticitàe Dissipazione, Zanichelli, Bologna (1969)

[16] Cermak, J., Hornicek, J., Kisela, T.: Stability regions for fractional differential systems with
a time delay. Commun Nonlinear Sci Numer Simulat. 31(1-3), 108–123 (2016)

[17] Cho, Y.J., Rassias, Th.M., Saadati, R.: Stability of Functional Equations in Random
Normed Spaces. Science-Business Media 52, Springer (2013)

[18] Chen, Y., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dy-
namic systems. In Proceedings of the IEEE Conference on Decision and Control (CDC’01),
Orlando, FL, IEEE, New York, 2001, 1421–1426 (2001)

[19] Colijn, C., Mackey, M.C.: Bifurcation and bistability in a model of hematopoietic regulation.
SIAM Journal on Applied Dynamical Systems 6, 378–394 (2007).

[20] Crauste, F.: Delay model of hematopoietic stem cell dynamics: asymptotic stability and
stability switch. Mathematical Modeling of Natural Phenomena 4, 28–47 (2009)

[21] Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with
multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

[22] Dhaigude, D.B., Sandeep, P.B.: Existence and uniqueness of solution of Cauchy-type prob-
lem for Hilfer fractional differential equations. Communications in Applied Analysis 22(1),
121–134 (2017)

[23] Gavruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

[24] Hyers, D.H.: On the stability of the linear functional equation, Natl. Acad. Sci. U.S.A. 27,
222–224 (1941)

[25] Jalilian, Y., Jalilian, R.: Existence of solution for delay fractional differential equations.
Mediterr. J. Math. 10(4), 1731-1747 (2013)

[26] Jun, K.W., Kim, H.M.: On the stability of an n-dimensional quadratic and additive func-
tional equation. Math. Inequal. Appl. 19(9), 854–858 (2006)

[27] Jung, S.M., Lee, K.S.: Hyers-Ulam stability of first order linear partial differential equations
with constant coefficients. Math. Inequal. Appl. 10, 261–266 (2007)

[28] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differ-
ential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amster-
dam (2006)

[29] Krol, K.: Asymptotic properties of fractional delay differential equations. Appl. Math. Com-
put. 218(5), 1515–1532 (2011)

[30] Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal-
ysis, Theory, Methods Applications 69(10), 3337–3343 (2008)

[31] Lazarevi, M.P., Spasi, A.M.: Finite-time stability analysis of fractional order time-delay
systems: Gronwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

[32] Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering,
198, Acad. Press, San-Diego (1999)

[33] Rassias, Th.M., Brzdek, J.: Functional Equations in Mathematical Analysis. Springer, New
York (2012)

[34] Rassias, J.M.: Functional Equations, Difference Inequalities and Ulam Stability Notions
(F.U.N.). Nova Science Publishers, Inc. New York (2010)

[35] Rassias, Th.M.: Functional Equations, Inequalities and Applications, Kluwer Academic
Publishers, Dordrecht (2003)

[36] Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math.
Soc. 72, 297–300 (1978)

[37] Niazi, A.U.K., Wei, J., Rehman, M.U., Jun, D.: Ulam-Hyers-Stability for nonlinear frac-
tional neutral differential equations. Hacet. J. Math. Stat. 48(1), 157–169 (2019)

[38] Ross, B.: The development of fractional calculus 1695-1900. Historia Mathematica 4, 75–89
(1977)



158 H. E. Khochemane, A. Ardjouni and S. Zitouni

[39] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and
Applications. Gorden and Breach, Amsterdam, (1987) (Engl. Trans. from Russian, (1993))

[40] Smart, D.R.: Fixed Point Theorems, Cambridge Uni. Press., Cambridge (1980)
[41] Smith, H.: An Introduction to Delay Differential Equations With Applications to The Life

Sciences, Springer (2011)
[42] Thanh, N.T., Trinh, H., Phat, V.N.: Stability analysis of fractional differential time-delay

equations. IET Control Theory Applications 11(7), 1006–1015 (2017)
[43] Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, Inc., New

York (1968)
[44] Ulam, S.M.: Problems in Modern Mathematics. John Wiley and Sons, New York, U.S.A.

(1940)
[45] Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential

equations with Caputo derivative. Electronic Journal of Qualitative Theory of Differential
Equations 2011(63), 1–10 (2011)

Received: 22 June 2019.
Accepted: 2 October 2019.

Houssem Eddine Khochemane

Ecole normale supérieure d’enseignement technologique, Azzaba-Skikda-Algeria.

khochmanehoussem@hotmail.com

Abdelouaheb Ardjouni

Department of Mathematics and Informatics, University of Souk-Ahras, P.O. Box 1553, Souk-

Ahras, 41000, Algeria.

abd ardjouni@yahoo.fr

Salah Zitouni

Department of Mathematics and Informatics, University of Souk-Ahras, P.O. Box 1553, Souk-

Ahras, 41000, Algeria.

zitsala@yahoo.fr

Open Access. This article is distributed under the terms of the Creative Commons Attri-

bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted use, distribution, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Existence and uniqueness
	Ulam stability
	Example
	Discussion

