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FAQ on the g-theorem and the hard Lefschetz theorem for
face rings

Karim Adiprasito

Abstract. We discuss the hard Lefschetz theorem for simplicial spheres, as well as the theory at
its core: perturbations of maps, biased Poincaré pairings and a cobordism argument that relates
the Lefschetz property of a manifold to the Lefschetz property on its boundary, and sketch an
alternative argument based on edge-contractions.

1. Counting

One of the most basic problems that almost every combinatorialist asks is to count
things. And when you ask a combinatorial topologist, they usually want to count
things associated to topological spaces.

More precisely: many topological spaces can be triangulated, that is, there are
simplicial complexes that encode them. A tetrahedron, for instance, triangulates a 3-
dimensional ball. The boundary of that tetrahedron triangulates the 2-dimensional
sphere. But so does the boundary of the icosahedron. Now we can count the
number of faces that each of these triangulations have:

In the former case, we get one empty face, four vertices, six edges, and four
triangles. Nice and symmetric (well, almost). This is usually recorded in a vector
called the f -vector recording the number of i-dimensional faces fi, which reads in
this case as

(1, 4, 6, 4).
In the latter, we get one empty face, twelve vertices, thirty edges, and twenty

triangles (where it gets its name), and hence an f -vector

(1, 12, 30, 20).

This is no longer so nice and symmetric. However, Sommerville [14] had the idea
to define another vector

hk :=
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.
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And now, there is a small miracle: he then established1 that for a simplicial sphere
of dimension (d− 1), we have

hk = hd−k.

These are the so-called Dehn-Sommerville relations. This means in particular
that there are nontrivial linear relations between the face numbers of simplicial
polytopes, and that everything is defined from the first half of the entries. So,
McMullen [11] had the idea to consider another vector:

gk := hk − hk−1 for k ≤ d

2
He formulated the following conjecture

Conjecture 1.1. A vector of d integers is the f -vector of a simplicial sphere Σ if
and only if the associated g-vector is an M -sequence, that is, there is a quotient Q
of a polynomial ring R[x] by a homogeneous ideal so that

gi(Σ) = dimQi.

At this point, Stanley entered. He realized that there is at least always a ring
that encodes the h-vector.

2. Rings

If ∆ is an abstract simplicial complex defined on the groundset [n] := {1, · · · , n},
let I∆ := 〈xa : supp (a) /∈ ∆〉 denote the nonface ideal in R[x], where R[x] =
R[x1, · · · , xn]. Let R∗[∆] := R[x]/I∆ denote the face ring of ∆. Now, we pick a
sufficient number of linear forms to make sure the quotient is finite dimensional:

We may associate to the vertices of ∆ the coordinates V∆ = (v1, · · · , vn) ∈
Rd×n, obtaining a system of linear forms by considering V∆x = Θ. With this, we
obtain a geometric simplicial complex in Rd.

The face ring of a geometric simplicial complex ∆ is considered with respect to
its natural system of parameters induced by the coordinates, that is,

A∗(∆) := R∗[∆]/ΘR∗[∆] .

A geometric simplicial complex in Rd is proper if the image of every k-face,
with k < d, linearly spans a subspace of dimension k + 1. If ∆ is of dimension
(d− 1), and is given a proper coordinates in Rd, then A∗(∆) is finite-dimensional
as a vector space.

Stanley observed [15], based on a theorem of Reisner [13]:

Theorem 2.1. For a triangulated sphere Σ of dimension (d− 1),

hi(Σ) = dimAi(Σ) .

1He stated this for boundaries of simplicial polytopes, but the proof works for simplicial
spheres
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3. Stanley and Lefschetz

Here, Stanley observed [16] that McMullen’s conjecture is true if there existed an `
in A1[Σ] so that

Ai(Σ) ·`−−→ Ai+1(Σ)

is injective for i ≤ d
2 − 1, or stronger if

Ak(Σ) ·`d−2k

−−−−−→ Ad−k(Σ).

is an isomorphism for every k ≤ d
2 . The former is known as the weak Lefschetz

property, the latter as the hard Lefschetz property. He needed this for some
geometric realization of the simplicial complex.

And amazingly, Stanley then observed that the hard Lefschetz property is
actually true for spheres that arise as boundaries of simplicial polytopes (with
respect to their given geometric realization) using deep results in algebraic geometry.
Specifically, if Σ is realized as the boundary of a polytope, then the class of a
convex function acts as the desired Lefschetz element (we refer to [6] for an
excellent exposition). But the general case remained open, and only recently, the
hard Lefschetz theorem was proven in this generality. It is useful to state this in a
more general perspective for the purposes of this paper:

A relative simplicial complex Ψ = (∆,Γ) is a pair of simplicial complexes
∆,Γ with Γ ⊂ ∆. If Ψ = (∆,Γ) is a relative simplicial complex, then we can define
the relative face module

R∗[Ψ] := IΓ
/
I∆.

The relative face ring of a geometric complex is then defined as

A∗(Ψ) := R∗[Ψ]/ΘR∗[Ψ].

Theorem 3.1. Consider a triangulated (d−1)-sphere or ball ∆, and the associated
graded commutative face ring R[∆]. Then there exists an open dense subset of
the Artinian reductions R of R[∆] and an open dense subset L ⊂ A1(∆), where
A(∆) ∈ R, such that for every k ≤ d/2, we have the hard Lefschetz property for
every A(∆) ∈R and every ` ∈L:

Ak(∆, ∂∆) ·`d−2k

−−−−−→ Ad−k(∆)

is an isomorphism.

There are two proofs of this theorem: one is detailed in [2], the other, slightly
different and relying on edge contractions, is sketched here. However, their core,
the theory of biased pairings, is the same, and is what will be presented here. We
want to give a brief overview over the key ideas of these proofs. Up until the final
two sections, they are essentially the same, with some variations in generality.
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Let us first recall a basic ingredient to the inductive structure of the proofs:
Two classical lemmas that help tremendously in reducing from higher dimensional
cases to lower-dimensional ones.

4. Two cone lemmas

Recall that the star and link of a face σ in ∆ are the subcomplexes

stσ ∆ := {τ : ∃τ ′ ⊃ τ, σ ⊂ τ ′ ∈ ∆} and lkσ ∆ := {τ \ σ : σ ⊂ τ ∈ ∆}.

For geometric simplicial complexes ∆, we shall think of the star of a face as a
geometric subcomplex of ∆, and the link of a face σ as the geometric simplicial
complex obtained by the orthogonal projection to span(σ)⊥. Let us denote the
deletion of σ by ∆− σ, the maximal subcomplex of ∆ that does not contain σ.
Let

st◦σ ∆ := (stσ ∆, stσ ∆− σ) .
We have the following two elementary lemmas.

Lemma 4.1 (Cone lemma I, see [9, Thm. 7]). For any vertex v ∈ ∆, where ∆ is a
geometric simplicial complex in Rd, and for any integer k, we have an isomorphism

Ak(lkv∆) ∼= Ak(stv ∆) .

Lemma 4.2 (Cone lemma II, see [1, Lem. 3.3]). In the situation of the first cone
lemma we have a natural isomorphism

Ak(stv ∆) ·xv−−−→ Ak+1(st◦v ∆) .

We come to the first core principle, a key new idea for the proof of the hard
Lefschetz property.

5. Generic combinations of linear maps

First is the idea to construct the map ` iteratively. We rely on the following
principle:

Lemma 5.1 (Lemma 6.1, [2]). Given two linear maps

A,B:X −→ Y

of two vector spaces X and Y over R. Assume that

B(kerA) ∩ imA = 0 ⊂ Y.

Then a generic linear combination A“+”B of A and B has kernel

ker(A “+” B) = kerA ∩ kerB.
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This is simple linear algebra, but at first sight, may feel a little unnatural.
However, it is exactly fitting for the spaces we consider. As it turns out, there is a
perfect pairing [7, 17], the Poincaré pairing,

Ak(∆, ∂∆) × Ad−k(∆) −→ Ad(∆, ∂∆) ∼= R .

Now, we notice that ker `d−2k and im `d−2k are orthogonal complements for what-
ever ` we choose. Lets assume d− 2k = 1 for now, and look at the map

Ak(∆, ∂∆) ·`−−→ Ak+1(∆)

with ` to be constructed.
Stay with me: Say now we wish to construct ` as a Lefschetz map inductively.

Then we can start with a vertex v to begin with, and take the associated element xv.
This is usually not good enough to induce an isomorphism, but it has controllable
kernel and image. In each and every step, we now pick another vertex (say w), take
the associated element (xw), and generically combine it with what we have (say `′).
Then to make sure that we have an isomorphism at the end, or equivalently an
injection, it is good if the kernel of this generic combination is as small as possible.

The ideal case is, if `′ is supported in vertices W , that

ker `′ = ker “
∑
v∈W

” xv =
⋂
v∈W

ker xv

This is called the transversal prime property forW . Notice that it is equivalent
to saying that

im `′ = im “
∑
v∈W

” xv = span{ker xv : v ∈W}.

If we want to prove the analogue for `′ “+” xw, then the lemma tells us what
to do: show that

B(kerA) ∩ imA = 0 ⊂ Y

where A is the multiplication with `′, and B is the multiplication with xw.
Now comes the cool part: Multiplication with xw is the same as pullback to

the link of w, which is again a disk or a sphere, depending on whether w is in the
interior of ∆ or on the boundary. Hence we are trying to show that two orthogonal
complements intersect trivially. Which is equivalent to saying that the Poincaré
pairing is nondegenerate on one (and equivalently both) of these spaces.

Hence, we want to show that xwker `′, seen as subspace in A∗(lkw ∆, lkw ∂∆)
via the cone lemmas, has a perfect Poincaré pairing induced by the Poincaré pairing

Ak(lkw ∆, lkw ∂∆)×Ad−k−1(lkw ∆) −→ R .

This is the notion of biased Poincaré duality, the second key part of the proofs.
We shall introduce it after an example.
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6. An example

As it turns out, this property is quite controllable again, by reducing it to Lefschetz
isomorphisms. Lets explain how in an example, following [2, Section 6.5]: Assume
we are in a sphere Σ of dimension d− 1 = 2k, and have shown that
(1) There exists a set of vertices W such that Σ−W is a disk ∆ and
(2) We have the transversal prime property for W in Σ, that is, the kernel of

`′ = “
∑
v∈W ”xv is exactly Ak(∆, ∂∆), the intersection of the kernels of the

xv, v ∈W .
Lets pick w a vertex in the boundary of ∆. We wish to establish that `′“ + ”xw

has kernel Ak(∆− w, ∂(∆− w)).
Then, as we observed above, we wish to understand what to do to ensure that

the Poincaré pairing of Ak(stwΣ) does not degenerate when restricting to the
pullback of Ak(∆, ∂∆).

On the other hand, we also have a short exact sequence

Ak(stw∆, stw∂∆) ·xw−−−→ Ak+1(∆,∆− w) −→ Ak+1(∂∆, ∂∆− w) −→ 0 .

Hence, the image of the multiplication with xw of the kernel of `′ is Ak+1(∆,∆−w),
and equivalently the kernel of the multiplication with xw is Ak(∆− w, ∂∆− w) if
and only if

Ak+1(∂∆, ∂∆− w) = Ak(lkw∂∆) = 0.

Where is the Lefschetz theorem though?
Well π is a projection of Rd/w to a hyperplane, and h is the coordinate with

respect to that projection, θ = h · x the associated linear form, then the last
condition is equivalent to the Lefschetz property in degree k − 1: For the map

Ak−1(πlkw∂∆) ·θ−−→ Ak(πlkw∂∆)

to be an isomorphism is exactly equivalent to Ak(lkw∂∆) = 0.
Let us stop for a second, because without noticing, we have now the core of

the entire argument: We have seen that, if we can show that restrictions of the
Poincaré to certain ideals are non-degenerate, we can construct Lefschetz elements.
Now we have seen also a glimpse of the other direction: that lower-dimensional
cases of the Lefschetz property imply non-degeneracy of such restrictions.

Unfortunately, this does not give a complete proof yet: We need to make sure
that we can remove vertices iteratively so that the deletions remain disks. Also, we
need to make sure that the same happens to the lkw∂∆. This is a rather strong
restriction, and introduced as L-decomposability in [2] (somewhat different from
what Billera and Provan introduced originally [5], which misses the condition on
lkw∂∆). Still, not all spheres can have this property, see for instance [10].

For the sake of clarity, we call a sphere or disk ∆ B-decomposable if it is a
simplex or there exists a vertex w such that ∆−w is B-decomposable of the same
dimension. We call it A-decomposable if the deletion is also A-decomposable,
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and lkw∂∆ is A-decomposable as well. We also point out the relation to work of
Murai and Babson-Nevo: A-decomposable spheres are strongly edge-decomposable
in the sense of [3, 12].

So, to summarize, we have understood how to prove the hard Lefschetz theorem
for A-decomposable spheres. Though if we knew the Lefschetz theorem for lkw∂∆
for any other reason (say, induction on the dimension), B-decomposability would
be enough.

7. Pairings

7.1. Biased pairing

We noted in the last example that the Lefschetz theorem is important for the
induction. But we also noted that a property of the Poincaré pairing is important.
And as we saw, these are in fact equivalent. Precisely, consider a triangulated
(d−1)-ball or sphere ∆ in Rd. We say that it satisfies the biased pairing property
(with respect to its boundary) if the map

Ak(∆, ∂∆) −→ Ak(∆)

is an injection for all degrees k ≤ d
2 , or equivalently, that the pairing

Ak(∆, ∂∆) × Ad−k(∆, ∂∆) −→ Ad(∆, ∂∆) ∼= R

is perfect. Note that this property is trivial for spheres. If k = d
2 , then this is

equivalent to the middle Lefschetz isomorphism on the boundary of the disk (see [2,
Proposition 5.8]), explaining the two different perspectives above. In other words,
identifying what is necessary to do to show the non-degeneracy of the Poincaré
product on kernel and image is easy in the case of B-decomposability.

7.2. Biased Poincaré duality

This is a special case of biased Poincaré duality introduced in [2, Section 5]. This,
in essence, has the goal of extending the reach of the proof above: Instead of
requiring that we look at disks in each step, we want to understand what happens
in other cases to the pullbacks of kernel and image of the previous map.

Let Σ be a sphere of dimension (d− 1), with Poincaré pairing

Ak(Σ) × Ad−k(Σ) −→ R .

We say that an ideal I in A(Σ) satisfies biased Poincaré duality, if this pairing,
restricted to I, is non-degenerate for k ≤ d

2 . A thing to note:
If ∆ is a disk in Σ of the same dimension, and Γ the complementary disk, then

biased Poincaré duality for the ideal

ker[A(Σ) −→ A(Γ)]
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is the biased pairing property for ∆. And as we saw in the previous section, the
biased pairing property boils down to a Lefschetz theorem on ∂Γ.

Such ideals, obtained as kernels I(X,Σ) of

A(Σ) −→ A(X)

where X is any subcomplex, are tremendously important. We also say therefore
that biased Poincaré duality is satisfied at X if and only if it is satisfied with
respect to the associated ideal. And once again, we shall see that this is related to
Lefschetz properties.

7.3. Lefschetz and Hall-Laman

Let us finally come to the strongest notion: The biased pairing property is a weaker
form of the hard Lefschetz property stated before, which we recall applies if with
respect to some ` in R1(∆)

Ak(∆, ∂∆) ·`d−2k

−−−−−→ Ad−k(∆)

is an isomorphism for all k ≤ d
2 . This map is naturally factored as

Ak(∆, ∂∆) ·`d−k

−−−−→ Ad−k(∆, ∂∆) −→ Ad−k(∆) .

This is a special case of the Hall-Laman relations of [2], but enough for our purposes.

8. Cones and boundaries

Next, the proof of the hard Lefschetz theorem is reduced to the middle case when

k = d

2 .

Note that in this case, both properties coincide.
To this end, assume we wish to prove the hard Lefschetz property for ∆, which

is a simplicial (d− 1)-sphere or ball. Let cone ∆ denote the cone over ∆ with apex
n, realized in Rd+1. Let π denote the projection along n, and let θ = h · x, where
h is the vector of coordinates of the individual vertices in coordinate direction n.
The cone lemmas then give:

Lemma 8.1 ([2, Lemma 7.6]). Considering cone Σ realized in Rd+1, and k < d
2 ,

the following two are equivalent:
(1) The Hall-Laman relations for cone ∆ with respect to xn and in degree k + 1.
(2) The Hall-Laman relations for π∆ with respect to θ in degree k.

This iteratively reduces to the middle case.
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Proof. We may assume without loss of generality that θ = xn in A∗(cone∆).
Consider then the diagram

Ak(π∆, ∂π∆) Ad−k(π∆)

Ak+1(cone∆, ∂ cone∆) Ad−k(cone∆)

·θd−2k

∼ ∼

·xd−2k−1
n

where the first vertical map is defined by the composition of cone lemmas

Ak(π∆,π∂∆) ∼= Ak(cone∆, cone ∂∆) ·xn−−−→ Ak+1(cone∆, ∂ cone∆) .

and the second vertical map is simply the cone lemma. An isomorphism on the
top is then equivalent to an isomorphism of the bottom map.

Once we arrive there, another miracle happens, because now Lefschetz has
become biased pairing:

Lemma 8.2 ([2, Lemma 5.6]). A PL homeomorphism ϕ : ∆→ ∆′ of balls ∆, ∆′
in Rd that restricts to the identity on the boundary preserves the pairing property.
That is, ∆ satisfies the biased pairing property if and only if ∆′ does.

This is a rather simple application of the decomposition theorem [4] in its
simplest form: We want to show that passing from ∆ to ∆′ does not affect the
non-degeneracy of the pairing

Ak(∆, ∂∆) × Ad−k(∆, ∂∆) −→ R

For this, we may restrict to single stellar subdivisions and inverses when passing
from ∆ to ∆′, and the decomposition theorem shows that the contribution of such
a modification splits off orthogonally.

In particular, this lemma allows us to arbitrarily refine, and therefore make
simpler, the triangulation of ∆ in the interior, only having to keep the boundary
intact.

9. So, how do we proceed?

We now have reduced ourselves to prove the biased pairing property for a disk ∆
of odd dimension (2d− 1), and specifically do so in dimension d. Equivalently, we
can take the double of ∆ (two copies of ∆, identified along the boundary). In that
sphere Σ, we are now expected to prove biased Poincaré duality in degree d and
with respect to the ideal generated by ∂∆. Which in turn necessitates proving the
middle Lefschetz isomorphism on the same. We are caught in a loop.

Or are we?
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First, notice we only care about the (d − 1)-skeleton, say S of ∂∆. Biased
Poincaré duality in degree d, with respect to the former or the latter, are equivalent,
as the associated ideals coincide in degree d, because Ad(∂∆) ∼= Ad(S).

Now, the following main idea comes into play: Say we find another hypersur-
face E, possibly with boundary, that is an envelope for S in degree d, that is,
Ad(E) ∼= Ad(S). If biased Poincaré duality is implied a Lefschetz statement on E.

This is indeed the case:
Consider for this purpose the complement Σ̃ of E in Σ, where E is a (d− 2)-

acyclic rational, orientable hypersurface (with induced boundary) in Σ, and the
double DE of E.

The open manifold Σ̃ can be compactified canonically to a compact manifold
D̃Σ with boundary DE.

Let π denote the general position projection to a hyperplane H, and θ the
height over that projection, so that

Ak(X) = Ak(πX)
/
θ Ak−1(πX)

for a complex X in Rd.
Lemma 9.1. In the situation above, assume that:
(1) The map

Ad−1(πE, ∂πE) ·θ−−→ Ad(πE) .
is injective.

(2) The map
(Hd−1)(

2d
d )(D̃M) −→ Ad(DE),

which factors as

(Hd−1)(
2d
d )(D̃M) Ad(DE)

(Hd−1)(
2d
d )(DE)

is an injection.
Then Σ satisfies biased Poincaré duality with respect to E.

The main work of [2] is to show that both conditions are, in fact, Lefschetz
type properties. For the first property, this may jump into the reader’s eye, but the
second is more subtle, and in fact, it may be nonobvious initially how cohomology
of triangulated manifolds is even related or mapped to the face rings, as stated in
the second condition. The identification of this map can be traced back to Ishida
[8], and can be understood in terms of an extension of the C̆ech complex of a
simplicial complex by stars of its faces to face rings.

The next, simpler step is to understand that once again, we can prove these
Lefschetz properties inductively, at least, provided E is nicely decomposable.
Unfortunately, neither A nor B-decomposability are flexible enough.
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10. Conclusion

One can show that every triangulated manifold M , after some subdivision not
involving its boundary, becomes C-decomposable, that is, there exists an order
on a subset of the interior vertices of M ′ such that, for any initial segment W and
the next vertex w
(1)

⋃
v∈W stvM ′ is a submanifold of M ′, and

(2) for the final segment W ,
⋃
v∈W stvM ′ = M ′, and

(3) lkwM ′ ∩ (∂M ′ ∪
⋃
v∈W stvM ′) and lkw

⋃
v∈W stvM ′ is C-decomposable of

codimension one, or empty.
Finally, we call a set of vertices, seen as a 0-dimensional manifold, C-decomposable
by default. This notion is slightly weaker than what [2] calls a métro, where
additional homological assumptions are made to simplify the proof of the Lefschetz
property.

Figure 10.1: C-decomposability allows for simpler analysis of kernels and images in the
pullback of a new vertex.

We now have the following basic construction, using the general position
principle:

Lemma 10.1. Assume S is a (d−1)-dimensional complex in a PL (2d−1)-sphere,
or it is the (d− 1)-skeleton of a (2d− 2)-sphere Σ′, living in the suspension Σ of
the latter. Then, assuming the middle Lefschetz theorem for (2d− 4)-spheres, there
exists a hypersurface E in a subdivision of Σ that does not affect S such that
(1) E contains S, and is an envelope for S in degree d.
(2) E is C-decomposable.

To start the reader off with the following basic intuition on how the construction
works, we note that S is a (d− 1)-dimensional complex in a PL (2d− 1)-manifold,
then S embeds into the boundary of its regular neighborhood (a hypersurface
without boundary). By using this cleverly, we can easily modify this principle to
obtain a hypersurface with boundary satisfying (2). Ensuring the first condition uses
induction, relying on Lefschetz theorem for spheres of lower-dimensional spheres
and just basic glimpses of Whitehead’s notion of collapses (of neighborhoods) .
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The key point of [2] is that, while not as simple as the ideals that arise in the
case of B-decomposability, C-decomposability guarantees they are simple enough
to control to allow for the understanding in each application step of Lemma 5.1.

The observation is that the two conditions guarantee that in each step, the
kernel of the map “

∑
v∈W ”xv, pulled back along xw, can be analyzed once again

using Lefschetz theorems on lkwM ′ ∩ (∂M ′ ∪
⋃
v∈W stvM ′).

Indeed, this is even simpler to see and understand by working the orthogonal
complement, that is, we need to understand the image of “

∑
v∈W ”xv, intersected

with the ideal 〈xw〉 ∈ A∗(M ′, ∂M ′), thereby transferring us to A∗(stwM ′).
But now observe the very best thing: This intersection vanishes under mul-

tiplication with xw as all the vertices of W are at distance at least two from
w by the first condition. That condition then guarantees that the image is ex-
actly consisting of the primitive elements under the multiplication with xw on
lkwM ′ ∩ (∂M ′ ∪

⋃
v∈W stvM ′). The hard Lefschetz property on the latter then

implies that the ideal satisfies biased Poincaré duality in lkwM ′. As this is, in
turn, a (C-decomposable) manifold, it in turn closes the induction.

11. Via edge contractions

The alternative proof uses, instead of the perturbation lemma, edge contractions.
Edge contractions are a well-known and used to prove Lefschetz type theorems,
but a major problem arises when trying to do this in full generality. As observed
first by Whiteley [19] (see also [3, 12], it is easy to ensure the Lefschetz property
for a sphere Σ if, after a contraction of the edge e of Σ, the resulting complex Σ′
is (1) still a sphere, satisfies (2) the Lefschetz theorem and so does (3) the link of
the contracted edge. Conditions (2) and (3) are easily satisfiable by induction, but
it is condition (1) that breaks our neck. Indeed, it is not clear that we can find a
contractible edge. And indeed, starting from dimension 3, there exist spheres that
are not the simplex, but still have no contractible edges (see again [10, 12]).

The theory we introduced offers us a way out: We apply edge contraction to a
suitable envelope of the (d− 1)-skeleton instead.

Instead of showing, for an even dimensional sphere Σ′ (say, of dimension 2d−2)
the Lefschetz isomorphism between Ad−1(Σ′) and Ad(Σ′), we show the equivalent
claim that in a suspension Σ of the same, the (d − 1)-skeleton induces an ideal
that satisfies biased Poincaré duality.

But once again, we can try to find a sufficiently nice hypersurface envelope
E for that skeleton that is contractible. In other words, we call a hypersurface
envelope E (in degree d) for a (d−1)-complex X then D-contractible if there exists
an edge e such that
(1) the contracted complex E′ is an envelope for the contracted complex X ′ in

degree d and
(2) E′ contains as a subcomplex a hypersurface Ẽ that contains X ′ and is D-

contractible, or X ′ is of a dimension lower than d− 1.
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With this, we can use Whiteley’s induction and prove the theorem via edge
contractions. We only need the following lemma:

Lemma 11.1. Assume S is a (d−1)-dimensional complex in a PL (2d−1)-sphere,
or it is the (d− 1)-skeleton of a (2d− 2)-sphere Σ′, living in the suspension Σ of
the latter. Then, assuming the middle Lefschetz theorem for (2d− 4)-spheres, there
exists a D-contractible hypersurface envelope E for S in a subdivision of Σ.

This is once again a rather simple geometric construction based on the general
position principle.

12. Open questions

There are several open questions concerning the construction of Lefschetz elements,
hard Lefschetz type theorems. Let us stay with the construction in detail: To
prove the hard Lefschetz theorem for spheres, we needed to discuss more general
manifolds:

Question 12.1. Is it possible to prove the Lefschetz theorem for spheres without
the detour over manifolds and hypersurfaces?

Secondly, it remains to see whether there is a symmetric, or perhaps even
homological version of the perturbation lemma, that does not rely on analyzing
two vertices at a time.

Question 12.2. Is it possible to combine more than two maps at once in Lemma 5.1?

Finally, we could ask for a characterization of "good" artinian reductions of
face rings of spheres, such that a Lefschetz element can be found. From the above,
we can distill the following way to find the right Artinian reductions:

Theorem 12.3. Consider a (2d)-sphere Σ realized in R2d+1. Assume that for
every vertex v of Σ, and every (d− 1)-dimensional subcomplex of its link S, every
embedding of S into a (2d − 1)-sphere satisfies biased Poincaré duality. Then Σ
has a Lefschetz element for the middle isomorphism.

We draw a useful corollary.

Corollary 12.4. If Σ is a 2-sphere in R3, then it has a Lefschetz element if no
three vertices lie in a hyperplane through the origin.

This leaves open the search for explicit coordinates for spheres to satisfy
Lefschetz thoerems. To avoid cheating via transcendental extensions, we ask:

Problem 12.5. Is there a natural set of rational coordinates/rational Artinian
reduction for a sphere Σ to satisfy the Lefschetz theorem?
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